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(S1) Derivative and the link-mutation method in revealing the learnt regulations 13 

With the regulatory link from node i to j being knocked down by a factor λ, the NN 14 

output (synthesis term f ) changes accordingly. If this perturbed f function is integrated 15 

through time following equation 3, the resulting trajectory is called the “mutant 16 

trajectory” 𝒈(𝑖,𝑗) . nnd its difference with the unperturbed trajectory 𝒈𝑊𝑇  gives the 17 

“mutant trajectory measure” of the effective gene regulation.  18 

𝑊𝑖 𝑡𝑜 𝑗 ≡ − ∫ (𝑔𝑗
(𝑖,𝑗)

(𝑡) − 𝑔𝑗
𝑊𝑇(𝑡)) 𝑑𝑡

𝑡

                               (S1) 19 

 20 

nnother representation of the effective regulation is introduced in the main text as 21 

〈Δ𝑖𝑗〉𝑊𝑇, where Δ𝑖𝑗(𝒈, 𝜆) is defined by equation 2. To be specific,  22 

〈Δ𝑖𝑗〉𝑊𝑇 = ∑ ∫ 𝑓𝑗 (𝐼(𝑡), ⋯ , 𝑔𝑖
𝑊𝑇(𝑡)) − 𝑓𝑗 (𝐼(𝑡), ⋯ , 𝜆𝑔𝑖

𝑊𝑇(𝑡))  𝑑𝑡
𝑡{𝐼(𝑡)}

           (S2) 23 

where f here is the trained NN time evolution function, and 𝒈𝑊𝑇(𝑡)  is the WT 24 

(unperturbed) response curve under stimuli I(t). Note that this quantity is also averaged 25 

across several different strengths of the input signal (for the controlled oscillation task). 26 

For the final Cn example, as there is no external input, we average Δ𝑖𝑗 over different 27 

random initial conditions.  28 

 29 

n third way of defining a measure of the effective regulations of a learnt black box is 30 

to evaluate Δ𝑖𝑗  with respect to randomly sampled 𝒈  values instead of the WT 31 

trajectory. This 〈Δ𝑖𝑗〉𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is a much rougher estimation than 〈Δ𝑖𝑗〉𝑊𝑇, since 32 

it ignores the fact that the NN function f is trained only around the WT trajectories. 33 

 34 

Besides, the partial derivative 𝜕𝑓𝑗 𝜕𝑔𝑖⁄  also reflects the regulation effect of node i on 35 

node j. ns discussed above, 𝜕𝑓𝑗 𝜕𝑔𝑖⁄  can also be evaluated with respect to randomly 36 

sampled 𝒈 values or the WT trajectory 𝒈𝑊𝑇. 37 

 38 

We compare all these measures using the 200 repeated training carried out for the 39 

controlled oscillation task (Fig. 3d-f). The results are shown in Table S2. There, “Num.” 40 



means the number of distinct topologies belongs to the corresponding category; and 41 

“Prob.” means the probability for the RNN model, after being trained and interpreted 42 

by the corresponding method, to give network topology of the corresponding category 43 

(in parallel to Fig. 3e). Some methods seem to be better than others. Especially, Δ𝑖𝑗 44 

and 𝜕𝑓𝑗 𝜕𝑔𝑖⁄   evaluated on random samples seems to be the worst cases. The 45 

interpretation methods used in results of main figures are listed as part of Table S1. 46 

 47 

(S2) Direct regularization cannot sparsen the regulation network effectively. 48 

Training with weight decay makes the NN weights sparser. But sparsity of the NN 49 

weights does not mean sparsity in the effective regulation network that it represents, as 50 

parameters in RNN do not have explicit correspondence to links in the regulation 51 

network. To justify this, we applied L2 normalization to all the NN weights and bias, 52 

but did not block any of the regulatory links (as we did in Fig. 2c-d). The strength of 53 

L2 normalization term (rate of weight decay) is increased from zero to a very large 54 

value, so large that the network can no longer be trained (Fig. S2a). We found that 55 

network #17, where weight decay is extremely strong, has the same topology as 56 

network #1. Besides, all successful solutions (small training loss, also good in the view 57 

of peak response and adaptation error) have all the links, no matter how strong the L2 58 

term is. 59 

 60 

nnother kind of regularization studied here is much more sophisticated. The f term with 61 

the regulatory link i-to-j being knocked out (i.e., λ=0) is computed at each train step, 62 

and a L1 regularization is introduced as follows. 63 

𝐿1 = ∑|〈Δ𝑖𝑗〉𝑊𝑇|

𝑖𝑗

                                                  (S3) 64 

This term, when being added to the training loss, penalizes all “active” gene regulations. 65 

Theoretically, it may help to suppress all unnecessary links and leave only the minimal 66 

network just like LnSSO regression. However, with our implementation, this term does 67 

not sparsify the resulting regulation networks very efficiently (Fig. S2b). These 68 

regularization techniques may be further investigated in future works. 69 



 70 

(S3) The cutoff for defining RNN-discovered topologies in Fig. 3d 71 

In Fig. 3, we use the sign of equation S1 as a representation of the activating / inhibiting 72 

nature of the link i to j. The magnitude of W is kind of reflection of the regulation 73 

strength, on which we may apply a cutoff. We have already presented an argument in 74 

the main text, that too low or too high cutoff value all lead to less topologies emerged. 75 

This situation is shown in Fig. S3c. By varying the cutoff value, the black line stands 76 

for the total number of distinct topologies given by 200 repeated trainings of the RNN 77 

model, and the lighter and darker red lines stand for the overlapping with Hill function 78 

topologies following Fig. 3d. The cutoff value used in the main text is that corresponds 79 

to the global maxima of the black line. (Vertical dashed line in Fig. S3c). 80 

 81 

nlso note that for the case studied here, 200 repeated training sessions (with random 82 

initial weights) seem to have uncovered most of the HF-compatible topologies. Another 83 

200 training sessions hardly lead to any new HF-compatible topologies (Fig. S3d). 84 

 85 

(S4) Monotonicity and transferability to Hill function models 86 

We perform cross check using the HF models in order to demonstrate the consistency 87 

between the RNN solutions and the “biological realizable” regulations. ns for possible 88 

“non-biological” NN solutions, we have mentioned that these solutions may rely on 89 

some highly non-monotonic regulatory links. Therefore, monotonicity of all regulatory 90 

links may be a way for describing “biological relevance” mathematically.  91 

 92 

We define monotonicity in the following way. For a regulation link i-to-j, Δ𝑖𝑗 93 

(equation 2) is evaluated at different time points and under different input stimuli, 94 

resulting in a WT-ensemble of Δ𝑖𝑗. We mark different samples in this ensemble by the 95 

upper suffix n. Being averaged over n, the mean value gives 〈Δ𝑖𝑗〉𝑊𝑇. However, this 96 

ensemble of Δ𝑖𝑗
(𝑛)

 may not always have uniform signs – the link i-to-j may appear to 97 

be activating under some circumstances, while inhibiting in some other situations. Non-98 



monotonicity of a link ij is defined as the sum of the minority: 99 

𝑚𝑖𝑛 (∑ |Δ𝑖𝑗
(𝑛)

|
𝑛|Δ𝑖𝑗

(𝑛)
<0

, ∑ |Δ𝑖𝑗
(𝑛)

|
𝑛|Δ𝑖𝑗

(𝑛)
>0

) 100 

nnd the non-monotonicity of an RNN solution is the sum of non-monotonicity of all 101 

its regulation links. The statistics are shown in Fig. S3e. Most RNN solutions that give 102 

rise to HF-relevant networks have low non-monotonicity value (Fig. S3e upper, marked 103 

by the arrow head). nnd the distribution of non-monotonicity for HF-irrelevant RNN 104 

solutions peaks at a much larger value (Fig. S3e lower). Monotonicity correlates 105 

strongly with HF-relevance. 106 

 107 

Based on these observations, a natural postulation is that penalizing this non-108 

monotonicity term during training may help to find HF-relevant solutions with high 109 

probability. It is indeed the case, though the improvement does not seem to be very 110 

significant (Table S2, part II. 200 repeated trainings are studied here). 111 

 112 

(S5) Increasing the variance of NN weights at initialization does not help the RNN 113 

to explore the entire network topology space 114 

We have mentioned in the main text that RNN has bias towards different feasible 115 

underlying mechanisms (Fig. 3f). Gradient descent is inherently a history-dependent 116 

searching algorithm; training may be led to and trapped at just a few local minima. 117 

Initializing the model parameters in a wider range, thus covering the attracting basins 118 

of more local minima, seems to be a straightforward solution to this limitation. However, 119 

this seems not to be applicable to NN. In this paper, initialization of the NN weights 120 

follows identical-independent Gaussian distribution. Changing the variance of weights 121 

at initialization do affects the network topologies found subsequently (Fig. S3f-h). With 122 

increasing initial variance from 0.01 to 0.1 to 1.0, the number of “RNN-relevant” 123 

topologies on the “left branch” also increases from 0 to 5 to 6. However, NN training 124 

is severely affected by too large initial variance (Fig. S3h), resulting in a dramatic 125 

decrease in the probability of finding a HF-relevant topology by RNN. 126 

 127 



(S6) Modifying training details changes the bias of RNN 128 

In the “default” training settings, the pre-stimulus level of g1 should be 0.1 (training 129 

case 0 in Fig. 3b), while the pre-stimulus level of g2 is a free parameter. nnd the loss 130 

function is simply the square root sum of all three training cases (Fig. 3b). Repeated 131 

training with these settings would give the solutions marked red in Fig. 3d. In a 132 

modified training scenario, the pre-stimulus level of g2 is set to a fixed value 0.9. For 133 

the initial phase of training (steps 1 to 2000) loss function contains only the term for 134 

oscillation (training case 1 in Fig. 3b), while the full loss function (containing training 135 

cases 0, 1, and 2) is used for training steps after 2000. With these settings, RNN can be 136 

pushed to explore the left-hand-side branch (bright green in Fig. 3f). The green nodes 137 

are the “HF-compatible” topologies (identical or differ by only one more / one less link, 138 

as for the red case) within a total of 200 repeats.  139 

 140 

(S7) Validation with Enumeration using Logistic regression model 141 

Logistic regression model is a kind of generalized linear model. Mathematically, it is 142 

equivalent to single-layer NN:  143 

𝑓𝑖 = 𝜎 (∑ 𝑊𝑖𝑗𝑔𝑗
𝑗

+ 𝑏𝑖) ;    𝜎(𝑥) =
1

1 + 𝑒−𝑥
 144 

Compared with a multi-layer (or deep) NN, this model is obviously much simpler and 145 

more transparent. ns discussed in the main text, we need to verify that network 146 

topologies proposed by deep NN don not rely on any specialized nonlinearity, and can 147 

thus be transferred to other modeling schemes. npart from the Hill-equation-based 148 

modelling scheme discussed in the main text, we conduct the same validation with 149 

Logistic regression models. Moreover, models with the Logistic-regression-like 150 

structure (linear + saturation) have been introduced by many authors to model the 151 

transcription regulation process 1,2.  152 

 153 

With the optimal cutoff for regulation strength, 57 different network topologies 154 

emerged in 200 repeated training (same result as Fig. 3d-f); 38 of them (38/57=0.67) 155 

also appears in exhaustive search with the Logistic regression model. (For each network 156 



topology, 160,000 sets of W and b parameters are randomly sampled.) ngain, only the 157 

“right branch” of the network topology space was explored by NN. Though Hill 158 

equation and Logistic regression are very different model frameworks, the cross-159 

validation results presented here and in Fig. 3d-f are in general consistent. 160 

 161 

(S8) A repeat of the training-and-deletion sequences of Fig. 4a-b. 162 

Different training-and-deletion sequences could lead to different sparse regulation 163 

modules. Fig. S5a shows a parallel run with the same settings as Fig. 4a-b. nlthough 164 

solution #1 in both cases have identical topology, differences in the effective regulation 165 

strength lead to different link deletion. These two cases deviate from each other 166 

significantly at step #3 and later. The sparse solution here (#5 in Fig. S5a) has 167 

effectively two nodes: g2 serves as “external input” to the oscillatory module. While the 168 

case presented in main text (#6 of Fig. 4b) is truly three-node – g2 functioning as part 169 

of a feedback loop there. ns expected, networks #5 in Fig. S5a can also be transferred 170 

successfully to Hill-function models (Fig. S5b). Parameters of this HF model is shown 171 

in Table S5.  172 

 173 

nn interpretation of it (#5 in Fig. S5a) could be like this. In the absence of both inputs, 174 

the oscillatory module (feedback loop between g1 and g3) is suppressed by g2. This 175 

repression is released by input I1, yielding oscillatory response. On the other hand, I2 is 176 

able to activate g1 but unable to remove the repression on the other half of the feedback 177 

loop, leading to sustained high g1 level.  178 

 179 

(S9) Hill function model for Fig. 4e and Fig. S5b 180 

The Hill function model used here is slightly more complicated than that used for 181 

enumeration in Fig. 4 (Methods). Here, Hill coefficient is set to n=4, and a basal 182 

expression term (u) is included: 183 

𝑓𝑖 = (∑ ℎ𝑖𝑗
+

𝑗

) (∏ ℎ𝑖𝑙
−

𝑙

) + 𝑢𝑖  184 

Parameters K, b, and u are sampled from the exponential distribution 𝑝(𝑥) ∝ 𝑒−0.5∗𝑥. 185 



The parameter set that gives rise to Fig. 4e and Fig. S5b are given in Table S3 and S*, 186 

respectively. Numerical integration is carried out using forward Euler method, with a 187 

sufficiently small timestep dt=0.01. 188 

 189 

(S10) Controlled oscillation with frequency modulation 190 

Training target now consists of five parts: low g1 in the absent of both stimuli, low/high 191 

frequency oscillation under low/high levels of I1, and low/high steady-state response to 192 

low/high levels of I2. Low and high input levels are set to be 0.4 and 0.8, respectively. 193 

ngain, we use the technique of Fig. 4 to find minimum regulation networks, i.e., by 194 

removing irrelevant links sequentially. nlso, for simplicity of the input links, I1 and I2 195 

can only act on two different network nodes respectively. For the case that I1 acts on g2 196 

and I2 on g1, a meaningful topology found is shown in Fig. S4b insert. The 197 

corresponding RNN behaves like Fig. S4a after training, where oscillation frequency 198 

increases with I1 level. 199 

 200 

This topology consists of two feedback loops, a small one g1-g3-g1 and a large one g1-201 

g3-g2-g1. The way it works can be interpreted as follows. The level of g1 drops after a 202 

pulse, so as g3 which relies solely on g1 for activation. Then g2 starts to decay without 203 

the activation from g3. Only when g2 falls below certain threshold, can it release its 204 

suppression on g1 thereby trigger the next pulse. Therefore, the faster g2 falls the higher 205 

the oscillation frequency. ns for input I1, its repression helps to cancel out high base-206 

level expression of g2, making it to fall faster when activation from g3 disappears, hence 207 

modulate the oscillation frequency. In this sense, frequency modulation relies mainly 208 

on the large feedback loop (g1-g3-g2-g1), especially the link g3-to-g2. Without this link, 209 

the large feedback loop is broken, while other modules (small feedback loop and the 210 

double-negative path from I1 to g1) remains unaffected. This interpretation is supported 211 

by “mutating” this link in the trained network. ns expected, though oscillatory response 212 

to I1 persists, the frequency modulation property is lost (Fig. S4c-d). 213 

 214 

(S11) Training the RNN to simulate CA models in Fig. 6 215 



We first describe the preparation of training data. For each ground truth Cn model being 216 

studied, 16 different (random) initial conditions are used to generate 16 different 217 

spatial-temporal trajectories. ns the initial condition, all “cells” except the one in the 218 

center have all its g components equal to 0, and the central cell has randomly sampled 219 

values (between 0 and 1) for all gi. Each trajectory has 21 pixels (cells) in the spatial 220 

direction (one-dimensional array, periodic boundary condition), and a total of 320 221 

successive timesteps. The 320 time points are then down sampled by 10-fold, in order 222 

to add difficulty for reverse engineering. Therefore, the training data is an array of size 223 

[trajectories=16, timepoints=32, spatial-points=21, genes=10]. For each gene, its 224 

“expression levels” are then normalized by its maximum value in these 16*32*21 225 

different situations. 226 

 227 

The training data is then cut into shorter trajectories, each with 5 (course grained) time 228 

points, corresponding to 41 original time steps. The RNN model is initialized (t=0) 229 

using the first frame of it, and runs freely to compute 40 successive time points 230 

following equation 1. The model outputs at step t=10, 20, 30, 40 are compared with the 231 

rest 4 temporal frames of training data, giving the loss function. 232 

  233 



 234 

Fig. S1. Training the RNN to perform the adaptation task. (a-c) n triangular pulse 235 

instead of the smooth double-exponential curve were used as the target response curve. 236 

Training still converges, and the resulting RNN adopts a regulation network made up 237 

of the incoherent feed forward loop together with a feedback loop. (d-e) Direct 238 

visualization of the time iteration function fitted by NN. For the adaptation task, the 239 

NN computes the functions f1(g1, g2, I) and f2(g1, g2, I). In main text Fig. 1c, several 240 

cross sections of these multi-variable functions are plotted, reflecting the underlying 241 

regulations. Here, the entire function is shown, with the horizontal and vertical axis 242 

showing g1 and g2 levels, and different I level in different columns. Values of the 243 

synthesis term f are represented by color. The function is smooth and monotonic. The 244 

activating and inhibiting regulations indeed hold throughout the entire input range. 245 

  246 



 247 

Fig. S2. Trying to find sparse regulation networks with regularization. (a) L2 248 

regularization on NN weights and bias does not help sparsening the effective regulation 249 

network. Sparsity is not affected by increasing regularization strength. Successful 250 

solutions (ones with small training loss) have all six links, no matter how strong the L2 251 

term is. (b) n different approach is to penalize ∑ |〈Δ𝑖𝑗〉𝑊𝑇|𝑖𝑗  , i.e., the L1 norm 252 

describing the dependences between genes. However, sparsity seems not to be 253 

promoted by increasing the regularization strength, either. 254 

  255 



 256 

Fig. S3. The case of controlled oscillation. (a) Training of the RNN to perform this task 257 

does not rely on specific waveforms. Triangular wave is used in Figs. 3-4, and sine 258 

wave is used here. Both trainings are successful. (b) The network of Fig. 3c can be 259 

transferred to Hill-function models. Dynamic behavior of the HF model is shown. See 260 

Table S3 for the parameters. (c) The cutoff for defining topologies found by RNN. See 261 

Supplemental text S3 for details. (d) 200 repeated training sessions seem to have 262 

uncovered most of the HF-compatible topologies. (e) For a learnt regulation system, 263 

HF-relevance correlates with monotonicity. See Supplemental text S4 for details. (f) 264 

Derivatives 𝜕𝑓𝑗 𝜕𝑔𝑖⁄  also correlates positively with the regulations revealed by link 265 

mutation tests in the qualitative sense. (g) Compare this panel with Fig. 3f. Increasing 266 

the variance of NN weights at initialization do help the RNN to explore the left branch 267 

of solution, but training is severely affected by too large initial variance.  268 



 269 

Fig. S4. Most topologies found by RNN can be transferred to Logistic regression model. 270 

(a) Statistics of the comparison between RNN with Logistic regression model based 271 

enumeration. Logistic regression model is equivalent to single-layered neural network. 272 

It is understandable that multi-layered NN bears more similarities with single-layered 273 

NN, than with Hill function models. (b) Similar to the Hill-equation results, those RNN-274 

compatible topologies (colored red) have some inherent structural bias (not uniformly 275 

distributed). 276 
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 278 

Fig. S5. (a) nnother training-and-deletion sequence as Fig. 4a-b. Here, topology #5 is 279 

sparse and interpretable. It can also be successfully transferred to Hill function model 280 

(b). See Table S5 for the parameters. (c) Controlled oscillation with frequency 281 

modulation can also be achieved with the RNN based model. This panel shows the 282 

dynamics of the trained system. Oscillation frequency can be tuned by level of I1, so as 283 

the steady-state response level by I2. (d) The system in panel c shows clear dependence 284 

of oscillation period on the level of I1 (magenta squares). Its effective network topology 285 

is shown as inset. See Supplemental text S3 for an interpretation. (e) Removing g3-to-286 

g2 activation of the network in panel d destroys frequency modulation. Panels (d) and 287 

(e) have the same range of axis. 288 

  289 



 290 

Fig. S6. nll 25 Cn models studied. Typical spatial-temporal dynamics of the ground-291 

truth model is shown on the right. nlthough there are 10 genes in total (g1- g10), only 292 

g1, g2 and g3 are shown in red, yellow and blue here. ROC curves for predicted 293 

activating /inhibiting links with our RNN-based method (similar to Fig. 6f) are shown 294 

on the left. 295 
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Table S1. RNN model settings for results in main text. 297 

 Fig.1 Fig.2 Fig.3 Fig.4 Fig.5 Fig.6 

Part I.  RNN model structure 

Task adaptation Controlled oscillation Gap gene Cn 

Num. genes 2 2 3 4 10 

Num. external 

inputs 
1 2 2 0 

nrchitecture MLP MLPx2 MLPx2 MLPx3 MLP MLP 

Num. nodes 

in each layer 
3,16,16,2 3,16,16,1 4,16,16,1 5,16,16,1 6,16,16,4 20,64,64,10 

Num. weights 

and bias 
370 706 738 1155 452 6154 

RNN iterations 40 60 30 40 

Part II.  Training data and the training process 

Observable 

genes  
g1 only g1 only nll nll 

Num. frames per 

trajectory 
40 60 1 32 

Spatial points 1 1 64 21 

Num. 

trajectories 
3 3 1 16 

Training steps 2000 4000 4000 4000 

Time required 

for training 
65s 81s 210s 220s 120s 430s 

Sampling 1.6E5 

parameter sets 

per topology 

60s 100s 350s 120s 240,000s 

Total num. of 

topologies 
198 2304 ~11000 ~1011 ~1095 

Part III.  Interpretation of the trained NN 

Method plot Mutant trajectory 〈Δ𝑖𝑗〉𝑊𝑇 

λ value / 0 0.9 0.9 0 

 298 

 299 

 300 
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Table S2. Comparison of different implementations of link-mutation method. 302 

 
nll topologies HF-relevant Direct hit 

Num. Num. Prob. Num. Prob. 

Part I.  For the 200 repeated trainings in Fig. 3d-f 

Mutant trajectory λ = 0 66 31 52.9% 15 28.0% 

Mutant trajectory λ = 0.5 64 33  17  

Mutant trajectory λ = 0.9* 64 36 54.9% 21 38.3% 

Mutant trajectory λ = 0.95 68 36  22  

Mutant trajectory λ = 0.99 65 40 58.0% 23 36.9% 

WT trajectory λ = 0 52 25 52.6% 13 26.3% 

WT trajectory λ = 0.9 64 39 68.1% 16 30.9% 

WT trajectory λ = 0.99 61 40 66.7% 17 30.2% 

Random samples λ = 0 52 27 57.0% 9 10.9% 

Random samples λ = 0.9 55 33 68.2% 15 22.6% 

Random samples λ = 0.99 64 40 67.7% 15 16.9% 

WT trajectory 𝜕𝑓𝑗 𝜕𝑔𝑖⁄  63 34 63.9% 16 27.8% 

Random samples 𝜕𝑓𝑗 𝜕𝑔𝑖⁄  55 30 46.4% 12 13.9% 

Part II.  Training with L1 regularization on monotonicity 

Mutant trajectory λ = 0 50 32 70.3% 18 42.2% 

Mutant trajectoryλ= 0.9 52 30 65.9% 14 40.5% 

Mutant trajectory λ = 0.99 51 26 57.3% 14 37.1% 

 303 

 304 

 305 
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Table S3. Parameters for Hill function model with the topology of Fig. 3c. (Hill 307 

coefficient n=2) 308 

link nctivation/Inhibition b K 

I1 to g1 nct. 0.174 0.523 

I2 to g1 nct. 0.782 1.857 

g1 to g1 nct. 1.689 0.339 

g2 to g1 Inh. / 0.420 

I1 to g2 nct. 0.143 0.491 

I2 to g2 Inh. / 0.597 

g1 to g2 nct. 1.403 0.753 

g2 to g2 nct. 1.328 0.891 

 309 

  310 



Table S4. Parameters for Hill function model in Fig. 4e. (Hill coefficient n=4) 311 

link nctivation/Inhibition b K 

I1 to g1 / / / 

I2 to g1 nct. 0.983 0.397 

g1 to g1 / / / 

g2 to g1 nct. 1.259 0.730 

g3 to g1 Inh. / 4.503 

I1 to g2 nct. 6.424 0.416 

I2 to g2 / / / 

g1 to g2 / / / 

g2 to g2 / / / 

g3 to g2 Inh. / 0.043 

I1 to g3 / / / 

I2 to g3 / / / 

g1 to g3 nct. 2.189 0.905 

g2 to g3 / / / 

g3 to g3 / / / 

 Basal expression u 

g1 0.076 

g2 0.871 

g3 0.050 

 312 
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Table S5. Parameters for Hill function model in Fig. S5b. (Hill coefficient n=4) 314 

link nctivation/Inhibition b K 

I1 to g1 / / / 

I2 to g1 nct. 1.370 0.324 

g1 to g1 / / / 

g2 to g1 Inh. / 4.514 

g3 to g1 nct. 2.960 0.381 

I1 to g2 Inh. / 0.643 

I2 to g2 / / / 

g1 to g2 / / / 

g2 to g2 / / / 

g3 to g2 / / / 

I1 to g3 / / / 

I2 to g3 / / / 

g1 to g3 Inh. / 0.446 

g2 to g3 Inh. / 0.440 

g3 to g3 nct. 1.307 0.350 

 Basal expression u 

g1 0.0085 

g2 0.382 

g3 0.112 

 315 
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