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Supplementary Figures 

 

 
Fig. S1. The receiver operating characteristic curves (ROC) and precision-recall (PR) 
curves during 10-fold cross-validation on the known drug-target network (Table S3) by 
comparing deepDTnet with four traditional machine learning approaches: random forest, 
support vector machine (SVM), k-nearest neighbors (k-NN), and naive Bayes. The area 
under ROC and PR curves are provided in Table S4. 
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Fig. S2. The known drug-target bipartite network covering four types of druggable 

targets: G-protein-coupled receptors (GPCRs), kinases, nuclear receptors (NRs), 

and ion channels (ICs). Drugs are grouped by the first-level of the Anatomical 

Therapeutic Chemical classification system (ATC) code. We assigned the drugs 

with multiple ATC codes based on two criteria: (1) The majority rule of ATC 

codes, and (2) manually checked and assigned by the experts based on the 

mainly approved clinical indication. 
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Fig. S3. Performance of deepDTnet on the known drug-target network for G-

protein-coupled receptors (GPCRs). The area under the ROC curve (AUROC) 

and the area under precision-recall curve (AUPRC) during a 5-fold cross-

validation procedure was evaluated. 

 

  

Fig. S4. Performance of deepDTnet on the known drug-target network for 

Kinases. The area under the ROC curve (AUROC) and the area under precision-

recall curve (AUPRC) during a 5-fold cross-validation procedure was evaluated. 
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Fig. S5. Performance of deepDTnet on the known drug-target network for nuclear 

receptors (NRs). The area under the ROC curve (AUROC) and the area under 

precision-recall curve (AUPRC) during a 5-fold cross-validation procedure was 

evaluated. 

  

Fig. S6. Performance of deepDTnet on the known drug-target network for ion 

channels (ICs). The area under the ROC curve (AUROC) and the area under 

precision-recall curve (AUPRC) during a 5-fold cross-validation procedure was 

evaluated. 



8 
 

  

  

Fig. S7. Performance of deepDTnet for predicting novel targets for known drugs 

during drug’s 10-fold cross validation (see Methods). Precision and Recall of 

deepDTnet were computed against top k predicted target list during the drug’s 

10-fold cross-validation. AUROC: the area under the ROC curve (AUROC) and 

AUPRC: the area under precision-recall curve. Here, an experimentally validated 

drug-target interaction network (Table S3) are used to evaluate the model 

performance. DTINet: a previously published state-of-the-art network-based 

approach1. 
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Fig. S8. Performance DeepDTnet for predicting novel drugs for known targets 

during target’s 10-fold cross validation (see Methods). Precision and Recall of 

deepDTnet were computed against top k predicted drug list during the target’s 

10-fold cross-validation. AUROC: the area under the ROC curve (AUROC) and 

AUPRC: the area under precision-recall curve. Here, an experimentally validated 

drug-target interaction network (Table S3) are used to evaluate the model 

performance. DTINet: a previously published state-of-the-art network-based 

approach1. 
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Fig. S9. Evaluation of degree (connectivity) bias of drugs in the known drug-target 

network by deepDTnet. The area under the ROC curve (AUROC) and the area 

under precision-recall curve (AUPRC) for drugs with high degree (Each drug has 

5 or more than 5 known targets) vs low degree (Each drug has less than 5 known 

targets) during 5-fold cross-validation. 

 

  

Fig. S10. Evaluation of degree (connectivity) bias of targets in the known drug-

target network by deepDTnet. The area under the ROC curve (AUROC) and the 

area under precision-recall curve (AUPRC) for targets with high degree (Each 

target has 5 or more than 5 known drugs) versus low degree (Each target has 

less than 5 known drugs) during 5-fold cross-validation. 
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Fig. S11. Evaluation of chemical similarity bias of drugs. The area under the ROC 

curve (AUROC) and the area under precision-recall curve (AUPRC) for drugs with 

high versus low chemical similarity (see Methods) during 5-fold cross-validation. 

 

  

Fig. S12. Evaluation of target (protein) sequence similarity bias. The area under 

the ROC curve (AUROC) and the area under precision-recall curve (AUPRC) for 

targets with high versus low protein sequence similarity (see Methods) during 5-

fold cross-validation. 
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Fig. S13. The two-dimensional (2D) representation of the learned vectors for 14 

types of drugs grouped by the first-level of the Anatomical Therapeutic Chemical 

(ATC) Classification System codes. The drug vector matrix learned by the DTINet1 

algorithm published previously using the t-SNE (t-distributed stochastic neighbor 

embedding algorithm2). We assigned the drugs with multiple ATC codes based on 

two criteria: (1) the majority rule of ATC codes; and (2) manually checked and 

assigned by experts based on approved clinical uses. The color keys for 14 types 

of drugs grouped by the first-level of ATC code are provided in Fig. 3A. 
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Fig. S14. An illustration of the learned vectors for four well-known drug target 

families: G-protein-coupled receptors (GPCRs, blue), kinases (green), nuclear 

receptors (NRs, red), and ion channels (ICs, light pink). The vectors are non-

linearly projected onto 2D space for visualization by four single measures: (a) 

protein-protein interaction network, (b) gene (protein)-disease association network, 

(c) protein (target) sequence similarity protein, and (d) Gene Ontology (cellular 

component) similarity. The color keys for four types of drug target families are 

provided in Fig. 3B. 

 

 

a b 

c d 
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Fig. S15. Control firefly luciferase activity and MTT assays of Topotecan in vitro. 

(A) Topotecan have no direct inhibition on control firefly luciferase activity. Control 

firefly luciferase in cell lysates was directly incubated with topotecan and 

bioluminescence was measured. (B) Topotecan is not cytotoxic to 293T cells. 

293T cells (5 × 104) were incubated with varied concentrations of topotecan for 24 

h. Cell viability was measured by MTT assay. 
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Fig. S16. Fluorescence quenching assay of Topotecan binding to RORγt-LBD. 

(A) Binding affinity of Topotecan to RORγt-LBD was measured by intrinsic 

fluorescence quenching assay. The dashed line indicates the fluorescence 

spectrum of TPT (10 μM). (B) Modified Stern-Volmer plots for the fluorescence 

quenching data of RORγt-LBD-TPT system. The binding affinity (Ka value) of 

TPT is 1.60 x 105 M-1 by using one binding site between Topotecan and RORγt-

LBD. 
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Fig. S17. Hematoxylin and eosin (H&E) staining of organ sections from vehicle- or 

topotecan (TPT)-treated EAE mice. 
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Fig. S18. HPLC/MS analysis of the topotecan (TPT) and internal standard (IS, 
gliclazide). A: Brain-7 (1h); B: Plasma-7 (1h). The method published previously3 
was followed with modification. Chromatographic separation was performed on an 
Agilent ZORBAX C18 column (100 × 2.1 mm, 1.8 µm, USA) with Thermo Scientific 
Ultimate 3000 UPLC system (Sunnyvale, CA, USA). The column temperature was 
maintained at 40°C. The mobile phase was composed of acetonitrile (A) and 0.1% 
formic acid in water (B) at a flow rate of 0.3 mL/min under gradient elution 
conditions: 10-100% A at 0-3 min, 100-10% at 3-4 min, 10% at 4-6 min. MS 
detection was performed using a Thermo Scientific Q Exactive Focus hybrid 
quadrupole-orbitrap mass spectrometer (USA) equipped with an ESI source in 
positive-ion mode working in a selected ion monitoring (SIM) operation. The 
monitoring ions of TPT and IS were m/z 422.17120 and 587.28741, respectively. 
The optimized parameters were as follows: spray voltage: +3.8 KV; capillary 
temperature, 350°C; S-lens RF level: 60; sheath gas (N2) pressure, 45 arbitrary 
units (a.u.); auxiliary gas (N2) pressure, 15 a.u.; resolution, 35000 FWHM; AGC 
target value, 5e4. 
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 Fig. S19. The concentration-time profile of topotecan in mouse plasma. 

 
 
 

 
Fig. S20. The concentration-time profile of topotecan in mouse brain. 
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Fig. S21. HPLC/MS analysis of the T0901317 and internal standard (IS, gliclazide). 
A: Brain-6; B: Plasma-6. Chromatographic separation was performed on an Agilent 
ZORBAX C18 column (100 × 2.1 mm, 1.8 µm, USA) with Thermo Scientific Ultimate 
3000 UPLC system (Sunnyvale, CA, USA). The column temperature was 
maintained at 40°C. The mobile phase was composed of acetonitrile (A) and 0.1% 
formic acid in water (B) at a flow rate of 0.3 mL/min under gradient elution 
conditions: 60-100% A at 0-3 min, 100-60% at 3-3.5 min, 60% at 3.5-6 min. MS 
detection was performed using a Thermo Scientific Q Exactive Focus hybrid 
quadrupole-orbitrap mass spectrometer (USA) equipped with an ESI source in 
negative-ion mode working in a selected ion monitoring (SIM) operation. The 
monitoring ions of T0901317 and IS were m/z 480.03183 and 322.12286, 
respectively. The optimized parameters were as follows: spray voltage: -3.1 KV; 
capillary temperature, 325°C; S-lens RF level: 60; sheath gas (N2) pressure, 40 
arbitrary units (a.u.); auxiliary gas (N2) pressure, 10 a.u.; resolution, 35000 FWHM; 
AGC target value, 5e4. 
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Fig. S22. Sensitivity (true positive rate or recall) and specificity (true negative 

rate) for all predicted drug-target interactions by deepDTnet. The high-confidence 

predicted drug-target networks are free available at: https://github.com/ChengF-

Lab/deepDTnet. FPR: False positive rate; TPR: True positive rate. 
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Fig. S23. Performance comparison of deepDTnet with two previously published 

approaches, DTInet1 and NeoDTI4, on the experimentally validated drug-target 

network (Table S3) during drug-based 10-fold cross validation (predicting new 

targets for known drugs, see Methods). (a) The receiver operating characteristic 

curves (ROC), (b) precision-recall (PR) curves, (c) precision against top k 

predicted lists, and (d) recall against top k predicted lists. The detailed data are 

provided in Table S12. 
 
  

a b 

c d 
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Fig. S24. Performance comparison of deepDTnet with two previously published 

approaches, DTInet1 and NeoDTI4, on the previously published drug-target 

network1 during drug-based 10-fold cross validation (predicting new targets for 

known drugs, see Methods). (a) The receiver operating characteristic curves 

(ROC), (b) precision-recall (PR) curves, (c) precision against top k predicted lists, 

and (d) recall against top k predicted lists. The detailed data are provided in 

Table S13.  

a b 

c d 
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Supplementary Tables 
 

Table S1. The number of nodes of individual types in the constructed 

heterogeneous drug-gene-disease network. 

Type of node Count 

Drug 732 

Protein 1,915 

Disease 440 

Side-effect 12,904 

Total 15,991 

 
 
 

Table S2. The size of individual networks or association matrices in the 

constructed heterogeneous network. 

Type of edge Count 

Drug-Protein 4,978 

Drug-Drug 132,768 

Drug-Disease 1,208 

Drug-Side-effect 263,805 

Protein-Protein 16,133 

Protein-Disease 23,080 

Total 441,972 
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Table S3. The list of the experimentally validated drug-target network. This 

bipartite drug-target network matrix contains 5,680 experimentally validated drug-

target interactions connecting 732 approved drugs and 1,176 human targets. The 

“1” in the drug-target matrix denotes the experimentally validated drug-target 

interactions, while “0” represent the unknown drug-target interactions. (.xlsx) 

 

Table S4. The area under the receiver operating characteristic curve (AUROC) 

and under the precision-recall curve (AUPR) during 10-fold cross-validation on the 

experimentally validated drug-target network (Table S3). We repeated 10 times 

random 10-fold cross-validations, with standard deviation provided. 

Methods AUROC AUPR 
DeepDTnet 0.964+0.0008 0.969+0.0008 
Naive Bayes 0.783+0.0036 0.741+0.0047 
SVM 0.869+0.0014 0.880+0.0024 
KNN 0.839+0.0065 0.799+0.0101 
Random Forest 0.911+0.0008 0.919+0.0010 
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Table S5. The area under the receiver operating characteristic curve (AUROC) 

and under the precision-recall curve (AUPR) on the external validation set by 

collecting most newest experimentally vlidated drug-target interactions from the 

DrugCentral database. 

 

 

 

 

 

  

Methods AUROC AUPR 
DeepDTnet 0.838 0.861 
Naive Bayes 0.642 0.638 
SVM 0.748 0.748 
KNN 0.650 0.652 
Random Forest 0.777 0.795 
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Table S6. Validation of deepDTnet-predicted GPCRs for the selected FDA-

approved drugs. 
 

Drug name Structure Primary 
target 

Predicted 
targets 

Confirmed  
activity [uM] 

 

Alosetron 

 

HTR3A HTR2A (Top 2) 4.425 

HTR2C 

(Top 7) 

6.832 

HTR2B 

(Top 3) 

0.018 

Amoxapine 

 

SLC6A4 

DRD3 

(Top 5) 

0.056 

Bevantolol 

 

ADRB1 

HTR2B 

(Top 6) 

13.960 

Cisapride 

 

HTR2A,  

HTR3A, 

HTR4 

DRD3 

(Top 6) 

6.323 

Clemastine 

 

HRH1 
CHRM1 

(Top 9) 

0.135 

Dextromethorp

han 
 

SIGMAR1, 

SIGMAR1, 

GRIN3A 

ADRA2A 

(Top 8) 

11.172 

Dobutamine 

  

ADRB1 ADRA2A (Top 3) 10.831 

DRD2 (Top 5) 8.217 

DRD1 (Top 1) 13.000 

ADRA2B (Top 8) 5.800 

DRD3 (Top 9) 0.530 

Domperidone 

 

DRD2, 

DRD3 ADRA1A 

(Top 9) 

0.128 
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Fluoxymestero

ne 
 

ESR1, AR, 

PRLR PGR 

(Top 6) 

0.074 

Hydrocortisone 

 

NR3C1, 

ANXA1 PGR 

(Top 3) 

7.610 

Isopropamide 

 

CHRM3 

CHRM2 (Top 2) 

0.007 

Ketotifen 

 

HRH1 

ADRA1A 

(Top 6) 

10.379 

Loxapine 

 

DRD2, 

HTR2A 
CHRM2 (Top 2) 

1.123 

Phenylephrine 

 

ADRA1A, 

ADRA1B,  

ADRA1D 

DRD1 

(Top 7) 

2.800 

Salmeterol 

 

ADRB2 
ADRA2B 

(Top 10) 

13.317 

Tamsulosin 

 

ADRA1A 
ADRB2 

(Top 2) 

2.200 

Tegaserod 

 

HTR4 HTR1A (Top 10) 0.143 

HTR2C (Top 1) 0.197 

HTR2A (Top 5) 0.127 

HTR2B (Top 8) 0.008 

Trazodone 

 

HTR2A, 

HTR2C, 

SLC6A4, 

HTR1A 

DRD3 (Top 8) 

1.480 
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 Table S7. Pharmacokinetic parameters of topotecan after i.p. injection in mice. 

  Tmax (h) Cmax 

(ng/mL) 
AUC0-t 

(ng*h/mL) 
AUC0-inf 

(ng*h/mL) t1/2 (h) 

Brain 0.5 121.29 169.53 172.74 - 
Plasma 0.5 3254.57 3276.16 3309.18 4.81 

 

 

Table S8. Concentration of T0901317 in mice brain samples. 
Con (ng/g) Vehicle TPT P-value 

1 4214.45 2788.48 0.0029 
2 5433.60 4396.96  

3 3964.91 3365.97  

4 4506.24 3736.16  

5 4013.55 3212.96  

Mean 4426.55 3500.11  

SD 601.91 605.58  

RSD 0.14 0.17  

T09013175, an orthosteric ligand of RORγt, was used as the tracer for assessing 

target occupancy of TPT. Student’s t-test was performed and sterile water was 

used as vehicle. 
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Table S9. Concentration of T0901317 in mice plasma samples. 
Con Vehicle TPT P-value 

1 1091.90 1452.30 0.688 
2 2262.45 1866.60  

3 1309.35 1553.80  

4 1589.65 1459.85  

5 1880.80 1331.05  

Mean 1626.830 1532.720  

SD 462.828 202.712  

RSD 0.284 0.132  

T09013175, an orthosteric ligand of RORγt, was used as the tracer for assessing 

target occupancy of TPT. Student’s t-test was performed, and sterile water was 

used as vehicle. 

 

Table S10. The list of 27,634 high-confidence predicted drug-target interactions by 

deepDTnet. The high-confidence predictions were selected based on sensitivity 

versus specificity analysis as shown in Fig. S22. Among 22,739 predicted drug-

target pairs, 5,175 were validated by the most recent DrugCentral database6. (.xlsx) 
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Table S11. Performance influenced by the degree (connectivity) bias on the 
drug-target network. 
Methods AUROC AUPR 
DTINet   
Drug degree=1 0.7567±0.0245 0.7805±0.0245 
Drug degree>1 0.9124±0.0282 0.9296±0.0230 
Protein degree=1 0.7374±0.0513 0.7452±0.0412 
Protein degree>1 0.9001±0.0310 0.9087±0.0253 
 
deepDTnet 

  

Drug degree=1 0.8887±0.0223 0.8759±0.0263 
Drug degree>1 0.9584±0.0089 0.9582±0.0118 
Protein degree=1 0.8166±0.0444 0.8148±0.0424 
Protein degree>1 0.9259±0.0199 0.9253±0.0184 

Note: AUROC: area under the receiver operating characteristic curve; AUPR: area 
under precision-recall curve. We repeated 10 times random 10-fold cross-
validations, with standard deviation provided. 

 
Table S12. Performance comparison of two new components in deepDTnet on 
the experimentally validated drug-target network (Table S3) when predicting new 
targets for FDA-approved drugs. 
Methods AUROC AUPR 
DeepDTnet   
Auto encoder embedding & PU matrix 
completion 

0.959±0.0013 0.961±0.0022 

Auto encoder embedding only 0.919±0.0035 0.935±0.0026 
PU matrix completion 0.938±0.0022 0.949±0.0020 
   
DTINet 0.910±0.0037 0.923±0.0034 
NeoDTI 0.932±0.0059 0.908±0.0071 

Note: DeepDTnet was designed by implementing two new components: auto 
encoder embedding and PU matrix completion, comparing to DTInet1 and NeoDTI4. 
AUROC: area under the receiver operating characteristic curve and AUPR: area 
under precision-recall curve. We repeated 10 times random 10-fold cross-
validations, with standard deviations provided. 
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Table S13. Performance comparison of two new components in deepDTnet on 
the previously published drug-target network1 when predicting new targets for 
FDA-approved drugs. 
Methods AUROC AUPR 
DeepDTnet   
Auto encoder embedding & PU matrix 
completion 

0.907±0.0043 0.927±0.0033 

Auto encoder embedding only 0.883±0.0029 0.909±0.0036 
PU matrix completion 0.893±0.0031 0.916±0.0038 
   
DTINet 0.869±0.0034 0.901±0.0029 
NeoDTI 0.903±0.0047 0.881±0.0056 

Note: DeepDTnet was designed by implementing two new components, auto 
encoder embedding and PU matrix completion, and compared with DTInet1 and 
NeoDTI4. AUROC: area under the receiver operating characteristic curve; AUPR: 
area under precision-recall curve. We repeated 10 times random 10-fold cross-
validations, with standard deviation provided.  
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Table S14. Performance of deepDTnet by ablation analysis. 
Drug-related net Protein-related net AUROC AUPR 
Drug-drug Protein-protein 

 
0.8416 0.8296 

Drugsim1 0.8396 0.8346 
Drugsim2 0.8433 0.8587 
Drugsim3 0.8077 0.8089 
Drugsim4 0.7733 0.7616 
Drugsim5 0.8332 0.8179 
Drugsim6 0.8611 0.8742 
Drug-disease 0.8185 0.8360 
Drug-se 0.7620 0.7712 
drugs 0.9183 0.9226 
    
Drug-drug Proteinsim1 0.8718 0.8805 

Proteinsim2 0.8834 0.8895 
Proteinsim3 0.8613 0.8567 
Proteinsim4 0.8864 0.8889 
Protein-disease 0.8261 0.8192 
proteins 0.9381 0.9471 

Drugsim1 proteinsim1 0.9123 0.9155 
Drugdrug+drugsim1 Proteinprotein+proteinsim1 0.9430 0.9475 
    
All (15 networks) 0.9630 0.9678 

 
Note: 
Drugsim1: drug chemical similarity network 
Drugsim2: drug therapeutic similarity network 
Drugsim3: drug target sequence similarity network 
Drugsim4: drug Gene Ontology (GO) biological process similarity network 
Drugsim5: drug GO cellular component similarity network 
Drugsim6: drug GO molecular function similarity network 
Drugs: using all 9 kinds drug-related networks 
Proteinsim1: protein sequence similarity network 
Proteinsim2: protein Gene Ontology (GO) biological process similarity network 
Proteinsim3: protein GO cellular component similarity network 
Proteinsim4: protein GO molecular function similarity network 
Proteins: using all 6 kinds protein-related networks 
Drugsim1+proteinsim1: using drug chemical similarity network and protein sequence similarity 
network 
All: using all 15 networks. 
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Table S15. Performance of models built based on drug chemical similarity network 

and protein sequence similarity. 

 thresholds AUROC AUPR 
Drug chemical 
similarity 
(Tanimoto 
coefficient) 

<0.3 0.7287 0.7120 
>0.3 0.8172 0.8343 
<0.4 0.8191 0.8290 
>0.4 0.9024 0.8941 

    
Protein sequence 
similarity 
(Smith-Waterman) 

<0.1 0.6675 0.6089 
>0.1 0.8618 0.8755 

<0.15 0.6966 0.7590 
>0.15 0.8332 0.8485 
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Table S16. The chosen architecture of each network in deepDTnet. 
Networks Architectures 
Drug-drug 732 500 200 100 (200 500 732) 
Drugsim1 732 500 200 100 (200 500 732) 
Drugsim2 732 500 200 (500 732) 
Drugsim3 732 500 200 100 (200 500 732) 
Drugsim4 732 500 200 100 (200 500 732) 
Drugsim5 732 500 200 100 (200 500 732) 
Drugsim6 732 500 200 (500 732) 
Drug-disease 732 200 50 (200 732) 
Drug-se 732 200 50 (200 732) 
Protein-protein 1915 1000 500 100 (500 1000 1915) 
Proteinsim1 1915 500 200 (500 1915) 
Proteinsim2 1915 500 200 (500 1915) 
Proteinsim3 1915 500 200 (500 1915) 
Proteinsim4 1915 500 200 (500 1915) 
Protein-disease 1915 500 100 (500 1915) 

 
Note: In this study, we set ω=0.98, and T= 3 (the number of RW steps) in the random surfing 
step of deepDTnet. We then chose the parameter of SDAE and PU-matrix completion. 
Specifically, we first fixed the biased value 𝛼=0.3 and regulation parameter 𝜆=0.1 according 
to previous experience. Then we designed different architectures of SDAE for 15 networks 
separately. We varied the learning rate, dropout rate, NN layers and NN hidden units of each 
network and decide the architecture of each network one by one according to the prediction 
results indicated by 5-fold cross validation. 
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 Table S17. Performance (AUC) across different hyperparameters. 
𝛼    𝜆 0.01 0.03 0.05 0.1 0.15 0.2 
0.1 0.9703 0.9683 0.9665 0.9622 0.9621 0.9618 
0.2 0.9701 0.9677 0.9659 0.9631 0.9622 0.9616 
0.3 0.9683 0.9676 0.9655 0.9639 0.9620 0.9611 
0.4 0.9677 0.9673 0.9653 0.9625 0.9623 0.9606 
0.5 0.9683 0.9671 0.9656 0.9643 0.9621 0.9618 
0.6 0.9677 0.9669 0.9655 0.9638 0.9620 0.9608 
0.7 0.9665 0.9661 0.9653 0.9631 0.9618 0.9616 
0.8 0.9652 0.9665 0.9648 0.9629 0.9618 0.9611 
0.9 0.9639 0.9633 0.9631 0.9623 0.9611 0.9609 
1 0.9623 0.9623 0.9630 0.9618 0.9610 0.9602 

Note: We extracted different features from 15 networks using the above architecture and 
hyper-parameter settings (Table S16 and S17), and performed a grid search on hyper-
parameters 𝛼 and 𝜆 of PU-matrix completion. 𝛼 is the parameter that determines the 
penalty of the unobserved entries toward zero, and 𝜆 is a parameter introduced to control 
the strength of regularization. From the experiment results we find that as 𝜆 grows up, AUC 
goes down. This is because the smaller 𝜆 is, the fewer constraints on the complexity of the 
model, thus the model is likely to train for a less biased results, but at the risk of overfitting. 
We choose 𝜆 to be 0.1 to avoid overfitting, then we varied the value of 𝛼 from 0.1 to 1 and 
find the performance get best when 𝛼=0.5. 
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Table S18. Key resources used in this study. 
REAGENT or RESOURCE SOURCE IDENTIFIER 

Bacterial and Virus Strains     

BL21 (DE3) TIANGEN Cat# 
CB105-02 

Chemicals, Peptides, and Recombinant Proteins     

Isopropyl β-D-1-thiogalactopyranoside (IPTG) Sigma-Aldrich Cat# I5502 

SRC1-2 peptide GL Biochem N/A 

MAb Anti-6HIS Eu cryptate Gold Cisbio Cat# 
61HI2KLA 

Streptavidin-XL665 Cisbio Cat# 
610SAXLA 

HTRF detection buffer Cisbio Cat# 
62SDBRDD 

Lipofectamine 2000 ThermoFischer 
Scientific 

Cat# 
11668019 

Ni-NTA beads QIAGEN Cat# 30210 

MOG35–55 GL biochem N/A 

Complete Freund's adjuvant  Sigma-Aldrich Cat# F5881 

Pertussis toxin from Bordetella pertussis Sigma-Aldrich Cat# P140 

3,3-diethylthiatricarbocyanine iodide (DBT) Sigma-Aldrich Cat# 
381306 

Cy5.5 labeled bovine serum albumin (BSA-Cy5.5) Ruixibio Cat# R-FB-
008 

Fetal bovine serum  Gibco Cat# 
10437028 

Dulbecco's Modified Eagle Medium (DMEM) Gibco Cat# 
10569010 

Critical Commercial Assays     

Dual-Glo® Luciferase Assay System Promega Cat# E2940 

Mouse IL-17 Quantikine ELISA Kit R&D Cat# M1700 

Experimental Models: Mice and Cell Lines     

Male C57BL/6 mice National 
Rodent 
Laboratory 
Animal 

 N/A 
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Resources 

293T cell ATCC Cat# ACS-
4500 

Oligonucleotides     

pFN11A (BIND)-Gal4-RORγt-LBD construct     

FW:5'-
CCTACTCCCTCTCCAGAATTCTCCCGAGATGCTGTC 

GENEWIZ N/A 

RV:5'-
ACCGAGCCCGAATTCGTTTAAACTCACTTTGACAGCCC 
pET15b-RORγt-LBD  construct     

FW: GAGATAGCATATGGCACCCTATGCCTCC GENEWIZ N/A 

RV: CTCGGATCCTCACTTGGACAGCCCC 

Recombinant DNA     

pGL4.35[luc2P/9XGAL4UAS/Hygro] Vector  Promega Cat# E1370 

pFN11A (BIND) Flexi® Vector Promega Cat# C9341 

pFN11A (BIND)-Gal4-RORγt-LBD  this paper  N/A 

pCDNA2-FLAG-RORγt  Prof. Dan R. 
Littman, New 
York University 

N/A 

pET15b  Novagen  Cat# 70755 

Software and Algorithms     

AutoDock Vina The Scripps 
Research 
Institute 

 N/A 

Phoenix WinNonlin 7.0 software Pharsight  N/A 

Chem 3D ultra 12.0 software ChemOffice  N/A 

GraphPad Prism Software 6 GraphPad  N/A 

PyMOL software Schrodinger  N/A 

Other     

EnVision Multilabel Plate Reader PerkinElmer  P/N# 2105-
0010 

Agilent Eclipse plus C-18 column Agilent  Cat# 
959961-902 

Agilent 1260 Infinity HPLC system  Agilent   N/A 
Chirascan V100 Circular Dichroism (CD) Applied  N/A 



38 
 

 

 

Supplementary References 

1. Luo, Y. et al. A network integration approach for drug-target interaction 

prediction and computational drug repositioning from heterogeneous 

information. Nat. Commun., 8, 573 (2017). 

2. van der Maaten, L. & Hinton, G. Visualizing Data using t-SNE. J. Mach. 

Learn. Res., 9, 2579-2605 (2008). 

3. Ye, L. et al. Development and validation of a liquid chromatography-

tandem mass spectrometry method for topotecan determination in beagle 

dog plasma and its application in a bioequivalence study. Biomed. 

Chromatogr. 27, 1532-1539 (2013). 

4. Wan, F., Hong, L., Xiao, A., Jiang, T. & Zeng, J. NeoDTI: neural 

integration of neighbor information from a heterogeneous network for 

discovering new drug-target interactions. Bioinformatics 35, 104-111 

(2019). 

5. Scheepstra, M. et al. Identification of an allosteric binding site for 

RORgammat inhibition. Nat Commun 6, 8833 (2015). 

6. Ursu, O. et al. DrugCentral 2018: an update. Nucleic Acids Res., 47, 

D963-D970 (2018). 

 

Spectrophotometer  Photophysics 
IVIS Spectrum CT Imaging System  PerkinElmer P/N# 

124262 
HPLC-MS/MS on Thermo Scientific™  Q Exactive™ Focus 
hydrid quadrupole-Orbitrap mass spectrometer  

Thermo 
Scientific 

 N/A 


