Supplementary Information

Facile Access to Diverse All-Carbon Quaternary Center Containing Spirobicycles by Exploring Tandem Castro-Stephens Coupling/ Acyloxy Shift/ Cyclization/ Semipinacol Rearrangement Sequence

Ye Zhang, Tian-Lu Zheng, Fu Cheng, Kun-Long Dai, Kun Zhang, Ai-Jun Ma, Fu-Min Zhang, Xiao-Ming Zhang, Shao-Hua Wang* and Yong-Qiang Tu*

Table of Contents

1 General information	2
2 Optimization of tandem reaction conditions	2
3 Scaled-up transformation of the tandem reaction	3
4 Experimental Details for 1	3
5 Experimental Details for 2 and 6	4
6 Experimental Details for 3a , 5 and 7	10
7 Synthetic utility to the tetracyclic skeleton of waihoensene	16
8 The determination of the relative configuration of 5e-1 , 5p , 5q , 5i , 7a and 11	21
9 The X-ray ellipsoid plots of compound 14	31
10 References	31
11 Copies of the ¹ H and ¹³ C NMR of new compounds	31

1 General information

All reactions under standard conditions were carried out in anhydrous solvent under argon atmosphere and monitored by TLC on gel F₂₅₄ plates. Solvents were dried by standard methods and distilled. ¹H NMR and ¹³C NMR spectra were obtained on Bruker AM-400, Varian Mercury-600 and JEOL JNM-ECS-400 instruments, both in CDCl₃ solution. High-resolution mass spectral analysis (HRMS) data were measured on the ESI Bruker Apex II with ESI resource. **IR** spectra data were recorded on a Nicolet FT-170SX spectrometer. **X-ray** diffraction data were collected on Agilent Super Nova Eos diffractometer.

2 Optimization of tandem reaction conditions

Table 1. Optimization of tandem reaction conditions^a

1	│ → Br ∕OAc	отвя <u></u>	cat, base solvent temp	OTBS OAc 3a	Ag salt AuPPh ₃ Cl solvent temp	AcO 5a	
entry	for	3a		for 5a			
	Cu cat.	base	solvent	Ag salt	temp	product	yield
1	Cul	K ₂ CO ₃	DCE	/	rt	3a	10% ^b
2	CuBr	K ₂ CO ₃	DCE	/	rt	3a	52% ^b
3	CuCl	K ₂ CO ₃	DCE	/	rt	3a	35% ^b
4	CuOAc	K ₂ CO ₃	DCE	/	rt	3a	68% ^b
5	Cu(OAc) ₂	K ₂ CO ₃	DCE	/	rt	3a	62% ^b
6	CuOAc	Na_2CO_3	DCE	/	rt	3a	40% ^b
7	CuOAc	Cs_2CO_3	DCE	/	rt	3a	79% ^b
8	CuOAc	Et₃N	DCE	/	rt	3a	45% ^b
9	CuOAc	K ₃ PO ₄	DCE	/	rt	3a	trace
10	CuOAc	Cs ₂ CO ₃	DCE	/	70 °C	3a	82% ^b
11	CuOAc	Cs ₂ CO ₃	benzene	/	rt	3a	40% ^b
12	CuOAc	Cs_2CO_3	THF	/	rt	3a	47% ^b
13	CuOAc	Cs ₂ CO ₃	EtOH	/	rt	3a	55% ^b
14	CuOAc	Cs ₂ CO ₃	CH₃CN	/	rt	3a	55% ^b
15	CuOAc	Cs ₂ CO ₃	DMF	/	rt	3a	54% ^b
16	CuOAc	Cs ₂ CO ₃	DMSO	/	rt	3a	33% ^b
17	CuOAc	Cs ₂ CO ₃	DCE	/	rt ^c	5a	55% ^{d,f}
18	CuOAc	Cs ₂ CO ₃	DCE	AgOTf	rt ^c	5a	57% ^d
19	CuOAc	Cs ₂ CO ₃	DCE	AgNTf ₂	rt ^c	5a	66% ^d
20	CuOAc	Cs ₂ CO ₃	DCE	AgSbF ₆	rt ^c	5a	53% ^d
21	CuOAc	Cs ₂ CO ₃	DCE	AgBF ₄	rt ^c	5a	49% ^d
22	CuOAc	Cs ₂ CO ₃	DCE	AgNO ₂	rt ^c	5a	nr
23	CuOAc	Cs ₂ CO ₃	DCE	CF₃COOAg	rt ^c	5a	trace ^d
24 ^e	CuOAc	Cs ₂ CO ₃	benzene	AgNTf ₂	rt ^c	5a	11 ^d
25 ^e	CuOAc	Cs ₂ CO ₃	THF	AgNTf ₂	rt ^c	5a	17 ^d
26 ^e	CuOAc	Cs ₂ CO ₃	EtOH	AgNTf ₂	rt ^c	5a	nd
27 ^e	CuOAc	Cs ₂ CO ₃	CH₃CN	AgNTf ₂	rt ^c	5a	25% ^d
28 ^e	CuOAc	Cs ₂ CO ₃	DMF	AgNTf ₂	rt ^c	5a	nd
29 ^e	CuOAc	Cs ₂ CO ₃	DMSO	AgNTf ₂	rt ^c	5a	nd
30 ^e	CuOAc	Cs ₂ CO ₃	CHCl₃	AgNTf ₂	rtc	5a	60% ^d
31 ^e	CuOAc	Cs_2CO_3	acetone	AgNTf ₂	rtc	5a	57% ^d
32	CuOAc	Cs ₂ CO ₃	DCE	AgNTf ₂	rtc	5a	51% ^{d,g}
33	CuOAc	Cs ₂ CO ₃	DCE	AgNTf ₂	rt ^c	5a	55% ^{d,h}
34	CuOAc	Cs ₂ CO ₃	DCE	AgNTf ₂	rt ^c	5a	nr ⁱ

^aUnless specified, all reactions were carried out using **1a** (0.5 mmol, 2.5 eq.), **2a** (0.2 mmol, 1.0 eq.) and Cu cat. (30 mol%), base (50 mol%), AuPPh₃Cl (10 mol%), Ag salt (10 mol%) in a reaction tube in DCE (2 mL) at indicated

temperature. ^bIsolated yield of **3a**. ^cThe first coupling step was carried out at 70 °C. ^dIsolated yield of **5a** in purification free manner. ^eAfter filtration, the filtrate was concentrated and diluted with the indicated solvent (4 mL) for the following operation. ^fAuCl₃ (10 mol%) was used instead of AuPPh₃Cl. ^gAuPPh₃Cl and AgNTf₂ were both 5 mol%. ^hH₂O (10 mol%) was added. ⁱ4 Å MS (10 mg/ mmol) was added.

3 Scaled-up transformation of the tandem reaction

3.1 Scaled-up transformation of the tandem reaction (under standard conditions)

To a solution of **1a** (1.262 g, 10 mmol, 2.5 eq.) and **2a** (1.221 g, 4 mmol, 1.0 eq.) in dry DCE (20 mL) was added CuOAc (147.2 mg, 1.2 mmol, 30 mol%), $C_{52}CO_3$ (488.7 mg, 1.5 mmol, 50 mol%). The resulting mixture was stirred overnight at 70 °C. After a quick filtration of the reaction mixture through a celite pad to remove the residue, the reaction mixture was diluted to a volume of 20 mL with DCE, then a combination solution of AuPPh₃Cl (98.9 mg, 0.2 mmol, 5 mol%) and AgNTf₂ (77.6 mg, 0.2 mmol, 5 mol%) which was prestirred in DCE (5 mL) for 30 mins, was added dropwise. After being stirred for another 12 hours at rt, another combination solution of AuPPh₃Cl (98.9 mg, 0.2 mmol, 5 mol%) which was prestired in DCE (5 mL) or 30 mins, was added dropwise. After being stirred for another 12 hours at rt, another combination solution of AuPPh₃Cl (98.9 mg, 0.2 mmol, 5 mol%) which was prestired in DCE (5 mL) was added dropwise, the solution was stirred until **2a** disappeared completely monitored by TLC. The mixture was concentrated under vacuum. The crude mixture was purified by flash chromatography on silica gel (petroleum ether: EtOAc = 6: 1) to give the desired product **5a** (406.4 mg, 1.72 mmol, 43% yield) as a colorless oil.

4 Experimental Details for 1

All propargylic esters (1) are known compounds and were prepared according to literature procedures. For details, $1a^1$, $1b - 1d^2$, $1e^3$, $1f^4$, $1g^5$, $1h - 1i^6$.

2-methylbut-3-yn-2-yl acetate (1a):

OAc

¹H NMR (400 MHz, CDCl₃) δ 4.49 (s, 1H), 3.97 (s, 3H), 3.62 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 84.6, 72.1, 71.4, 28.7, 217.

1-ethynylcyclohexyl acetate (1b):

.OAc

¹**H NMR** (400 MHz, CDCl₃) δ 2.57 (s, 1H), 2.08 (dd, *J* = 11.6, 5.4 Hz, 2H), 2.00 (s, 3H), 1.87 – 1.77 (m, 2H), 1.59 (dt, *J* = 11.4, 5.7 Hz, 4H), 1.53 – 1.44 (m, 1H), 1.36 – 1.24 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 169.1, 83.5, 74.9, 74.1, 36.8, 25.0, 22.3, 21.8.

1-ethynylcyclopentyl acetate (1c):

¹H NMR (400 MHz, CDCl₃) δ 2.53 (s, 1H), 2.20 – 2.08 (m, 4H), 1.99 (s, 3H), 1.75 – 1.65 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 84.1, 80.0, 72.7, 40.2, 23.1, 21.6.

1-phenylprop-2-yn-1-yl acetate (1d):

1d

¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, J = 7.7, 1.7 Hz, 2H), 7.40 (d, J = 7.3 Hz, 3H), 6.49 (d, J = 2.2 Hz, 1H), 2.69 (d, J = 2.3 Hz, 1H), 2.12 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 136.4, 129.0, 128.6, 127.6, 80.2, 75.3, 65.2, 20.9.

4-methylpent-1-yn-3-yl acetate (1e):

¹H NMR (400 MHz, CDCl₃) δ 5.25 - 5.12 (dd, 1H), 2.43 (d, J = 2.2 Hz, 1H), 2.10 (s, 3H), 2.06 - 1.96 (m, 1H), 1.02 (dd, J = 11.9, 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl_3) δ 170.0, 79.9, 73.9, 68.7, 32.1, 20.9, 18.0, 17.4.

but-3-yn-2-yl acetate (1f):

1f

¹H NMR (400 MHz, CDCl₃) δ 5.37 (qd, J = 6.7, 2.1 Hz, 1H), 2.42 (d, J = 2.1 Hz, 1H), 2.02 (s, 3H), 1.44 (d, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 82.0, 72.7, 59.8, 21.0, 20.8.

prop-2-yn-1-yl acetate (1g):

OAc

1g

¹H NMR (400 MHz, CDCl₃) δ 4.63 (d, J = 2.5 Hz, 2H), 2.46 (t, J = 2.5 Hz, 1H), 2.07 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 77.6, 74.7, 51.8, 20.5.

2-methylbut-3-yn-2-yl pivalate (1h):

OPiv 1h

¹H NMR (400 MHz, CDCl₃) δ 2.47 (s, 1H), 1.63 (s, 6H), 1.16 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 176.6, 84.8, 71.8, 71.1, 38.9, 28.7, 26.9.

2-methylbut-3-yn-2-yl benzoate (1i):

```
OBz
1i
```

¹H NMR (400 MHz, CDCl₃) δ 8.07 – 8.00 (m, 2H), 7.57 – 7.48 (m, 1H), 7.45 – 7.38 (m, 2H), 2.59 (s, 1H), 1.82 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 132.7, 130.7, 129.4, 128.1, 84.5, 72.5, 72.0, 28.9.

5 Experimental Details for 2 and 6

s2

To a stirred solution of 2-bromopropene (2.66 mL, 30 mmol, 1 eq.) in THF (60 mL), t-BuLi (1.6 M, 33.75 mL, 54 mmol, 1.8 eq.) was added slowly at -78 °C. The reaction mixture was stirred at -78 °C for 20 mins, and then a THF (20mL) solution of s1 (2.02 mL, 27 mmol, 0.9 eq.) was added dropwise at -78 °C. After stirring for 10 mins, the reaction was quenched by saturated NH₄Cl aqueous solution, the organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated under vacuum in a cold water bath (< 15 °C). The residue was purified by column chromatography on silica gel (petroleum ether: EtOAc = 8: 1) to give compound s2 as a colorless oil (2.322 g, 20.709 mmol, 76% yield).

¹H NMR (400 MHz, CDCl₃) δ 4.99 (s, 1H), 4.86 (m, 1H), 2.37 – 2.30 (m, 2H), 2.10 – 2.03 (m, 2H), 1.94 – 1.84 (m, 1H), 1.82 – 1.79 (m, 3H), 1.79 – 1.76 (m, 1H), 1.63 – 1.51 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 147.9, 109.5, 77.9, 34.4, 17.4, 12.8. HRMS ESI Calcd for C₇H₁₂O [M+Na]⁺: 135.0780, Found: 135.0782. IR v (cm⁻¹): 3351, 2987, 2949, 1648, 1441, 1248, 896.

tert-butyldimethyl(1-(prop-1-en-2-yl)cyclobutoxy)silane (s3):

An ice-cooled solution of **s2** (1.407 g, 12.54 mmol, 1 eq.) in dry DCM (50 mL) was added Et₃N (6.973 mL, 50.17 mmol, 4 eq.), and then TBSOTF (5.762 mL, 25.09 mmol, 2 eq.) was added slowly at 0 °C. The reaction system was monitored by TLC until **s2** disappeared completely. The reaction was quenched by saturated NH₄Cl aqueous solution. The organic layer was separated and the aqueous layer was extracted with DCM. The combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether as elution solvent) to give compound **s3** as a colorless oil (2.80 g, 12.37 mmol, 99% yield).

¹H NMR (400 MHz, CDCl₃) δ 4.97 (s, 1H), 4.87 – 4.83 (m, 1H), 2.25 (ddt, *J* = 11.4, 8.8, 3.1 Hz, 2H), 2.16 – 2.08 (m, 2H), 1.76 (t, *J* = 1.9 Hz, 3H), 1.74 – 1.67 (m, 1H), 1.51 – 1.39 (m, 1H), 0.89 (s, 9H), 0.04 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 148.0, 108.9, 78.7, 35.3, 25.8, 18.0, 17.6, 13.1, -3.2. HRMS ESI Calcd for C₁₃H₂₆OSi [M+Na]⁺: 249.1645, Found: 249.1665. IR ν (cm⁻¹): 2955, 2931, 1647, 1251, 836, 775.

(1-(3-bromoprop-1-en-2-yl)cyclobutoxy)(tert-butyl)dimethylsilane (2a)7:

s3 (1.6354 g, 7.223 mmol, 1 eq.) was dissolved in dry CCl₄ (30 mL), NBS (1.928 g, 10.834 mmol, 1.5 eq.) and AIBN (0.119 g, 0.722 mmol, 0.1 eq.) were added. The reaction mixture was refluxed overnight. Until s3 disappeared completely by TLC monitored, the reaction was treated with saturated Na₂SO₃ aqueous solution, and the organic layer was separated and the aqueous layer was extracted with DCM. The combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether as elution solvent) to give compound 2a as a colorless oil (1.7297 g, 5.665 mmol, 78% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 5.45 (s, 1H), 5.37 (s, 1H), 4.10 (d, *J* = 0.9 Hz, 2H), 2.46 – 2.40 (m, 2H), 2.25 – 2.17 (m, 2H), 1.79-1.77 (m, 1H), 1.58 – 1.53 (m, 1H), 0.91 (s, 9H), 0.08 (s, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 148.2, 114.5, 78.2, 36.0, 31.4, 25.8, 18.0, 13.2, -3.1. **HRMS ESI** Calcd for C₁₃H₂₅BrOSi [M+Na]⁺: 327.0750, Found: 327.0750; [M+Na]⁺: 329.0730, Found: 329.0729. **IR** *v* (cm⁻¹): 2956, 2932, 2886, 2857, 1471, 776, 593.

5.2 Method B: Typical Procedure for the Synthesis of 2b

1-(but-1-en-2-yl)cyclobutan-1-ol (s4):

To a stirred solution of 2-bromobut-1-ene (506 μ L, 4.906 mmol, 1 eq.) in THF (30 mL), *t*-BuLi (1.6 M, 5.52 mL, 8.831 mmol, 1.8 eq.) was added slowly at -78 °C. The reaction mixture was stirred at -78 °C for 20 mins, and then **s1** (323 μ L, 4.415 mmol, 0.9 eq.) was dissolved in THF (10 mL) was added dropwise at -78 °C. After stirring for 10 mins, the reaction was poured into saturated NH₄Cl aqueous solution, the organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated under vacuum in a cold water bath (< 15 °C). The residue was purified by column chromatography on silica gel (petroleum ether: EtOAc = 8: 1) to give compound **s4** as a colorless oil (434.9 mg, 3.435 mmol, 78% yield).

¹H NMR (400 MHz, CDCl₃) δ 5.03 (s, 1H), 4.84 (s, 1H), 2.32 – 2.26 (m, 3H), 2.11 (q, J = 7.4 Hz, 2H), 2.08 – 1.98 (m, 2H), 1.88 – 1.86 (m, 1H), 1.55 – 1.52 (m, 1H), 1.06 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.7, 106.9, 78.3, 34.5, 22.6, 13.0, 12.4. HRMS ESI Calcd for C₈H₁₄O [M+Na]⁺: 149.0937, Found: 149.0926. IR ν (cm⁻¹): 3350, 2966, 2878, 1645, 1375, 898.

(1-(but-1-en-2-yl)cyclobutoxy)(tert-butyl)dimethylsilane (s5):

To an ice-cooled solution of **s4** (1.362 g, 10.79 mmol, 1 eq.) in dry DCM (30 mL) was added Et₃N (2.25 mL, 16.185 mmol, 1.5 eq.), and then TBSOTF (2.97 mL, 12.948 mmol, 1.2 eq.) was added slowly at 0 °C. The reaction system was monitored by TLC until **s2** disappeared completely. The reaction was quenched by saturated NH₄Cl aqueous solution. The organic layer was separated and the aqueous layer was extracted with DCM. The combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether as elution solvent) to give compound **s5** as a colorless oil (2.534 g, 10.54 mmol, 98% yield). **¹H NMR** (400 MHz, CDCl₃) δ 5.06 (d, *J* = 1.0 Hz, 1H), 4.87 (dd, *J* = 2.6, 1.6 Hz, 1H), 2.30 – 2.22 (m, 2H), 2.16 – 2.07 (m, 4H), 1.78 – 1.68 (m, 1H), 1.44 (dp, *J* = 10.7, 8.6 Hz, 1H), 1.07 (t, *J* = 7.4 Hz, 3H), 0.88 (s, 9H), 0.02 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 153.6, 106.1, 79.2, 35.6, 25.8, 22.1, 18.0, 13.2, 12.1, -3.2. **HRMS ESI** Calcd for C₁₄H₂₈OSi [M+Na]⁺: 263.1802, Found: 263.1801. **IR** v (cm⁻¹): 2957, 2930, 2857, 1645, 1251, 991, 775. 3-(1-((tert-butyldimethylsilyl)oxy)cyclobutyl)but-3-en-2-one (s6)8:

In a reaction tube, to a 1,4-dioxane (20 mL) solution of **s5** (1.207 g, 5.02 mmol, 1eq.) was added SeO₂ (1.114 g, 10.04 mmol, 2 eq.), and then the reaction mixture was refluxed for 3.5 hours. The reaction system was monitored by TLC until **s5** disappeared completely. The reaction was quenched by saturated Na₂SO₃ aqueous solution, the organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether: EtOAc = 20: 1) to give compound **S6** (685.8 mg, 2.696 mmol, 54% yield) as a light yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 5.96 – 5.96 (m, 1H), 5.63 (s, 1H), 2.45 – 2.34 (m, 3H), 2.34 (s, 3H), 2.30 (dd, *J* = 9.6, 2.7 Hz, 1H), 1.83 (dtt, *J* = 11.0, 9.3, 3.9 Hz, 1H), 1.55 – 1.46 (m, 1H), 0.86 (s, 9H), 0.01 (s, 6H). ¹³**C** NMR (100 MHz, CDCl₃) δ 200.5, 152.1, 120.1, 77.0, 36.7, 28.8, 25.7, 17.9, 13.3, -3.1. HRMS ESI Calcd for C₁₄H₂₆O₂Si [M+Na]⁺: 277.1594, Found: 277.1694. IR ν (cm⁻¹): 3101, 2930, 2857, 1693, 1252, 1139, 1105, 776.

3-(1-((tert-butyldimethylsilyl)oxy)cyclobutyl)but-3-en-2-ol (s7)9:

To a solution of **s6** (685.8 mg, 2.696 mmol, 1eq.) in MeOH (20 mL) were added $CeCl_3 \bullet 7H_2O$ (1.506 g, 4.044 mmol, 1.5 eq.) and NaBH₄ (122.9 mg, 3.235 mmol, 1.2 eq.) at 0 °C, the resulting suspension was monitored by TLC until **s6** disappeared completely. The reaction was quenched by saturated NH₄Cl aqueous solution, the organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether: EtOAc = 10: 1) to give compound **s7** as a colorless oil (546.9 mg, 2.132 mmol, 79% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 5.16 – 5.15 (m, 2H), 4.56 (dd, *J* = 6.4, 1.7 Hz, 1H), 2.94 (d, *J* = 2.6 Hz, 1H), 2.45 (ddd, *J* = 15.7, 8.1, 3.9 Hz, 1H), 2.30 – 2.25 (m, 3H), 1.81 – 1.73 (m, 1H), 1.55 – 1.45 (m, 1H), 1.38 (d, *J* = 6.4 Hz, 3H), 0.90 (s, 9H), 0.13 (d, *J* = 1.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 107.7, 79.5, 67.3, 36.1, 36.1, 25.8, 22.8, 18.0, 13.0, -2.6, -2.8. HRMS ESI Calcd for C₁₄H₂₈O₂Si [M+Na]⁺: 279.1751, Found: 279.1750. IR v (cm⁻¹): 3452, 2954, 2877, 1655, 1379, 1459, 1100.

(1-(3-bromobut-1-en-2-yl)cyclobutoxy)(tert-butyl)dimethylsilane (2b)¹⁰:

s7 (688.8 mg, 2.686 mmol, 1 eq.) was dissolved in DCM (20 mL), imidazole (219.4 mg, 3.22 mmol, 1.2 eq.) PPh₃ (845.4mg, 3.22 mmol, 1.2 eq.) and CBr₄ (623.5 mg, 1.88 mmol, 0.7 eq.) were added at rt, the reaction mixture was stirred overnight. The reaction system was monitored by TLC. The reaction was quenched by saturated NH₄Cl aqueous solution, the organic layer was separated and the aqueous layer was extracted with DCM. The combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether as elution solvent) to give compound **2b** as a colorless oil (428.6 mg, 1.346 mmol, 50% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 5.55 (s, 1H), 5.37 (d, *J* = 0.8 Hz, 1H), 4.87 (q, *J* = 6.8 Hz, 1H), 2.56 (ddd, *J* = 15.9, 8.2, 4.1 Hz, 1H), 2.40 (ddt, *J* = 12.2, 8.1, 4.1 Hz, 1H), 2.25 – 2.16 (m, 2H), 1.87 (d, *J* = 6.9 Hz, 3H), 1.78 (dddd, *J* = 10.9, 9.2, 5.6, 3.8 Hz, 1H), 1.57 – 1.46 (m, 1H), 0.89 (s, 9H), 0.13 (s, 3H), 0.04 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.3, 112.2, 78.6, 44.9, 36.7, 34.8, 27.3, 25.8, 25.7, 18.1, 13.2, -2.6, -2.8. HRMS ESI Calcd for C₁₄H₂₇BrOSi [M+Na]⁺: 341.0907, Found: 341.0906; [M+Na]⁺: 343.0886, Found: 343.0886. IR v (cm⁻¹): 3097, 2955, 2929, 2896, 2857, 1646, 775, 681.

5.3 Method C: Typical Procedure for the Synthesis of 2c

(Z)-3-(1-hydroxycyclobutyl)pent-3-en-2-one (s8)¹¹:

MeLi (1.6 M, 16.7 mL, 26.76 mmol, 2.1 eq.) was added slowly to a mixture of Cul (3.185 g, 16.7 mmol, 1.3 eq.) in 20 mL of dry diethyl ether at 0 °C, after which the mixture was stirred vigorously for 30 mins. Then the system was moved to -78 °C and added slowly to a solution of but-3-yn-2-one (1.0 mL, 12.7 mmol, 1 eq.) in THF (10 mL). After stirring at -78 °C for 20 mins, and then was added slowly to the solution of **s1** (0.9 mL, 12.1 mmol, 0.95 eq.) in 10 mL of THF at -78 °C. The mixture was allowed to warm to rt. The reaction was quenched by saturated NH₄Cl aqueous

solution at 0 °C, the organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over Na_2SO_4 and concentrated under vacuum in a cold water bath (< 15 °C). The residue was purified by column chromatography on silica gel (petroleum ether: EtOAc = 4: 1) to give compound **s8** as a colorless oil (1.176 g, 7.623 mmol, 63% yield).

¹H NMR (400 MHz, CDCl₃) δ 6.01 (q, *J* = 7.2 Hz, 1H), 3.05 (d, *J* = 58.9 Hz, 1H), 2.34 (s, 3H), 2.27 (dddd, *J* = 12.0, 8.9, 6.1, 2.9 Hz, 2H), 2.15 – 2.08 (m, 2H), 2.01 – 1.91 (m, 1H), 1.86 (d, *J* = 7.2 Hz, 3H), 1.66 – 1.51 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 206.2, 145.9, 128.1, 77.1, 34.8, 32.2, 15.2, 13.4. HRMS ESI Calcd for C₉H₁₄O₂ [M+Na]⁺: 177.0886, Found: 177.0886. IR *v* (cm⁻¹): 3424, 2984, 2947, 1689, 1165, 844.

(Z)-3-(1-((triethylsilyl)oxy)cyclobutyl)pent-3-en-2-one (s9):

To a stirred solution of **s8** (232.5 mg, 1.51 mmol, 1 eq.) in dry DCM (8 mL) was added imidazole (154.2 mg, 2.265 mmol, 1.5 eq.), and then TESCI (337 μ L, 1.812 mmol, 1.2 eq.) was added slowly at 0 °C. The reaction system was monitored by TLC until **s8** disappeared completely. The reaction was quenched by saturated NH₄Cl aqueous solution, the organic layer was separated and the aqueous layer was extracted with DCM. The combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether: EtOAc = 20: 1) to give compound **s9** as a colorless oil (360.1 mg, 1.34 mmol, 89% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 5.77 (q, J = 7.1 Hz, 1H), 2.44 – 2.35 (m, 2H), 2.31 – 2.27 (m, 1H), 2.26 (d, J = 3.2 Hz, 3H), 2.25 – 2.22 (m, 1H), 1.84 – 1.78 (m, 1H), 1.78 – 1.76 (m, 3H), 1.56 – 1.45 (m, 1H), 0.92 (td, J = 7.9, 3.9 Hz, 9H), 0.60 – 0.52 (m, 6H). ¹³**C** NMR (100 MHz, CDCl₃) δ 205.7, 147.2, 124.1, 77.4, 36.8, 31.7, 14.9, 12.9, 6.9, 6.2. HRMS ESI Calcd for C₁₅H₂₈O₂Si [M+Na]⁺: 291.1751, Found: 291.1750. IR v (cm⁻¹): 2955, 2914, 2877, 1697, 1005, 1357, 743.

(E)-3-(1-((triethylsilyl)oxy)cyclobutyl)pent-3-en-2-ol (s10):

To a solution of **s9** (360.1 mg, 1.34 mmol, 1 eq.) in MeOH (10 mL) were added $CeCl_3 \bullet 7H_2O$ (748.9 mg, 2.01 mmol, 1.5 eq.) and NaBH₄ (61.2 mg, 1.61 mmol, 1.2 eq.) at 0 °C, and the resulting suspension was monitored by TLC until **s9** disappeared completely. The reaction was quenched by saturated NH₄Cl aqueous solution, the organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether: EtOAc = 10: 1) to give compound **s10** as a colorless oil (293.9 mg, 1.09 mmol, 81% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 5.53 – 5.42 (m, 1H), 4.75 (p, *J* = 6.4 Hz, 1H), 3.61 (d, *J* = 5.6 Hz, 1H), 2.50 – 2.32 (m, 2H), 2.28 – 2.04 (m, 2H), 1.78 – 1.70 (m, 1H), 1.66 (d, *J* = 7.0 Hz, 3H), 1.53 – 1.42 (m, 1H), 1.36 (d, *J* = 6.7 Hz, 3H), 0.94 (t, *J* = 7.9 Hz, 9H), 0.61 (q, *J* = 7.9 Hz, 6H). ¹³**C** NMR (100 MHz, CDCl₃) δ 144.2, 117.3, 80.7, 67.7, 36.2, 36.1, 24.1, 13.3, 13.3, 6.9, 6.2. HRMS ESI Calcd for C₁₅H₃₀O₂Si [M+Na]⁺: 293.1907, Found: 293.1906. IR v (cm⁻¹): 3499, 3049, 2956, 2877, 1730, 1151, 1003, 741.

(Z)-(1-(4-chloropent-2-en-3-yl)cyclobutoxy)triethylsilane (2c)¹²:

To a stirred solution of **s10** (97.0 mg, 0.359 mmol, 1 eq.) in DCM (3 mL) was added PBu₃ (266 μ L, 1.076 mmol, 3 eq.), and then CCl₄ (208 μ L, 2.154 mmol, 6 eq.) was added dropwise at 0 °C. The reaction mixture was stirred overnight. The reaction system was monitored by TLC until **s10** disappeared completely. The reaction was quenched by saturated NH₄Cl aqueous solution. The organic layer was separated, and the aqueous layer was extracted with DCM. The combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether as elution solvent) to give compound **2c** as a colorless oil (62.4 mg, 0.216 mmol, 60% yield).

¹**H NMR** (400 MHz,) δ 5.72 (q, J = 7.2 Hz, 1H), 4.84 – 4.79 (m, 1H), 2.40 – 2.34 (m, 2H), 2.16 – 2.11 (m, 2H), 1.95 (dd, J = 7.2, 2.9 Hz, 3H), 1.77 – 1.74 (m, 3H), 1.74 – 1.66 (m, 1H), 1.50 – 1.37 (m, 1H), 0.95 (t, J = 7.9 Hz, 9H), 0.59 (q, J = 7.9 Hz, 6H). ¹³**C NMR** (100 MHz,) δ 142.4, 123.5, 79.6, 54.6, 35.8, 34.5, 24.9, 14.4, 12.9, 7.0, 6.4. **HRMS ESI** Calcd for C₁₅H₂₉ClOSi [M+Na]⁺: 311.1568, Found: 311.1668; [M+Na]+: 313.1539, Found: 313.1539. **IR** v (cm⁻¹): 3046, 2955, 2876, 1459, 769, 743, 699.

((7-(3-bromoprop-1-en-2-yl)bicyclo[4.2.0]octan-7-yl)oxy)(tert-butyl)dimethylsilane (2d):

Preparation according to the **Method A** from **s11** (73.3 mg, 0.590 mmol) afforded **2d** as a colorless oil (109.1 mg, 0.304 mmol, 51% yield over three steps).

¹**H NMR** (400 MHz, CDCl₃) δ 5.46 (d, *J* = 21.3 Hz, 2H), 4.12 – 4.05 (m, 2H), 2.46 (dt, *J* = 17.6, 8.8 Hz, 1H), 2.34 – 2.30 (m, 1H), 2.17 (t, *J* = 11.2 Hz, 1H), 2.05 – 1.98 (m, 1H), 1.83 – 1.61 (m, 3H), 1.60 – 1.23 (m, 4H), 1.05 (tt, *J* = 16.4, 8.3 Hz, 1H), 0.88 (s, 9H), 0.07 (s, 3H), -0.05 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 148.2, 114.6, 76.3, 42.6, 35.4, 31.7, 25.8, 25.7, 24.1, 22.8, 22.3, 21.8, 18.3, -2.9, -3.5. **HRMS ESI** Calcd for C₁₇H₃₁BrOSi [M+Na]⁺: 381.1220, Found: 381.1219; [M+Na]⁺: 383.1199, Found: 383.1199. **IR** *v* (cm⁻¹): 3094, 2929, 2856, 1648, 836, 775, 578.

(1-(3-bromoprop-1-en-2-yl)-3,3-diphenylcyclobutoxy)(tert-butyl)dimethylsilane (2e)^a:

Preparation according to the **Method A** from **s12** (266.7 mg, 1.2 mmol) afforded **2e** as a colorless oil (367.9 mg, 0.804 mmol, 67% yield over five steps). °2,6-lutidine as base in step 2.

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.28 (m, 5H), 7.25 (m, 3H), 7.11 (m, 2H), 5.26 (s, 1H), 5.09 (s, 1H), 4.05 (s, 2H), 3.50 (d, *J* = 13.2 Hz, 2H), 3.10 (d, *J* = 13.2 Hz, 2H), 0.75 (s, 9H), -0.05 (s, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 150.4, 148.5, 147.5, 128.3, 128.2, 126.4, 126.0, 125.4, 125.4, 116.6, 74.2, 48.1, 43.3, 31.1, 25.6, 17.9, -3.2. **HRMS ESI** Calcd for C₂₅H₃₃BrOSi [M+Na]⁺: 479.1376, Found: 479.1376; [M+Na]⁺: 481.1356, Found: 481.1356. **IR** *v* (cm⁻¹): 3084, 3059, 2954, 2929, 2886, 2856, 1650, 1599, 775, 585, 545.

tert-butyl 2-(3-bromoprop-1-en-2-yl)-2-((tert-butyldimethylsilyl)oxy)-7-azaspiro[3.5]nonane-7-carboxylate (2f)^a:

Preparation according to the **Method B** from **s13** (5.00 g, 20.9 mmol) afforded **2f** as a colorless oil (1.9083 g, 4.021 mmol, 19% yield over five steps). ^{*o*}2,6-lutidine as base in step 2.

¹**H** NMR (400 MHz, CDCl₃) δ 5.45 (d, *J* = 0.6 Hz, 1H), 5.33 (s, 1H), 4.03 (s, 2H), 3.33 – 3.26 (m, 4H), 2.47 (d, *J* = 13.0 Hz, 2H), 2.01 (d, *J* = 12.8 Hz, 2H), 1.63 – 1.60 (m, 2H), 1.46 (d, *J* = 6.1 Hz, 2H), 1.43 (d, *J* = 0.8 Hz, 9H), 0.85 (s, 9H), -0.00 (s, 6H). ¹³**C** NMR (100 MHz, CDCl₃) δ 154.9, 149.3, 116.0, 79.2, 73.9, 44.6, 39.0, 36.8, 30.8, 29.6, 28.4, 25.7, 17.9, -3.2. HRMS ESI Calcd for C₂₂H₄₀BrNO₃Si [M+Na]⁺: 496.1853, Found: 496.1853. [M+Na]⁺: 498.1833, Found: 498.1833. **IR** ν (cm⁻¹): 3095, 3052, 2956, 2929, 2857, 1693, 1246, 530.

((2-(3-bromoprop-1-en-2-yl)-2,3-dihydro-1H-inden-2-yl)oxy)(tert-butyl)dimethylsilane (2g)^a:

Preparation according to the **Method B** from **s14** (1.19 g, 9.0 mmol) afforded **2g** as a colorless oil (264.5 mg, 0.72 mmol, 8% yield over five steps). ^a2,6-lutidine as base in step 2.

¹**H** NMR (400 MHz, CDCl₃) δ 7.23 – 7.16 (m, 4H), 5.39 (d, J = 7.1 Hz, 2H), 4.20 (d, J = 0.5 Hz, 2H), 3.40 (d, J = 16.2 Hz, 2H), 3.16 (d, J = 16.1 Hz, 2H), 0.78 (s, 9H), -0.11 (s, 6H). ¹³**C** NMR (100 MHz, CDCl₃) δ 149.6, 141.1, 126.5, 124.6, 116.3, 85.9,47.0, 32.1, 25.7, 18.2, -3.1. HRMS ESI Calcd for $C_{18}H_{27}BrOSi$ [M+Na]⁺: 389.0907, Found: 389.0907; [M+Na]⁺: 391.0886, Found: 391.0886. IR v (cm⁻¹): 3072, 2955, 2928, 2896, 2856, 1638, 836, 775, 542.

((3-(bromomethyl)-2-phenylbut-3-en-2-yl)oxy)(tert-butyl)dimethylsilane (6a)^a:

Preparation according to the **Method B** from **s15** (3.15 mL, 27.0 mmol) afforded **6a** as a colorless oil (1.9095 g, 5.373 mmol, 20% yield over five steps). ^a2,6-lutidine as base in step 2.

¹**H** NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 7.5 Hz, 2H), 7.30 (t, *J* = 7.5 Hz, 2H), 7.24 (d, *J* = 7.2 Hz, 1H), 5.54 (d, *J* = 8.4 Hz, 2H), 3.98 (d, *J* = 12.2 Hz, 1H), 3.66 (d, *J* = 12.2 Hz, 1H), 1.79 (s, 3H), 0.95 (s, 9H), 0.06 (s, 3H), -0.05 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 150.9, 146.2, 128.0, 127.0, 125.7, 115.9, 78.8, 31.8, 29.6, 29.5, 26.1, 26.0, 18.6, -2.4, -2.8. HRMS ESI Calcd for C₁₇H₂₇BrOSi [M+Na]⁺: 377.0907, Found: 377.0906; [M+Na]⁺: 379.0886, Found: 379.0886. IR v (cm⁻¹): 3060, 2956, 2930, 2857, 2856, 1648, 776, 701, 556.

((3-(bromomethyl)-2-(4-methoxyphenyl)but-3-en-2-yl)oxy)(tert-butyl)dimethylsilane (6b)^a:

Preparation according to the **Method B** from **s16** (5.2563 g, 35 mmol) afforded **6b** as a colorless oil (2.1189 g, 5.498 mmol, 16% yield over five steps). ^o2,6-lutidine as base in step 2.

¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.30 (m, 2H), 6.85 – 6.83 (m, 2H), 5.54 – 5.50 (m, 2H), 3.98 (dd, *J* = 12.0, 0.8 Hz, 1H), 3.81 (s, 3H), 3.69 (dd, *J* = 12.0, 1.0 Hz, 1H), 1.79 (s, 3H), 0.95 (s, 9H), 0.05 (s, 3H), -0.08 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 151.3, 138.3, 127.1, 126.8, 115.7, 113.3, 128.3, 129.3, 1

113.2, 78.5, 55.2, 31.8, 29.4, 26.0, 18.5, -2.5, -2.8. **HRMS ESI** Calcd for $C_{18}H_{29}BrO_2Si$ [M+Na]⁺: 407.1012, Found: 407.1012. [M+Na]⁺: 409.0992, Found: 409.0992. **IR** ν (cm⁻¹): 3100, 2956, 2929, 2899, 1609, 835, 815, 563.

((3-(bromomethyl)-2-(4-chlorophenyl)but-3-en-2-yl)oxy)(tert-butyl)dimethylsilane (6c)^a:

Preparation according to the **Method B** from **s17** (3.50 mL, 27 mmol) afforded **6c** as a colorless oil (2.4205 g, 6.21 mmol, 23% yield over five steps). ^a2,6-lutidine as base in step 2.

¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.35 (m, 2H), 7.32 – 7.29 (m, 2H), 5.56 (d, *J* = 4.4 Hz, 2H), 4.00 (d, *J* = 12.1 Hz, 1H), 3.69 (dd, *J* = 12.1, 0.9 Hz, 1H), 1.80 (s, 3H), 0.98 (s, 9H), 0.10 (s, 3H), -0.01 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 150.5, 144.9, 132.8, 128.1, 127.2, 116.3, 78.4, 31.3, 29.5, 29.5, 26.0, 26.0, 18.5, -2.3, -2.8. HRMS ESI Calcd for C₁₇H₂₆BrClOSi [M+Na]⁺: 411.0517, Found: 411.0517; [M+Na]⁺: 413.0497, Found: 413.0497. **IR** v (cm⁻¹): 3086, 2956, 2930, 2857, 2886, 1648, 1594, 836, 776, 553.

((3-(bromomethyl)-2-(4-(trifluoromethyl)phenyl)but-3-en-2-yl)oxy)(tert-butyl)dimethylsilane (6d)^a:

Preparation according to the **Method B** from **s18** (2.54 g, 13.5 mmol) afforded **6d** as a colorless oil (1.6905 g, 3.99 mmol, 30% yield over five steps). ^{*o*}2,6-lutidine as base in step 2.

¹**H** NMR (400 MHz, CDCl₃) δ 7.57 (q, *J* = 8.6 Hz, 4H), 5.59 (d, *J* = 11.9 Hz, 2H), 4.00 (d, *J* = 12.3 Hz, 1H), 3.66 (d, *J* = 12.3 Hz, 1H), 1.81 (s, 3H), 0.98 (s, 9H), 0.11 (s, 3H), 0.02 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 150.5, 150.0, 129.2 (q, ²*J*_{FC} = 32 Hz), 125.9, 125.0 (q, ³*J*_{FC} = 4 Hz), 124.2 (q, ¹*J*_{FC} = 272 Hz), 116.7, 78.6, 31.2, 29.7, 26.0, 18.6, -2.2, -2.9. **HRMS ESI** Calcd for C₁₈H₂₆BrF₃OSi [M+Na]⁺: 445.0781, Found: 445.0781; [M+Na]⁺: 447.0760, Found: 447.0760. **IR** *v* (cm⁻¹): 3057, 2957, 2931, 2895, 2858, 1618, 836, 770, 609, 542.

((3-(bromomethyl)-2-(3-chlorophenyl)but-3-en-2-yl)oxy)(tert-butyl)dimethylsilane (6e)^a:

Preparation according to the **Method B** from **s19** (1.75 mL, 13.5 mmol) afforded **6e** as a colorless oil (1.8159 g, 4.657 mmol, 35% yield over five steps). °2,6-lutidine as base in step 2.

¹**H** NMR (400 MHz, CDCl₃) δ 7.39 (s, 1H), 7.24 (ddd, *J* = 17.2, 9.7, 4.1 Hz, 3H), 5.52 (d, *J* = 5.3 Hz, 2H), 3.95 (d, *J* = 12.2 Hz, 1H), 3.64 (dd, *J* = 12.2, 0.7 Hz, 1H), 1.75 (s, 3H), 0.93 (s, 9H), 0.05 (s, 3H), -0.05 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 150.3, 148.6, 134.0, 129.3, 127.2, 126.1, 123.9, 116.5, 78.5, 31.3, 29.5, 26.0, 18.6, -2.3, -2.8. HRMS ESI Calcd for C₁₇H₂₆BrClOSi [M+Na]⁺: 411.0517, Found: 411.0517; [M+Na]⁺: 413.0497, Found: 413.0498. IR v (cm⁻¹): 3058, 2956, 2930, 2886, 2857, 1594, 1573, 700, 586, 542.

((3-(bromomethyl)-2-(3-fluorophenyl)but-3-en-2-yl)oxy)(tert-butyl)dimethylsilane (6f)^a:

Preparation according to the **Method B** from **s20** (3.38 mL, 27 mmol) afforded **6f** as a colorless oil (2.0404 g, 5.464 mmol, 20% yield over five steps). ^{*o*}2,6-lutidine as base in step 2.

¹**H** NMR (400 MHz, CDCl₃) δ 7.41 (dd, *J* = 14.1, 7.7 Hz, 1H), 7.36 – 7.29 (m, 2H), 7.07 (ddd, *J* = 8.1, 5.4, 1.4 Hz, 1H), 5.71 (s, 2H), 4.14 (d, *J* = 12.2 Hz, 1H), 3.82 (dd, *J* = 12.2, 0.9 Hz, 1H), 1.94 (s, 3H), 1.12 (s, 9H), 0.24 (s, 3H), 0.15 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ, 162.7 (d, ¹*J*_{FC} = 245 Hz), 150.4, 149.3 (d, ³*J*_{FC} = 6 Hz), 129.5 (d, ³*J*_{FC} = 4 Hz), 121.2, 116.4, 116.3, 113.9 (d, ²*J*_{FC} = 21 Hz), 113.1 (d, ⁴*J*_{FC} = 6 Hz), 112.9 (d, ²*J*_{FC} = 22 Hz), 78.5, 31.4, 31.3, 31.2, 29.6, 29.5, 26.0, 26.0, 18.5, -2.3, -2.9, -2.9. HRMS ESI Calcd for C₁₇H₂₆BrFOSi [M+Na]⁺: 395.0813, Found: 395.0812. [M+Na]⁺: 397.0792, Found: 397.0792. IR v (cm⁻¹): 3077, 2956, 2930, 2886, 2857, 1614, 1591, 703, 578, 542.

((2-(bromomethyl)-1,1-diphenylallyl)oxy)(tert-butyl)dimethylsilane (6g)^a:

Preparation according to the **Method B** from **s21** (6.370 g, 35 mmol) afforded **6g** as a colorless oil (3.6542 g, 8.755 mmol, 25% yield over five steps). °2,6-lutidine as base in step 2.

¹**H** NMR (400 MHz, CDCl₃) δ 7.46 (dd, *J* = 7.8, 1.8 Hz, 4H), 7.37 - 7.32 (m, 6H), 5.74 (d, *J* = 13.4 Hz, 2H), 3.93 (s, 2H), 0.99 (s, 9H), -0.39 (s, 6H). ¹³**C** NMR (100 MHz, CDCl₃) δ 149.7, 143.4, 129.1, 127.8, 127.7, 118.4, 84.9, 32.3, 26.4, 19.2, -3.2. HRMS ESI Calcd for C₂₂H₂₉BrOSi [M+Na]⁺: 439.1063, Found: 439.1063; [M+Na]⁺: 441.1043, Found: 441.1043. IR v (cm⁻¹): 3060, 2956, 2929, 2856, 2893, 1644, 1599, 703, 576.

((2-(bromomethyl)-1,1-bis(4-fluorophenyl)allyl)oxy)(tert-butyl)dimethylsilane (6h)^a:

Preparation according to the **Method B** from **s22** (2.946 g, 13.5 mmol) afforded **6h** as a colorless oil (1.9221g, 4.239 mmol, 31% yield over five steps). ^{*o*}2,6-lutidine as base in step 2.

¹**H** NMR (400 MHz, CDCl₃) δ 7.45 – 7.42 (m, 4H), 7.05 (t, *J* = 8.7 Hz, 4H), 5.74 (d, *J* = 5.6 Hz, 2H), 3.91 (s, 2H), 1.00 (s, 9H), -0.35 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 162.2 (d, ¹*J*_{FC} = 248 Hz), 149.6, 139.1, 139.0, 133.7 (d, ²*J*_{FC} = 19 Hz), 130.7, 130.7, 128.7, 128.4 (d, ³*J*_{FC} = 9 Hz), 118.8, 114.8, 114.6, 83.9, 31.7, 26.3, 19.1, -3.1. **HRMS ESI** Calcd for C₂₂H₂₇BrF₂OSi [M+Na]⁺: 475.0875, Found: 475.0875; [M+Na]⁺: 477.0854, Found: 477.0855. **IR** v (cm⁻¹): 3049, 2957, 2930, 2896, 2857, 1602, 836, 777, 574.

((2-(bromomethyl)-1-(4-methoxyphenyl)-1-phenylallyl)oxy)(tert-butyl)dimethylsilane (6i)^a

Preparation according to the **Method B** from s23 (2.865 g, 13.5 mmol) afforded 6i as a colorless oil (1.994 g, 4.46 mmol, 33% yield over five steps). ^{*o*}2,6-lutidine as base in step 2.

¹**H** NMR (400 MHz, CDCl₃) δ 7.45 (dd, *J* = 7.9, 1.6 Hz, 2H), 7.34 – 7.30 (m, 5H), 6.85 (d, *J* = 8.9 Hz, 2H), 5.70 (d, *J* = 15.8 Hz, 2H), 3.90 (s, 2H), 3.82 (s, 3H), 0.96 (s, 9H), -0.41 (d, *J* = 8.4 Hz, 6H). ¹³**C** NMR (100 MHz, CDCl₃) δ 159.1, 150.0, 143.7, 135.3, 130.6, 128.8, 127.7, 127.5, 118.1, 113.0, 84.5, 55.3, 32.4, 26.4, 19.1, -3.2, -3.2. HRMS ESI Calcd for C₂₃H₃₁BrO₂Si [M+Na]⁺: 469.1169, Found: 469.1169; [M+Na]⁺: 471.1148, Found: 471.1149. IR *v* (cm⁻¹): 3057, 2955, 2926, 2855, 1701, 1608, 835, 742, 581.

6 Experimental Details for 3a, 5 and 7

6.1 Typical Procedure for the Synthesis of 3a

Preparation according to the optimized coupling reaction conditions (Section 2, Table 1, entry 10). To a stirred solution of **1a** (63 mg, 0.5 mmol, 2.5 eq.) and **2a** (61 mg, 0.2 mmol, 1.0 eq.) in dry DCE (2 mL) were added CuOAc (7.4 mg, 0.06 mmol, 30 mol%), Cs_2CO_3 (32.6 mg, 0.1 mmol, 50 mol%). After stirring overnight at 70 °C, the reaction mixture was concentrated under vacuum, and then purified by flash chromomatography on silica gel (petroleum ether: EtOAc = 50: 1) to give the coupling product **3a** (54.5 mg, 0.164 mmol, 82% yield) as a colorless oil.

6-(1-((tert-butyldimethylsilyl)oxy)cyclobutyl)-2-methylhept-6-en-3-yn-2-yl acetate(3a):

¹**H** NMR (400 MHz, CDCl₃) δ 5.38 (s, 1H), 5.17 (s, 1H), 3.03 (s, 2H), 2.26 (ddd, *J* = 8.4, 5.9, 3.0 Hz, 2H), 2.18 – 2.09 (m, 2H), 2.02 (s, 3H), 1.74 – 1.64 (m, 7H), 1.54 – 1.40 (m, 1H), 0.87 (s, 9H), 0.03 (s, 6H). ¹³**C** NMR (100 MHz, CDCl₃) δ 169.4, 146.8, 109.5, 84.4, 82.3, 78.2, 72.5, 35.5, 29.3, 25.8, 22.1, 20.4, 18.0, 13.0, -3.2. **HRMS ESI** Calcd for C₂₀H₃₄O₃Si [M+Na]⁺: 373.2169, Found: 373.2160. **IR** *v* (cm⁻¹): 2955, 1743, 1250, 1137, 837, 738.

6.2 Typical Procedure for the Synthesis of **5**

6.3 Typical Procedure for the Synthesis of **7**

General procedure:

To a solution of **1** (0.5 mmol, 2.5 eq.) and **2** or **6** (0.2 mmol, 1.0 eq.) in dry DCE (2 mL) was added CuOAc (0.06 mmol, 30 mol%), Cs_2CO_3 (0.1 mmol, 50 mol%). The resulting mixture was stirred overnight at 70 °C. After a quick filtration of the reaction mixture through a celite pad to remove the residue, the reaction mixture was diluted to a volume of 4 mL with DCE, then a combination solution of AuPPh₃Cl (0.02 mmol, 10 mol%) and AgNTf₂ (0.02 mmol, 10 mol%) which was prestirred in DCE (0.5 mL) for 30 mins, was added dropwise. After being stirred for another 9 hours at rt, the mixture was concentrated under vacuum. The crude mixture was purified by flash chromatography on silica gel (petroleum ether: EtOAc = 6: 1) to give the desired product **5** or **7**.

9,9-dimethyl-1-oxospiro[4.5]dec-7-en-7-yl acetate (5a):

Colorless oil, (31.2 mg, 0.132 mmol, 66% yield); ¹H NMR (400 MHz, CDCl₃) δ 5.21 (d, *J* = 1.9 Hz, 1H), 2.34 – 2.29 (m, 1H), 2.29 – 2.14 (m, 3H), 2.10 (s, 3H), 2.02 (ddd, *J* = 12.2, 6.0, 3.1 Hz, 1H), 1.90 (dd, *J* = 16.3, 2.0 Hz, 1H), 1.88 – 1.80 (m, 1H), 1.80 – 1.77 (m, 2H), 1.29 (d, *J* = 13.9 Hz, 1H), 1.09 (d, *J* = 9.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 222.3, 169.4, 144.3, 123.3, 49.6, 42.4, 37.2, 35.5, 32.9, 32.4, 32.4, 29.5, 21.0, 19.5. HRMS ESI Calcd for C₁₄H₂₀O₃ [M+Na]⁺: 259.1305, Found: 259.1294. IR v (cm⁻¹): 2958, 2924, 1736, 1220, 1104, 734.

1-oxodispiro[4.1.5⁷.3⁵]pentadec-13-en-14-yl acetate (5b):

Colorless oil, (29.3 mg, 0.106 mmol, 53% yield); ¹H NMR (400 MHz, CDCl₃) δ 5.41 (s, 1H), 2.30 – 2.23 (m, 2H), 2.18 (dd, *J* = 19.8, 10.9 Hz, 2H), 2.11 (s, 3H), 2.01 (dd, *J* = 6.1, 3.2 Hz, 1H), 1.92 (d, *J* = 16.2 Hz, 1H), 1.83 – 1.76 (m, 2H), 1.53 – 1.48 (m, 8H), 1.43 – 1.36 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 222.6, 169.4, 144.7, 121.7, 49.4, 40.8, 37.3, 35.7, 35.3, 33.5, 25.9, 21.8, 21.7, 21.1, 19.5. HRMS ESI Calcd for C₁₇H₂₄O₃ [M+Na]⁺: 299.1618, Found: 299.1605. IR v (cm⁻¹): 2926, 2853, 1736, 1223, 1184, 738.

1-oxodispiro[4.1.4⁷.3⁵]tetradec-12-en-13-yl acetate (5c):

Colorless oil, (28.9 mg, 0.11 mmol, 55% yield); ¹H NMR (400 MHz, CDCl₃) δ 5.31 (s, 1H), 2.29 (dd, *J* = 10.2, 5.8 Hz, 1H), 2.25 (d, *J* = 5.1 Hz, 1H), 2.21 (t, *J* = 4.2 Hz, 1H), 2.19 – 2.15 (m, 1H), 2.12 (d, *J* = 10.5 Hz, 3H), 2.03 – 1.95 (m, 1H), 1.95 – 1.91 (m, 1H), 1.89 (d, *J* = 4.0 Hz, 1H), 1.86 (s, 1H), 1.82 (t, *J* = 5.8 Hz, 1H), 1.74 – 1.65 (m, 3H), 1.65 – 1.60 (m, 3H), 1.58 (s, 1H), 1.53 – 1.46 (m, 1H), 1.36 (d, *J* = 13.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ

222.2, 169.4, 144.2, 121.7, 49.8, 43.3, 42.1, 40.5, 39.4, 37.4, 34.8, 33.4, 24.5, 23.1, 21.1, 19.2. **HRMS ESI** Calcd for C₁₆H₂₂O₃ [M+Na]⁺: 285.1461, Found: 285.1449. **IR** ν (cm⁻¹): 2956, 2923, 1755, 1370, 1219, 738.

1-oxo-9-phenylspiro[4.5]dec-7-en-7-yl acetate (5d):

Colorless oil, (21.7 mg, 0.074 mmol, 37% yield), inseparable, dr = 1: 1.1;

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.28 (m, 4H), 7.23 (t, *J* = 6.4 Hz, 6H), 5.56 (s, 1H), 5.44 (s, 1H), 3.70 (d, *J* = 2.8 Hz, 1H), 3.54 (s, 1H), 2.54 (d, *J* = 16.7 Hz, 1H), 2.31 (dd, *J* = 14.5, 7.9 Hz, 4H), 2.17 (s, 1H), 2.15 (s, 3H), 2.14 (s, 3H), 2.11 – 2.04 (m, 2H), 2.02 – 1.96 (m, 2H), 1.92-1.86 (m, 4H), 1.66-1.53 (m, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 221.1, 220.7, 169.4, 169.3, 147.3, 146.7, 144.7, 144.2, 128.6, 128.5, 127.7, 127.5, 126.7, 126.5, 117.3, 117.1, 49.7, 48.2, 39.2, 38.4, 37.9, 37.7, 37.6, 37.1, 33.7, 33.6, 33.1, 21.1, 21.0, 19.0, 18.5. **HRMS ESI** Calcd for C₁₈H₂₀O₃ [M+Na]⁺: 307.1305, Found: 307.1292. **IR** *v* (cm⁻¹): 2956, 2924, 1736, 1369, 1219, 702.

9-isopropyl-1-oxospiro[4.5]dec-7-en-7-yl acetate (5e):

Colorless oil, (5e-1: 11.4 mg, 0.045 mmol, 23% yield; 5e-2: 13.7 mg, 0.054 mmol, 27% yield), 5e-1: 5e-2 = 1: 1.2;

5e-1: ¹**H NMR** (400 MHz, CDCl₃) δ 5.26 (s, 1H), 2.33 – 2.22 (m, 3H), 2.18 – 2.09 (m, 1H), 2.04 (d, *J* = 8.3 Hz, 3H), 2.02 – 1.96 (m, 1H), 1.94 – 1.79 (m, 3H), 1.78 – 1.72 (m, 1H), 1.60 (tt, *J* = 13.3, 6.7 Hz, 1H), 1.34 (dd, *J* = 20.2, 9.2 Hz, 2H), 0.85 (dd, *J* = 7.0, 1.3 Hz, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 221.8, 169.1, 146.7, 116.1, 49.1, 38.3, 37.5, 33.7, 33.5, 31.6, 31.0, 20.9, 19.2, 19.2, 18.8. **HRMS ESI** Calcd for C₁₅H₂₂O₃ [M+Na]⁺: 273.1461, Found: 273.1450. **IR** v (cm⁻¹): 2960, 2935, 1756, 1736, 1323, 1217, 1126, 890.

5e-2: ¹**H NMR** (400 MHz, CDCl₃) δ 5.37 (s, 1H), 2.32-2.26 (m, 1H), 2.26 – 2.20 (m, 2H), 2.20 – 2.16 (m, 1H), 2.06 (s, 3H), 1.95 (ddd, *J* = 16.1, 14.8, 8.5 Hz, 2H), 1.90 – 1.85 (m, 1H), 1.85 – 1.81 (m, 2H), 1.72 (dd, *J* = 13.2, 5.1 Hz, 1H), 1.63 – 1.54 (m, 1H), 1.25 (dd, *J* = 13.5, 10.3 Hz, 1H), 0.86 (dd, *J* = 6.8, 4.4 Hz, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 220.1, 169.1, 145.6, 116.7, 47.5, 38.4, 37.8, 36.8, 33.1, 31.5, 31.2, 20.9, 19.5, 19.2, 18.1. **HRMS ESI** Calcd for C₁₅H₂₂O₃ [M+Na]⁺: 273.1461, Found: 273.1451. **IR** *v* (cm⁻¹): 2958, 2872, 1753, 1737, 1693, 1219, 611.

9-methyl-1-oxospiro[4.5]dec-7-en-7-yl acetate (5f):

Colorless oil, (5f^a: 10 mg, 0.045 mmol, 22% yield; 5f^b: 14.3 mg, 0.064 mmol, 32% yield), 5f^a: 5f^b = 1: 1.4;

5f^o: ¹**H NMR** (400 MHz, CDCl₃) δ 5.25 (s, 1H), 2.40 – 2.35 (m, 2H), 2.33-2.29 (m, 2H), 2.11 (s, 3H), 2.03 (dd, *J* = 9.5, 5.7 Hz, 1H), 1.98 – 1.91 (m, 2H), 1.90 – 1.85 (m, 1H), 1.80 (d, *J* = 16.6 Hz, 1H), 1.51 – 1.42 (m, 1H), 1.32 – 1.23 (m, 1H), 1.06 (d, *J* = 6.8 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 221.8, 169.4, 146.1, 119.1, 49.4, 37.6, 36.6, 33.7, 33.6, 27.2, 21.1, 21.0, 19.0. **HRMS ESI** Calcd for C₁₃H₁₈O₃ [M+Na]⁺: 245.1148, Found: 245.1137. **IR** *v* (cm⁻¹): 2958, 2923, 1736, 1219, 738.

5*f*⁹: ¹**H NMR** (400 MHz, CDCl₃) δ 5.33 (s, 1H), 2.56 – 2.45 (m, 1H), 2.32 – 2.26 (m, 2H), 2.22-2.17(m, 2H), 2.11 (s, 3H), 2.08 – 2.00 (m, 2H), 1.89 (dt, J = 12.7, 7.5 Hz, 4H), 1.19 (dd, J = 13.7, 8.5 Hz, 1H), 1.04 (d, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 220.7, 169.4, 145.2, 119.5, 48.0, 37.9, 37.0, 36.4, 32.9, 27.0, 21.2, 21.0, 18.5. **HRMS ESI** Calcd for C₁₃H₁₈O₃ [M+Na]⁺: 245.1148, Found: 245.1139. **IR** ν (cm⁻¹): 2957, 2923, 1755, 1737, 1220, 736.

1-oxospiro[4.5]dec-7-en-7-yl acetate (5g):

Colorless oil, (20 mg, 0.096 mmol, 48% yield); ¹H NMR (400 MHz, CDCl₃) δ 5.42 – 5.36 (m, 1H), 2.37 (d, *J* = 16.7 Hz, 1H), 2.34 – 2.27 (m, 2H), 2.22 (s, 1H), 2.11 (s, 3H), 1.95 (m, 4H), 1.85 (t, *J* = 11.7 Hz, 2H), 1.69 – 1.61 (m, 1H), 1.45 – 1.39 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 221.7, 169.4, 146.4, 113.0, 48.5, 37.5, 33.6, 27.3, 21.0, 20.8, 18.8. HRMS ESI Calcd for C₁₂H₁₆O₃ [M+Na]⁺: 231.0992, Found: 231.0982. IR v (cm⁻¹): 2923, 1752, 1737, 1219, 737.

6-methyl-1-oxospiro[4.5]dec-7-en-7-yl acetate (5h):

Colorless oil, ($5h^{o}$: 5.7 mg, 0.026 mmol, 13% yield; $5h^{b}$: 10.3 mg, 0.046 mmol, 23% yield), $5h^{o}$: $5h^{b}$ = 1: 1.8; CHCl₃ was used as the solvent instead of DCE after Castro-Stephens coupling.

5h^{*σ*}: ¹**H NMR** (400 MHz, CDCl₃) δ 5.35 – 5.33 (m, 1H), 2.38 – 2.31 (m, 2H), 2.31 – 2.27 (m, 1H), 2.25 – 2.20 (m, 1H), 2.19 – 2.14 (m, 1H), 2.13 (s, 3H), 2.11 – 2.06 (m, 1H), 2.00 – 1.96 (m, 1H), 1.96 – 1.89 (m, 2H), 1.72 – 1.64 (m, 1H), 1.25-1.20 (m, 1H), 0.96 (d, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 220.9, 169.8, 150.2, 113.3, 51.6, 37.8, 35.7, 34.4, 24.2, 21.1, 20.8, 18.0, 14.7. **HRMS ESI** Calcd for $C_{13}H_{18}O_3$ [M+Na]⁺: 245.1148, Found: 245.1146. **IR** *ν* (cm-1): 2965, 2939, 1752, 1734, 1219, 1092, 917, 733.

5h^b: ¹**H NMR** (400 MHz, CDCl₃) δ 5.31 (dd, *J* = 6.2, 3.7 Hz, 1H), 2.91 – 2.84 (m, 1H), 2.45 – 2.35 (m, 1H), 2.19 (ddd, *J* = 6.9, 6.2, 2.9 Hz, 3H), 2.12 (s, 3H), 2.00 – 1.93 (m, 1H), 1.92 – 1.83 (m, 2H), 1.82 – 1.74 (m, 1H), 1.58 – 1.53 (m, 2H), 0.80 (d, *J* = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 221.7, 169.4, 149.6, 113.0, 52.3, 37.9, 35.9, 28.3, 27.9, 20.9, 20.7, 18.8, 12.3. **HRMS ESI** Calcd for $C_{13}H_{18}O_3$ [M+Na]⁺: 245.1148, Found: 245.1140. **IR** *v* (cm⁻¹): 2964, 1752, 1734, 1219, 1007, 804.

(5S,6R,10S)-6,10-dimethyl-1-oxospiro[4.5]dec-7-en-7-yl acetate (5i):

Colorless oil, (26.5 mg, 0.11 mmol, 56% yield), dr = 1: 1.2: 4; AuCl₃ (10 mol%) in 2 mL HFB (hexafluorobenzene) was used instead of the combination of AuPPh₃Cl and AgNTf₂ after Castro-Stephens coupling

Major isomer: ¹H NMR (600 MHz, CDCl₃) δ 5.24 (dt, J = 4.9, 2.4 Hz, 1H), 2.95 – 2.91 (m, 1H), 2.52 – 2.46 (m, 1H), 2.41 – 2.34 (m, 1H), 2.19 – 2.17 (m, 1H), 2.13 (s, 3H), 2.04 – 1.98 (m, 1H), 1.97 – 1.91 (m, 2H), 1.90 – 1.86 (m, 1H), 1.86 – 1.84 (m, 1H), 1.84 – 1.81 (m, 1H), 0.99 (d, J = 7.0 Hz, 3H), 0.81 (d, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 219.9, 169.4, 148.9, 111.5, 54.9, 38.0, 31.4, 30.6, 29.2, 28.9, 20.7, 18.3, 14.8, 11.9. HRMS ESI Calcd for C₁₄H₂₀O₃ [M+Na]⁺: 259.1305, Found: 259.1301. **IR** v (cm⁻¹): 2919, 1736, 1656, 1100, 785.

9,9-dimethyl-1-oxospiro[4.5]dec-7-en-7-yl pivalate (5j):

Colorless oil, (29.5 mg, 0.11 mmol, 53% yield); ¹H NMR (400 MHz, CDCl₃) δ 5.17 (d, J = 1.8 Hz, 1H), 2.35 – 2.29 (m, 2H), 2.26 – 2.16 (m, 1H), 2.08 (dd, J = 16.3, 1.6 Hz, 1H), 2.01 (ddd, J = 11.4, 7.5, 4.4 Hz, 1H), 1.89 – 1.83 (m, 2H), 1.80 (dd, J = 15.7, 9.6 Hz, 2H), 1.30 (d, J = 13.9 Hz, 1H), 1.23 (s, 9H), 1.09 (d, J = 10.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 222.4, 177.3, 144.5, 123.0, 49.7, 42.4, 38.8, 37.3, 35.5, 32.7, 32.5, 29.5, 27.0, 19.5. HRMS ESI Calcd for C₁₇H₂₆O₃ [M+Na]*: 301.1774, Found: 301.1759. IR v (cm⁻¹): 2959, 2924, 1739, 1131, 856, 547.

9,9-dimethyl-1-oxospiro[4.5]dec-7-en-7-yl benzoate (5k):

Colorless oil, (30.3 mg, 0.10 mmol, 50% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 8.06 (m, 2H), 7.61 – 7.58 (m, 1H), 7.46 (t, *J* = 7.7 Hz, 2H), 5.35 (d, *J* = 1.8 Hz, 1H), 2.41 (ddd, *J* = 7.0, 5.1, 3.3 Hz, 1H), 2.38 – 2.29 (m, 1H), 2.27 (d, *J* = 9.8 Hz, 1H), 2.22 (dd, *J* = 10.1, 8.6 Hz, 1H), 2.10 – 2.06 (m, 1H), 2.03 (td, *J* = 5.9, 2.4 Hz, 1H), 1.90 (dd, *J* = 10.9, 9.5 Hz, 2H), 1.86 – 1.81 (m, 1H), 1.35 (d, *J* = 13.9 Hz, 1H), 1.14 (d, *J* = 10.7 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 222.3, 165.2, 144.5, 133.3, 129.9, 129.8, 128.4, 123.6, 49.7, 42.5, 37.3, 35.6, 33.0, 32.6, 32.4, 29.6, 19.5. HRMS ESI Calcd for C₁₉H₂₂O₃ [M+Na]⁺: 321.1461, Found: 321.1448. IR v (cm⁻¹): 2958, 2924, 1734, 1272, 115, 734, 710.

5,5-dimethyl-2'-oxo-2',3',3a',4',5',6',7',7a'-octahydrospiro[cyclohexane-1,1'-inden]-3-en-3-yl acetate (5I):

Colorless oil, (27.5 mg, 0.094 mmol, 47% yield); ¹H NMR (400 MHz, CDCl₃) δ 5.20 (d, *J* = 2.0 Hz, 1H), 2.66 (s, 1H), 2.23 – 2.19 (m, 3H), 2.10 (s, 3H), 1.96 (dd, *J* = 16.5, 2.5 Hz, 1H), 1.79 (d, *J* = 12.6 Hz, 2H), 1.75 – 1.59 (m, 4H), 1.54 (d, *J* = 13.2 Hz, 1H), 1.46 (d, *J* = 14.7 Hz, 1H), 1.24 (dddd, *J* = 15.8, 13.0, 7.8, 4.5 Hz, 2H), 1.13 – 1.04 (m, 6H), 0.75 (qd, *J* = 13.1, 3.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 221.5, 169.4, 143.5, 123.6, 56.7, 42.6, 36.9, 35.4, 32.5, 32.4, 32.0, 31.0, 30.7, 26.8, 25.1, 25.0, 21.0, 19.9. HRMS ESI Calcd for C₁₈H₂₆O₃ [M+Na]⁺: 313.1774, Found: 313.1764. IR v (cm⁻¹): 2956, 2923, 1737, 1218, 740, 704.

9,9-dimethyl-1-oxo-3,3-diphenylspiro[4.5]dec-7-en-7-yl acetate (5m):

Colorless oil, (42.7 mg, 0.11 mmol, 55% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.29 (s, 4H), 7.27 – 7.11 (m, 6H), 5.17 (s, 1H), 3.44 (d, *J* = 17.1 Hz, 1H), 3.17 (d, *J* = 12.9 Hz, 1H), 2.87 (dd, *J* = 32.0, 15.1 Hz, 2H), 2.12 (d, *J* = 16.7 Hz, 1H), 1.96 (s, 3H), 1.65 (d, *J* = 13.7 Hz, 1H), 1.43 – 1.28 (m, 2H), 1.16 (s, 3H), 1.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 220.0, 168.9, 148.3, 145.6, 144.3, 128.6, 127.0, 126.5, 126.4, 126.3, 123.3, 50.1, 49.6, 49.5, 47.8, 45.2, 35.1, 32.8, 32.5, 29.8, 20.8. HRMS ESI Calcd for C₂₆H₂₈O₃ [M+Na]⁺: 411.1931, Found: 411.1930. IR *v* (cm⁻¹): 2957, 1738, 1220, 1209, 1110, 702.

tert-butyl 12-acetoxy-10,10-dimethyl-14-oxo-3-azadispiro[5.1.5⁸.2⁶]pentadec-11-ene-3-carboxylate (5n):

Colorless oil, (40 mg, 0.098 mmol, 49% yield); ¹H NMR (600 MHz, CDCl₃) δ 5.24 (s, 1H), 3.63 (s, 2H), 3.21 – 3.16 (m, 2H), 2.42 – 2.18 (m, 4H), 2.15 – 2.04 (m, 3H), 1.89 (t, *J* = 14.1 Hz, 2H), 1.63 (dd, *J* = 48.2, 14.8 Hz, 6H), 1.46 (s, 9H), 1.10 (d, *J* = 32.2 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 221.2, 169.5, 154.7, 144.2, 123.5, 79.5, 49.5, 48.6, 46.9, 45.3, 36.3, 36.0, 32.8, 32.4, 28.4, 21.1. HRMS ESI Calcd for C₂₃H₃₅NO₅ [M+Na]⁺: 428.2407, Found: 428.2390. IR v (cm⁻¹): 2927, 1685, 1265, 740, 705.

5,5-dimethyl-3'-oxo-3',4'-dihydro-1'H-spiro[cyclohexane-1,2'-naphthalen]-3-en-3-yl acetate (50):

50

Colorless oil, (31.6 mg, 0.106 mmol, 53% yield); ¹H NMR (600 MHz, CDCl₃) δ 7.22 (dt, *J* = 9.2, 4.0 Hz, 3H), 7.13 – 7.11 (m, 1H), 5.20 (s, 1H), 3.68 (dd, *J* = 80.0, 19.5 Hz, 2H), 3.11 (dd, *J* = 77.4, 15.7 Hz, 2H), 2.62 (dd, *J* = 16.7, 1.5 Hz, 1H), 2.12 (s, 3H), 1.92 (d, *J* = 16.7 Hz, 1H), 1.76 (d, *J* = 14.1 Hz, 1H), 1.53 (d, *J* = 14.1 Hz, 1H), 1.08 (s, 3H), 0.99 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 211.8, 169.3, 144.6, 134.8, 133.0, 128.8, 127.7, 126.9, 126.8, 122.1, 48.2, 43.5, 42.3, 41.0, 33.4, 32.5, 31.4, 30.7, 21.0. HRMS ESI Calcd for C₁₉H₂₂O₃ [M+Na]⁺: 321.1461, Found: 321.1461. IR v (cm⁻¹): 2958, 1751, 1713, 1364, 1214, 1112, 749.

1-acetyl-5,5-dimethyl-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-yl acetate (7a):

Colorless oil, (28.7 mg, 0.10 mmol, 50% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.31 (m, 4H), 7.27 – 7.24 (m, 1H), 5.18 (s, 1H), 2.71 (dt, *J* = 37.3, 8.9 Hz, 2H), 2.22 (d, *J* = 14.1 Hz, 1H), 2.18 (s, 3H), 2.13 (d, *J* = 14.2 Hz, 1H), 1.88 (s, 3H), 1.02 (s, 3H), 0.64 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.6, 169.5, 143.7, 141.4, 128.9, 127.2, 126.5, 123.3, 55.8, 42.8, 33.2, 32.3, 31.1, 29.7, 25.4, 21.1. HRMS ESI Calcd for C₁₈H₂₂O₃ [M+Na]⁺: 309.1461, Found: 309.1447. IR ν (cm⁻¹): 2924, 2853, 1682, 1219, 736, 701.

1-acetyl-4'-methoxy-5,5-dimethyl-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-yl acetate (7b):

Colorless oil, (33 mg, 0.104 mmol, 52% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.26 (dd, *J* = 10.2, 5.8 Hz, 1H), 6.94-6.94 (m, 1H), 6.88 (d, *J* = 7.8 Hz, 1H), 6.80 (dd, *J* = 8.1, 2.2 Hz, 1H), 5.18 (s, 1H), 3.81 (s, 3H), 2.67 (s, 2H), 2.18 (s, 3H), 2.20 - 2.10 (m, 2H), 1.89 (s, 3H), 1.01 (s, 3H), 0.65 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.4, 169.5, 160.1, 143.7, 143.0, 129.8, 123.3, 119.0, 112.8, 112.2, 55.8, 55.3, 42.7, 33.1, 32.3, 31.2, 29.6, 25.4, 21.1. HRMS ESI Calcd for C₁₉H₂₄O₄ [M+Na]⁺: 339.1567, Found: 339.1553. **IR** v (cm⁻¹): 2925, 1752, 1706, 1513, 1254, 739.

1-acetyl-4'-chloro-5,5-dimethyl-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-yl acetate (7c):

Colorless oil, (39.8 mg, 0.124 mmol, 62% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.27 (m, 4H), 5.19 (s, 1H), 2.67 (p, *J* = 16.9 Hz, 2H), 2.19 (s, 3H), 2.13 (d, *J* = 19.6 Hz, 2H), 1.88 (s, 3H), 1.01 (s, 3H), 0.62 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.0, 169.5, 143.3, 139.9, 133.2, 129.0, 128.1, 123.6, 55.5, 42.8, 33.0, 32.3, 31.3, 29.6, 25.4, 21.1. HRMS ESI Calcd for C₁₈H₂₁ClO₃ [M+Na]⁺: 343.1071, Found: 343.1060. IR v (cm⁻¹): 2923, 1710, 1467, 1219, 1097, 738.

1-acetyl-5,5-dimethyl-4'-(trifluoromethyl)-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-yl acetate (7d):

Colorless oil, (34.7 mg, 0.098 mmol, 49% yield); ¹H NMR (600 MHz, CDCl₃) δ 7.62 (d, *J* = 8.3 Hz, 2H), 7.50 (d, *J* = 8.2 Hz, 2H), 5.21 (s, 1H), 2.76 – 2.67 (m, 2H), 2.23 (d, *J* = 14.2 Hz, 1H), 2.20 (s, 3H), 2.14 (d, *J* = 14.2 Hz, 1H), 1.89 (s, 3H), 1.03 (s, 3H), 0.60 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 207.6, 169.5, 145.5, 143.2, 129.5 (q, ²*J*_{FC} = 33 Hz), 127.2, 125.9, 125.8, 124.0 (q, ¹*J*_{FC} = 271 Hz), 123.8, 56.0, 43.0, 32.9, 32.3, 31.3, 29.5, 25.5, 21.1. HRMS ESI Calcd for C₁₉H₂₁F₃O₃ [M+Na]⁺: 377.1335, Found: 377.1336. IR v (cm⁻¹): 2924, 1871, 1752, 1710, 1328, 1126, 608.

1-acetyl-3'-chloro-5,5-dimethyl-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-yl acetate (7e):

Colorless oil, (32.7 mg, 0.102 mmol, 51% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.40 (s, 1H), 7.30 (d, *J* = 7.7 Hz, 1H), 7.23 (dd, *J* = 12.9, 4.5 Hz, 2H), 5.20 (s, 1H), 2.68 (q, *J* = 16.9 Hz, 2H), 2.22 (s, 1H), 2.19 (s, 3H), 2.10 (d, *J* = 14.1 Hz, 1H), 1.91 (s, 3H), 1.02 (s, 3H), 0.67 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 207.9, 169.6, 143.5, 143.3, 134.9, 130.1, 127.5, 126.8, 124.8, 123.5, 55.7, 42.7, 33.0, 32.3, 31.0, 29.7, 25.5, 21.1. HRMS ESI Calcd for C₁₈H₂₁ClO₃ [M+Na]*: 343.1071, Found: 343.1071. IR *v* (cm-1): 2957, 1754, 1710, 1219, 1207, 1100, 699.

1-acetyl-3'-fluoro-5,5-dimethyl-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-yl acetate (7f):

Colorless oil, (29.2 mg, 0.096 mmol, 48% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.31 (dd, *J* = 14.4, 8.1 Hz, 1H), 7.11 (t, *J* = 7.8 Hz, 2H), 6.97 (t, *J* = 8.1 Hz, 1H), 5.19 (s, 1H), 2.68 (q, *J* = 17.0 Hz, 2H), 2.18 (s, 3H), 2.17 (s, 1H), 2.10 (d, *J* = 14.1 Hz, 1H), 1.89 (s, 3H), 1.02 (s, 3H), 0.64 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 207.8, 169.5, 162.3 (d, ¹*J*_{FC} = 246 Hz), 144.1 (d, ³*J*_{FC} = 7 Hz), 143.4, 130.5 (d, ³*J*_{FC} = 8 Hz), 123.5, 122.4 (d, ⁴*J*_{FC} = 3 Hz), 114.3 (d, ²*J*_{FC} = 21 Hz), 113.9 (d, ²*J*_{FC} = 22 Hz) 55.8, 42.8, 33.1, 32.3, 31.2, 29.6, 25.4, 21.1. HRMS ESI Calcd for C₁₈H₂₁FO₃ [M+Na]⁺: 327.1367, Found: 327.1360. IR v (cm⁻¹): 2923, 2852, 1754, 1710, 1220, 735.

1-benzoyl-5,5-dimethyl-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-yl acetate (7g):

Colorless oil, (34.8 mg, 0.10 mmol, 50% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.49 (t, *J* = 7.4 Hz, 4H), 7.36 (dd, *J* = 8.2, 7.0 Hz, 3H), 7.29 (s, 1H), 7.23 (t, *J* = 7.7 Hz, 2H), 5.21 (s, 1H), 2.80 – 2.68 (m, 2H), 2.37 (dd, *J* = 34.1, 14.0 Hz, 2H), 2.15 (s, 3H), 0.90 (s, 3H), 0.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.4, 169.5, 144.0, 142.0, 136.7, 131.7, 129.6, 129.1, 128.1, 127.2, 126.7, 123.3, 54.7, 44.8, 35.9, 32.4, 31.5, 29.3, 21.1. HRMS ESI Calcd for C₂₃H₂₄O₃ [M+Na]⁺: 371.1618, Found: 371.1617. **IR** *v* (cm⁻¹): 2922, 1632, 1467, 1219, 735.

4'-fluoro-1-(4-fluorobenzoyl)-5,5-dimethyl-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-yl acetate (7h):

Colorless oil, (26.9 mg, 0.07 mmol, 35% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.52 (m, 2H), 7.46 – 7.43 (m, 2H), 7.09 – 7.05 (m, 2H), 6.94 – 6.90 (m, 2H), 5.22 (s, 1H), 2.77 – 2.64 (m, 2H), 2.37 – 2.30 (m, 2H), 2.16 (s, 3H), 0.89 (s, 3H), 0.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.5, 169.6, 164.6 (d, ¹_{JFC} = 254 Hz), 161.9 (d, ¹_{JFC} = 247 Hz), 143.6, 137.8 (d, ⁴_{JFC} = 3 Hz), 132.5 (d, ⁴_{JFC} = 3 Hz), 132.2 (d, ³_{JFC} = 9 Hz), 128.3 (d, ³_{JFC} = 8 Hz), 123.4, 116.2 (d, ²_{JFC} = 21 Hz), 115.3 (d, ²_{JFC} = 22 Hz), 54.1, 44.9, 36.0, 32.3, 31.5, 29.3, 21.1. HRMS ESI Calcd for C₂₃H₂₂F₂O₃ [M+Na]⁺: 407.1429, Found: 407.1424. IR v (cm⁻¹): 2957, 1751, 1678, 1235, 837, 739.

1-benzoyl-4'-methoxy-5,5-dimethyl-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-yl acetate (7i):

Colorless oil, (22.7 mg, 0.06 mmol, 30% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.48 (m, 2H), 7.40 – 7.35 (m, 3H), 7.23 (t, *J* = 7.7 Hz, 2H), 6.90 (d, *J* = 8.9 Hz, 2H), 5.20 (s, 1H), 3.81 (s, 3H), 2.70 (q, *J* = 17.2 Hz, 2H), 2.32 (dd, *J* = 40.5, 14.0 Hz, 2H), 2.15 (s, 3H), 0.90 (s, 3H), 0.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.7, 169.5, 158.7, 148.6, 143.9, 136.9, 133.7, 131.6, 129.6, 128.1, 127.9, 123.4, 114.7, 114.4, 58.5, 55.2, 55.1, 54.0, 46.5, 44.8, 44.4, 35.9, 34.8, 32.4, 32.1, 31.7, 30.5, 29.2, 21.7, 21.1. HRMS ESI Calcd for C₂₄H₂₆O₄ [M+Na]⁺: 401.1723, Found: 401.1731. IR *v* (cm⁻¹): 2956, 2925, 1752, 1675, 1253, 710.

7 Synthetic utility to the tetracyclic skeleton of waihoensene

7.1 The synthesis of the tetracyclic skeleton 13 of waihoensene

2-(2-((tert-butyldiphenylsilyl)oxy)ethyl)-1-(pyrrolidin-1-yl)hept-6-en-1-one (9):

TBDPSO 9

A solution of $\mathbf{8}^{13}$ (444 mg, 2.88 mmol, 1 eq.), pyrrolidine (473 μ L, 5.76 mmol, 2 eq.) and Et₃N (2.0 mL, 14.39 mmol, 5 eq.) were heated to 85 °C for 3.5 hours. After cooling to room temperature, the reaction mixture was concentrated *in vacuo* to remove the solvent. Then the residue was dissolved in DCM (10 mL), imidazole (68.1 mg, 4.32 mmol, 1.5 eq.) and TBDPSCI (823 μ L, 3.17 mmol, 1.1 eq.) were added. The reaction mixture was stirred at 0 °C for 10 mins, and then quenched by saturated NH₄Cl aqueous solution, extracted with DCM. The combined organic extracts were washed with brine, dried over MgSO₄ and concentrated. The crude product was purified by flash chromatography (petroleum ether: EtOAc = 4: 1) to give **9** (1.32 g, 98% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.70 – 7.60 (m, 4H), 7.48 – 7.34 (m, 6H), 5.80 (ddt, *J* = 16.9, 10.2, 6.7 Hz, 1H), 5.07 – 4.90 (m, 2H), 3.71 (dt, *J* = 10.5, 5.3 Hz, 1H), 3.63 (ddd, *J* = 16.7, 10.2, 5.7 Hz, 2H), 3.45 (ddd, *J* = 14.1, 11.8, 6.9 Hz, 3H), 2.92 – 2.81 (m, 1H), 2.04 (t, *J* = 6.3 Hz, 2H), 1.96 – 1.76 (m, 5H), 1.74 – 1.60 (m, 2H), 1.52 – 1.30 (m, 3H), 1.07 (s, 9H). ¹³**C** NMR (100 MHz, CDCl₃) δ 174.4, 138.6, 135.4, 135.4, 133.7, 133.6, 129.6, 129.5, 127.6, 114.5, 61.7, 46.5, 45.4, 39.7, 35.4, 33.8, 32.0, 26.9, 26.8, 26.0, 24.3, 19.1. HRMS ESI Calcd for C₂₉H₄₁NO₂Si [M+Na]⁺: 486.2799, Found: 486.2780. **IR** v (cm⁻¹): 2954, 1640, 1429, 1111, 703, 506.

 $(1S,5R)-5-(2-((\textit{tert-butyldiphenylsilyl})oxy)ethyl) bicyclo [3.2.0] heptan-6-one ({\bf 10}):$

To a stirred solution of **9** (662.8 mg, 1.43 mmol, 1 eq.) in DCE (25 mL) were added 2,6-di-*tert*-butyl-4-methylpyridine (440.3 mg, 2.14 mmol, 1.5 eq.) and Tf₂O (288.5 μ L, 1.72 mmol, 1.2 eq.) via an addition funnel (dissolved in 5 mL DCE) about 30 mins. The reaction solution was refluxed overnight and concentrated under vacuum, then to the mixture were added the mixed solvent of CCl₄ (20 mL) and H₂O (20 mL). The reaction mixture was refluxed overnight. Extract with DCM, the combined organic layers was washed with brine, and dried over Na₂SO₄, concentrated under vacuum. The crude product was purified by flash chromatography (petroleum ether: EtOAc = 20: 1) to give **10** (304.9 mg, 54% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.69-7.67 (m, 4H), 7.46 – 7.27 (m, 6H), 3.83 - 3.72 (m, 2H), 3.20 (dd, J = 18.4, 9.6 Hz, 1H), 2.73 (m, 1H), 2.42 (dd, J = 18.4, 4.4 Hz, 1H), 2.09 - 1.93 (m, 2H), 1.90 - 1.75 (m, 4H), 1.75 - 1.58 (m, 1H), 1.49 - 1.33 (m, 1H), 1.06 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 217.2, 135.5, 133.7, 133.5, 129.6, 127.6, 73.7, 61.2, 49.4, 35.8, 35.6, 34.0, 32.7, 26.8, 24.7, 19.1. HRMS ESI Calcd for C₂₅H₃₂O₂Si [M+Na]⁺: 415.2064, Found: 415.2050. IR ν (cm-1): 2931, 1771, 1111, 738, 703, 505.

(15,5R,6S)-5-(2-((tert-butyldiphenylsilyl)oxy)ethyl)-6-(prop-1-en-2-yl)bicyclo[3.2.0]heptan-6-ol (s24):

Under argon atmosphere, to a round-bottom flask were charged with 2-bromopropene (148 μ L, 1.67 mmol, 1.2 eq.) and anhydrous THF (10 mL). The reaction was cooled to -78 °C, *t*-BuLi (1.3 M, 2.44 mL, 3.17 mmol, 2.3 eq.) was then added dropwise, allowing the reaction mixture to stir for 15 mins. A solution of **10** (546.1 mg, 1.39 mmol, 1 eq.) in THF (5 mL) was added. The reaction was stirred for 3 hours at -78 °C. The reaction was quenched by saturated NH₄Cl aqueous solution, extracted with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated. The crude product was purified by flash chromatography (petroleum ether: EtOAc = 20: 1) to give **s24** (444.9 mg, 74% yield, 89% brsm) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 7.6 Hz, 4H), 7.48 – 7.40 (m, 6H), 5.00 (s, 1H), 4.98 (s, 1H), 3.72 – 3.54 (m, 2H), 2.58 (dd, *J* = 13.3, 9.1 Hz, 1H), 2.09 (ddd, *J* = 21.6, 10.8, 4.6 Hz, 2H), 1.98 – 1.83 (m, 2H), 1.82 (s, 3H), 1.80 – 1.71 (m, 2H), 1.65 (s, 1H), 1.52 – 1.44 (m, 2H), 1.40 (dd, *J* = 13.2, 7.0 Hz, 2H), 1.08 (s, 9H). ¹³**C** NMR (100 MHz, CDCl₃) δ 148.1, 135.5, 134.0, 129.5, 127.5, 111.4, 77.3, 61.3, 56.0, 38.1, 36.4, 36.0, 32.2, 30.8, 26.8, 26.0, 20.4, 19.1. HRMS ESI Calcd for C₂₈H₃₈O₂Si [M+Na]⁺: 457.2533, Found: 457.2544. **IR** ν (cm⁻¹): 2931, 1428, 1111, 1084, 703, 506.

tert-butyldiphenyl(2-((1R,55,75)-7-(prop-1-en-2-yl)-7-((triethylsilyl)oxy)bicyclo[3.2.0]heptan-1-yl)ethoxy)silane (11):

To a stirred solution of **s24** (527.6 mg, 1.21 mmol, 1 eq.) in anhydrous DCM (10 mL) was added TESOTf (329.3 μ L, 1.46 mmol, 1.2 eq.) and 2,6-lutidine (212.1 μ L, 1.82 mmol, 1.5 eq.) at 0 °C. The reaction was stirred for 5 mins, and then quenched by saturated NH₄Cl aqueous solution, extracted with DCM. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated. The crude product was purified by flash chromatography (petroleum ether as elution solvent) to give **11** (624.1 mg, 94% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.68 (dd, *J* = 7.7, 1.4 Hz, 4H), 7.46 – 7.38 (m, 6H), 4.94 (s, 2H), 3.68 – 3.55 (m, 2H), 2.51 (dd, *J* = 12.8, 8.7 Hz, 1H), 2.26 (ddd, *J* = 13.4, 8.3, 1.5 Hz, 1H), 1.95 (dd, *J* = 13.5, 7.8 Hz, 1H), 1.90 – 1.75 (m, 2H), 1.74 (s, 3H), 1.73 – 1.67 (m, 2H), 1.49 (dd, *J* = 12.9, 7.6 Hz, 1H), 1.45 – 1.27 (m, 3H), 1.06 (s, 9H), 0.95 (t, *J* = 7.9 Hz, 9H), 0.58 (q, *J* = 7.9 Hz, 6H). ¹³**C** NMR (100 MHz, CDCl₃) δ 149.3, 135.6, 134.1, 129.5, 127.5,

110.8, 79.0, 61.6, 57.6, 38.2, 36.6, 35.4, 32.3, 30.1, 26.9, 25.8, 20.8, 19.1, 7.1, 6.2. HRMS ESI Calcd for $C_{34}H_{52}O_2Si_2$ [M+Na]⁺: 571.3398, Found: 571.3388. IR ν (cm⁻¹): 2954, 1428, 1112, 1084, 702.

2-((15,5R,6R)-5-(2-((tert-butyldiphenylsilyl)oxy)ethyl)-6-((triethylsilyl)oxy)bicyclo[3.2.0]heptan-6-yl)prop-2-en-1-ol (s25):

s25

A stirred solution of **11** (77.4 mg, 0.14 mmol, 1 eq.), TBHP (5.5 M, 102.5 μ L, 0.56 mmol, 4 eq.) and SeO₂ (7.8 mg, 0.07 mmol, 0.5 eq.) in anhydrous DCM (1.5 mL) was stirred for 2 days at rt, and then quenched by saturated Na₂S₂O₃ aqueous solution, extracted with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated. The crude product was purified by flash chromatography (petroleum ether: EtOAc = 20: 1) to give **s25** (32.7 mg, 41% yield, 73% brsm) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.70 – 7.68 (m, 4H), 7.47 – 7.39 (m, 6H), 5.27 (s, 1H), 5.07 (s, 1H), 4.15 (q, *J* = 15.2 Hz, 2H), 3.68 – 3.58 (m, 2H), 2.52 (dd, *J* = 12.9, 8.8 Hz, 1H), 2.24 (dd, *J* = 12.2, 8.6 Hz, 1H), 1.97 (dd, *J* = 12.3, 7.2 Hz, 1H), 1.82 – 1.67 (m, 4H), 1.57 (dd, *J* = 12.9, 7.6 Hz, 1H), 1.51 – 1.27 (m, 4H), 1.06 (s, 9H), 0.96 (t, *J* = 7.9 Hz, 9H), 0.61 (q, *J* = 7.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 153.3, 135.6, 135.6, 134.0, 133.9, 129.5, 129.5, 127.6, 108.7, 78.8, 64.0, 61.5, 58.0, 38.2, 36.7, 35.9, 32.3, 29.7, 26.8, 25.7, 19.0, 7.0, 6.2. HRMS ESI Calcd for C₃₄H₅₂O₃Si₂ [M+Na]*: 587.3347, Found: 587.3339. **IR** v (cm⁻¹): 2954, 1471, 1112, 738, 702.

(((15,5R,6R)-6-(3-bromoprop-1-en-2-yl)-5-(2-((tert-butyldiphenylsilyl)oxy)ethyl)bicyclo[3.2.0]heptan-6-yl)oxy)triethylsilane (2h):

In a reaction tube, **s25** (442.7 mg, 0.78 mmol, 1 eq.) was added. A solution of CBr₄ (181.9 mg, 0.55 mmol, 0.7 eq.), PPh₃ (246.6 mg, 0.94 mmol, 1.2 eq.), imidazole (64.0 mg, 0.94 mmol, 1.2 eq.) in anhydrous DCM (5 mL) was added. The reaction was stirred overnight at rt. CBr₄ (91 mg, 0.28 mmol, 0.35 eq.), PPh₃ (123.3 mg, 0.47 mmol, 0.6 eq.), imidazole (32.0 mg, 0.47 mmol, 0.6 eq.) were added. Until **s25** disappeared completely, the reaction was quenched by saturated NaHCO₃ aqueous solution, extracted with DCM. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated. The crude product was purified by flash chromatography (petroleum ether as elution solvent) to give **2h** (445.1 mg, 90% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.67 – 7.65 (m, 4H), 7.46 – 7.38 (m, 6H), 5.53 (s, 1H), 5.33 (s, 1H), 4.08 (d, *J* = 12.3 Hz, 1H), 3.88 (d, *J* = 12.3 Hz, 1H), 3.69 – 3.45 (m, 2H), 2.61 (dd, *J* = 13.1, 8.7 Hz, 1H), 2.29 – 2.14 (m, 1H), 1.96 (dd, *J* = 12.7, 7.4 Hz, 1H), 1.89 – 1.68 (m, 2H), 1.62 (tdd, *J* = 17.4, 7.9, 5.4 Hz, 3H), 1.51 – 1.23 (m, 3H), 1.04 (s, 9H), 0.94 (t, *J* = 7.9 Hz, 9H), 0.60 (q, *J* = 7.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 148.9, 135.6, 134.0, 129.5, 127.6, 116.4, 79.0, 61.2, 57.9, 38.7, 36.9, 35.6, 33.1, 32.3, 30.0, 26.8, 25.6, 19.1, 7.0, 6.2. HRMS ESI Calcd for C₃₄H₅₁BrO₂Si₂ [M+Na]⁺: 649.2503, Found: 649.2498; [M+Na]⁺: 651.2483, Found: 651.2477. IR v (cm⁻¹): 2954, 1428, 1227, 1110, 739, 702.

(1*R*,3a'*S*,6a'*R*)-6a'-(2-((*tert*-butyldiphenylsilyl)oxy)ethyl)-2'-oxo-3',3a',4',5',6',6a'-hexahydro-2'H-spiro[cyclohexane-1,1'-pentalen]-3-en-3-yl acetate (**5p**):

(15,3a'5,6a'R)-6a'-(2-((*tert*-butyldiphenylsilyl)oxy)ethyl)-2'-oxo-3',3a',4',5',6',6a'-hexahydro-2'*H*-spiro[cyclohexane-1,1'-pentalen]-3-en-3-yl acetate (**5q**):

To a stirred solution of **2h** (220.7 mg, 0.35 mmol, 1 eq.) in DCE (4 mL) were added **1g** (86 mg, 0.88 mmol, 2.5 eq.) and CuOAc (12.9 mg, 0.11 mmol, 0.3 eq.) and Cs_2CO_3 (57.3 mg, 0.18 mmol, 0.5 eq.) at rt. The reaction was moved to 70 °C for 9 hours until **2h** disappeared. After a quick filtration of the reaction mixture through a celite pad, the filtrate was concentrated under vacuum, hexafluorobenzene (4 mL), AuCl₃ (10.7 mg, 0.04 mmol, 0.1 eq.) and PTS (3 mg, 0.02 mmol, 0.05 eq.) were added at rt. The reaction mixture was stirred for 15 hours, and then concentrated. The crude product was purified by flash chromatography (petroleum ether: EtOAc = 6: 1) to give **5p** (17.7 mg, 9% yield) and **5q** (56.7 mg, 30.5% yield) as a colorless oil.

5p: ¹**H NMR** (400 MHz, CDCl₃) δ 7.69 – 7.67 (m, 4H), 7.46 – 7.39 (m, 6H), 5.41 (s, 1H), 3.73 (dtd, *J* = 17.8, 10.1, 7.7 Hz, 2H), 2.78 – 2.63 (m, 2H), 2.42 (dd, *J* = 16.9, 1.9 Hz, 1H), 2.31 – 2.20 (m, 1H), 2.12 (d, *J* = 9.1 Hz, 3H), 2.03 (d, *J* = 19.3 Hz, 1H), 1.95 – 1.84 (m, 2H), 1.80 – 1.57 (m, 6H), 1.53 – 1.38 (m, 3H), 1.25 (dtd, *J* = 12.9, 11.7, 8.0 Hz, 1H), 1.07 (s, 9H). ¹³C **NMR** (100 MHz, CDCl₃) δ 219.2, 169.3, 144.4, 135.5, 133.7, 133.6, 129.7, 127.6, 114.2, 60.9, 55.8, 55.3, 42.4, 41.8, 36.8, 31.8, 31.0, 30.5, 26.8, 24.8, 22.9, 21.1, 21.0, 19.0. **HRMS ESI** Calcd for C₃₃H₄₂O₄Si [M+Na]⁺: 553.2745, Found: 553.2732. **IR** ν (cm⁻¹): 2929, 1737, 1219, 1112, 740, 703.

5q: ¹**H NMR** (400 MHz, CDCl₃) δ 7.69 (ddd, *J* = 6.2, 4.1, 1.7 Hz, 4H), 7.49 – 7.33 (m, 6H), 5.41 – 5.34 (m, 1H), 3.91 – 3.80 (m, 1H), 3.80 – 3.68 (m, 1H), 2.72 (dd, *J* = 19.4, 11.1 Hz, 1H), 2.31 (dt, *J* = 16.2, 5.4 Hz, 1H), 2.12 (d, *J* = 6.0 Hz, 3H), 2.10 – 2.06 (m, 1H), 2.01 (d, *J* = 16.3 Hz, 1H), 1.94 – 1.86 (m, 2H), 1.86 – 1.79 (m, 1H), 1.78 – 1.69 (m, 3H), 1.69 – 1.64 (m, 1H), 1.59 (ddt, *J* = 18.1, 13.5, 4.0 Hz, 2H), 1.53 – 1.39 (m, 4H), 1.07 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 219.1, 169.05, 146.6, 135.6, 135.6, 133.7, 133.7, 129.6, 127.7, 127.6, 112.7, 60.8, 56.3, 55.9, 42.1, 42.0, 36.7, 31.4, 31.1, 29.5, 26.9, 25.7, 22.9, 21.1, 20.8, 19.1. **HRMS ESI** Calcd for C₃₃H₄₂O₄Si [M+Na]⁺: 553.2745, Found: 553.2732. **IR** *v* (cm⁻¹): 2931, 1752, 1737, 1220, 1114, 704.

(1R,3a'S,6a'R)-6a'-(2-hydroxyethyl)-2'-oxo-3',3a',4',5',6',6a'-hexahydro-2'H-spiro[cyclohexane-1,1'-pentalen]-3-en-3-yl acetate (s26):

5p (61.4 mg, 0.12 mmol, 1 eq.) was dissolved in anhydrous THF (1.5 mL), and a THF solution of TBAF (1.19 M, 102 μ L, 0.12 mmol, 1.1 eq.) was added at 0 °C. After 2.5 hours, the reaction was quenched by water, and then extracted with EtOAc, the combined organic layers were washed with saturated NH₄Cl aqueous solution and brine, dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography (petroleum ether: EtOAc = 2: 3) to give **s26** (31.7 mg, 94% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 5.46 (s, 1H), 3.78 (dd, *J* = 15.9, 9.4 Hz, 1H), 3.72 – 3.68 (m, 1H), 2.79 – 2.69 (m, 1H), 2.69 – 2.61 (m, 1H), 2.51 (dd, *J* = 17.2, 2.4 Hz, 1H), 2.38 (dd, *J* = 16.4, 7.9 Hz, 1H), 2.19 – 2.12 (m, 1H), 2.11 (s, 3H), 2.07 – 1.98 (m, 1H), 1.95 (d, *J* = 17.8 Hz, 1H), 1.91 – 1.82 (m, 2H), 1.77 (ddd, *J* = 16.4, 11.1, 4.9 Hz, 4H), 1.71 – 1.62 (m, 2H), 1.61 – 1.51 (m, 2H), 1.37 (dt, *J* = 13.4, 9.6 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 219.6, 169.7, 144.6, 114.6, 59.9, 56.1, 55.4, 42.7, 41.8, 37.3, 32.3, 31.1, 30.8, 25.0, 23.0, 21.2, 21.0. **HRMS ESI** Calcd for C₁₇H₂₄O₄ [M+Na]⁺: 315.1567, Found: 315.1561. **IR** *v* (cm⁻¹): 2928, 1735, 1219, 1120, 1040, 790.

(1R,3a'S,6a'R)-2'-oxo-6a'-(2-oxoethyl)-3',3a',4',5',6',6a'-hexahydro-2'H-spiro[cyclohexane-1,1'-pentalen]-3-en-3-yl acetate (12):

To a mixture of **s26** (21.3 mg, 0.073 mmol, 1 eq.) in a solution of EtOAc (1 mL) was added IBX (24.5 mg, 0.087 mmol, 1.2 eq.). The resulting mixture was refluxed for 3 hours, until TLC indicated **8** disappeared completely. The reaction mixture was concentrated under vacuum to give a crude product, which was purified by column chromatography (petroleum ether: EtOAc = 1: 1) to give **12** (19.3 mg, 91% yield) as a colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 9.88 (t, *J* = 3.0 Hz, 1H), 5.46 (t, *J* = 3.8 Hz, 1H), 2.77 (dd, *J* = 19.4, 10.6 Hz, 1H), 2.65 – 2.53 (m, 4H), 2.38 (dd, *J* = 17.0, 1.7 Hz, 1H), 2.20 – 2.12 (m, 1H), 2.11 (s, 3H), 2.05 (d, *J* = 17.1 Hz, 1H), 2.02 – 1.93 (m, 1H), 1.93 – 1.71 (m, 5H), 1.69 – 1.61 (m, 1H), 1.59 – 1.44 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 218.3, 202.1, 169.4, 144.6, 114.5, 57.0, 55.4, 48.0, 42.3, 41.8, 32.6, 31.5, 30.6, 24.9, 22.8, 21.1, 21.0. **HRMS ESI** Calcd for C₁₇H₂₂O₄ [M+Na]⁺: 313.1410, Found: 313.1403. **IR** v (cm⁻¹): 2927, 1736, 1716, 1218, 1120, 603.

(3aR,9aS,11aS)-2,3,8,9,11,11a-hexahydro-4H-pentaleno[6a,1-c]indene-6,10(1H,7H)-dione (13):

To a stirred solution of **12** (6 mg, 0.02 mmol, 1 eq.) in a mixed solvent of MeOH/H₂O (0.5 mL, v/v = 100:1) at 0 °C was added K₂CO₃ (7.1 mg, 0.05 mmol, 2.5 eq.). The reaction mixture was allowed to stir at the same temperature for 3 hours, and then warmed to rt. After stirring for 3 hours, to the resulting mixture was added K₂CO₃ (7.1 mg, 0.05 mmol, 2.5 eq.). After stirred for 6 hours, it was poured into saturated NH₄Cl, and then extracted with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography (petroleum ether: EtOAc = 3: 1) to give **13** (4.1 mg, 64% yield) as a colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 6.41 (t, *J* = 2.5 Hz, 1H), 2.70 (dd, *J* = 19.4, 2.2 Hz, 1H), 2.63 (dt, *J* = 17.1, 5.0 Hz, 1H), 2.56 (ddd, *J* = 14.3, 9.5, 5.6 Hz, 2H), 2.45 – 2.36 (m, 1H), 2.30 (ddd, *J* = 14.8, 8.2, 6.6 Hz, 1H), 2.24 (ddd, *J* = 16.5, 10.1, 6.2 Hz, 1H), 2.18 (dd, *J* = 17.7, 6.3 Hz, 1H), 2.15 – 2.07 (m, 1H), 2.03 (dt, *J* = 13.6, 7.0 Hz, 1H), 1.90 (dt, *J* = 13.2, 4.7 Hz, 1H), 1.85 – 1.67 (m, 4H), 1.63 – 1.59 (m, 1H), 1.37 (td, *J* = 14.1, 7.6 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 219.5, 200.2, 142.2, 136.6, 66.4, 61.6, 48.3, 45.8, 43.5, 39.5, 35.9, 33.5, 28.4, 25.9, 19.9. HRMS ESI Calcd for C₁₅H₁₈O₂ [M+Na]⁺: 253.1199, Found: 253.1195. IR v (cm⁻¹): 2933, 1727, 1688, 1458, 1173, 789

(3aS,5aR,8S,9R,10aR)-9-hydroxyhexahydro-6H-5a,8-ethanocyclopenta[c]azulene-5,7(1H,8H)-dione(14)

To a solution of **12** (4.5 mg, 0.015 mmol, 1 eq.) dissolved in THF (0.4 mL) was added 2M HCl (39 μ L, 0.078 mmol, 5 eq.). The reaction mixture was stirred for 5 hours, and then quenched by saturated NaHCO₃ aqueous solution, extracted with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated. The crude product was purified by flash chromatography (petroleum ether: EtOAc = 1: 1) to give **14** (3.5 mg, 89% yield) as a colorless solid.

¹**H** NMR (400 MHz, CDCl₃) δ 3.97 (dd, J = 11.9, 5.1 Hz, 1H), 2.69 (dd, J = 19.8, 9.8 Hz, 1H), 2.63 (d, J = 6.4 Hz, 1H), 2.40 (dd, J = 18.8, 3.3 Hz, 1H), 2.30 (dd, J = 17.2, 9.0 Hz, 1H), 2.20 (dd, J = 14.1, 4.4 Hz, 1H), 2.14 – 1.84 (m, 9H), 1.75 (ddd, J = 13.1, 7.5, 2.9 Hz, 1H), 1.71 – 1.59 (m, 3H), 1.45 (dtd, J = 11.6, 9.7, 1.8 Hz, 1H), 1.35 (ddd, J = 14.0, 12.0, 1.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 219.0, 211.2, 74.2, 56.4, 55.6, 54.7, 44.6, 44.4, 43.1, 40.5, 32.0, 29.2, 23.4, 22.5, 21.7. HRMS ESI Calcd for C₁₅H₂₀O₃ [M+Na]⁺: 271.1305, Found: 271.1300. IR ν (cm⁻¹): 2955, 1933, 1094, 1029, 799

7.2 Optimization of the tandem reaction conditions of the synthetic utility toward the skeleton of waihoensene

Table 2. Optimization of tandem reaction conditions between $\mathbf{1g}$ and $\mathbf{2h}^{\mathrm{a}}$

entry	catalyst	solvent	dr ratio (5p : 5q)	Yield ^b
1	AuPPh₃Cl	DCE	1:3	41% ^d
2°	AuCl₃	DCM	1:1.9	35%
3	AuCl₃	DCE	1:2	32%
4 ^c	AuCl ₃	CHCl₃	1:1.8	31%
5°	AuCl₃	benzene	1:1.2	45%
6 ^c	AuCl ₃	toluene	1:2.4	39%
7 ^c	AuCl ₃	HFB	1.2:1	70%
8 ^c	AuCl ₃	Pentafluorobenzene	/	nr
9 °	AuCl₃	Chlorobenzene	1:2.3	17%
10 ^c	AuCl₃	Benzotrifluoride	1:1.2	26%
11 ^c	AuCl₃	Octafluorotoluene	1:1.2	trace
12 ^c	AuCl ₃	Bromopentafluorobenzene	1:1.1	37%
13 ^c	AuBr₃	HFB	1:1.2	12%
14 ^c	HAuCl ₄ ·4H ₂ O	HFB	1.3:1	63%
15°	AuPPh ₃ Cl	HFB	1:20	55% ^d
16 ^c	AuCl₃	HFB	/	nd ^e
17 ^c	AuCl ₃	HFB	1.2:1	64% ^f
18 ^c	AuCl₃	HFB	/	nr ^g
19 ^c	AuCl₃	HFB	3.2:1	40% ^h
20 ^c	AuCl₃	HFB	2.8:1	19% ⁱ
21 ^c	AuCl₃	HFB	2.1:1	32% ^j

^aUnless specified, all reactions were carried out using **1g** (0.5 mmol, 2.5 eq.), **2h** (0.2 mmol, 1.0 eq.) and Au cat. (10 mol%) in a reaction tube in DCE (2 mL) at indicated temperature. ^bIsolated yield. ^cAfter filtration, the filtrate was concentrated and diluted with the indicated solvent (4 mL) for the following operation. ^dAgNTf₂ (10 mol%) was added. ^eAgNTf₂ (30 mol%) was added. ^{fH₂O (5 mol%) was added. ^{gA} Å MS (10 mg/ mmol) was added. ^hPTS (5 mol%) was added. ⁱK₂CO₃ (5 mol%) was added. ⁱBenzoic acid (5 mol%) was added.}

The key tandem reactions between **1g** and **2h** under standard conditions after Castro-Stephens coupling using the combination of 10 mol% AuPPh₃Cl and AgNTf₂ in DCE at rt could promote the desired reaction to give the product **5p** and **5q** with a dr ratio of 1:3 in 41% yield (Table 2, entry 1). Thus a further detailed optimization of tandem reactions conditions after Castro-Stephens coupling between **1g** and **2h** were investigated. After the screening of solvent, gold catalysts, the use of AuCl₃ in HFB with PTS as additive was selected as the optimal conditions (Table 2, entry 19).

8 The determination of the relative configuration of 5e-1, 5p, 5q, 5i, 7a and 11

8.1 The relative configuration of **5e-1**, **5p**, **5q**, **7a** and **11** was determinated by the X-ray structure of their derivatives **15**, **16a**, **17**, **18** and **19**, respectively.

8.1.1 The determination of the relative configuration of **5e-1**. (a) The synthesis of compound **15**.

(E)-9-isopropyl-1-(2-tosylhydrazono)spiro[4.5]dec-7-en-7-yl acetate (15):

5e-1 (23 mg, 0.092 mmol, 1 eq.), p-toluenesulfonyl hydrazide (17.1 mg, 0.092 mmol, 1 eq.) and anhydrous MgSO₄ (110.6 mg, 0.92 mmol, 10 eq.) were suspended in 1 mL EtOH in a reaction tube containing a stirring bar. The reaction was refluxed for 9 hours and then concentrated under vacuum. The resulting mixture was purified by column chromatography (petroleum ether: EtOAc = 3: 1) to give **15** (33.4 mg, 87% yield) as a colorless solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 5.21 (s, 1H), 2.41 (s, 3H), 2.35 – 2.28 (m, 1H), 2.24 (dd, J = 15.4, 7.2 Hz, 2H), 2.13 (s, 3H), 1.96 (d, J = 16.9 Hz, 1H), 1.83 – 1.71 (m, 3H), 1.69 – 1.61 (m, 2H), 1.49 (td, J = 13.6, 6.1 Hz, 2H), 1.17 (dd, J = 13.2, 10.9 Hz, 1H), 0.93 – 0.85 (m, 1H), 0.78 (dd, J = 6.8, 4.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 168.7, 146.2, 143.6, 135.2, 129.2, 128.4, 116.4, 45.8, 40.1, 37.8, 35.4, 32.6, 31.4, 26.8, 21.6, 21.2, 19.9, 19.6, 19.2. m.p.: 88-90 °C. HRMS ESI Calcd for C₂₂H₃₀N₂O₄S [M+Na]⁺: 441.1824, Found: 441.1820. IR v (cm⁻¹): 2946, 2856, 1734, 1450, 1078, 604, 592.

(b) X-ray ellipsoid plots of compound 15.

X-Ray ellipsoid plots of compound 15 (CCDC 1962296)

8.1.2 The determination of the relative configuration of **5p**. (a) The synthesis of compound **16a**.

(4R,7aR,9aS,12aR)-4-hydroxydecahydro-4,7a-methanopentaleno[6a,1-d]oxonin-8(9H)-one (16a):

5p (61.4 mg, 0.12 mmol, 1 eq.) was dissolved in anhydrous THF (1.5 mL), and a THF solution of TBAF (1.19 M, 102 μ L, 0.12 mmol, 1.1 eq.) was added at 0 °C. After 2.5 hours, the reaction was quenched by water, and then extracted with EtOAc, the combined organic layers were washed with saturated NH₄Cl aqueous solution and brine, dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography (petroleum ether: EtOAc = 2: 3) to give **s26** (31.7 mg, 94% yield) as a colorless oil. Then to a stirred solution of **s26** (31.7 mg, 0.11 mmol, 1 eq.) in a mixed solvent of MeOH/H₂O (1 mL, v/v = 10: 1) was added K₂CO₃ (18 mg, 0.13 mmol, 1.2 eq.) at rt. The reaction was stirred for 20 mins, and then was quenched by saturated NH₄Cl aqueous solution, extracted with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated. The crude product was purified by flash chromatography (petroleum ether: EtOAc = 2: 3) to give inseparable compound **16a** and **16b** (26.4 mg, 90% yield over 2 steps) as a colorless solid, the ratio of compound **16a** and **16b** was determined by ¹H NMR. **1**H NMR (400 MHz, CDCl₃) δ 4.12 (ddd, *J* = 12.9, 8.7, 3.8 Hz, 1H), 3.69 (dt, *J* = 13.5, 3.4 Hz, 1H), 2.76 - 2.66 (m, 1H), 2.63 (dd, *J* = 9.1, 5.9 Hz, 1H), 2.59 - 2.50 (m, 1H), 2.31 - 2.24 (m, 1H), 2.00 (tdd, *J* = 13.4, 8.8, 4.5 Hz, 1H), 1.83 - 1.70 (m, 9H), 1.66 - 1.55 (m, 1H), 1.54 - 1.40 (m, 3H), 1.35 - 1.21 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 220.2, 99.0, 59.5, 57.5, 55.8, 41.6, 39.3, 38.6, 38.6, 37.3, 36.3, 28.9, 26.7, 22.1, 20.5. m.p.: 96-98 °C. HRMS ESI Calcd for C₁₅H₂₂O₃ [M+Na]*: 273.1461, Found: 273.1457. **IR** v (cm⁻¹): 2946, 2877, 1734, 1450, 1078, 604.

(b) X-ray ellipsoid plots of compound 16a.

X-Ray ellipsoid plots of compound 16a (CCDC 1962275)

8.1.3 The determination of the relative configuration of **5q**. (a) The synthesis of compound **17**.

2-((15,3a'5,6a'R)-2',3-dioxohexahydro-6a'H-spiro[cyclohexane-1,1'-pentalen]-6a'-yl)ethyl 4-methylbenzenesulfonate (17):

To a stirred solution of **5q** (98 mg, 0.18 mmol, 1 eq.) in a mixed solvent of MeOH/H₂O (2 mL, v/v = 10: 1) was added K₂CO₃ (30.6 mg, 0.22 mmol, 1.2 eq.) at rt. The reaction was stirred for 20 mins, and then treated with saturated NH₄Cl aqueous solution, extracted with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated. The crude product was then dissolved in anhydrous THF (2 mL), added a THF solution of TBAF (1.19 M, 171 μ L, 0.20 mmol, 1.1 eq.) at 0 °C. The reaction was stirred warm to rt for 4 hours. The reaction was poured into saturated NH₄Cl aqueous solution, extracted with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄

and concentrated. Then the crude product was dissolved in anhydrous DCM (2 mL), and added Et₃N (77 μ L, 0.55 mmol, 3 eq.), DMAP (4.5 mg, 0.04 mmol, 0.2 eq.), TsCl (70.4 mg, 0.37 mmol, 2 eq.), refluxed for 3 hours. The reaction was quenched by saturated NH₄Cl aqueous solution, extracted with DCM. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated. The crude was purified by flash chromatography (petroleum ether: EtOAc = 1: 3) to give **17** (56.5 mg, 76% yield) as a colorless solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.3 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 4.13 (t, *J* = 7.1 Hz, 2H), 2.70 (dd, *J* = 19.9, 10.8 Hz, 1H), 2.46 (s, 3H), 2.40 (dd, *J* = 10.4, 6.3 Hz, 2H), 2.23 (dd, *J* = 9.5, 7.6 Hz, 1H), 2.12 – 1.90 (m, 4H), 1.90 – 1.69 (m, 6H), 1.69 – 1.64 (m, 1H), 1.61 – 1.45 (m, 3H), 1.15 (dt, *J* = 13.5, 9.8 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 219.1, 208.7, 145.3, 132.7, 130.0, 127.8, 66.9, 59.7, 56.1, 44.1, 42.8, 41.9, 39.8, 32.0, 31.1, 30.0, 28.1, 22.4, 21.7, 20.2. **m.p.**: 90-92 °C. **HRMS ESI** Calcd for C₂₂H₂₈O₅S [M+Na]⁺: 427.1550, Found: 427.1541. **IR** *v* (cm⁻¹): 2923, 1735, 1097, 782, 662.

(b) X-ray ellipsoid plots of compound 17.

X-Ray ellipsoid plots of compound 17 (CCDC 1962272)

8.1.4 The determination of the relative configuration of **7a**.(a) The synthesis of compound **18**.

(Z)-N'-(3-acetyl-5,5-dimethyl-3-phenylcyclohexylidene)-4-methylbenzenesulfonohydrazide (18):

To a stirred solution of **7a** (32.2 mg, 0.112 mmol, 1 eq.) in MeOH/H₂O (1.5 mL, v/v = 10: 1) was added K₂CO₃ (18.6 mg, 0.135 mmol, 1.2 eq.) at rt for 30 mins. The reaction was diluted with EtOAc, and water was added to quench the reaction. Extract with EtOAc, the combined organic layers were washed with brine, dried over MgSO₄ and concentrated. Then to a solution of the resulting mixture in EtOH (1.5 mL) was added TsNHNH₂ (62.6 mg, 0.336 mmol, 3 eq.) and MgSO₄ (135.2 mg, 1.12 mmol, 10 eq.). The reaction was refluxed for 5 hours, and then concentrated. The crude product was purified by flash chromatography (petroleum ether: EtOAc = 2: 1) to give **18** (22.8 mg, 49% yield) as a colorless solid.

¹**H NMR** (400 MHz, CDCl₃) δ 9.09 (s, 1H), 7.93 (d, *J* = 8.3 Hz, 2H), 7.40 – 7.36 (m, 2H), 7.32 – 7.29 (m, 1H), 7.29 – 7.27 (m, 2H), 7.25 (d, *J* = 1.0 Hz, 2H), 3.45 (dt, *J* = 13.7, 2.0 Hz, 1H), 2.39 (d, *J* = 4.6 Hz, 3H), 2.36 (s, 1H), 2.16 (d, *J* = 14.2 Hz, 1H), 2.10 – 1.95 (m, 2H), 1.79 (s, 3H), 1.69 (d, *J* = 13.8 Hz, 1H), 1.10 (s, 3H), 0.29 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 211.2, 157.8, 143.3, 140.8, 135.3, 129.3, 128.9, 128.4, 128.0, 125.5, 59.4, 48.2, 44.6, 35.3, 35.0, 33.0, 25.3, 23.9, 21.5. **m.p.**: 96-98 °C. **HRMS ESI** Calcd for C₂₃H₂₈N₂O₃₅ [M+Na]⁺: 435.1718, Found: 435.1716. **IR** *v* (cm⁻¹): 2946, 2877, 1734, 1450, 1078, 604.

(b) X-ray ellipsoid plots of compound 18.

X-Ray ellipsoid plots of compound 18 (CCDC 1962295)

8.1.5 The determination of the relative configuration of **11**. The relative configuration of **11** was determinated by the X-ray structure of the diol derivative **19** from its tertiary alcohols precursor **s24**. (1*S*,*SR*,*6S*)-5-(2-hydroxyethyl)-6-(prop-1-en-2-yl)bicyclo[3.2.0]heptan-6-ol (**19**):

(a) The synthesis of compound 19.

An ice-cooled solution of **s24** (1.52 g, 3.50 mmol, 1 eq.) in anhydrous THF (20 mL) was treated with a THF solution of TBAF (1.19 M, 3.09 mL, 3.68 mmol, 1.05 eq.) dropwise, then the reaction was warmed to rt. After stirring for 17 hours, the reaction was treated with saturated NH_4CI aqueous solution, extracted with EtOAc. The combined organic extracts were washed with brine, dried over Na_2SO_4 and concentrated. The crude product was purified by flash chromatography (petroleum ether: EtOAc = 1: 2) to give **19** (0.63 g, 92% yield) as a colorless solid.

¹**H** NMR (400 MHz, CDCl₃) δ 5.04 (s, 2H), 3.63 – 3.51 (m, 2H), 2.57 (dd, *J* = 13.2, 9.0 Hz, 1H), 2.23 – 2.14 (m, 1H), 2.10 (dd, *J* = 14.6, 7.1 Hz, 1H), 2.00 – 1.88 (m, 1H), 1.87 (d, *J* = 0.5 Hz, 3H), 1.86 – 1.74 (m, 3H), 1.70 – 1.60 (m, 1H), 1.58 – 1.34 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 148.6, 111.6, 77.2, 60.1, 55.9, 38.4, 36.8, 35.9, 32.2, 31.0, 25.9, 20.6. **m.p.**: 74-76 °C. **HRMS ESI** Calcd for $C_{12}H_{20}O_2$ [M+Na]⁺: 219.1356, Found: 219.1353. **IR** *v* (cm⁻¹): 3369, 2950, 1449, 1228, 1027, 894, 739.

(b) X-ray ellipsoid plots of compound 19.

X-Ray ellipsoid plots of compound 19 (CCDC 1962417)

8.2 The relative configuration of **5i** was elucidated by the 2D NOESY spectrum.

The ¹H NMR, ¹³C NMR, HSQC spectrum displayed signals for two C-H bearing vicinal CH₃ group [δ_{H} (0.82, d, 7.2 Hz, CH₃-11) and δ_{H} (0.99, d, 7 Hz, CH₃-12)], an acetyl group [δ_{C} 169.4 (C-13) and 20.7 (C-14); δ_{H} 2.13 (3H, s, CH₃-14)], a carbonyl group [δ_{C} 219.9 (C-1)] and a trisubstituted double bond [δ_{C} 148.9 (C-7) and 111.5 (C-8); δ_{H} 5.24 (1H, dt, 4.9, 2.4, 1 Hz, H-8)]. The quaternary carbon was then connected by detail HMBC - no HSQC analysis. The HMBC cross-peaks of H-8 with C-7 and C-9, CH₃-11 with C-5, C-6 and C-7, CH₃-12 with C-5, C-9 and C-10 revealed that C-6 and C-10 are connected a quaternary carbon to form the spirobicycle. In addition, the attachment of CH₂ group at C-4 was achieved by the key HMBC correlations of H-4a and H-4b with C-5, C-6 and C-10, respectively.

The relative configurations at C-5, C-6, and C-10 were resolved using 2D NOESY experiments. The cross-peak observed between the protons H- $6/CH_3$ -12, indicated that H-6 and CH₃-12 were on the same side and were arbitrarily assigned α -orientations. The NOESY correlation pairs of H- $4a/CH_3$ -11 and H-4b/H-10 suggested that CH₂-4 group were β -oriented.

Table 3. ¹H and ¹³C NMR data for compound **5i**.

no.	$\delta_{\rm H}$ (mult, J, Hz)	$\delta_{\rm C}$					
1		219.9					
2	2.38 m	28.0					
	2.18 m	58.0					
3	1.92 m	18.2					
5	1.82 m	10.3					
4	2.03 m	20.2					
4	1.85 m	29.2					
5		54.9					
6	2.93 m	31.4					
7		148.9					
8	5.24 dt (4.9, 2.4, 1)	111.5					
0	2.48 m	28.0					
9	1.95 m	28.9					
10	1.87 m	30.6					
11	0.82 d (7.2)	11.9					
12	0.99 d (7)	14.8					
13		169.4					
14	2.13 s	20.7					

9 The X-ray ellipsoid plots of compound 14

X-Ray ellipsoid plots of compound 14 (CCDC 1962276)

10 References

- [1] L. Zhao, et al. Diastereo- and Enantioselective Propargylation of Benzofuranones Catalyzed by Pybox-Copper Complex. Org. Lett. 2014, 16, 5584-5587.
- [2] N. Ghosh, S. Nayak, A. K. Sahoo, Gold-Catalyzed Regioselective Hydration of Propargyl Acetates Assisted by a Neighboring Carbonyl Group: Access to α-Acyloxy Methyl Ketones and Synthesis of (±)-Actinopolymorphol B. J. Org. Chem. 2011, 76, 500-511.
- [3] Y. Horino, M. Murakami, A. Aimono, J. H. Lee, H. Abe, Trialkylborane-Mediated Multicomponent Reaction for the Diastereoselective Synthesis of Anti- $\delta_{\lambda}\delta_{\lambda}$ -Disubstituted Homoallylic Alcohols. *Org. Lett.* **2019**, *21*, 476-480.
- [4] G. S. Sheppard, et al. Discovery and Optimization of Anthranilic Acid Sulfonamides as Inhibitors of Methionine Aminopeptidase-2: A Structural Basis for the Reduction of Albumin Binding. J. Med. Chem. 2006, 49, 3832–3849.
- [5] A. Blencowe, G. G. Qiao, Ring-Opening Metathesis Polymerization with the Second Generation Hoveyda–Grubbs Catalyst: An Efficient Approach toward High-Purity Functionalized Macrocyclic Oligo(cyclooctene)s. J. Am. Chem. Soc. 2013, 135, 5717-5725.
- [6] V. V. Pagar, A. M. Jadhav, R.-S. Liu, Gold-Catalyzed Formal [3 + 3] and [4 + 2] Cycloaddition Reactions of Nitrosobenzenes with Alkenylgold Carbenoids. J. Am. Chem. Soc. 2011, 133, 20728-20731.
- [7] C. J. Hayes, et al. Enantioselective Total Syntheses of Omuralide, 7-epi-Omuralide, and (+)-Lactacystin. J. Org. Chem. 73, 2041-2051, (2008).
- [8] C. D. Bray, G. Pattenden, A biogenetically patterned synthetic approach to the unusual furan methylenecyclobutanol moiety in providencin. *Tetrahedron Lett.* **2006**, *47*, 3937-3939.
- [9] A. Furstner, A. Schlecker, A Gold-Catalyzed Entry into the Sesquisabinene and Sesquithujene Families of Terpenoids and Formal Total Syntheses of Cedrene and Cedrol. *Chem. Eur. J.* **2008**, *14*, 9181-9191.
- [10] J. S. Yadav, C. S. Reddy, Stereoselective Synthesis of Amphidinolide T1. Org. Lett. 2009, 11, 1705-1708.
- [11] O. Scadeng, F. G. West, Ready Access to Alkylidenecyclopentenones by Nazarov Cyclization/β-Elimination of 2-Hydroxyalkyl-1,4-dien-3-ones. *Eur. J. Org. Chem.* 2014, 1860-1865.
- [12] Y. Sugihara, S. Wakabayashi, N. Saito, I. Murata, 6-Cyanotetracyclo[5.5.0.02,4.03,5]dodeca-6,8,10,12-tetraene. J. Am. Chem. Soc. 1986, 108, 2773-2775.
- [13] D. Katayev, V. Matousek, R. Koller, A. Togni, Lewis Acid Catalyzed Synthesis of α-Trifluoromethyl Esters and Lactones by Electrophilic Trifluoromethylation. Org. Lett. 2015, 17, 5898-5901.

11 Copies of the ¹H and ¹³C NMR of new compounds

																						I			
iter de lider produkter Nymer y persona i enge		le s Den skimister (bi 1995) - State State (bisson)	in to a statement of the		ر میلید. مرکب میلید از میلید از میلید مرکب میلید میلید (میلید)	ang at a fishalasi Tang tertering ay				ing in the second second	Andria Inter d'antifacto Antifacto d'antifacto d'antifacto d'antifacto de la construcción de la construcción de la construcción de la co	(al. d. debas head-		an a bha an bha dha dha Mga ta a' gcang (1996 a g		ر معامل المراجع المالي. محمول المراجع المراجع								plank play	
						·			•			·					·								
·		1		·		,		· · · ·	· · · ·	· · ·	· · ·	·		- T	· · · · ·	· · ·	· · ·								
230	220	210	200	190	180	170	160	150	140	130	120 f1	110 (ppm) 33	100	90	80	70	60	50	40	30	20	10	0	-]	

- 78.16 - 77.32 - 77.00 - 76.68 -----35.97 -----31.44

— 17.99 — 13.17

√ 14.42
√ 12.89
√ 7.03
6.36

-----24.86

----35.77 ---34.46

															1	1			
220 210 2	маниан рабатагра 1		170	1 60	1 50	140	1 30	hkithania 120	110 100	Herebares	70	60	50	1 40	1000000000000000000000000000000000000	20	10	helen († 1990) 	hni u

---- 114.61

77.32 77.00 76.68 76.33 -35.44 31.71 25.79 25.74 25.74 25.74 25.74 22.81 22.81 22.81 22.28 22.28 21.78 21.78

-42.55

·	· 1	·	· 1		· 1	· 1		· 1		'	· 1		·	· 1		· ·					·			
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
											f1	(ppm)												

-44.59

¹³ C NMR (100 MHz, CDCl₃, δ 77.0) ^K N N N N N N	 	— 123.29	77.32 77.00 76.68	-49.64 37.23 37.23 32.35 29.50 29.50 21.02 21.02 21.02
AcO				
5a				

	· 1	'					· 1		·			· 1		· 1	· 1		1		·					-
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
											fl	l (ppm)												

-1

.0 10.5 10.0

9.5

9.0

8.5

8.0

7.5

2.5

2.0

1.5

1.0

0.5

0.0

-0.5 -1

¹³ C NMR (100 MHz, CDCl ₃ , δ 77.0) $\begin{array}{c} 80\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\$	—169.14	—146.67	-116.12	77.32 77.00 76.68	—49.07	

T							·		, , , ,			'	·												· т
40	230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
												f1	(ppm)												
												· · · ·													

¹³ C NMR (100 MHz, CDCl ₃ , δ 77.0) $\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	 —145.63	—116.70	₹77.32 ₹77.00 76.68	-47.47	38.38 37.85 31.46 19.49 18.12
	· · · · · · · · · · · ·				

¹³ C NMR (150 MHz, CDCl ₃ , δ 77.0) ຜິ	37	8	47	- 0 0	4	ち てちゅる てつらすこ
- 219.				77.2 77.0		
'	·	,	'		I	1 11 1 1 1 1
ме 5 і						
I				᠕		
	I		J			

	1 1		, , ,	1			· 1			· · ·	I		1 1	1		1	, , ,	1 1	1	· 1	-	<u> </u>		
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
												fl (ppm)												

¹**H NMR** (400 MHz, CDCl₃, δ 7.27)

-----5.17

¹³C NMR (150 MHz, CDCl₃, δ 77.0)

10.5 10.0

9.5

8.5

8.0

9.0

7.0

7.5

6.5

6.0

-5.20

3.73 3.73 3.60 3.60 3.60 3.16 3.16 3.16 3.16 3.16 3.05

/ 1.08 / 0.99

4.5

5.5

3.5

3.0

2.5

2.0

1.5

0.5

0.0

1.0

-0.5 -1

4.0

46.20	27.97 26.99 25.69
<u> </u>	~ ~ ~
	\leq

- 150.88

¹³C NMR (100 MHz, CDCl₃, δ 77.0)

12 12 12 12 12 12 12 12 12 12 12 12 12 1	— 150.		— 132.
--	--------	--	------------

--2.32 --2.82 --2.84

 230 220 210 200 190 180 170 160	150 140 1	.30 120 110 100 90 5	

f1 (ppm) **96**

NMR (100 MHz, CDCl ₃ , δ 77.0)	$< \frac{150.57}{150.13}$	129.76 129.76 129.73 128.80 128.83 128.83 128.83 128.83 128.83 128.93 125.03 125.03 125.03 125.03 125.03 125.03 116.70 116.70	 	 2.21 -2.90
Br CF ₃ 6d				

_																									
	· ·	1				· · ·			('	' 1	'	' 1	1	, I	' 1	'		'	1		1	, , , ,		1
	230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-]
												f1	(ppm)												

¹³ C NMR (100 MHz, CDCl ₃ , δ 77.0)	 	78.49 77.32 76.68	 -2.32
BrOTBS			
6e			
	40 120 120		

f1 (ppm) 100

___0.24 ___0.15

6f

¹³C NMR (100 MHz, CDCl₃, δ 77.0)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.2
---	-----

	alley i fea
· · · · · · · ·	

---0.99

-0.39

R (100 MHz, CDCl ₃ , δ 77.0)			 129.06 127.77 127.67 		-84.88 77.32 76.68			5	-3.2
BrOTBS	I	ſ		1	· •	I			I
6g									
			I						
					1				
									I
		1		1		i			
кала слава и правла правла и правла и правла правла и пр Да правла и граница и правла и Да правла и граница и правла и	ing nan indi Tana ang	i kalendarik salé sésekendi k Manang kalendari kalen		nnin fan derske felsen seden delare i seden Nin generalet fan in strangener i seden i seden seden seden seden se	na akata da kata ang kata ang kanggan kutaka kata kata ang kata kata kata kata kata kata kata kat			interpolation & not an interface of our & where I have present speech and a set of the speech sp	
220 210 200 190 180 170 160	150	140	130	120 110 100 90 f1 (ppm) 104	80 70 60 50 40	30	20	10 0	-]

 $<_{5.74}^{5.74}$

----3.91

¹³ C NMR (100 MHz, CDCl ₃ , δ 77.0)	 -149.62 -149.62 -139.07 -133.78 -133.78 -133.66 -138.44 -128.48 -114.79 -114.58	 — 31.70 — 26.31 — 19.06	
Br OTBS F 6h			

	·		· · · ·		' I		· · · · ·			·	· I	· · · ·	· · · ·		· · ·	· I	· 1	· 1	· 1	·	<u>ч</u>	<u> </u>		
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-]
	fl (ppm)																							
												106												

¹³ C NMR (100 MHz, CDCl ₃ , δ 77.0)		143.72 135.30 130.58 130.58 128.71 128.71 127.71 127.51 118.08 112.98		55.26		-3.16
$ \begin{array}{c} \downarrow \\ Br \\ \downarrow \\ \downarrow \\ OMe \\ 6i \end{array} $						
230 220 210 200 190 180 170	160 150	140 130 120 110 100 9	0 80 70 6	0 50 40	30 20 10	0 -]

f1 (ppm) **108**

----0.62

-----5.19

----5.21

-----5.20

----0.65

7f

¹³ C NMR (100 MHz, CDCl ₃ , δ 77.0) δ Γ Γ Γ	~ 169.51 ~ 164.48 ~ 162.03	~144.17 ~143.35	- 130.41 - 130.33 - 123.53 - 122.41 - 114.14 - 114.14 - 113.79	- 77.32 - 76.68	- 55.78	-42.84	- 33.06 - 32.28 - 31.17 - 21.06 - 21.06
AcO		Υ					
						I	
ւ, ուսուն եւ հետ առաց ուրչ է և ենչուն մանձ, ա <mark>ն</mark> ունեց նենց է է նենքին նրա ուս, նունց մաս է, չել հետ եմ է է տներ Ապուլ երունչպես դրվեստոր է ուս ունցություն առաջ չել առաջ դիլի դա նդիցել է նրա դեպնության ու ցատ ընդիցնել է ուս է Ապուլ երունչպես դրվեստոր է ուս ունցություն առաջ չել առաջ դիլի դա նդիցել է նրա դեպնության է դեպնություն է դեպնել	יייין איילע איין איין איין איין איין איין איין איי	latelaturid (Linder)). Matelaturid (Linder)). Matelaturid (Linder)	באוויזייניט און איז	n Andrijka svi Mila subir dogodi Mila subir dogo	al b L a Mill al I bh, a ch b b Tan an agus an Iangaran fha an a	ktan ja ka ja Marjar kaspan	a para dalam tani kulina dala ani ani kana ani ang minala si kana dalam tila dalam tila dalam tani kana kana m Manangan tara ng pang pang pang pang pang pang pang
230 220 210 200 190 180	170 160	150 140	130 120 110 100 90 f1 (ppm)	80 70	60 50	40	30 20 10 0 -]

-----5.20

s2

---- 109.49

77.93 77.32 77.00 76.68

— 17.41 — 12.82

120 110 f1 (ppm) 128

¹³C NMR (100 MHz, CDCl₃, δ 77.0)

— 153.70

78.32 77.32 77.00 76.68 T

r 1			· 1	·	·		· 1	· · ·	· 1	'			· 1	· 1	'	·	'		1		· 1			-
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
200	220	210	200	100	100	110	100	100	110	100	120	110	100	50	00	10	00	00	10	00	20	10	0	L
											f1	(ppm)												
												120												

¹³ C NMR (100 MHz, CDCl ₃ , δ 77.0)	 	77.32 77.04 76.68	
₩ 56			

	1	· 1		1 1			·			· 1	'		·		· 1	1	· 1				·				· т
40	230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
												f1	(ppm)												
												1	36												

¹³ C NMR (100 MHz, CDCl ₃ , δ 77.0)	- 154.48	- 107.68	~ 79.50 ~ 77.32 ~ 77.08 ~ 76.68 ~ 67.25	へ36.09 く25.81 く25.81 く22.76 く22.76	2.75
OH OH s7	Ι	I		ΥΥΥΥ	Ŷ
الم من	ala, J., min denta, M., J., L., and J., M.M. (Min γ, Min), American distance due to be a set of the solution of the following of the solution of the solut	n an	، والمالية الأعلى المراجع المراجع المراجع من عامل عليه التي المراجع المراجع المراجع المراجع المراجع المراجع ال محمد المراجع الم	ւտութե է տոր չնումները հարձեն, ին մենչ ին նրենց ին ինքեցի չու ենքեցին են ներ չեր է։ «Կղղիսպի այնուն է Դեր չէ տղ Բենցի դրունի է դար լի ներ ու ցրունները։ Նր որ եր ին դարտել էի տեղել առաջություններ 	
230 220 210 200 190 18	0 170 160 150 140 130	120 110 100 9 f1 (ppm) 138	0 80 70 60	50 40 30 20 10 0	-]

¹³ C NMR (100 MHz, CDCl ₃ , δ 77.0)	— 145.90	— 128.10		

			· / ·]		1 1 1 1 1 1	
230 220 210 200 190 180 170 160	150 140 130 120 110	100 90 8	0 70 60	50 40 3	30 20 10 0	-1
	f1 (ppm)					

¹³ C NMR (100 MHz, CDCl ₃ , δ 77.0) ⁸⁸ ¹³ C NMR (100 MHz, CDCl ₃ , δ 77.0)	— 147.23		77,44 77.32 76.68	36.77 31.69	
y ⊥ s9					
		I			

Т 120 110 f1 (ppm) **142** -1

< 13.34 < 13.30 < 13.30 < 6.85 < 6.21

	L	┉╨┈┉	L	 أسبيهم	المحمصا	L

	· I	· · ·	·	- I	· · ·			·	- I		·	· · · ·	·			· · · ·					· · ·			
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
											ΪÌ	(ppm)												

0. TBDPSO $()_3$ 9

4	00000000000000000000000000000000000000
μ	5 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
11	ו ז זו ווו ו

	I			, , ,	1 1	1			· 1		· · ·	·		· 1	·		· 1		· 1			, , , ,	(-
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-]
											f1	(ppm)												
												146												

5	54 85 54 85 54 85
8	29.33.
÷	\div \div \div \div
	17 11

31 88 88	
. 7 . 9	

→ 38.11 → 36.41 35.97

----61.34 ----55.94 38.11 36.41 35.97 35.97 30.80 26.01 726.83 70.80 26.01

					I	
				L		
~d~a~dp~p~a~a~a~a~a~a~a~a~a~a~a~a~a~a~a~		L.	 ang pananan kanang k			

	· ·	'	'			1			·		·		, , , ,						· ·		, , ,			-
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
											f1	(ppm)												

¹³ C NMR (100 MHz, CDCl ₃ , δ 77.0) OTBDPS Et ₃ SiO 11	— 149.32	- 135.58 - 134.14 - 129.45 - 127.53		78.95 77.32 76.68	 7.28.18 36.61 35.36 30.08 25.77 19.11	

		1			

1	'	' 1	'	· 1	'	1	' 1		·		· 1	· 1	1	· 1	1	'	· 1	'	·			· · · ·		-
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
											f1	(ppm)												
												4 = 0												

-

¹³C NMR (100 MHz, CDCl₃, δ 77.0)

28.20 28.73 23.31 23.31 29.73 29.73 26.81 €.98 €.17

110 100 f1 (ppm) **154** -1

¹³C NMR (100 MHz, CDCl₃, δ 77.0)

Ç)SiEt₃
Br,,,	OTBDPS
2	$\frac{1}{2h}$

 135.59 133.99 133.95 133.95 129.52 127.58 	
--	--

----61.18 ----57.91

210 200 190 180 170 16	аландарыканал 1	 	 90 80 7		

f1 (ppm) **156**

¹³ C NMR (100 MHz, CDCl ₃ , δ 77.0)	— 169.32	$ - 144.37 \\ 135.52 \\ 133.65 \\ 133.65 \\ 133.60 \\ 123.60 \\ 127.66 \\ 127.66 $		77.32 77.00 76.68	-60.90 55.83 55.25	42.43 36.78 36.78 36.78 36.78 30.48 26.81 20.39 19.02 19.02
OAc 5p OTBDPS						
230 220 210 200 190	180 170 160 1	50 140 130 12	0 110 100 90			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

f1 (ppm) 159

¹³ C NMR (100 MHz, CDCl₃, δ 77.0) 8 6 1 1 1			<u>√</u> 77.32 <u>√</u> 77.00	60.80 	42.10 33.68 33.68 33.68 33.41 26.89 25.69 19.09 19.09	
OAc 5q OTBDPS						
				. 1		
<u> 1996 - 1996 - 1996 - 1996 - 1996 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997</u>	and the second					Na Martinet et al de granne
230 220 210 200 190	180 170 160	150 140 130 120 110 100 f1 (ppm)	90 80 70	60 5	50 40 30 20 10	1 0 –]

¹³ C NMR (150 MHz, CDCl ₃ , δ 77.0) $\begin{array}{c} S \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array}$ 10 13	— 142.21 — 136.62	77.21 77.20 76.79 	
230 220 210 200 190 180 170 160 150	140 130 120 110 100 90 f1 (ppm) 167	80 70 60 5	50 40 30 20 10 0

-1

¹³ C NMR (150 MHz, CDCl ₃ , δ 77.0) 7 2 6: 8: 7 2 1 1			77.32 77.00 	22, 16 23, 39 24, 07 31, 39 23, 39 23, 39 23, 39 23, 31 23, 31 23, 31 23, 31 23, 31 23, 31 23, 31 22, 31 24, 31 34, 31 34, 31 34, 31 34, 31 34, 31 34, 31 34
∬ ÓTs 17				
	ned ver de a ben de ante ante a compara de la técnic de an			
230 220 210 200 190 180 170	160 150 140	130 120 110 100 90 f1 (ppm)	80 70 60	50 40 30 20 10 0 -1

¹³ C NMR (100 MHz, CDCl ₃ , δ 77.0)		143.26 140.75 135.28 129.29 128.91 125.51	77.32			~ 21.52
18						
				.		1
	· · ·		t	1.1.1		
ער אין אין אייראן לאריט אינגע אייראיי איז אין איז אייראין אייראע אין אייראע איז אין איירא אייראע אייראע אייראע אייראע אייראן לאריט אייראע אייראע אייראע אייראע	n na shekara ya sa	אראי אישר או איז	adapitationada() atti atti atti atti atti atti atti att	a a an an ann an ann an Ann Ann an Ann Iordhan Ionn Ann Ann Ann Ann Ann Ann	n y false fan skier sjin jere fan in ste fan	kanan kerikan dan dina dina dina di adam di adam da jaha. Manan kerikan di adam di karakan di adam di adam da jaha.
230 220 210 200 190 180	170 160 150	140 130 120 110 1 f1 (ppm)	00 90 80 70	60 50	40 30	20 10 0 -1

77.32 77.21 76.68 ----60.09 ----55.85

		. 1 1	
I			

		- I I	- I I	1	, <u> </u>	ı		·	· · ·	· 1	·	· · · ·	·				· · ·	· · ·	· · ·					
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
											f1	(ppm)												