Electronic Supplementary Information for:

Trends in C-O and N-O bond scission on rutile oxides described by oxygen vacancy formation energies

Hai-Yan Su, Xiufang Ma, Keju Sun*, Chenghua Sun, Yongjun Xu, and Federico Calle-Vallejo*

S1. DFT-calculated and experimental lattice constants of 3 <i>d</i> rutile oxides	1
S2. Effect of dispersion corrections on ΔE_{Ads} on 3 <i>d</i> rutile (110) surfaces	2
S3. Calculated energetic and geometric data for C-O and N-O bond scission on $3d$ ru	tile
(110) surfaces	3
S4. ΔE_{Ads} of the intermediates on 3 <i>d</i> rutile (110) surfaces	4
S5. Vacancy formation energies (ΔE_{Vac})	5
S6. Effect of +U and dispersion corrections on ΔE_{Ads} , ΔE_{Diss} and ΔE_{act} on 3 <i>d</i> rutile (1)	10)
surfaces	6
S7. Optimized configurations for the adsorption of intermediates on $3d$ rutile (1	10)
surfaces	8
S7. References	8

Rutile	DFT	EXP
TiO ₂	2.97,4.67	2.96,4.59
VO_2	2.84,4.59	2.85,4.56
CrO ₂	2.93,4.45	2.92,4.54
MnO ₂	2.89,4.45	2.88,4.40
FeO ₂	2.80,4.44	
CoO ₂	2.88,4.31	
NiO ₂	2.93,4.35	

Table S1. Comparison between DFT-calculated and experimental (EXP) lattice constants (in Å) of 3*d* rutile oxides.

Rutile	No dispersion	Dispersion
TiO ₂	-0.25	-0.51
VO_2	-0.20	-0.42
CrO ₂	-0.17	-0.38
MnO_2	-0.06	-0.23
FeO ₂	0.00	-0.16
CoO_2	-0.06	-0.23
NiO_2	-0.04	-0.20

Table S2. Adsorption energies (ΔE_{Ads} in eV) of CO₂ with or without dispersion corrections¹ on the 3*d* rutile (110) surfaces.

Rutile	CC	$D_2 \rightarrow CO^+$	0	N ₂	$_2O \rightarrow N_2 + 0$	С
	ΔE_{Act}	ΔE_{Diss}	d	ΔE_{Act}	ΔE_{Diss}	d
TiO ₂	0.62	-0.51	1.28	0.13	-3.80	1.27
VO_2	1.29	0.29	1.59	0.43	-3.01	1.35
CrO ₂	1.65	1.22	1.73	0.57	-2.03	1.44
MnO_2	1.85	1.49	2.05	0.67	-1.46	1.36
FeO ₂	2.24	1.81	1.91	0.83	-1.27	1.42
CoO ₂	2.36	2.22	2.12	0.89	-0.53	1.49
NiO ₂	3.23	3.19	2.42	1.25	0.23	1.55

Table S3. Calculated activation energies (ΔE_{Act} in eV), reaction energies (ΔE_{Diss} in eV) and C(N)-O distance (*d* in Å) at the TSs for C-O and N-O bond scission on 3*d* rutile (110) surfaces.

Rutile	CH ₃ C	H→CH ₃	+OH	NH ₂ C	$H \rightarrow NH_2$	+OH
	ΔE_{Act}	ΔE_{Diss}	d	ΔE_{Act}	ΔE_{Diss}	d
TiO ₂	1.03	-0.44	2.05	0.18	-2.67	1.46
VO_2	1.25	0.55	2.55	0.17	-1.65	1.45
CrO ₂	1.56	0.76	2.85	0.49	-1.52	1.85
MnO_2	1.49	0.54	2.81	0.50	-1.48	1.89
FeO ₂	1.83	0.95	2.75	0.59	-0.59	1.99
CoO_2	2.00	1.03	2.75	0.65	-0.78	2.55
NiO ₂	2.21	1.40	2.55	0.94	-0.03	2.65

_

Rutile	ΔE_{CO2}	ΔE_{CO}	ΔE_O	ΔE_{N2O}	ΔE_{N2}
TiO ₂	-0.25	-0.13	-3.95	-0.20	-0.04
VO ₂	-0.20	-0.07	-3.17	-0.14	-0.03
CrO ₂	-0.17	-0.21	-2.06	-0.12	-0.03
MnO_2	-0.06	-0.01	-1.52	-0.04	-0.03
FeO ₂	0.00	-0.16	-1.29	0.02	-0.02
CoO ₂	-0.06	-0.37	-0.61	-0.03	-0.03
NiO ₂	-0.04	-0.02	0.15	-0.03	-0.01

Table S4. Adsorption energies (ΔE_{Ads} in eV) of the intermediates on the 3*d* rutile (110) surfaces.

Rutile	ΔE_{CH3OH}	ΔE_{CH3}	ΔE_{OH}	ΔE_{NH2OH}	ΔE_{NH2}
TiO ₂	-1.00	-1.04	-4.66	-0.86	-2.19
VO_2	-0.90	-0.51	-4.06	-0.73	-1.58
CrO ₂	-0.91	-0.67	-3.67	-0.74	-1.54
MnO_2	-0.76	-0.82	-3.61	-0.58	-1.18
FeO ₂	-0.68	-0.88	-3.21	-0.44	-1.11
CoO ₂	-0.83	-0.98	-3.10	-0.64	-1.17
NiO ₂	-0.65	-1.03	-2.68	-0.52	-0.94

Rutile	ΔE_{Vac}
TiO ₂	3.95
VO_2	3.17
CrO ₂	2.06
MnO_2	1.52
FeO ₂	1.29
CoO ₂	0.61
NiO ₂	-0.15

Table S5. Vacancy formation energies (ΔE_{Vac} in eV) for the 3*d* rutile (110) surfaces.

Figure S1. (a) Effect of +U on the adsorption energy of oxygen ($\Delta E_{Ads}(O)$) using $\frac{1}{2}O_2$ as a reference. (b) Effect of dispersion on the adsorption energy of CO₂, $\Delta E_{Ads}(CO_2)$, at the bridge oxygen vacancy on rutile-type (110) surfaces. N_M is the number of outer electrons of 3*d* metals in the rutile oxides, which are calculated based on the periodic table and the oxidation state of the oxide.² For instance, Mn cations in MnO₂ have 3 outer electrons, as Mn's electronic distribution ends at 3s²4d⁵ and its oxidation state is +4. The U values of 5.5, 3.32, 2.1, 3, 4.9, 5.37 and 6.37 are used for Ti to Ni, taken from refs 3-7.

Figure S2. (a) BEP Relations for CO₂ and N₂O scission at the (110) surface of rutile oxides. Data are provided for fully converged PBE calculations and single-point PBE+U calculations. (b) Correlation between the activation energies for CO₂ and N₂O scission (single-point PBE+U calculations) with the formation energies of oxygen vacancies (fully relaxed PBE+U calculations). The mean absolute errors (MAEs, in eV) are provided in each case.

Note: In line with the trends for oxygen adsorption energies in Fig. S1(a), the slopes are steeper upon including U in the calculations. The larger MAEs with respect to PBE are presumably due to the use of single-point calculations to assess the reaction energies and barriers, instead of fully relaxed data.

Figure S3. Optimized configurations for (a) CO_2 , (b) CO, (c) O, (d) N_2O , (e) N_2 , (f) CH_3OH , (g) CH_3 , (h) OH, (i) NH_2OH , and (j) NH_2 adsorption on 3*d* rutile (110) surfaces. The blue, vermilion, grey, ochre and white balls represent 3d metals (Ti-Ni), O, C, N and H atoms, respectively. The bridge O vacancy is denoted by the rectangle on the reduced surfaces.

References

- 1. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 2. F. Calle-Vallejo, N. G. Inoglu, H.-Y. Su, J. I. Martinez, I. C. Man, M. T. M. Koper, J. R. Kitchin and
- J. Rossmeisl, Chem. Sci., 2013, 4, 1245-1249.
- 3. A. C. Papageorgioua, N. S. Beglitisb, C. L. Panga, G. Teobaldic, G. Cabailha, Q. Chen, A. J. Fisherb,

W. A. Hoferc and G. Thorntona, P. Natl. Acad. Sci. USA, 2010, 107, 2391-2396.

- 4. S. Biermann, A. Poteryaev, A. I. Lichtenstein and A. Georges, Phys. Rev. Lett., 2005, 94, 026404.
- 5. H. Sims, S. J. Oset, W. H. Butler, James M. MacLaren and M. Marsman, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2010, **81**, 224436.

6. C. Franchini, R. Podloucky, J. Paier, M. Marsman and G. Kresse, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2007, **75**, 195128.

7. F. Zhou, M. Cococcioni, C. A. Marianetti, D. Morgan and G. Ceder, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2004, **70**, 235121.