	sex	age	duration of	diagnosis	recording	anti-	anti-
		(y)	epilepsy (y)		side	convulsant	depressant
p1	F	31	18	medial temporal lobe epilepsy, no structural correlate, right-dominant seizure focus	L	oxcarbazepine ¹	-
p2	F	23	10	medial temporal lobe epilepsy, hippocampal sclerosis left	R	lamotrigine ²	sertraline ³
р3	М	30	20	focal epilepsy, heterotopia left temporo-occipital	R	lamotrigine ² oxcarbazepine ¹	-
р4	F	23	13	medial temporal lobe epilepsy, hippocampal sclerosis left	R	levetiracetam⁴	-

Supplementary Table

Supplementary Table 1. Patient demographics, clinical status, and drug regime. For all drugs, plasma concentrations were within the therapeutic range at the moment of recording. ¹Effect on human sleep unknown, but increases NREM and REM sleep in rats (Ayala-Guerrero et al. 2009). ²Increases REM sleep and N2, decreases N3 (in epilepsy) (Jain and Glauser 2014). ³Increases sleep latency and delta activity in first sleep cycle (in depression) (Jindal et al. 2003). ⁴Increases N2, decreases N3 (in epilepsy) (Jain and Glauser 2014).

Table References

Ayala-Guerrero F, Mexicano G, González V, Hernandez M. 2009. Effect of oxcarbazepine on sleep architecture. Epilepsy & Behavior. 15:287–290.

Jain SV, Glauser TA. 2014. Effects of epilepsy treatments on sleep architecture and daytime sleepiness: An evidence-based review of objective sleep metrics. Epilepsia. 55:26–37.

Jindal RD, Friedman ES, Berman SR, Fasiczka AL, Howland RH, Thase ME. 2003. Effects of Sertraline on Sleep Architecture in Patients With Depression: Journal of Clinical Psychopharmacology. 23:540–548.

Supplementary Figures

Supplementary Figure 1. Examples of detected ripples for patient p2. Figure layout as in Figure 4.

Cox et al. – Sharp wave-ripples in human amygdala

Supplementary Figure 2. Examples of detected ripples for patient p3. Figure layout as in Figure 4.

Cox et al. – Sharp wave-ripples in human amygdala

Supplementary Figure 3. Examples of detected ripples for patient p4. Figure layout as in Figure 4. Note spindle rhythmicity in HPC (top-left and top-right panels).

Supplementary Figure 4. Local and interregional ripple-related dynamics in hippocampus and amygdala for patient p1. Panel layout identical to that of Figures 5 and 6.

Supplementary Figure 5. Local and interregional ripple-related dynamics in hippocampus and amygdala for patient p2. Panel layout identical to that of Figures 5 and 6.

Supplementary Figure 6. Local and interregional ripple-related dynamics in hippocampus and amygdala for patient **p4.** Panel layout identical to that of Figures 5 and 6.