
Supplementary 
 
Section I: 
Graph construction 

Graphs are mathematical constructs comprising nodes and edges that enable modeling 
relationships between objects. Here, ‘objects’ refer to leakage patches, whose centroids 
are used as nodes for construction of different kinds fully connected graphs. Voronoi-, 
Delaunay- and Minimum Spanning Tree (MST)-based graph tessellations were used to 
describe the spatial architecture of leakage patterns. Details are provided in the 
Supplementary document (Section I). Once these graphs are constructed, features are 
derived from these fully connected network constructs to characterize the inter-leakage 
distances, leakage connectivity, and global compactness. For example, average of 
Voronoi area may capture the overall density of the leakage spots; variance of connecting 
edges may capture the disorder pattern of the leakage spots.   

Given a set of leakage centroid in the plane, s1, s2, . . . sn, the Voronoi diagram partitions 
the plane into regions where the region associated with centroid si is the set of centroids 
in the plane that are closer to site si than any other. The Delaunay triangulation of a set 
of sites is a specific triangulation that is the “dual” of the Voronoi diagram. Two sites are 
connected by an edge in the Delaunay triangulation only if they share a boundary in the 
Voronoi diagram. To calculate the MST, each edge weight is taken into account and a 
tree producing the smallest sum of edge weights is created. The vectors connecting the 
centroids of the leakage spots are the edges of the graphs, which traverse across the 
retinal region. 
 

 

Feature Set Number of Features Feature Description 
Leakage graphs 51 Voronoi Diagram: polygon area, perimeter, chord length;  

Delaunay Triangulation: Triangle side length, area;  
Minimum Spanning Tree: Edge length statistics;  
Nearest Neighbors: Density of leakage spots, distance too nearest 
leakage. 

Leakage 
Morphology 

100 Area, Mean Intensity/Intensity Range of leakage, Mean 
Intensity/Intensity Range Around leakage, Eccentricity Perimeter, 
Smoothness, Invariant Moment 1-7, Fractal Dimension, Fourier 
Descriptor 1-10 (Mean, Std Dev, Median, Range, Skewness, 
Kurtosis of Each 

Supplementary Table I: Leakage graph and morphology features 

 
 
Section II: 
Vessel Tortuosity Computation 
This method transforms the image space into an accumulator space, and was previously 
introduced to distinguish adenocarcinomas from granulomas, and to predict response to 
neoadjuvant chemotherapy in breast cancer.1 The tortuosity features consist of the first 
order statistics (mean, median, variance, skewness and kurtosis) of maximum Hough 



peak orientations computed in a sliding fashion across vessel projections summarizing 
vasculature orientation in the XY -plane.   
Section III: 
Statistical Analysis 
Minimum redundancy maximum relevance (mRMR) test was implemented as a feature 
selection method. In the first experiment, features summarizing different morphological 
and graph-based attributes of leakage patches, were obtained for each leakage-
segmented baseline FA image. To determine leakage features that best discriminated 
favorable responders from non-responders (at the first 8-week challenge), top 3 features 
were first determined using mRMR in a 3-fold cross validated setting over 100 runs. The 
top 3 features in each fold and run were then used to train a linear discriminant analysis 
(LDA) classifier2 within the same run. Next, to identify quantitative vascular tortuosity 
measures that best discriminated favorable responders from non-responders on UWFA, 
similar to the first experiment, top 3 tortuosity features were used to train a LDA classifier 
in a cross-validated approach. Subsequently, in order to determine early response to 
therapy after administration of anti-VEGF for the first 4 months, we computed differences 
in tortuosity measures (delta-tortuosity features) between the first and the fourth visits.  
Delta leakage evaluation was also considered, however due to the dramatic reduction of 
leakage foci following therapy, this assessment was not feasible.   The top discriminating 
delta-tortuosity measures were then used in conjunction with an LDA classifier to predict 
early response to anti-VEGF. Clinical parameters such as central subfield retinal 
thickness, macular volume, vessel area, vessel length, total leakage area, total number 
of leakage spots, and letter scores were also evaluated at baseline. The statistical 
significance of the different clinical features is computed for the two groups using a 
Wilcoxon rank-sum test.  
 
Section IV: 
Unsupervised clustering analysis 
In addition to the supervised classification analysis, we employed unsupervised clustering 
approaches to measure the efficacy of the features in distinguishing the two groups. 
Specifically, hierarchical clustering was used to evaluate the discriminative ability of the 
different groups of features.  Using the 51 baseline leakage features, the unsupervised 
hierarchical clustering did not result in clean clusters. Using the baseline 
vasculature features, comprising the first order statistics (mean, median, variance, 
skewness, and kurtosis) of maximum Hough peak orientations, for hierarchical clustering 
(Figure I), two clusters stand out: Cluster 1 (green) has a preponderance of non-
rebounders (72%), Cluster 2, similarly, is the group corresponding to rebounders (62%). 
This gives an overall accuracy of 67% - which is lower than the supervised classification 
results, but fairly close. As may be observed, the rebounder group exhibits higher mean 
and median peak orientations as compared to the non-rebounders. Kurtosis and 
skewness values are higher for the non-rebounders while not much difference is observed 
in the standard deviation values between the two groups. 
 
 

 
 



 
Supplementary Figure I: Unsupervised hierarchical clustering using baseline vasculature tortuosity 

Section V: 
Comparative Assessment with Clinical Parameters (letter score, central subfield 
thickness and macular volume) for Predicting Interval Tolerance 
 
When evaluating the role of baseline clinical and more traditional imaging metrics, there 
were no significant differences in baseline features that were associated with rebound 
behavior, including ischemic index and underlying diagnosis.   As shown in 
Supplementary Figure II, none of the three clinical parameters (letter score, central 
subfield thickness and macular volume) were statistically significantly different between 
the two groups of patients, with p-values of 0.947, 0.825 and 0.808, respectively. Upon 
running an LDA in conjunction with the three clinical parameters, we obtained an AUC of 
.42 ± .09 and an accuracy of .51 ± .05. A similar analysis was performed on other clinical 
measurements taken at baseline, including: vessel area, vessel length, total leakage area 
and total number of leakage spots. The LDA classifier yielded results of an AUC of .59 ± 
.07, and an accuracy of .66 ± .03. 
 
Change in letter score was the only longitudinal clinical feature that showed a statistically 
significant difference between the two groups. The AUC and accuracy using these three 
features were found to be 0.48±0.03 and 0.58±0.08, respectively. Supplementary Table 
II provides the performance metrics obtained in the three different experiments.  
 

 
Supplementary Figure II:  Conventional Clinical Feature Evaluation.  Box and whisker plots of the following 
baseline clinical parameters (from left to right): Letter Score, Central Subfield Thickness and Macula Volume 

 
 
 
 



Features AUC Accuracy Specificity Sensitivity 
Graph and morphological features Baseline 0.77 ± 0.14 0.77 ± 0.11 0.80 ± 0.13 0.75 ± 0.15 

Vasculature Features Baseline 0.73 ± 0.10 0.74 ± 0.08 0.73 ± 0.18 0.74 ± 0.21 
Delta 0.73 ± 0.08 0.77 ± 0.07 0.81 ± 0.09 0.74 ± 0.10 

Clinical Features Baseline 0.42 ± 0.09 0.51 ± 0.05 0.78 ± 0.23 0.32 ± 0.23 
Delta  0.48 ± 0.03 0.58 ± 0.08 0.30 ± 0.25 0.79 ± 0.30  

 
Supplementary Table II. Performance metrics using image-derived markers and clinical features 

 
References 
 
1.  Braman N, Prasanna P, Alilou M, Beig N, Madabhushi A. Vascular Network 

Organization via Hough Transform (VaNgOGH): A Novel Radiomic Biomarker for 
Diagnosis and Treatment Response. In: Frangi AF, Schnabel JA, Davatzikos C, 
Alberola-López C, Fichtinger G, eds. Medical Image Computing and Computer 
Assisted Intervention – MICCAI 2018. Lecture Notes in Computer Science. Springer 
International Publishing; 2018:803-811. doi:10.1007/978-3-030-00934-2_89 

2.  Park CH, Park H. A comparison of generalized linear discriminant analysis algorithms. 
Pattern Recognit. 2008;41(3):1083-1097. doi:10.1016/j.patcog.2007.07.022 

 


