Supporting Information for

Reaction-Based Machine Learning Representations for Predicting the Enantioselectivity of Organocatalysts

Simone Gallarati, $a_1 +$ Raimon Fabregat, $a_1 +$ Rubén Laplaza, $a_1 +$ Sinjini Bhattacharjee,^{a,c} Matthew D. Wodrich^a and Clemence Corminboeuf^{a,b,d,*}

^aLaboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

^bNational Center for Competence in Research – Catalysis (NCCR-Catalysis), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

c Indian Institute of Science Education and Research, Dr Homi Bhabha Rd, Ward No. 8, NCL Colony, Pashan, Pune, Maharashtra 411008, India

^dNational Center for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

*Email: clemence.corminboeuf@epfl.ch

+ These authors contributed equally to this work.

Contents

1. Ligand Configurations for Boltzmann Weighting

Figure S1. 10 distinct ligand arrangements leading to the (*R*)- or (*S*)-propargyl alcohol for *C*2 symmetric bidentate Lewis-based catalysed propargylation reactions. Nu = alkyl nucleophile. For each ligand configuration **BP1**–**5**, the alkyl nucleophile can add to either face of benzaldehyde, yielding 10 possible diastereomeric TSs ((*R*)- or (*S*)-).

2. Learning Curves

Figure S2. Learning curves for the different molecular representations used. **a)** Curves correspond to the SLATM representations of **3** and **2** (dashed and solid blue, respectively), **3** – **2** (orange), **3** – **2** with 500 features selected using Mutual Information importances (red), and **3** – **2** with 500 features selected using r^2 linear regression coefficients (green). **b**) Curves correspond to the learning curves of $3 - 2$ using different standard atomistic ML representations: Coulomb Matrix (blue), Bag of Bonds (orange), and SLATM (green).

3. Feature Importances

Figure S3. Feature importances of the SLATM_{DIFF} representations of the dataset, computed using: (blue) the variance, (orange) the r^2 linear regression coefficient, and (green) the Mutual Information.

4. Hyperparameters

Figure S4. a-c) Average hyperparameter fitting curves for the 100 train/test splits. The error bars are calculated with the standard deviation in the 100 splits. d) Importances of features sorted by the average feature importance in the 100 train/test splits. The error bars are computed using the standard deviation in the feature importance for the 100 splits.

Table S1. Optimised hyperparameters, obtained through grid-search optimisation, of the ML model for each of the representations discussed in the main text. σ controls kernel width and λ is the ridge parameter for regularization.

	σ	
SLATM2	180	1×10^{-5}
SLATM_{DIFF}	1.5	1×10^{-6}
SLATMDIFF+	1.5	1×10^{-6}

5. Predicted *e.e.* **Values**

Figure S5. ML-predicted *vs*. reference DFT *e.e.* values for the 76 catalysts using each of the three different approaches discussed in the main text: SLATM₂ (blue), SLATM_{DIFF} (orange) and SLATM_{DIFF+} (green). Most of the points are hidden by the overlaps at the 100/100 region. Data corresponds to Figure 3 of the main text and details on their generation are given in the machine learning section.

6. Out-of-sample Predictions with Retrained Model

Figure S6. ML-predicted *vs*. reference DFT *E*^a values of out-of-sample catalysts **7j** and **7k**. The ML model was re-trained on all of the 754 data points, without splitting them into the 90/10 train/test sets, using the same hyperparameters previously obtained in the crossvalidation training. The features of SLATM_{DIFF+} were also selected using the full dataset (754) points), but they did not vary from those selected in the previous cross-validation splits.

7. DFT Optimised XYZ Structures and Energies

The structures of the 1508 catalytic cycle intermediates, optimised at the PCM_{DCM}/B97-D/TZV(2p,2d) level, are provided in the folders *DFTgeomInt2* and *DFTgeomInt3*. The absolute energies (in atomic units) of intermediates **2**, **3**, and of the enantiodetermining TSs are provided in *DFTEnergies.csv*. The ML-predicted relative E_a values for each species, in kcal mol⁻¹, using the three representations discussed in the main text, are provided in *ActivationEnergiesPredictions.csv*.

Note that all our data (optimised structures, energies, ML predictions) can be found in the Materials Cloud.

8. Out-Of-Sample Machine Learning Predicted Activation Energies

The ML-predicted and DFT-computed activation energies of the out-of-sample catalysts **7j** and **7k** with the SLATMDIFF+ representation are given in the *OOSPredictions.csv* file, while the geometries of catalytic cycle intermediates **2** and **3** and of the enantiodetermining transitions states are given in the folders *DFTgeomOOSInt2*, *DFTgeomOOSInt3* and *DFTgeomOOSTS*.