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S1 Methods

S1.1 Data collection and pre-processing

In this work, we retrieved over 203,246 complete genome sequences with high coverage of severe acute respi-

ratory syndrome coronavirus 2 (SARS-CoV-2) strains from the infected individuals in the world downloaded

from the GISAID database [16] (https://www.gisaid.org/) as of January 20, 2021. The complete genome

sequence of SARS-CoV-2 was first released on the GenBank (Access number: NC 045512.2) submitted

Zhang’s group at Fudan University [24] on January 5, 2020. Since then, there has been a rapid accumula-

tion of SARS-CoV-2 genome sequences. Incomplete records and records without the exact submission date

in GISAID were not considered. To rearrange the complete genome sequences according to the reference

SARS-CoV-2 genome, multiple sequence alignment (MSA) is carried out by using Clustal Omega [17] with

default parameters. The amino acid sequence of NSP2, NSP12, NPS13, spike (S) protein, ORF3a, ORF8,

and nucleocapsid were downloaded from the GenBank [1].

S1.2 Sequences, structures and their alignments

All sequences and 3D structures are downloaded from Protein Data Bank (PDB https://www.rcsb.org):

sequences are from the FASTA files and 3D structures are from pdb files.

The 3D alignments as well as graphs are created by using PyMOL [5]. The 2D sequence alignments

are calculated by clustalw (https://www.genome.jp/tools-bin/clustalw) [20] and 2D alignment graphs are

generated by Jalview [23].

S1.3 Secondary structure determination

To guarantee high accuracy, we used a hybrid approach to determine the secondary structure of the S protein.

The 3D conformations consisting 1031 of 1273 residues of the S protein are already resolved in PDB structure

7C2L [4], and the secondary structure of these 1031 residues were assigned by PyMOL [5] based on their 3D

conformations. The secondary structures of the remaining 242 residues missing in 7C2L were predicted by

RaptorX-Property [22].

S1.4 TopNetTree model for protein-protein interaction (PPI) binding free en-

rrgy changes upon mutation

Mutation-induced protein-protein binding free energy (BFE) changes are an important approach for un-

derstanding the impact of mutations on protein-protein interactions (PPIs) and viral infectivity [10]. A

variety of advanced methods has been developed [10, 15]. The topology-based network tree (TopNetTree)

model [3, 21] is applied to predict mutation-induced BFE changes of PPIs in this work. TopNetTree model

was implemented by integrating the topological representation and network tree (NetTree) to predict the

BFE changes (∆∆G) of PPIs following mutations [21]. The structural complexity of protein-protein com-

plexes is simplified by algebraic topology [2, 6, 25] and is represented as the vital biological information in

terms of topological invariants. NetTree integrates the advantages of convolutional neural networks (CNN)

and gradient-boosting trees (GBT), such that CNN is treated as an intermediate model that converts vec-

torized element- and site-specific persistent homology features into a higher-level abstract feature, and GBT

uses the upstream features and other biochemistry features for prediction. The performance test of tenfold

cross-validation on the dataset (SKEMPI 2.0 [8]) carried out using gradient boosted regression tree (GBRTs).
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The errors with the SKEMPI2.0 dataset are 0.85 in terms of Pearson correlation coefficient (Rp) and 1.11

kcal/mol in terms of the root mean square error (RMSE) [21].

S1.4.1 Training set for TopNetTree model

The TopNetTree model is trained by several important training sets. The most important dataset which

provides the information for binding free energy changes upon mutations is the SKEMPI 2.0 dataset [8].

The SKEMPI 2.0 is an updated version of the SKEMPI database, which contains new mutations and data

from other three databases: AB-Bind [18], PROXiMATE [9], and dbMPIKT [12]. There are 7,085 elements

including single- and multi-point mutations in SKEMPI 2.0. 4,169 variants in 319 different protein complexes

are filtered as single-pint mutations are used for TopNetTree model training. Moreover, SARS-CoV-2 related

datasets are also included to improve the prediction accuracy after a label transformation. They are all deep

mutation enrichment ratio data, mutational scanning data of ACE2 binding to the receptor binding domain

(RBD) of the S protein [14], mutational scanning data of RBD binding to ACE2 [11, 19], and mutational

scanning data of RBD binding to CTC-445.2 and of CTC-445.2 binding to the RBD [11]. Note the training

dataset used in the validation in main text does not include the test dataset, which the mutational data

scanning data of RBD binding to CTC-445.2.

S1.4.2 Topology-based feature generation of PPIs

To construct the algebraic topological analysis on protein-protein interactions, we first preset the construc-

tions for a PPI complex into various subsets.

1. Am: atoms of the mutation sites.

2. Amn(r): atoms in the neighbourhood of the mutation site within a cut-off distance r.

3. AAb(r): antibody atoms within r of the binding site.

4. AAg(r): antigen atoms within r of the binding site.

5. Aele(E): atoms in the system that has atoms of element type E. The distance matrix is specially

designed such that it excludes the interactions between the atoms form the same set. For interactions

between atoms ai and aj in set A and/or set B, the modified distance is defined as

Dmod(ai, aj) =

{
∞, if ai, aj ∈ A, or ai, aj ∈ B,
De(ai, aj), if ai ∈ A and aj ∈ B,

(1)

where De(ai, aj) is the Euclidian distance between ai and aj .

In algebraic topology, molecular atoms of different can be constructed as points presented by v0, v1, v2, ...,

vk as k+1 affinely independent points in simplicial complex. Simplicial complex is a finite collection of sets of

points K = {σi}, and σi are called linear combinations of these points in Rn (n ≥ k). To construct simplicial

complex, two that are widely used for point clouds are the Vietoris-Rips (VR) complex and alpha complex

which are applied in this model [6]. The boundary operator for a k-simplex would transfer a k-simplex to

a k − 1-simplex. Consequently, the algebraic construction to connect a sequence of complexes by boundary

maps is called a chain complex

· · · ∂i+1−→ Ci(X)
∂i−→ Ci−1(X)

∂i−1−→ · · · ∂2−→ C1(X)
∂1−→ C0(X)

∂0−→ 0

and the kth homology group is the quotient group defined by

Hk = Zk/Bk. (2)
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Then the Betti numbers are defined by the ranks of kth homology group Hk which counts k-dimensional

invariants, especially, β0 = rank(H0) reflects the number of connected components, β1 = rank(H1) reflects

the number of loops, and β2 = rank(H2) reveals the number of voids or cavities. Together, the set of Betti

numbers {β0, β1, β2, · · · } indicates the intrinsic topological property of a system.

Persistent homology is devised track the multiscale topological information over different scales along a

filtration [6] and is significant important for constructing feature vectors for the machine learning method.

Features generated by binned barcode vectorization can reflect the strength of atom bonds, van der Waals

interactions, and can be easily incorporated into a CNN, which captures and discriminates local patterns.

Another method of vectorization is to get the statistics of bar lengths, birth values, and death values, such as

sum, maximum, minimum, mean, and standard derivation. This method is applied to vectorize Betti-1 (H1)

and Betti-2 (H2) barcodes obtained from alpha complex filtration based on the facts that higher-dimensional

barcodes are sparser than H0 barcodes.

S1.4.3 Machine learning models

It is very challenging to predict binding affinity changes following mutation for PPIs due to the complex

dataset and 3D structures. A hybrid machine learning algorithm that integrates a CNN and GBT is designed

to overcome difficulties, such that partial topologically simplified descriptions are converted into concise

features by the CNN module and a GBT module is trained on the whole feature set for a robust predictor

with effective control of overfitting [21]. The gradient boosting tree (GBT) method produces a prediction

model as an ensemble method which is a class of machine learning algorithms. It builds a popular module

for regression and classification problems from weak learners. By the assumption that the individual learners

are likely to make different mistakes, the method using a summation of the weak learners to eliminate the

overall error. Furthermore, a decision tree is added to the ensemble depending on the current prediction error

on the training dataset. Therefore, this method (a topology-based GBT or TopGBT) is relatively robust

against hyperparameter tuning and overfitting, especially for a moderate number of features. The GBT is

shown for its robustness against overfitting, good performance for moderately small data sizes, and model

interpretability. The current work uses the package provided by scikit-learn (v 0.23.0) [13]. A supervised

CNN model with the PPI ∆∆G as labels is trained for extracting high-level features from H0 barcodes.

Once the model is set up, the flatten layer neural outputs of CNN are feed into a GBT model to rank their

importance. Based on the importance, and ordered subset of CNN-trained features is combined with features

constructed from high-dimensional topological barcodes, H1 and H2 into the final GBT model.

S2 Multiple sequence alignments of antibodies and pairwise iden-

tity scores

Through the sequence clustering algorithm in CD-HIT suite [7], the 46 antibodies were classified into 28

clusters. Among them, the first five clusters contain more than one antibody. Figures S1-S5 are the multiple

sequence alignments of these five clusters. The pairwise identity scores inside each of these five clusters are

over 0.9, especially clusters 2 and 4 have such scores over 0.95. Their pairwise identity scores are deposited

in the file “antibody-2d-score-matrix.csv”.
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Figure S1: The 2D sequence alignment of the antibodies in cluster 1: BD-236, BD-604, C1A, a fab, EY6A, S304, P2C-1A3,

CC12.1, STE90-C11, B38, CB6, COVA2-04.

Figure S2: The 2D sequence alignment of the antibodies in cluster 2: CV30, P2C-1F11, BD-629, CC12.3.
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Figure S3: The 2D sequence alignment of the antibodies in cluster 3: COVA2-39, CV07-270.

Figure S4: The 2D sequence alignment of the antibodies in cluster 4: Nb, H11-H4, H11-D4.

Figure S5: The 2D sequence alignment of the antibodies in cluster 5: COVA1-16, Fab 52.
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S3 Random coil percentages of antibody paratopes

Table S1 depicts the random coil percentages of antibody paratopes on S protein, which indicates antibodies

predominantly contact residues in random coils of the S protein.

S4 Additional analysis of antibody-S protein complexes

Three antibodies, i.e., 4A8, FC05, and 2G12, do not bind to the RBD. Among them, 4A8 has been analyzed

in the main text of the paper and 2G12 involves small molecules at its binding site with the S2 domain of

the S protein, which cannot be handled by the present model. Antibody FC05 has two complexes with the

S protein (i.e., 7CWU and 7CDJ). Both of them share the same antibody at the N-terminal domain (NTD).
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Figure S6: Illustration of SARS-CoV-2 mutation-induced binding free energy changes for the complexes of S protein and FC05

(PDB: 7CWU). Blue color in the structure plot indicates a positive BFE change while red color indicates a negative BFE

change, and toning indicates the strength. Here, mutations R102I, G142D, R190M, and L242P could potentially disrupt the

binding of antibody FC05 and the S protein.

Figure S6 illustrates the common binding complex of FC05 with the S protein NTD. A total 131 out

of 501 mutations on residues ID from 14 to 226 have their frequencies larger than 10. Only 13 of these

131 mutations have their magnitudes of BFE changes large than 0.5 kcal/mol. In particular, the largest

magnitude of binding-strengthening mutation has a BFE change of 0.16 kcal/mol. Moreover, 99 out of the

131 mutations have negative BFE changes, including R102I with the frequency of 89.
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Figure S7: Illustration of SARS-CoV-2 mutation-induced binding free energy changes for the complexes of S protein and P2C-

1A3 (PDB: 7CDJ). Blue color in the structure plot indicates a positive BFE change while red color indicates a negative BFE

change, and toning indicates the strength. Here, mutations E383K, F486L, F490S, S494P, and S494L could potentially disrupt

the binding of antibody P2C-1A3 and the S protein.

We also present in a detailed study of antibody P2C-1A3 because it can be disrupted by a relatively high

frequency mutation S494P with a large negative BFE change. Figure S7 illustrates the mutation-induced

BFE changes for antibody P2C-1A3 (PDB: 7CDJ), which also shares the binding domain with ACE2. Note

that mutation S494P has a BFE change of -3.9 kcal/mol with a frequency of 123. This antibody has mild

BFE changes outside the binding motif but dramatic negative changes at mutations on the binding motif.
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Antibody The number of residues The number of random-coil Percentage

inside the paratope residues inside the paratope

BD-629 27 25 92.6 %

CB6 34 31 91.8 %

COVA2-04 32 31 96.9 %

CV30 29 28 96.6 %

CC12.1 38 36 94.7 %

CC12.3 26 25 96.2 %

BD-236 33 31 93.9 %

BD-368-2 18 17 94.4 %

BD-604 33 31 93.9 %

H11-H4 18 17 94.4 %

H11-D4 18 18 100.0 %

COVA2-39 17 17 100.0 %

H014 26 20 76.9 %

P2B-2F6 19 18 94.7 %

SR4 21 21 100.0 %

BD23 19 18 94.7 %

S309 21 17 81.0 %

CR3022 28 23 82.1 %

B38 34 32 94.1 %

Fab2-4 17 17 100.0 %

MR17 20 20 100.0 %

EY6A 27 23 85.2 %

Nb 17 16 94.1 %

S2H13 13 13 100.0 %

S2A4 19 18 94.7 %

S304 12 12 100.0 %

VH binder 26 25 96.2 %

S2H14 22 22 100.0 %

S2M11 18 18 100.0 %

CV07-250 22 22 100.0 %

CV07-270 22 21 95.5 %

SB23 12 12 100.0 %

P2C-1F11 24 23 95.8 %

P2C-1A3 17 17 100.0 %

A fab 33 32 97.0 %

COVA1-16 24 22 91.7 %

S2E12 16 15 93.8 %

Fab 52 19 16 84.2 %

Fab 298 13 13 100.0 %

C1A 34 34 100.0 %

STE90-C11 35 32 91.4 %

P17 14 14 100.0 %

4A8 16 14 87.5 %

FC05 15 15 100.0 %

2G12 24 21 87.5 %

Table S1: The random coil percentages of antibody paratopes on the S protein.
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The South Africa variant E484K and mutations F486L, F490S, S494P, and S494L will reduce P2C-1A3’s

competitiveness with ACE2.
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