Supporting Information for

β -cyclodextrin-poly (β -amino ester) nanoparticles are a generalizable strategy for high loading and sustained release of HDAC inhibitors

Sauradip Chaudhuri¹, Martha J. Fowler¹, Cassandra Baker¹, Sylwia A. Stopka^{2,3}, Michael S. Regan²,

Lindsey Sablatura¹, Colton W. Broughton¹, Brandon E. Knight¹, Sarah E. Stabenfeldt⁴, Nathalie Y. R.

Agar^{2,3,5}, Rachael W. Sirianni^{1.4*}

¹ Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston TX, USA

² Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.

³Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA

⁴School of Biological and Health Systems Engineering, Arizona State University, Tempe AZ, USA

⁵ Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA, USA

*Author to whom correspondence should be addressed:

Dr. Rachael W. Sirianni

Medical School Building MSB 7.134

6431 Fannin Street

Houston, TX 77030

713-500-7492

Rachael.w.sirianni@uth.tmc.edu

Table of Contents

Figure S1	S3
Figure S2	S4
Figure S3	S5
Figure S4	S6
Figure S5	S7
Figure S6	S8
Figure S7	S9
Figure S8	.S10
Figure S9	.S11
Figure S10	.S12
Figure S11	.S13
Figure S12	.S14
Figure S13	.S15
Figure S14	.S16
Figure S15	.S17
Figure S16	.S18
Figure S17	.S19
References	.S19

Figure S1 MALDI-Tof mass spectra of Acrylated-CD recorded in MS Bruker Autoflex MALDI-Tof mass spectrometer. Individual peaks for different degrees (n) of acrylation are identified. Spectra verified against existing reports in the literature [1].

Figure S2 ¹H-NMR spectra of Acrylated-CD in DMSO-d₆ recorded in Bruker Avance 300 MHz NMR spectrometer. The integral labels are noted as an artifact of the software and does not affect the integrated area under the peaks. Spectra verified against existing reports in the literature [1].

Figure S3 ¹H-NMR spectra of linker 1,4-butanediol diacrylate in DMSO-d₆ recorded in Bruker Avance 300 MHz NMR spectrometer. The integral labels are noted as an artifact of the software and does not affect the integrated area under the peaks.

Figure S4 ¹H-NMR spectra of linker 1,6-hexanediol diacrylate in DMSO-d₆ recorded in Bruker Avance 300 MHz NMR spectrometer. The integral labels are noted as an artifact of the software and does not affect the integrated area under the peaks.

Figure S5 ¹H-NMR spectra of *N*,*N*-dimethylethylenediamine in DMSO-d₆ recorded in Bruker Avance 300 MHz NMR spectrometer. The integral labels are noted as an artifact of the software and does not affect the integrated area under the peaks.

Figure S6 ¹H-NMR spectra of CDN-1 in DMSO-d₆ recorded in Bruker Avance 300 MHz NMR spectrometer. Stoichiometric ratios of constituent units are recorded. Assignments of ¹H-NMR peaks were attributed to the protons present in the individual molecular entity, which indicates to the composition of the material (CDN-1). The integral labels are noted as an artifact of the software and does not affect the integrated area under the peaks.

Figure S7 ¹H-NMR spectra of CDN-2 in DMSO-d₆ recorded in Bruker Avance 300 MHz NMR spectrometer. Stoichiometric ratios of constituent units are recorded. Assignments of ¹H-NMR peaks were attributed to the protons present in the individual molecular entity, which indicates to the composition of the material (CDN-2). The integral labels are noted as an artifact of the software and does not affect the integrated area under the peaks.

Figure S8 ¹H-NMR spectra of CDN-**3** in DMSO-d₆ recorded in Bruker Avance 300 MHz NMR spectrometer. Stoichiometric ratios of constituent units are recorded. Assignments of ¹H-NMR peaks were attributed to the protons present in the individual molecular entity, which indicates to the composition of the material (CDN-**3**). The integral labels are noted as an artifact of the software and does not affect the integrated area under the peaks.

Figure S9 ¹H-NMR spectra of CDN-4 in DMSO-d₆ recorded in Bruker Avance 300 MHz NMR spectrometer. Stoichiometric ratios of constituent units are recorded. Assignments of ¹H-NMR peaks were attributed to the protons present in the individual molecular entity, which indicates to the composition of the material (CDN-4). The integral labels are noted as an artifact of the software and does not affect the integrated area under the peaks.

Figure S10 Scanning electron microscope images of (A) CDN-1; (B) CDN-2; (C) CDN-3 & (D) CDN-4 recorded using FEI Quanta 400 environmental scanning electron microscope. Scale bar = 1μ m.

Figure S11 Controlled release of 5% (w/w) & 20% (w/w) theoretically drug-loaded CDN-4 samples. Error bars are reported as the standard deviation of at least two separate measurements.

Figure S12 Stability studies of panobinostat loaded (20% theoretical) CDN-**3** nanoparticles in acidic (pH=4.0), PBS (1x, pH=7.4) and basic (pH=10.2) media. Micron aggregates are highlighted in yellow. Measurements in red are statistical outliers.

Stability studies Pb-CDN-4 (20%th loaded)

Figure S13 Stability studies of panobinostat loaded (20% theoretical) CDN-4 nanoparticles in acidic (pH=4.0), PBS (1x, pH=7.4) and basic (pH=10.2) media. Micron aggregates are highlighted in yellow. Smaller populations (<100nm) are highlighted in green, while populations >10 μ m are highlighted in red.

Figure S14 (A) Calibration curve for MALDI MSI quantitation of panobinostat by monitoring the intensity of the fragment ion at m/z 317.152; (B) The chemical structure of the precursor ion used for the MRM method; (C) ion images from the tissue mimetic model.

Figure S15 Kaplan-Meier curve showing survival of mice bearing orthotopic GL261 tumors following CED administration of various treatments.

Figure S16 Plots of post treatment weight changes for mice bearing orthotopic GL261 tumors following CED administration of various treatments.

Figure S17 Tumor IVIS imaging of a representative mouse from pCDN-HD cohort (**A**) pre-treatment (1 day before); (**B**) post-treatment (after 4 days); (**C**) post-treatment (after 8 days).

References

[1] Gil, E.S.; Wu, L.; Xu, L.; Lowe, T.L. β-Cyclodextrin-poly (β-Amino Ester) Nanoparticles for Sustained Drug Delivery across the Blood–Brain Barrier. *Biomacromolecules* **2012**, *13*, 3533-3541. https://doi.org/10.1021/bm3008633