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Figure S1 MALDI-Tof mass spectra of Acrylated-CD recorded in MS Bruker Autoflex MALDI-Tof mass 

spectrometer. Individual peaks for different degrees (n) of acrylation are identified. Spectra verified against 

existing reports in the literature [1]. 
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Figure S2 1H-NMR spectra of Acrylated-CD in DMSO-d6 recorded in Bruker Avance 300 MHz NMR 

spectrometer. The integral labels are noted as an artifact of the software and does not affect the integrated 

area under the peaks. Spectra verified against existing reports in the literature [1]. 
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Figure S3 1H-NMR spectra of linker 1,4-butanediol diacrylate in DMSO-d6 recorded in Bruker Avance 

300 MHz NMR spectrometer. The integral labels are noted as an artifact of the software and does not affect 

the integrated area under the peaks. 
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Figure S4 1H-NMR spectra of linker 1,6-hexanediol diacrylate in DMSO-d6 recorded in Bruker Avance 

300 MHz NMR spectrometer. The integral labels are noted as an artifact of the software and does not affect 

the integrated area under the peaks. 
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Figure S5 1H-NMR spectra of N,N-dimethylethylenediamine in DMSO-d6 recorded in Bruker Avance 300 

MHz NMR spectrometer. The integral labels are noted as an artifact of the software and does not affect the 

integrated area under the peaks. 
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Figure S6 1H-NMR spectra of CDN-1 in DMSO-d6 recorded in Bruker Avance 300 MHz NMR 

spectrometer. Stoichiometric ratios of constituent units are recorded.  Assignments of 1H-NMR peaks were 

attributed to the protons present in the individual molecular entity, which indicates to the composition of 

the material (CDN-1). The integral labels are noted as an artifact of the software and does not affect the 

integrated area under the peaks. 
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Figure S7 1H-NMR spectra of CDN-2 in DMSO-d6 recorded in Bruker Avance 300 MHz NMR 

spectrometer. Stoichiometric ratios of constituent units are recorded. Assignments of 1H-NMR peaks were 

attributed to the protons present in the individual molecular entity, which indicates to the composition of 

the material (CDN-2). The integral labels are noted as an artifact of the software and does not affect the 

integrated area under the peaks. 

 

 

 

 

 

 

 

 



S10 
 

 

 

 

Figure S8 1H-NMR spectra of CDN-3 in DMSO-d6 recorded in Bruker Avance 300 MHz NMR 

spectrometer. Stoichiometric ratios of constituent units are recorded. Assignments of 1H-NMR peaks were 

attributed to the protons present in the individual molecular entity, which indicates to the composition of 

the material (CDN-3). The integral labels are noted as an artifact of the software and does not affect the 

integrated area under the peaks. 
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Figure S9 1H-NMR spectra of CDN-4 in DMSO-d6 recorded in Bruker Avance 300 MHz NMR 

spectrometer. Stoichiometric ratios of constituent units are recorded. Assignments of 1H-NMR peaks were 

attributed to the protons present in the individual molecular entity, which indicates to the composition of 

the material (CDN-4). The integral labels are noted as an artifact of the software and does not affect the 

integrated area under the peaks. 
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Figure S10 Scanning electron microscope images of (A) CDN-1; (B) CDN-2; (C) CDN-3 & (D) CDN-4 

recorded using FEI Quanta 400 environmental scanning electron microscope. Scale bar = 1µm. 
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Figure S11 Controlled release of 5% (w/w) & 20% (w/w) theoretically drug-loaded CDN-4 samples. Error 

bars are reported as the standard deviation of at least two separate measurements. 
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Figure S12 Stability studies of panobinostat loaded (20% theoretical) CDN-3 nanoparticles in acidic 

(pH=4.0), PBS (1x, pH=7.4) and basic (pH=10.2) media. Micron aggregates are highlighted in yellow. 

Measurements in red are statistical outliers.  



S15 
 

 

 

Figure S13 Stability studies of panobinostat loaded (20% theoretical) CDN-4 nanoparticles in acidic 

(pH=4.0), PBS (1x, pH=7.4) and basic (pH=10.2) media. Micron aggregates are highlighted in yellow. 

Smaller populations (<100nm) are highlighted in green, while populations >10µm are highlighted in red.  
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Figure S14 (A) Calibration curve for MALDI MSI quantitation of panobinostat by monitoring the intensity 

of the fragment ion at m/z 317.152; (B) The chemical structure of the precursor ion used for the MRM 

method; (C) ion images from the tissue mimetic model.  
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Figure S15 Kaplan-Meier curve showing survival of mice bearing orthotopic GL261 tumors following 

CED administration of various treatments. 
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Figure S16 Plots of post treatment weight changes for mice bearing orthotopic GL261 tumors following 

CED administration of various treatments. 
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Figure S17 Tumor IVIS imaging of a representative mouse from pCDN-HD cohort (A) pre-treatment (1 

day before); (B) post-treatment (after 4 days); (C) post-treatment (after 8 days).  
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