Substrate specificity and biochemical characteristics of an engineered mammalian chondroitinase ABC

AUTHOR NAMES: Philippa M. Warren^{a,b,c*}, James W. Fawcett^{a,d#}, Jessica C. F. Kwok^{a,d,e#}

* denotes corresponding author; # co-senior author

AUTHOR AFFILIATION:

^a Department of Clinical Neurosciences, John van Geest Centre for Brain Repair,

University of Cambridge, Cambridge CB2 0PY, United Kingdom

^b Wolfson Centre for Age Related Diseases, Institute of Psychiatry, Psychology and

Neuroscience, King's College London, Guy's Campus, London Bridge, London, United

Kingdom

^c Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 0PY, United Kingdom ^d Centre for Reconstructive Neuroscience, Institute of Experimental Medicine, Czech

Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic

^e School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds,

Leeds LS2 9JT, United Kingdom

SUPPORTING INFORMATION:

Supplementary Figures: 2

SUPPORTING INFORMATION:

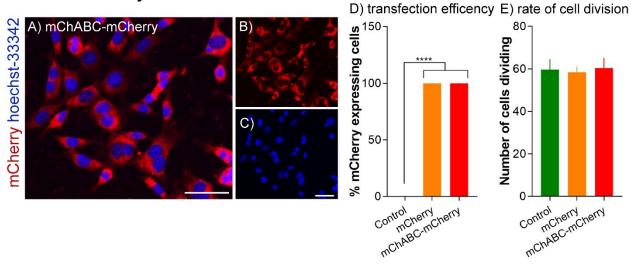


Figure S1: Expression and secretion of active mChABC-mCherry from HEK293 cells. A-

mChABC-mCherry transfection of HEK293 cells

C) mChABC-mCherry is readily transfected into HEK293 cells. A) HEK293 cells were either naïve (control), or transfected with mCherry or mChABC-mCherry. Image shows B) mCherry fluorescence (red) and C) Hoechst-33342 (blue) staining. Images show individual channels and a merge. Scale bar = 40 μ m. D) Transfection efficiency for mCherry and mChABC-mCherry are ~100% (N=6 independent cell batches assessed per group) and not divergent from each other (P=0.825) although both are divergent from control (F(2,15)=0.618, P<0.0001; ANOVA with post-hoc Turkey). E) Using anti-Ki67 staining, percentages of HEK cell division was not altered by transfection (N=8 independent cell batches assessed per group; F(2,21)=0.434, P=0.654; ANOVA with post hoc Turkey). For panels D and E, data shows means ± SD.

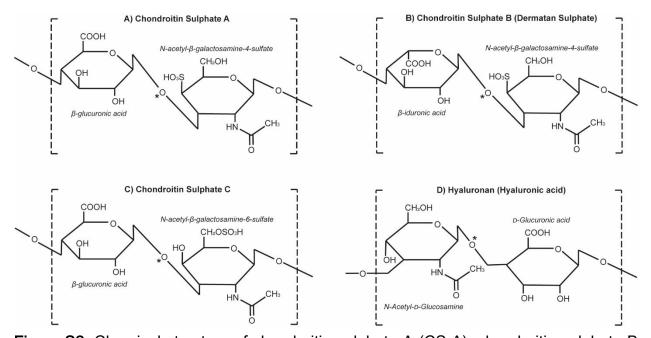


Figure S2: Chemical structure of chondroitin sulphate A (CS-A), chondroitin sulphate B (dermantan sulphate, DS), chondroitin sulphate C (CS-C), and hyaluronan (hyaluronic acid, HA). A-C) Chondroitin sulphate and dermatan sulfate are composed of disaccharides of N-acetylgalactosamine and an uronic acid joined by $\beta(1\rightarrow 4)$ or $\beta(1\rightarrow 3)$ linkages, respectively. A) CS-A contains glucuronic acid and is 4 O-sulfated (the

alternating co-polymer β -glucuronic acid-(1-3)-N-acetyl- β -galactosamine-4-sulfate). B) DS contains N-acetylgalactosamine, but the uronic acid present is L-iduronic acid (the alternating co-polymer β -iduronic acid-(1-3)-N-acetyl- β -galactosamine-4-sulfate). C) CS-A contains glucuronic acid and is 6 O-sulfated (the alternating co-polymer β -glucuronic acid-(1-3)-N-acetyl- β -galactosamine-6-sulfate). D) HA is comprised of alternating β -D-(1-3) glucuronic acid and β -D-(1-4)-N-acetylglucosamine residues. For all panels: * represents the point at which chondroitinase ABC would cut break the disaccharides/residuals apart.