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Text S1 Measurements of sulfuric acid 

H2SO4 was measured by an Aerodyne chemical ionization mass specrometer (CIMS) 

equipped with a nitrate chemical source. This technique has been previously descibed elsewhere 
1.In this study,sampling took place throungh a stainless-steel tube with a length of 1 m and 1.5 

m above the ground level. Note that measurements of H2SO4 during spring were conducted 

outside the building at the 5th floor, with a distance of about 200 m to SORPES, and the H2SO4 

concentration can be regarded as consistent with it in SORPES. 

The signals of H2SO4 monomer and dimer are identified by defining the exact mass of 

HSO4
-, H2SO4NO3

- and H2SO4HSO4
-.And the quantification of them is seasonal calibrated with 

the known concentration of H2SO4 calculated from the SO2-OH reaction 2. The calibration 

coefficients obtained were 5.22×109 cm-3in winter, 7.27×109 cm-3in spring, 3.92×109 cm-3 in 

summer, and 4.6×109 cm-3 in autumn,with diffusion losses in tube into consideration. 

Text S2 Estimation of the hydroxyl radical 

In the nonlinear proxy based on statistical analysis method,we replaced OH with the UVB 

radiation intensity as in previous works. UVB was measured by a radiometer (Kipp&Zonen 

UVS-B-T). And in the physical proxy, we computed the photolysis frequency J(O1D) using the 

Tropospheric Ultraviolet and Visible (TUV) radiation model 

(https://www2.acom.ucar.edu/modeling/tropospheric-ultraviolet-and-visible-tuv-radiation-model) and 

corrected the simulated results by observed UVB 3. The daytime OH concentration was 

calculated by applying the empirical formula proposed by Rohrer and Berresheim4, which can 

be described by the follwing equation: 

[𝑂𝐻] = 𝑎 × (
𝐽(𝑂1𝐷)

10−5𝑠−1
⁄ )𝑏 + 𝑐 

Here,the pre-exponential coefficient, a, reflects the dependence of OH on reactants such 

as NOx, VOCs, O3 or H2O.The exponent b reflects the combined effects of all photolytic 

processes and it was observed to be around 1 in various environments. The coefficient c reflects 

the OH production from all light-independent processes, which has already been included in 

the alkene ozonolysis term. In order to simplify the discussion,we assume that b is 1 in this 

study. Table S5 summarizes the coefficients a and b in OH observations when b varies from 0.9 

to 1.1.  

Text S3 Calculation of condensation sink 

The condensation sink is regarded as H2SO4 loss on pre-existing aerosol. It can be 

calculated by the following equation 5: 

𝐶𝑆 = 4𝜋𝐷∫ 𝛽𝑚(𝑑𝑝
′ )𝑑𝑝

′𝑁𝑑𝑝′ 𝑑𝑑𝑝
′ = 4𝜋𝐷∑𝛽𝑚,𝑑𝑝′ 𝑑𝑝

′𝑁𝑑𝑝′

𝑑𝑝
′

𝑑𝑝𝑚𝑎𝑥

0

 

The particle number size distribution between 6-800 nm was measured using a Differential 

Mobility Particle Sizer (DMPS) 6. We further tested the contributions of sub-6nm particles and 

particles larger than 800 nm to CS based on measurements with a Scanning Mobility Particle 

Sizer (SMPS, 4-495.8 nm) and Aerodynamic Particle Sizer (APS, 0.54-19.8μm) from January 

1, 2019 to June 30, 2019.The correlation between the CS calculated from the size ranges 4-

19800 nm and 6-800 nm was almost linear and close to the 1:1 line (Figure S4). Half of the 

CS4-19800nm/CS6-800nm ratios were lower than 1.028 and 85% of the ratios were lower than 1.095, 

https://www2.acom.ucar.edu/modeling/tropospheric-ultraviolet-and-visible-tuv-radiation-model
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indicating that the contribution from particles outside the range of 6-800 nm is generally 

negligible. It should be noted that we take hygroscopic growth correction into consideration 

when calculating the CS, as has been previously described in Wu et al.7. 

Text S4 Calculation of dry deposition 

Dry deposition, as the ultimate path by which trace gases and particles are removed from 

the atmosphere in the absence of precipitation, is governed by three factors: atmopheric 

turbulence, the physical and chemical properties of the depositing species, and the nature of the 

surface. Since simulating such a variety of complex processes is gernerally impratical, dry 

deposition is usually simplified as a single parameter, the deposition velocity(vd). For gases,Vd 

in existing dry deposition models is computed from a formula analogous to Ohm’s law in 

electrical circuits 8:  

Vd
i=(Ra+Rb

i+Rc
i)-1 

The term Ra represents aerodynamic resistance and is governed by turbulent transport. This 

term has the same value for all species, and it can be calculated using the following equation 9: 

𝑅𝑎 =

{
  
 

  
 
1

𝑘𝑢∗
[ln (

𝑧

𝑧0
) + 4.7(𝜉 − 𝜉0)] (𝑓𝑜𝑟  0 < 𝜉 < 1)

1

𝑘𝑢∗
[ln (

𝑧

𝑧0
)] (𝑓𝑜𝑟  𝜉 = 0)

1

𝑘𝑢∗
[ln (

𝑧

𝑧0
) + ln (

(𝜂0
2 + 1)(𝜂0 + 1)

2

(𝜂𝑟
2 + 1)(𝜂𝑟 + 1)

2
) + 2(𝑡𝑎𝑛−1𝜂𝑟 − 𝑡𝑎𝑛

−1𝜂0)] (𝑓𝑜𝑟 − 1 < 𝜉 < 0)

 

Here, z is 1.5 m where H2SO4 measurements were conducted and the height where we 

calculate Vd, k is the von Karman constant usually set to 0.4, z0 is the roughness length, and ξ 

is dimensionless height scale (z/L),where L is the Monin-Obukhov length. Next, ηr and η0 can 

be calculated using the following equation : 

𝜂0 = (1 − 15𝜉0)
1
4⁄ ，𝜂𝑟 = (1 − 15𝜉𝑟)

1
4⁄  

In order to simplify the discussion,we assumed L=100 m and z0=0.17 m. u* is the friction 

velocity, which can be obtained from real-time measurements by the eddy-convariance system 

(EC3000,Campbell Scientific), including a three-dimensional sonic anemometer (CSAT3) and 

an infrared analyzer (LI7500) at the height of 3 m. For more details, see for example 10 

The term Rb
i represents the quasi-laminar resistance dependent on molecular properties of 

the substance and surface characteristics. A useful expression for rb for gases is 

𝑅𝑏 =
5𝑆𝑐

2
3⁄

𝑢∗
 

Here, Sc is the dimensionless Schmidt number (Sc=ν/D), where ν is the kinematic viscosity 

of air and D is the molecular diffusivity of the species. For H2SO4, D decreases with an 

increasing relative humudity and has a rather strong temperature dependence 11. In this study, 

Sc was set to 3.5, which was the intermediate value in our observation environment. 

The surface resistance Rc consists of three parts: the vegetation resistance, the lower 

canopy resistance, including transfering by buoyant convenction and uptaking by leave, twings, 

etc., and the ground resistance which depends on the properties of a surface 12. Therefore, this 

term shows a large variation with types of surface and depisition species. However, since 

Henry’s law coefficient of H2SO4 is extemely high, up to 1.3×1015M atm-1 13, this term becomes 
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negligible compared with the other two terms. 
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Figures 

Figure S1. The map of the measurement site. The yellow arrow points to the site location. 

Two solid blue lines indicate busy roads, and two dashed blue lines indicate less busy roads 
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Figure S2. Time series of gaseous H2SO4 and related parameters in (a)winter, (b)spring, 

(c)summer and (d)autumn, respectively. 
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Figure S3. Relationship between dominating anthropogenic alkenes and benzene during 26th 

November 2019 to 4th January 2020.Correlation coefficient R (Spearman type) is 0.687 and 

relative error is 28.2%. The orange line represents a linear fit with a zero intercept and its slope 

is 1.922. 
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Figure S4. Correlation between CS contributed from 6-800 nm and 4-19800nm particles during 

January 1, 2019 to June 30, 2019.Correlation coefficient R is in Pearson type. 
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Figure S5. Relationship between H2SO4 estimated by different proxies based on the empirical 

formulas in different season. The coefficients of each proxy are listed in Table S1. 
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Figure S6. Comparison between daytime data in four seasons and simulations under different 

temperatures and DMA concentration. Measurements in summer and autumn are similar to the 

simulations with 10 ppt DMA, while spring and autumn with 5 ppt DMA 
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Figure S7. Relationship between proxy SA without emissions into consideration and measured 

SA. Points are colored with J(O1D) to differentiate H2SO4 in daytime and nighttime. Different 

coefficients are used in different seasons, which are listed in Table S3. 
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Figure S8. Time series measured SA, simulated SA and Benzene during selected nighttime 

H2SO4 events. The top panel shows events when H2SO4 and benzene have similar variation. 

The bottom panel shows events, which can be explained by alkenes ozonolysis source. The 

middle panel shows undistinguished events, which could be contributed by both direct emission, 

alkenes ozonolysis and other unknown sources. Here, ratio represents the level which can be 

explained by sCI-SO2 reactions, R is the correlation coefficient between benzene and gaseous 

H2SO4, and T/B denotes the toluene to benzene ratio with 1σ errors. Events which can be 

explained by the source of alkene ozonolysis source are defined by ratio>0.5, while emission 

source by ratio<0.25 and R>0.4. Proxy SA was simulated by Eq8. K1 in four seasons are listed 

in Table S3. 
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Figure S9. Relationship between H2SO4 and benzene in emission cases. R is the correlation 

coefficient in Spearman type). The orange line in each subgraph represents a linear fit. 
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Figure S10. Relationship between loss term of nighttime H2SO4 and the source term([SO2] 

*[O3] *[Alkenes]) based on points with O3 concentration higher than 10ppb for(a)winter, 

(b)spring, (c)summer, and (d)autumn. The orange dotted line in each subgraph represents the 

10th percentiles of slopes of seasonal points. 
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Figure S11. Daytime relationship between light-dependent source term([SO2] *J(O1D)) and 

sink term which subtracts production rate contributed via SO2-sCI reaction. The orange line in 

each subgraph represents a linear fit with a zero intercept. 
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Figure S12. Diurnal variations of measured H2SO4 and H2SO4 obtained from respective steady-

state equilibrium method with emissions into consideration in (a)winter, (b)spring, (c)summer, 

and (d)autumn (Eq8). Coefficients in four seasons are listed in Table S4. 
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Figure S13. Correlation between H2SO4 estimated by physical proxies in different season (Eq8). 

The coefficients of each proxy are listed in Table S4. Correlation coefficients(R) are in Pearson 

type. 
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Figure S14. (a)Relationship between loss term of nighttime H2SO4 and the source term([SO2] 

*[O3] *[Alkenes]) based on points with O3 concentration higher than 10ppb during total period. 

The orange and yellow dotted lines in the subgraph represent the 10th and 90th percentiles of 

slopes of points. (b) Daytime relationship between light-dependent source term([SO2] *J(O1D)) 

and sink term which subtracts production rate contributed via SO2-sCI reaction. The orange line 

in the subgraph represents a linear fit with a zero intercept.  
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Tables 

Table S1. Results of the nonlinear fitting procedure for proxy function: SA=k0[SO2]
 a CSb UVBc 

in daytime and comparison with previous works. [SO2] is Sulphur dioxide concentration in cm-

3, CS is the condensation sink in s-1 and UVB is the intensity of ultraviolet radiation b in W m-

2 

Location K0 a b c Ref 

NJ(Proxywinter) 579.30 0.31 -0.14 0.35 

This 

work 

NJ(Proxyspring) 2.33×103 0.30 -0.10 0.64 

NJ(Proxysummer) 0.01 0.73 -0.46 0.48 

NJ(Proxyautumn) 26.04 0.45 -0.50 0.60 

SPC K*9.0×10-4 0.69 -0.26 0.90* 

1 

Melpitz K*4.7×10-4 0.74 -0.18 0.87* 

HyytiäläA K*1.2×10-2 0.61 -0.03 0.84* 

HyytiäläB K*2.23×10-6 0.81 -0.46 1.05* 

NWR K*2.45×10-2 0.88 0.41 0.17* 

Atlanta K*4.52×10-2 0.48 0.18 1.41* 

HPB K*9.48×10-5 0.73 -0.58 0.77* 

BJ 515.74 0.38 0.03 0.14 2 

1:14.  

SPC: San Pietro Capofiume, Italy (Rural), 21.6-16.7.2009;  

Melpitz, Germany (Rural), 30.4-31.5.2008;  

Hyytiälä, Finland (Forest), A:17.3-13.4.2003; B:24.3-28.6.2007);  

NWR: Niwot Ridge, Colorado USA(Forest): 24.6-15.7.2007;  

Atlanta, Georgia USA(Urban):30.7-31.8.2002;  

HPB: Hohenpeissenberg, Germany (Mountain): 1.4.1998-31.7.2000. 

2:15.BJ: Beijing, China(Urban):9.2.2018-14.3.2018 

K is temperature-dependent reaction constant descried in 14 

*: OH concentration was represented by global radiation instead of UVB. 
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Table S2. Relative error of traditional proxies. 

 Proxywinter Proxyspring Proxysummer Proxyautumn 

Winter 36% 65% 156% 240% 

Spring 52% 30% 33% 103% 

Summer 44% 53% 35% 138% 

Autumn 67% 53% 33% 37% 
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Table S3. Coefficients of steady-state equilibrium method. Proxy1,2,3,4 represent results for 

winter, spring, summer and autumn, respectively. K1 are based on nighttime H2SO4 of each 

season and K2 are obtained by correlation between [SO2] *J(O1D) term and sink term, which 

subtracts production rate contributed by SO2-sCI reaction. In proxy, gases are in cm-3 and J(O1D) 

is in s-1. 

 Proxy1 Proxy2 Proxy3 Proxy4 

K1(cm6s-1) 2.50e-30 2.21e-30 5.91e-30 5.86e-30 

K2 5.82e-2 10.09e-2 10.52e-2 18.00e-2 

β(cm3s-1) 5.69e-10 1.37e-10 2.55e-11 1.15e-10 
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Table S4. Coefficients based on seasonal data with O3 concentration higher than 10ppb. 

Proxy1,2,3,4 represent results for winter, spring, summer and autumn, respectively. In proxy, 

gases are in cm-3 and J(O1D) is in s-1. 

 Proxy1 Proxy2 Proxy3 Proxy4 

K1(cm6s-1) 6.67e-31 1.47e-30 5.27e-30 4.10e-30 

K2 7.75e-2 10.17e-2 10.81e-2 18.38e-2 

β(cm3s-1) 5.69e-10 1.37e-10 2.55e-11 1.15e-10 
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Table S5. Summary of the coefficients a and b in observations. 

Location Type a b Ref 

Pabstthum, 

Germany 
Rural/Urban 2 0.92 16 

Hohenpeissenberg, 

Germany 
Rural 2.4 0.93 4 

54°N,12°E 

Germany 
Rural 3.9 0.95 17 

Guangzhou, 

China 
Rural 4 1 18 

Beijing, 

China 
Suburban 4 1 19 

Beijing, 

China 
Suburban 4.33 1 20 

Wangdu, 

China 
Rural 4.5 1 21 

Beijing, 

China 
Urban 4.81 1 22 
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