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1. Materials. All commercial reagents were purchased from Acros, Aldrich, TCI or Merck and were used as
received. All solvents used in the reactions were dried using an MBraun SPS-800 solvent purification system
or purchased from Acros. Analytical TLC was performed on Merck silica gel 60 F254 plates and visualization
was accomplished by UV light or staining with a KMnO4 solution.

2. General. Column chromatography was performed on a Reveleris X2 Flash Chromatography system. NMR
spectra were recorded at 25 °C on Varian AMX400 (‘H: 400 MHz, '3C: 101 MHz) and Varian Unity Plus ('H:
600 MHz, '3C: 151 MHz) spectrometers. Chemical shifts (J) are expressed relative to the resonances of the
residual non-deuterated solvent for 'H NMR [CDCls: 'H(8) = 7.26 ppm, DMSO-ds: 'H(d) =2.50 ppm,
toluene-ds: 'H(8) = 7.10,7.02, 6.98 and 2.09 ppm] and '3*C NMR [CDCls: 3C(8) = 77.2 ppm, DMSO-ds: 1*C
(0) =39.5 ppm]. Absolute values of the coupling constants are given in Hertz (Hz), regardless of their sign.
Multiplicities are abbreviated as singlet (s), doublet (d), doublet of doublets (dd), triplet (t), triplet of doublets
(td), quartet (q), multiplet (m), and broad (br). High-resolution mass spectrometry (HRMS) was performed on
an LTQ Orbitrap XL spectrometer with ESI ionization. All reactions were performed under anhydrous
conditions under N atmosphere. UV-vis spectra in the part of supramolecular polymerization in toluene were
recorded on Analytikjena SPECORD S600 in a 1 mm path length quartz cuvette. Irradiation of samples was
carried out at 298 K using a Thorlabs model M365F1 LED (4.1 mW) and M385F1 LED (10.7 mW) positioned
at a distance of 1 cm from the samples. The critical gelation concentration (CGC) were tested by the vial-
inverting method.! Samples of the trans-isomers in the organic solvent were first heated above the critical
temperature to form a transparent solution and then cooled to room temperature to form gels. Samples of the
trans-isomers in water were heated at 353 K for 10 min and then cooled to room temperature to form gels.
CGC was determined as the concentration at which the gel lost its stability when vial was inverted. A FEI T20
cryo-electron microscope equipped with a Gatan model 626 cryo-stage was used to record the morphology of
supramolecular polymers, operating at 200 kV under low-dose conditions with a slow-scan CCD camera.



3. Synthesis.
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Figure S1. Synthesis of trans-SG1, SG2, and SG3.(cis-SG1 was synthesized by the same method as trans-
SG1 starting from cis-1).

Trans-1 and cis-1>

TiCls (10.8 mL, 98.6 mmol) was added to a suspension of Zn powder (12.9 g, 197.2 mmol) in anhydrous THF
(120 mL). After heating at reflux for 2 h, 6-methoxy-1-indanone (8.00 g, 49.3 mmol) was added to the reaction
mixture. The mixture was heated at reflux for 16 h, cooled to room temperature and treated with a saturated
aqueous solution of NH4Cl and extracted with EtOAc. The organic layer was washed with brine and dried
over Na;SO4. The solution was concentrated under reduced pressure and the precipitate was filtered off and
washed with pentane to afford trams-1 (3.70 g, 12.6 mmol, 26%) as a yellow solid. The filtrate was
concentrated in vacuo and purified by column chromatograph (SiO», pentane:EtOAc = 98:2) to afford cis-1
(1.60 g, 5.46 mmol, 11% ) as a white solid. Cis-1: "H NMR (400 MHz, CDCl3) § 7.70 (d, J = 2.5 Hz, 2H),
7.22 (d, J=8.3 Hz, 2H), 6.80 (dd, J = 8.2, 2.5 Hz, 2H), 3.81 (s, 6H), 2.99-2.92 (m, 4H), 2.89-2.82 (m, 4H).
3C NMR (101 MHz, CDCl3) & 158.2, 141.8, 140.8, 135.6, 125.8, 114.4, 108.5, 55.7, 35.6, 30.1. Trans-1:'H
NMR (400 MHz, CDCl3) 6 7.22 (d, J= 8.2 Hz, 2H), 7.18 (d, J = 2.4 Hz, 2H), 6.80 (dd, J = 8.2, 2.4 Hz, 2H),
3.86 (s, 6H), 3.23-3.14 (m, 4H), 3.09-3.02 (m, 4H). '*C NMR (151 MHz, CDCls) § 158.8, 144.6, 139.6,
136.0, 125.4, 113.0, 110.4, 55.8, 32.7, 30.4. HRMS (ESI+) caled. for [M+H]": 293.1536, found: 293.1537.

Trans-2 and cis-2



To trans-1 (2.00 g, 6.80 mmol) was added a solution of CH3MgI (3 M in EtO) (13.6 mL, 40.8 mmol). The
mixture was heated at 140 °C for 16 h, while the solvent was allowed to evaporate via a needle in the septum.
After cooling to room temperature, the solid was quenched with ice and an aqueous saturated solution of
NH4Cl, then extracted with EtOAc. The organic layer was washed with brine and dried over anhydrous
Na>SO4. The solution was concentrated under reduced pressure and the precipitate was filtered off and washed
with DCM to afford trans-2 (1.10 g, 4.16 mmol, 61%) as a yellow solid. '"H NMR (400 MHz, DMSO-ds) §
9.17 (s,2H), 7.11 (d, J= 8.1 Hz, 2H), 7.02 (d, /= 2.3 Hz, 2H), 6.63 (dd, /= 8.1, 2.2 Hz, 2H), 3.02 (d, /= 7.3
Hz, 4H), 2.98-2.91 (m, 4H). 3C NMR (151 MHz, DMSO-ds) § 156.0, 143.7, 137.0, 134.9, 125.2, 114.4,
110.9, 31.8, 29.5. HRMS (APCI) caled. for [M+H]": 265.1231, found: 265.1225.

Cis-1 (500 mg, 1.70 mmol) was converted using the same method. The precipitate was filtered off and washed
with DCM to afford trans-2 (71.0 mg, 0.269 mmol, 16%). The filtrate was concentrated in vacuo and purified
by flash column chromatography (SiO>, EtOAc:pentane = 1:4) to afford cis-2 as a white solid (218 mg,
0.826 mmol, 49%). '"H NMR (400 MHz, CDCl3) 6 7.68 (d, J= 2.3 Hz, 2H), 7.13 (d, J = 8.1 Hz, 2H), 6.71 (dd,
J=8.1,2.3 Hz, 2H), 2.94-2.87 (m, 4H), 2.83-2.76 (m, 4H). '3C NMR (101 MHz, CDCls) § 153.4, 141.9,
141.2,135.7, 126.0, 115.0, 110.8, 35.3, 29.9. HRMS (ESI+) calcd. for [M]": 264.1145, found: 264.1149.

Trans-3 and cis-3

To a suspension of trans-2 (1.00 g, 3.80 mmol) in DMF (15 mL) was added 2-(3-bromopropyl) isoindoline-
1,3-dione (3.10 g, 11.4 mmol), tetrabutylammonium iodide (4.21 g, 11.4 mmol) and K,COs3 (2.10 g,
15.2 mmol), and the mixture was stirred at 80 °C overnight. After the reaction was complete, deionized water
was added and the aqueous phase was extracted with EtOAc. The organic layer washed with brine, dried over
NaxSO4 and concentrated in vacuo. The crude product was purified by column chromatography (SiO-,
EtOAc:pentane = 1:4) to afford compound trans-3 (887 mg, 1.39 mmol 37% yield) as pale a yellow solid. 'H
NMR (400 MHz, CDCls) 6 7.84 (dd, J=5.4, 3.1 Hz, 4H), 7.70 (dd, J = 5.4, 3.0 Hz, 4H), 7.15 (d, /= 8.2 Hz,
2H), 7.04 (d, J=2.3 Hz, 2H), 6.69 (dd, J = 8.2, 2.3 Hz, 2H), 4.07 (t, /= 5.9 Hz, 4H), 3.94 (t, /= 6.9 Hz, 4H),
3.10-2.96 (m, 8H), 2.20 (p, J = 6.4 Hz, 4H). *C NMR (101 MHz, CDCl3) § 168.6, 157.91, 144.5, 139.8,
135.9, 134.1, 132.4, 125.3, 123.4, 113.4, 111.3, 66.4, 35.9, 32.6, 30.4, 28.6. HRMS (ESI+) calcd. for [M]":
638.2411, found: 638.2412.

Cis-2 (200 mg, 0.76 mmol) was treated following the same method to afford cis-3 as a white solid (135 mg,
0.063 mmol, 28%) "H NMR (400 MHz, CDCls) & 7.73 (dd, J = 5.5, 3.1 Hz, 4H), 7.60 (dd, J = 5.5, 3.0 Hz,
4H), 7.44 (d,J=2.4 Hz, 2H), 7.12 (d, J= 8.2 Hz, 2H), 6.61 (dd, J= 8.3, 2.3 Hz, 2H), 3.98 (t, J= 5.7 Hz, 4H),
3.89 (t,J= 7.0 Hz, 4H), 2.92-2.86 (m, 4H), 2.80-2.74 (m, 4H), 2.15 (p, J= 6.2 Hz, 4H). 3*C NMR (101 MHz,
CDCl3) 6 168.5, 157.3, 141.7, 140.8, 135.5, 133.8, 132.4, 125.6, 123.3, 114.6, 109.3, 66.2, 35.9, 35.5, 30.0,
28.5. HRMS (ESI+) calcd. for [M]": 638.2411, found: 638.2406.

Trans-4 and cis-4

To a suspension of trans-3 (300 mg, 0.470 mmol) in EtOH (10 mL) was added hydrazine hydrate (50—60%,
4.70 mmol, 0.3 mL), and the suspension was heated at reflux for 2 h. After concentrating in vacuo, the mixture
was dissolved in 15% aq. NaOH (15 mL), and extracted with DCM. The organic layer was washed with brine
and dried over Na;SOy4, and then concentrated in vacuo to afford trans-4 (157 mg, 0.415 mmol, 88%) as a
yellow solid. 'H NMR (400 MHz, CDCl3) § 7.20 (d, J = 8.2 Hz, 2H), 7.16 (d, J = 2.5 Hz, 2H), 6.78 (dd, J =
8.2, 2.4 Hz, 2H), 4.09 (t, J = 6.1 Hz, 4H), 3.23-2.99 (m, 8H), 2.94 (t, J = 6.7 Hz, 4H), 1.96 (p, J = 6.4 Hz,



4H). C NMR (151 MHz, CDCls) § 158.2, 144.6, 139.7, 135.9, 125.4, 113.6, 111.1, 66.4, 39.5, 33.4, 32.7,
30.4. HRMS (ESI+) calced. for [M + H]"™: 379.2380, found: 379.2387.

Cis-3 (100 mg, 0.160 mmol) was converted using the same method to afford cis-4 (51.0 mg, 0.135 mmol,
86%) as a yellow solid. '"H NMR (400 MHz, CDCls) § 7.65 (s, 2H), 7.18 (d, J = 8.2 Hz, 2H), 6.74 (d, J = 8.2
Hz, 2H), 4.01 (t,J= 6.1 Hz, 4H), 2.95-2.73 (m, 12H), 1.89 (p, J = 6.3 Hz, 4H). 1*C NMR (151 MHz, CDCls)
8157.5,141.8,140.9, 135.6, 125.8, 114.7,109.4, 66.4, 42.0, 35.6, 33.3, 30.0. HRMS (ESI+) caled. for [M+H]":
379.2380, found: 379.2386.

5

To a solution of phenyl chloroformate (91.0 mg, 0.580 mmol) in DCM (3 mL) was added trans-4 (100.0 mg,
0.260 mmol) and N,N-diisopropylethylamine (0.1 mL, 0.580 mmol) at 0 °C. After stirring for 16 h, the
precipitate was filtered off, washed with DCM and then dried in vacuo to afford trans-5 (140 mg, 0.227 mmol,
86%)."H NMR (400 MHz, DMSO-ds) & 7.84 (t, J= 5.5 Hz, 2H), 7.36 (t, J = 8.0 Hz, 4H), 7.24 (d, J= 8.2 Hz,
2H), 7.19 (t, J=7.4 Hz, 2H), 7.14-7.05 (m, 6H), 6.83 (dd, J= 8.2, 2.3 Hz, 2H), 4.08 (t, /= 6.2 Hz, 4H), 3.29—
3.23 (m, 4H), 3.15-3.08 (m, 4H), 3.18-2.94 (m, 4H), 1.95 (p, J = 6.4 Hz, 4H). 1*C NMR (151 MHz, DMSO)
0 157.6, 154.4, 151.1, 143.7, 138.9, 135.2, 129.2, 125.3, 124.8, 121.7, 113.9, 110.3, 65.3, 37.6, 31.8, 29.7,
29.1. HRMS (ESI+) calcd. for [M+Na]": 641.2614, found: 641.2622.

6

To a suspension of NaH (60%wt in mineral oil) (160 mg, 4.00 mmol) in THF (40 mL) was added hexaethylene
glycol monomethyl ether (2.00 g, 6.70 mmol) and 7-bromoheptanoate (1.55 g, 7.40 mmol). The mixture was
stirred at 60 °C for 24 h. After cooling to room temperature, the reaction mixture was quenched with methanol
followed by concentration under reduced pressure. The resulting mixture was added to water and extracted
with DCM. The organic layer was dried over NaxSO4 and concentrated in vacuo. The crude product was
isolated by column chromatography (EtOAc) to obtain 6 (1.10 g, 2.51 mmol, 37%) as a colorless oil. '"H NMR
(400 MHz, CDCl3) 6 3.67-3.61 (m, 24H), 3.58-3.52 (m, 4H), 3.44 (t, /= 6.7 Hz, 2H), 3.37 (s, 3H), 2.30 (t, J
= 7.5 Hz, 2H), 1.65-1.53 (m, 4H), 1.37-1.29 (m, 4H).!*C NMR (151 MHz, CDCl5) § 174.4, 72.1,71.5,70.8,
70.7, 70.3, 59.2, 51.6, 34.2, 29.6, 29.2, 26.0, 25.1. HRMS (ESI+) calcd. for [M+Na]": 461.2721, found:
461.2727.

7

To a solution of compound 6 (1.00 g, 2.30 mmol) in MeOH (20 mL) was added aq. NaOH (4 M;1.20 mL,
4.80 mmol). After heating at reflux for 4 h, the solution was added to 100 mL deionized water. Then the water
solution was adjusted to pH < 7 and extracted with DCM. The organic layer was dried over NaxSO4 and
concentrated in vacuo. The crude product was isolated by column chromatography (EtOAc) to obtain 7
(520 mg, 1.23 mmol, 53% ) as a colorless oil. NMR (400 MHz, CDCl3) 6 3.68-3.60 (m, 21H), 3.58-3.52 (m,
4H), 3.44 (t, J = 6.6 Hz, 2H), 3.37 (s, 3H), 2.32 (t, J = 7.4 Hz, 2H), 1.67-1.52 (m, 4H), 1.38-1.32 (m, 4H).
3C NMR (101 MHz, CDCl3) § 178.6, 72.0, 71.4, 70.7, 70.6, 70.2, 59.1, 34.0, 29.5, 29.0, 25.9, 24.8. HRMS
(ESI+) caled. for [M+Na]": 447.2565, found: 447.2570.

8

To a solution of compound 7 (800 mg, 1.89 mmol) in toluene (20 mL) was added diphenylphosphoryl azide
(0.490 mL, 2.27 mmol) and triethylamine (0.310 mL, 2.27 mmol) at room temperature under N, atmosphere.

5



After stirring for 3 h, the reaction mixture was heated at 70 °C for 2 h. After cooling to room temperature, the
reaction mixture was concentrated in vacuo and then purified by column chromatography (SiO2,
EtOAc:pentane=9:1) to afford 8 (160 mg, 0.380 mmol, 20%) as a colorless oil. The pure compound was used
in the next reaction immediately. "H NMR (400 MHz, CDCl3) 6 3.67-3.62 (m, 20H), 3.60-3.53 (m, 4H), 3.45
(t, J= 6.6 Hz, 2H), 3.38 (s, 3H), 3.29 (t, J = 6.7 Hz, 2H), 1.63-1.54 (m, 4H), 1.42—1.34 (m, 4H). '3C NMR
(151 MHz, CDCl3) 6 72.1, 71.4, 70.8, 70.7, 70.3, 59.2, 43.1, 31.4, 29.7, 26.6, 25.7. HRMS (ESI+) calcd. for
[M+H]": 422.2759, found: 422.2748.

93

To a solution of hexaethylene glycol (2.30 g, 8.00 mmol) in ‘BuOH (50 mL) was added ‘BuOK (0.90 g,
8.00 mmol) and 2-(6-bromohexyl)isoindoline-1,3-dione (1.24 g, 8.00 mmol). After heating at reflux for 3 d,
water (30 mL) and aq. HCI (1 M; 3 mL) was added to the mixture. The resulting solution was extracted with
DCM. The organic layer was dried over Na;SO4 and concentrated in vacuo. The crude product was isolated
by column chromatography (EtOAc:pentane = 9:1) to obtain 9 (1.50 g, 2.94 mmol, 37%). as a colorless oil.
'H NMR (400 MHz, CDCl3) & 7.83 (dd, J = 5.5, 3.1 Hz, 2H), 7.70 (dd, J = 5.5, 3.1 Hz, 2H), 3.78-3.52 (m,
26H), 3.43 (t, ] =6.7 Hz, 2H), 1.72-1.63 (m, 2H), 1.61-1.62 (m, 2H), 1.41-1.30 (m, 4H). '*C NMR (101 MHz,
CDCI3) 6 168.6, 134.,132.3,123.3,72.7,71.4,70.8, 70.7, 70.5, 70.2, 61.9, 38.1, 29.6, 28.7, 26.9, 25.8. HRMS
(ESI+) caled. for [M+Na]': 534.2674, found: 534.2670.
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To a solution of compound 9 (1.00 g, 1.96 mmol) in EtOH (20 mL) was added hydrazine hydrate (50-60%,
20.0 mmol, 1.30 mL), and the suspension was heated at reflux for 4 h. After cooling to room temperature, the
mixture was dissolved in 15% aq. NaOH (50 mL), and extracted with DCM. The organic layer was washed
with brine and dried over Na>SQOy4, and then concentrated in vacuo. The crude product was isolated by column
chromatography (EtOAc:MeOH = 19:1) to afford 10 (547 mg, 1.52 mmol, 76%) as a colorless oil '"H NMR
(400 MHz, CDCl3) 6 3.74-3.55 (m, 26H), 3.45 (t,J = 6.7 Hz, 2H), 2.67 (t, ] = 6.9 Hz, 2H), 1.62—1.54 (m, 2H),
1.48-1.40 (m, 2H), 1.37-1.30 (m, 4H). 3*C NMR (101 MHz, CDCls) § 72.9, 71.4, 70.7, 70.6, 70.4, 70.2, 61.6,
42.1,33.5,29.7, 26.8, 26.1. HRMS (ESI+) caled. for [M+Na]":382.2799, found: 382.2808.

Trans-SG1 and Cis-SG1

To a solution of trans-4 (30.0 mg, 80.0 pmol) in DCM (3 mL) was added compound 8 (74.0 mg, 17.0 umol).
After stirring for 16 h at room temperature, pentane (8 mL) was added to the solution to induce precipitation.
The obtained solid materials was dissolved in DCM (2 mL) and precipitated by adding pentane (8 mL). The
precipitation was repeated three times. After drying in vacuo pure trans-SG1 (73.0 mg, 59.8 umol, 75%) was
obtained as a pale yellow solid. "H NMR (400 MHz, CDCl3) § 7.19 (d, J = 8.2 Hz, 2H), 7.13 (d, J= 2.3 Hz,
2H), 6.76 (dd, J= 8.2, 2.2 Hz, 2H), 4.81 (t, /= 5.8 Hz, 2H), 4.58 (t, /= 5.7 Hz, 2H), 4.06 (t, /= 5.8 Hz, 4H),
3.64 m, 40H), 3.53 (t, J=4.8 Hz, 8H), 3.45-3.38 (m, 8H), 3.37 (s, 6H), 3.18-3.08 (m, 8H), 3.07-2.99 (m, 4.3
Hz, 4H), 2.00 (p, J = 6.3 Hz, 4H), 1.54 (p, J = 6.8 Hz, 4H), 1.45 (p, J = 6.6 Hz, 4H), 1.37-1.29 (m, 8H). *C
NMR (151 MHz, CDCls) ¢ 158.8, 157.9, 144.5, 139.8, 135.9, 125.4, 113.6, 111.0, 72.1, 71.4, 70.8, 70.7, 70.6,
70.2, 66.3, 59.2, 40.5, 37.9, 32.6, 30.4, 30.2, 30.1, 29.6, 26.7, 25.9. HRMS (ESI+) calcd. for [M+H]":
1221.7731, found: 1221.7758.

Cis-4 was converted using the same amounts and the same method as for trans-4 to afford cis-SG1 (60.0 mg,
49.2 umol, 61%) as a pale yellow solid. "H NMR (400 MHz, CDCl3) § 7.64 (d, J = 2.3 Hz, 2H), 7.17 (d, J =
8.3 Hz, 2H), 6.73 (dd, J = 8.3, 2.3 Hz, 2H), 4.00 (t, /= 5.9 Hz, 4H), 3.65-3.61 (m, 40H), 3.58-3.51 (m, 8H),
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3.43 (t, J= 6.6 Hz, 4H), 3.37 (m, 10H), 3.12 (t, J= 7.1 Hz, 4H), 2.95-2.86 (m, 4H), 2.84-2.75 (m, 4H), 2.00—
1.92 (m, 4H), 1.56 (p, J = 6.6 Hz, 4H), 1.45 (p, J = 6.8 Hz, 4H), 1.34-1.29 (m, 8H). '*C NMR (151 MHz,
CDCls) § 159.4, 157.3, 141.7, 140.9, 135.6, 125.8, 114.4, 109.7, 72.1, 71.4, 70.8, 70.7, 70.6, 70.2, 65.9, 59.2,
40.3, 37.6, 35.4, 30.4, 30.3, 30.0, 29.6, 26.8, 26.0. HRMS (ESI+) calcd. for [M+H]":1221.7731, found:
1221.7753.

Trans-SG2

To a solution of compound 5 (60.0 mg, 97.1 umol) in DMSO (2 mL) was added compound 10 (81.0 mg,
225 umol) and triethylamine (30.0 puL, 21.0 umol). The mixture was stirred at 60 °C for 16 h. After cooling to
room temperature, water (5 mL) was added to the solution, followed by extraction with DCM. The organic
layer was dried over Na>xSO4 and concentrated in vacuo. The resulting viscous oil was dissolved in DCM
(2 mL) and precipitated by adding pentane (8 mL). This process was repeated three times. After drying in
vacuo pure trans-SG2 (73.0 mg, 61.2 umol, 63%) was obtained as a pale yellow solid. 'H NMR (400 MHz,
CDCl3) 6 7.19 (d,J=8.2 Hz, 2H), 7.14 (d, J = 2.3 Hz, 2H), 6.77 (dd, J= 8.2, 2.3 Hz, 2H), 4.82 (t, J= 5.8 Hz,
2H), 4.60 (t, J= 5.6 Hz, 2H), 4.07 (t, /= 5.9 Hz, 4H), 3.75-3.70 (m, 4H), 3.67-3.58 (m, 40H), 3.55-3.51 (m,
4H), 3.44-3.36 (m, 8H), 3.19-3.10 (m, 8H), 3.07-3.01 (m, 4H), 2.03—1.96 (m, 4H), 1.58-1.05 (m, 4H), 1.50—
1.41 (m, 4H), 1.36-1.29 (m, 8H). 3C NMR (151 MHz, CDCls) § 159.0, 157.9, 144.5, 139.7, 135.9, 125.4,
113.6,111.0, 72.8, 71.4, 70.7, 70.6, 70.4, 70.1, 66.3, 61.8, 40.5, 37.9, 32.6, 30.4, 30.2, 30.1, 29.5, 26.7, 25.9.
HRMS (ESI+) caled. for [M+H]": 1193.7418, found: 1193.7401.

Trans-SG3

To a solution of trans-4 (50.0 mg, 130 umol) in DCM (3 mL) was added 1-isocyanatohexane (37.0 mg,
290 umol). After stirring for 16 h at room temperature, the formed precipitate was filtered off, washed with
DCM and then dried in vacuo to afford trans-SG3 (62.0 mg, 99.7 pmol, 77%) as a pale yellow solid 'H NMR
(400 MHz, DMSO-ds) 6 7.23 (d, J= 8.3 Hz, 2H), 7.09 (d, J= 2.3 Hz, 2H), 6.81 (dd, /= 8.2, 2.2 Hz, 2H), 5.86
(t,J=5.8 Hz, 2H), 5.78 (t, J= 5.7 Hz, 2H), 4.00 (t, /= 6.3 Hz, 4H), 3.18-3.08 (m, 8H), 3.08-2.96 (q, J = 6.6
Hz, 8H), 1.82 (p, J = 6.5 Hz, 4H), 1.33 (p, J = 6.8 Hz, 4H), 1.27-1.20 (m, 12H), 0.88-0.80 (m, 6H). 3*C NMR
(126 MHz, DMSO-ds) 6 157.9, 157.4, 143.4, 138.6, 134.9, 124.8, 113.8, 110.3, 65.8, 36.2, 31.5, 30.6, 29.6,
29.3, 25.6,21.5, 13.3. HRMS (ESI+) calcd. for [M+H]": 633.4374, found: 633.4376.

4. Isomerization behavior.

The photo-responsive behavior was studied by steady-state UV-Vis absorption and 'H NMR spectroscopy.
The solvents, DMSO, toluene, and DMSO-ds were degassed by purging with argon for 30 min prior to use in
the photoisomerization experiments followed by UV-vis absorption and NMR spectroscopy measurements.
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Figure S2. UV-Vis absorption spectral changes of a sample of cis-SG1 (50 uM in toluene, 298 K) after
irradiation with 385 nm light for 2 min to reach PSS3ss and upon subsequent irradiation with 365 nm light for
1.5 min to reach the PSS3¢5 (pink curve).
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Figure S3. UV-Vis absorption spectral changes of a sample of trans-SG1 (30 uM in toluene, 298 K) after
irradiation with 365 nm light for 1.5 min to reach the PSS3¢s and upon subsequent irradiation with 385 nm
light for 3 min to reach the PSS3ss.
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Figure S4. UV-Vis absorption spectral changes of a sample of trans-SG1 (10 pM in DMSO, 298 K) upon (a)
irradiation with 365 nm light for 60 s to the PSS3¢s, and (b) subsequent irradiation with 385 nm light for 80 s
to the PSS3ss.
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Figure SS5. Time-dependent UV—Vis absorption of cis-SG1 (30 uM) at 361 nm and 373 nm in toluene at
323 K for 16 h. No significant changes were observed during heating, indicating excellent thermal stability of
cis-SG1 in toluene.
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Figure S6. Time-dependent UV—Vis absorption of cis-SG1 (20 puM) at 361 nm and 373 nm in DMSO at313 K
for 20 h. No significant changes were observed during heating, indicating excellent thermal stability of cis-
SG1 in DMSO.
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Figure S7. UV—Vis spectral changes of (a) trans-SG2 upon irradiation with 365 nm light for 120 s to reach
PSS365s and subsequent irradiation with 385 nm light for 150 s to obtain PSSsgs, and (b) trans-SG3 upon
irradiation with 365 nm light for 30 s to reach PSS365s and subsequent irradiation with 385 nm light for 90 s to
obtain PSS3gs5 (10 uM, DMSO, 298 K).
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5. Temperature-dependent supramolecular polymerization and data fitting with cooperative model.
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Figure S9. Temperature-dependent degree of aggregation (oagg, estimated from the apparent absorption
coefficients at A = 373 nm) of #rans-SG1 at different total concentrations (cr) during the polymerization

(cooling process, 1 K/min).
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Figure S10. Temperature-dependent degree of aggregation (0lagg) of frans-SG1 estimated from the apparent

absorption coefficients at A = 373 nm at different total concentrations (cr) in toluene upon heating (1 K/min).
The curves show fits calculated according to the cooperative model proposed by Meijer and co-workers.*>

Table S1. Molecular enthalpy (AHc) during the elongation process of supramolecular polymerization and the
critical elongation temperature (Te) of trans-SG1 at different total concentrations (c7) in toluene, resulting

from fitting to a cooperative model.*?
Concentration | 0.2 0.3 0.4 0.5 0.6
(¢r) (mM)
Te (K) 325.9489 329.5737 333.7055 335.5201 337.0752
AHc (J mol™!) | -40824.2309 | -42535.5892 | -47994.5302 | -57832.9615 | -65778.2513

The Te values obtained from fitting (Table S1) are comparable to the ones in the van’t Hoff plots (Figure 3e,
325, 329, 332.5, 335.5, 338, respectively) obtained by the method proposed by Sugiyasu and co-workers.
AHe in the cooperative model is the molecular enthalpy release due to the noncovalent interactions between
monomers during elongation.” The interaction between molecules and solvents are not included in AHe.
However, toluene has an effect on the assembly process’ to an extent that possibly affects AH® obtained from
the van’t Hoff plot (77 kJ mol ™).
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6. *H NMR dilution experiments.
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Figure S11. '"H NMR spectra of cis-SG1 in toluene-ds at different concentrations, diluting from 1.0 mM to
0.3 mM (500 MHz, 293 K).

The spectra showed no obvious chemical shift for the protons of urea moieties at 5.8 and 5.5 ppm as the
concentration decreased, indicating that cis-SG1 is likely monomeric in toluene.’
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7. Temperature-varied *H NMR experiments.
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Figure S12. (a)Temperature-varied 'H NMR spectra of trans-SG1 in toluene-ds recorded during heating from
293 K to 363K (500 MHz, 0.5 mM). (b) Temperature-dependent N-H chemical shifts of urea.

8. FTIR studies

Toluene solution of frans- and cis-SG1 were measured on a PerkinElmer Spectrum 400 in a CaF> cell with
1.0 mm path length. Background correction was recorded for solvent and cell absorption.
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Figure S13. FTIR spectra of trans-SG1 and cis-SG (0.5 mM) in toluene at 25 °C.

7. Computational study.

Structure optimizations of cis-SG1 and trans-SG1 in toluene (solvent model: IEFPCM) were performed in
Gaussian 16 (B3LYP, 6-31G+(d,p)) using the GaussView 5.0 add-on. The dimer of trans-SG1 was optimized
with ONIOM at the wB97X-D/def2SVP//wB97X-D/6-31G(d)//UFF level. The high level was modelled on
the stilbene core, including the ureas and the atoms connecting the urea moieties and the photocwitch. The

medium level was selected to be the methylene proximal to the ureas. All the remaining atoms were modelled
with the low level.® Figure 4d and S14 a shows the optimized geometry.

ol

r&r%rﬂ*”““w ,—r t

Figure S14. DFT energy minimized structures of trans-SG1.

8. Cryo-TEM study.

A toluene solution of trans-SG1 (0.4 mM) was cooled from 340 to 270 K at a rate of 1 K/min to form
supramolecular polymer (SP-SG1). A toluene solution of cis-SG1 (0.4 mM) was prepared by in-situ
irradiation for 3 min and then keeping in dark at 293 K for 1 h to afford SP-SG1. A few micro litter of each
sample solution were placed on holey carbon-coated copper grids (Quantifoil 3.5/1, Quantifoil Micro Tools,
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Jena, Germany). Grids with sample were vitrified in liquid nitrogen® (Vitrobot, FEI, Eindhoven, The
Netherlands) and transferred to a FEI Talos Arctica cryo-electron microscope operating at 200 keV with a
postcolumn energy filter (Gatan) in zero-loss mode, with a 20-eV slit. A volta phase-plate was used with a
phase shift of around %4 A to generate sufficient contrast between the organic solvent (toluene) and the organic
supramolecular fibers. Typically, defocus around -500 nm was used for the measurements. Movies were
recorded under low-dose conditions with a K2 summit direct electron detector (Gatan). Images were corrected
for drift during the recording.

The supramolecular polymer (0.4 mM) is hundreds of nanometers in length with a uniform diameter of 2.5 nm
(Figure 3b, main text). The cryo-TEM of a gel (1.5 mg/mL=1.2 mM, Figure 5e) did not show any noticeable
changes in the diameter and length compared to the sample that formed supramolecular polymers but did not
gelate (Figure 3b). Therefore, the size of the supramolecular polymer might not be the critical point for
gelation. As the gelation happens above specific concentrations (Table 1), we assume the critical point is
associated with the concentration of supramolecular polymers.

Figure S15. Cryo-TEM image of toluene gel formed by trans-SG3 (1 mg/mL).
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9. *H NMR study on gel-sol transition.
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Figure S16. 'H NMR (CDCls, 298 K, 400 MHz) spectral changes of a gel sample (trans-SG1, 1.5 mg/mL)
before irradiation (red), after 365 nm light irradiation for 30 min to a sol sample (green) (trans:cis = 95:5).
Samples were characterized after drying from toluene.

Notes

(1) In Figure 4c, the “polymerization” happened after the cis- to frans- isomerization with a specific lag time,
suggesting no competition between the “polymerization” and cis- to trans- isomerization. As described in the
review, “Once a critical concentration/temperature is reached, the nuclei start to grow and larger assemblies
are formed” (Ref 4), turning points of nucleation to elongation are temperature or concentration.

(2) The distance between either nitrogen and the oxygen of cis-SG1 are 3.016 A and 3.108 A, which is slightly
smaller than the distance (3.216 A) of the cis-isomer in Ref 38. The minor difference might be attributed to
the position of the urea group in the molecules. In that case, the urea group is attached directly to a robust
overcrowded alkene-based core, which restricts the movement and the interaction between both urea groups.
In our case, the urea groups are connected to the stilbene through a C3 alkyl chain linker, which offers more
flexibility for the formation of intramolecular bonding with a slightly smaller distance.

(3) The theoretical analysis was performed on the temperature-dependent degree of aggregation (tlagg) in the
heating process, which is an established method to study the mechanism of polymerization (Ref23,33). There
are no effects of the heating rate on the critical temperature (Figure 3d). Hence, this process is equilibrated.
The discrepancy pointed out by the referee can also be found in other studies (Ref 32). AHe in the cooperative
model is the molecular enthalpy release due to the noncovalent interactions between monomers during
elongation (Ref 23). The interaction between molecule and solvents is not included in AH.. However, toluene
has a non-negligible effect on the assembly process (Ref 61) that possibly affects AH® from the van’t Hoff
plot but not the AHe in the cooperative model fitting.
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10. NMR spectra.
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Figure S17. '"H NMR spectrum of trans-1 (CDCls, 25 °C, 400 MHz).
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Figure S18. 1°C NMR spectrum of trans-1 (CDCls, 25 °C, 151 MHz).
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Figure S19. 'H NMR spectrum of cis-1 (CDCls, 25 °C, 400 MHz).
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Figure S34. >°C NMR spectrum of 5 (DMSO-ds, 25 °C, 151 MHz).
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Figure S41. 'H NMR spectrum of compound 9 (CDCls, 25 °C, 400 MHz).
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