SUPPORTING INFORMATION

Facile Fabrication of Protein – Macrocycle Frameworks

Kiefer O. Ramberg,^a Sylvain Engilberge,^{a,b} Tomasz Skorek,^a and Peter B. Crowley^{*,a}

^aSchool of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.

^bSwiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland

*Correspondence to: peter.crowley@nuigalway.ie +353 91 49 24 80

Contents

Figure S1	Sequence alignment of RSL and variants	53
Figure 51		55
Figure S2	Electrostatic surface representations of RSL and variants	54
Figure S3	ESI ⁺ mass spectra of RSL-R ₈ and MK-RSL	S 5
Table S1	Predicted and measured masses from ESI ⁺ mass spectra	S5
Figure S4	Representative RSL-R _n and sclx₈ co-crystals	S 6
Table S2	P2 ₁ 3, X-ray data collection, processing and refinement statistics	S7
Table S3	123, X-ray data collection, processing and refinement statistics	S8
Table S4	P3, X-ray data collection, processing and refinement statistics	S9
Figure S5	The sclx ⁸ dimer in the <i>I</i> 23 crystal form	S10
Figure S6	Summary of the P3 crystallization experiments	S11
Figure S7	RSL and variants in the presence of 10 eq. sclx ₈ and varying pH	S12
Figure S8	RSL-sclx ₈ precipitate at pH 3.4 is solubilized by increasing sclx ₈ concentration	S13
Table S5	Surface areas of sclx ₈ -mediated interfaces	S14
Figure S9	¹ H- ¹⁵ N HSQC spectra of RSL- sclx ₈ titrations at pH 5.6 or 4.0	S15
Figure S10	Binding isotherms for RSL resonances during sclx ₈ titration at pH 4.0	S16
Table S6	1 H ^N line widths from HSQC spectra of RSL at 0 or 5 mM sclx ₈	S17
Figure S11	pH titration curves for N23 and G68, reporters for D46	S18
Table S7	Measured pK_a values and net charge of RSL, based on NMR and PROPKA3	S19
Figure S12	Crystal packing in P3 frameworks of RSL and RSL-R ₈	S20
Table S8	Temperature factors of the P3 co-crystal structures	S21
Figure S13	$sclx_8$ conformations in the P3 co-crystal structures with RSL or RSL-R ₈	S22

	10	20	30	40	50
RSL	SSVQTAATSW	GTVPSI r VYT	ANNG K IT ER C	W D G K GWYTGA	FN E PG D NVSV
MK-RSL	M K SVQTAATSW	GTVPSIRVYT	ANNGKITERC	WDGKGWYTGA	FNEPGDNVSV
RSLex	SSVQTAATSW	GTVPSIRVYT	ANNGKITERC	WDGKGWYTGA	FNEPGDNVSV
$RSL-R_6$	SSVQTAATSW	GTVPSIRVYT	ANNG R ITERC	WDG R GWYTGA	FNEPGDNVSV
RSL-R ₈	SSVQTAATSW	GTVPSIRVYT	ANNG R ITERC	WDG R GWYTGA	FN R PG R NVSV
	60	70	80	90	
RSL	TSWLVGSAI h	I r vyastgtt	TTEWCWDGNG	WT K GAYTATN	
MK-RSL	TSWLVGSAIH	IRVYASTGTT	TTEWCWDGNG	WTKGAYTATN	
RSLex	TSWLVGSAIH	IRVYASTGTT	TTEWCWDG K G	WYKGAYTATN	
$RSL-R_6$	TSWLVGSAIH	IRVYASTGTT	TTEWCWDGNG	WT R GAYTATN	
RSL-R ₈	TSWLVGSAIH	IRVYASTGTT	TTEWCWDGNG	WT R GAYTATN	

Figure S1.Sequence alignment of RSL and the variants used in this study. In the RSL sequence, basic
and acidic residues are highlighted blue and red, respectively. Residues mutated to Arg or
Lys are in bold.

Figure S2.Electrostatic surface representations of RSL and variants. The calculated isoelectric point
(p/) and the number of cationic residues per monomer are indicated. MK-RSL is not
included as it has a disordered N-terminus.

Figure S3. ESI⁺ mass spectra for RSL-R₈ and MK-RSL.

Table S1. Predicted an	d measured masse	s from ESI ⁺ mass s	spectra (Figure S1).
------------------------	------------------	--------------------------------	----------------------

	RSL-R ₈ monomer						
	m/z	charge	Molecular Weight (Da)	Error (Da)			
	1098.5	9+	9877.4	-0.8			
	1235.8	8+	9878.3	0.1			
_	1412.3	7+	9879.0	0.8			
	Predicted MV	V (Da)	9878.8				
	Deconvoluted MW (Da)		9878.3				
	Standard dev	iation (Da)	0.8				

MK-RSL monomer					
m/z	charge	Molecular Weight (Da)	Error (Da)		
1415.3	9+	9900.0	2.0		
1650.6	8+	9897.6	-0.5		
1980.3	7+	9896.5	-1.6		
Predicted M	V (Da)	9899.9			
Deconvoluted MW (Da)		9898.0			
Standard deviation (Da)		1.8			

RSL pH 4.8

RSL pH 9.5

RSL pH 8.5

RSL pH 2.2

RSL pH 4.0

RSLex pH 4.0

RSL-R₈ pH 8.5

Figure S4. Representative co-crystals of RSL-R_n and sclx₈. Scale bars are 200 μ m. See Table 1 main text for conditions.

	Data Collection						
Light source		S	OLEIL, PROXIMA-	2A			
Wavelength (Å)			0.98013				
Structure	RSL- sclx 8	RSL- sclx 8	RSL-sclx ₈ RSL-sclx ₈		RSL- sclx 8		
	pH 4.8	pH 6.8	pH 8.5	рН 8.5	рН 9.5		
Space group			<i>P</i> 2 ₁ 3				
Cell constants (Å)	64.05 ³	63.83 ³	63.94 ³	63.82 ³	63.87 ³		
Resolution (Å)	45.29-1.14	45.13-1.18	45.21-1.16	45.13-1.12	45.16-1.17		
	(1.15-1.14)	(1.20-1.18)	(1.18-1.16)	(1.14-1.12)	(1.19-1.17)		
# reflections	1097412	1042926	184843	1225434	1068446		
# unique reflections	(18080) 31827 (1364)	(27517) 28303 (1395)	(47026) 30746 (1527)	(37714) 33221 (1632)	(22784) 29919 (1474)		
Multiplicity	34 5 (13 3)	26303 (1333) 36 8 (19 7)	38 5 (30 8)	36 9 (23 1)	25515 (1474) 35 7 (15 5)		
	25.1(2.2)	19 (2 3)	25 2 (2 2)	19 3 (2 2)	35 8 (2 4)		
Completeness (%)	23.1 (2.2)	10(2.3)	100 0 (100 0)	1000(2.2)	100 0 (2.4)		
	96 (127 8)	100.0(100.0)	7 7 (178 2)	16 8 (222 6)	100.0 (100.0)		
n _{meas} (/o) D c (o/)	3.0(127.8)	12.0(140.3)	1 2 (21 0)	10.8(223.0)	4.8 (92.5)		
Λ _{pim} (/٥)	1.0 (33.1)	2.1 (32.0)	1.2 (31.3)	2.7 (40.1)	0.8 (23.2)		
$CL_{1/2}$	100.0 (60.2)	99.8 (79.4)	99.9 (77.7)	99.8 (77.2)	100.0 (84.7)		
Solvent content (%)	30	30	30	30			
		Refineme	ent				
R _{work}	16.7	16.7	13.4	14.5	12.6		
R _{free}	19.1	17.7	15.4	16.8	15.0		
rmsd bonds (Å)	0.004	0.006	0.006	0.007	0.007		
rmsd angles (°)	0.835	0.892	0.991	0.932	0.982		
	#1	molecules in asyr	nmetric unit				
Protein chains	1	1	1	1	1		
sclx ₈	1	1	1	1	1		
water	119	132	129	142	173		
Ave. B-factor (Å ²)	10.67	10.66	13.46	9.08	13.83		
Clashscore	0.68	0.71	3.27	1.32	3.93		
Ramachandran analysis, ^d % residues in							
favoured regions	97.73	97.67	96.59	97.83	96.59		
allowed regions	2.27	2.33	3.41	2.17	3.41		
PDB code	6Z5X	6Z5W	6Z62	6Z60	6Z6Z		

 Table S2. X-ray data collection, processing and refinement statistics for the P2₁3 crystal form.

^aValues in parentheses correspond to the highest resolution shell ${}^{b}R_{meas} = \sum_{hkl} \sqrt{(n/n-1)} |I_{i}(hkl)-\langle I(hkl) \rangle |/\sum_{hkl} \sum_{i} I_{i}(hkl); {}^{c}R_{pim} = \sum_{hkl} \sqrt{(1/n-1)} |I_{i}(hkl)-\langle I(hkl) \rangle |/\sum_{hkl} \sum_{i} I_{i}(hkl); {}^{d}Calculated in MolProbity.$

Data Collection							
Light source	SOLEIL, PROXIMA-2A	SLS, X06DA	SLS, X06DA				
Wavelength (Å)	0.98013	0.97625	2.07505				
Structure	RSL- sclx 8	RSL- sclx 8	RSL- sclx 8				
	рН 2.2	рН 4.0	pH 4.0 – phasing				
Space group		123					
Cell constants (Å)	103.61 ³	103.80 ³	103.47 ³				
Resolution (Å)	73.26-1.6 (1.63-1.6)	42.37-1.28 (1.3-1.28)	51.73-2.04 (2.07-2.04)				
# reflections	845994 (16845)	1910389 (88402)	333778 (291)				
# unique reflections	24491 (1173)	48052 (2392)	11307 (238)				
Multiplicity	34.5 (14.4)	39.8 (37.0)	29.5 (1.2)				
Ι/σ (Ι)	26.4 (2.3)	29.9 (2.2)	72 (8.9)				
Completeness (%)	99.8 (98.5)	100.0 (100.0)	95.3 (41.7)				
R _{meas} ^b (%)	9.1 (93.1)	8.2 (21.0)	4.6 (8.6)				
R pim ^c (%)	1.5 (24.3)	1.8 (34.5)	0.8 (6.0)				
CC _{1/2}	100.0 (85.7)	100.0 (77.4)	100.0 (98.7)				
DANO /sd(DANO)	-	-	2.369 (0.914)				
Solvent content (%)	66	66	66				
	Refinement						
R _{work}	13.9	15.5	_				
R _{free}	16.1	17.3					
rmsd bonds (Å)	0.007	0.005					
rmsd angles (°)	0.892	0.780					
#	# molecules in asymmetric	unit					
Protein chains	1	1					
sclx ₈	2	2					
water	349	203					
Ave. B-factor (Å ²)	19.76	22.0					
Clashscore	0.61	0.6					
Ram							
favoured regions	95.45	95.45					
allowed regions	4.55	4.55					
PDB code	6Z5G	6Z5M					

 Table S3. X-ray data collection, processing and refinement statistics for the /23 crystal form.

^aValues in parentheses correspond to the highest resolution shell ${}^{b}R_{meas} = \sum_{hkl} \sqrt{(n/n-1)} |I_i(hkl)-\langle I(hkl) \rangle |/\sum_{hkl} \sum_i I_i(hkl); {}^{c}R_{pim} = \sum_{hkl} \sqrt{(1/n-1)} |I_i(hkl)-\langle I(hkl) \rangle |/\sum_{hkl} \sum_i I_i(hkl); {}^{d}Calculated in MolProbity.$

Data Collection							
Light source		SOLEIL, PI	ROXIMA-2A				
Wavelength (Å)		0.9	8013				
Structure	RSL- sclx 8	RSL*- sclx 8	RSLex- sclx 8	RSL-R ₈ - sclx₈			
	pH 4.0	рН 4.0	рН 4.0	pH 8.5			
Space group			P3				
Cell constants (Å)	59.85 <i>,</i> 59.85,	59.48, 59.48,	59.68, 59.68,	60.06, 60.06,			
	64.63	64.72	64.28	59.60			
Resolution (A)	51.83-1.29	64.72-1.26	27.29-1.45	59.60-1.42			
# veflections	(1.32-1.29)	(1.28-1.26)	(1.48-1.45)	(1.44-1.42)			
# reflections	661854 (20662)	695123 (27962)	463029	4/4/46			
# unique reflections	(30002) 64914 (3257)	(27005) 68362 (3377)	(22001) 45237 (2252)	(24597) 15137 (2253)			
# unique renections	10.2(0.4)	10.2 (9.2)	45257 (2252)	45157(2255)			
	10.2 (9.4)	10.2 (8.5)	10.2 (9.8)	10.5 (10.8)			
Ι/σ (Ι)	13.5 (2.3)	16.4 (2.2)	15.7 (2.2)	23.8 (2.1)			
Completeness (%)	100.0 (100.0)	99.0 (97.1)	100.0 (100.0)	99.0 (98.0)			
R _{meas} ^b (%)	7.8 (68.9)	6.1 (73.2)	6.8 (83.5)	4.2 (109.2)			
R _{pim} ^c (%)	2.4 (22.2)	2.8 (35.1)	3.0 (37.7)	1.3 (32.9)			
CC _{1/2}	99.9 (95.1)	100.0 (92.4)	100.0 (91.5)	100.0 (82.6)			
Solvent content (%)	59	59	59	59			
	I	Refinement					
R _{work}	12.1	14.5	14.5	10.8			
R _{free}	15.3	16.2	16.8	14.2			
rmsd bonds (Å)	0.006	0.004	0.005	0.006			
rmsd angles (°)	0.903	0.796	0.758	0.973			
	# molecule	es in asymmetric	unit				
Protein chains	2	2	2	2			
sclx ₈	2	2	2	2			
water	578	369	352	448			
Ave. B-factor (Å ²)	24.41	14.19	18.56	21.06			
Clashscore	2.60	1.02	1.70	1.34			
Ramachandran analysis, ^d % residues in							
favoured regions	96.59	96.59	97.73	97.16			
allowed regions	3.41	3.41	2.27	2.84			
PDB code	6Z5Q	7ALF	7ALG	6Z5P			

Table S4. X-ray data collection, processing and refinement statistics for the P3 crystal form.

^aValues in parentheses correspond to the highest resolution shell ${}^{b}R_{meas} = \sum_{hkl} \sqrt{(n/n-1)} |I_{i}(hkl) - \langle I(hkl) \rangle | \sum_{hkl} \sum_{i} I_{i}(hkl); {}^{c}R_{pim} = \sum_{hkl} \sqrt{(1/n-1)} \sum_{i=1}^{n} |I_{i}(hkl) - \langle I(hkl) \rangle | \sum_{hkl} \sum_{i} I_{i}(hkl); {}^{d}Calculated in MolProbity.$

Figure S5. The /23 crystal form contains a symmetric sclx₈ dimer shown in (A) sticks and (B) spacefill. Green dashed lines indicate van der Waals contacts (3.8-4.2 Å) between the phenol oxygens of one calixarene and a methylene bridge of the other calixarene. The black dashed lines indicate anion- π bonds between a sulfonate of one calixarene and a "calix[2]" motif of the other calixarene. The average –SO₃-...centroid distance in the four equivalent sites is 3.8 Å.

Figure S6. Summary of the P3 crystallization experiments in 20 mM acetate (or phosphate) buffer, 50 mM NaCl, at pH 4.0. Mixtures were prepared at room temperature and incubated at 4° C. The buffer pH was unaffected by temperature. During preparation, at room temperature, localised precipitation occurred as the sample pH was lowered. This precipitate dissolved immediately with mixing. Note that pure RSL is soluble at pH 2.0.

Figure S7. Room temperature precipitation tests of RSL and variants in the presence of 10 eq. sclx₈ at varying pH in 20 mM phosphate and 50 mM NaCl. Similar results were obtained in acetate buffer. Lower panel, microscope images of the samples. Note the microcrystalline precipitate for RSL- sclx₈ at pH 3.4. Precipitates were diluted 2-fold with buffer. Scale bars are 100 μm.

Figure S8.A mixture of 1 mM RSL and 10 mM sclx8 in 20 mM acetate and 50 mM NaCl precipitates
at pH \leq 3.4, room temperature. The precipitate dissolves upon increasing [sclx8] to 20
mM. Incubation at 4° C for 3 hours yielded ample nucleation. Scale bar is 200 µm.

Table S5. Surface areas of sclx₈-mediated interfaces, determined in PISA.²¹

Intorfaco*	Interface Area (Ų)				
interface	<i>P2</i> ₁ 3	/23 ª	<i>P3</i> (RSL)		
L-P	1025	430	675		
L-S	555	680	875		
L-L	0	480	0		

*L; ligand - sclx₈, P; protein - RSL, S; solvent - H₂O *Average values for one sclx₈

Figure S9. Overlaid ¹H-¹⁵N HSQC spectra of 1 mM RSL and **sclx**₈ (colour scale) at pH 5.6 or 4.0. The signal at ~7.5 ppm is due to **sclx**₈.

Figure S10. Hyperbolic binding isotherms for RSL resonances during titration with sclx₈ at pH 4.0.

	¹ H ^N line-v		¹ H ^ℕ line-width (Hz)		
Residue	0 mM sclx 8	5 mM sclx 8	Residue	0 mM sclx 8	5 mM sclx 8
S2	15.8	23.3	V48	29.3	36.4
V3	19.3	25.1	S49	23.4	33.9
Q4	22.9	31.8	S52	19.0	25.7
Т5	27.6	30.5	W53	28.7	37.0
A6	23.1	33.4	V55	27.8	35.7
A7	24.5	34.8	G56	21.8	34.2
Т8	23.4	32.3	S57	20.3	27.7
S 9	19.8	26.8	A58	21.0	26.1
G11	23.3	31.1	159	25.7	35.6
T12	23.0	29.4	H60	35.3	38.8
V13	21.2	32.2	Y64	26.4	29.9
S15	25.9	34.2	A65	24.9	31.5
R17	25.5	35.4	G68	23.1	30.1
Y19	26.6	36.4	Т70	19.9	26.8
T20	21.3	33.6	T72	27.1	35.5
A21	23.1	30.4	E73	27.0	33.5
N22	21.8	32.5	W74	23.1	37.5
N23	19.4	25.2	C75	25.3	37.6
G24	20.8	32.0	D77	27.3	35.6
K25	20.9	25.0	D77	27.3	35.6
T27	24.6	33.5	N79	24.3	29.6
R29	29.2	38.2	W81	27.4	33.8
K34	23.6	29.2	K83	19.1	30.3
W36	19.4	35.2	G84	27.0	33.6
Т38	20.7	29.7	Y86	24.9	35.4
F41	28.6	32.6	T87	22.9	34.5
N42	25.2	29.8	A88	18.2	25.5
E43	26.4	32.8	Т89	19.1	21.3
G45	19.6	29.2	N90	16.4	17.9
N47	20.6	29.2			
Δ	erage line-width /	H7)	0	mM sclx ₈ = 23.5 (±	±4)
AV			5	mM sclx ₈ = 31.5 (±	±4)

Table S6. ¹H^N line widths from HSQC spectra of RSL at 0 or 5 mM **sclx**₈ and pH 4.0.

*Line-widths were measured in CCPNmr⁸ for non-overlapping cross-peaks (~63 % of total). Resonances with line widths \geq 40 Hz were considered outliers and were excluded from the analysis.

Figure S11. pH titration curves for N23 and G68, reporters for D46, in the presence of 0 (black) or 5 (blue) mM sclx₈. Precipitation at pH 3.4 in the presence of sclx₈ precluded measurements at and below this pH.

Residue	р <i>К</i> а (calc. ^a	pK _a meas. ^b			Formal Charge	:
	- sclx ₈	+ sclx ₈	- sclx ₈	+ sclx ₈	pH 5.6	pH 4.0	pH 4.0 + sclx ₈
K25	10.4	10.3	> 6.0	> 6.0	+1	+1	+1
К34	10.5	10.1	> 6.0	> 6.0	+1	+1	+1
K83	10.4	10.3	> 6.0	> 6.0	+1	+1	+1
R17	13.1	13.1	> 6.0	> 6.0	+1	+1	+1
R29	12.3	12.3	> 6.0	> 6.0	+1	+1	+1
R62	13.0	13.0	> 6.0	> 6.0	+1	+1	+1
H60	7.0	7.0	> 6.0	> 6.0	+1	+1	+1
E28	4.2	4.5	< 2.0	< 2.0	-1	-1	-1
D32	2.4	3.2	1.7±0.02	3.7±0.01	-1	-1	-0.3
E43	5.8	6.1	5.9±0.01	6.2±0.01	-0.3	0	0
D46	3.6	4.2	3.5±0.01	4.2±0.01 ^c	-1	-0.5	-0.2
E73	2.1	2.1	< 2.0	< 2.0	-1	-1	-1
D77	2.6	2.6	< 2.0	< 2.0	-1	-1	-1
		Form	al Net Charg	e (monomer)	+1.7	+2.5	+3.7
		Fc	arge (trimer)	+5.1	+7.5	+11.1	

Table S7.	pK ₃ values	of ionisable side	chains in RSL	and calculated	formal charge.
	prid taraco	01 1011154616 5146		. and careatated	i i o i i i ai gei

^{*a*}Values calculated in PROPKA3.2 using the *P*3 RSL-**sclx**₈ structure (PDB 6Z5Q) with and without **sclx**₈ coordinates.

^bValues calculated from non-linear least-square fits of NMR data.

^cValue based on reporter resonance Asn23 (Figure S11).

Figure S12.Crystal packing in the P3 frameworks of RSL and variants. Protein shown as grey ribbonand sclx8 as blue spheres. Unit cell axes are indicated with $a = b \approx 6$ nm.

Structure	Res (Å)	Chain	# Atoms	% Identity	Mean Isotropic Temperature factor (Å ²)	RMSD″ (Å)
RSL- sclx 8	1.3	А	681	100.0	16.5	-
		В	681		16.3	0.193
RSL*- sclx 8	1.3	А	687	95.6	16.1	0.114
		В	687		15.9	0.339
RSLex- sclx 8	1.5	А	687	97.8	20.6	0.117
		В	687		20.4	0.087
RSL-R ₈ - sclx₈	1.4	А	692	94.4	27.1	0.825
		В	692		26.7	0.815

 Table S8. Mean all-atom isotropic temperature factors in P3 co-crystal structures.

^{*a*}Root-mean-square deviation of C^{α} atoms with respect to the reference structure.

Figure S13. The conformations of **sclx**₈ in the *P*3 co-crystal structures of **(A)** RSL and **(B)** RSL-R₈. Chain A and chain B refer to the approximate locations of the proteins (not shown) in the asymmetric units. Refer to main text Figure 7A.