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1. General methods and materials 

All commercially available chemicals were used without further purification unless otherwise noted. 
Column chromatography was conducted with silica gel (grain size 0.04 – 0.063 mm) and thin layer 
chromatography (TLC) was performed on silica gel-coated aluminium sheets with F254 indicator. 
Nuclear magnetic resonance (NMR) spectra were recorded on Bruker Avance 300, 500 or 850 MHz 
spectrometer. Chemical shifts were reported in ppm. Coupling constants (J values) were presented in 
Hertz (Hz). 1H NMR chemical shifts were referenced to CD2Cl2 (5.32 ppm) or C2D2Cl4 (6.00 ppm). 13C 
NMR chemical shifts were referenced to CD2Cl2 (53.84 ppm) or C2D2Cl4 (73.78 ppm). Abbreviations: 
s =singlet, d =doublet, dd =double doublet, t =triplet, m = multiplet, td = triplet of doublets. High-
resolution mass spectrometry (HRMS) was performed on a SYNAPT G2 Si high resolution time-of-
flight (TOF) mass spectrometer (Waters Corp., Manchester, UK) by matrix-assisted laser 
desorption/ionization (MALDI). Analytical size-exclusion chromatography (SEC) was performed on 
SDV PSS GPC columns using tetrahydrofuran (THF) as eluent at a temperature of 303 K. Fourier-
transform infrared spectroscopy (FT-IR) measurement was conducted with Bruker Tensor II FTIR 
spectrometer. Raman spectrum was measured with a Bruker RFS 100/S Raman spectrometer. Melting 
points were measured with a Büchi B-545 apparatus. Absorption spectra were recorded on a Perkin-
Elmer Lambda 900 spectrophotometer. Photoluminescence spectra were recorded on a J&M TIDAS 
spectrofluorometer. Photoluminescence spectra of 1, 2, and FGNR were recorded via exciting at their 
absorption maxima. High performance liquid chromatography (HPLC) analysis was performed on an 
Agilent 1200 Series equipped with the following modules: quaternary pump (G1311A 1100), Manual 
Sample Injector (Rheodyne 7725i), column thermostat (G1316A 1200) and DAD detector (G1713B 
1200). For reversed phase HPLC, column Gravity C8 (3 × 100 mm, 5µm) from Macherey-Nagel was 
used. The chiral column used was Daicel Chiralpak IE analytical column (4.6 × 250 mm) packed with 
amylose tris-(3,5-dichlorophenylcarbamate) immobilized on silica gel (5 µm). In both cases, the column 
temperature was set at 20 ℃ and the flow was constant during the operation. 

Circular dichroism (CD) spectra were collected on JASCO J-1500 circular dichroism spectrometer at 
298 K in anhydrous THF. Cyclic voltammetry (CV) was performed on a WaveDriver 20 
Bipotentiostat/Galvanostat (Pine Instruments Company) and measurements were carried out in 
dichloromethane (anhydrous, HPLC grade) containing 0.1 M n-Bu4NPF6 as supporting electrolyte (scan 
rate: 100 mV s–1). A glassy carbon electrode was used as a working electrode, a platinum wire as a 
counter electrode and a silver wire as a reference electrode.  

Dibromo-1,4-bis(trimethylsilyl)benzene (11) and 1,2-dibromo-3-(trimethylsilyl)benzene (13) were 
prepared following reported procedures.1  



2. Synthetic procedures 

Scheme S1. Synthetic route to compounds 3, 4 and 6. 
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Synthesis of [4,4''-di-tert-butyl-(1,1':2',1''-terphenyl)-3',6'-diyl]bis(trimethylsilane) (12) 

 

Dibromo-1,4-bis(trimethylsilyl)benzene (11) (2.00 g, 5.26 mmol), 4-tert-butylphenylboronic acid (4.68 
g, 26.3 mmol), tripotassium phosphate (6.71 g, 31.6 mmol), and [1,1'-bis(diphenylphosphino) 
ferrocene]dichloropalladium(II) complex with dichloromethane (212 mg, 0.260 mmol) were dissolved 
in a mixture of dimethylformamide (50 mL) and water (10 mL). After degassing via bubbling through 
argon for 0.5 h, the resulting mixture was heated to 90 ℃ with stirring for 12 h. The reaction mixture 
was then cooled to room temperature, and 100 mL of water was added. The aqueous phase was extracted 
by diether ether (three times). The combined organic phases were washed with water and dried over 
magnesium sulfate. After the removal of the solvent under reduced pressure, the residue was purified 
by column chromatography over silica gel using n-hexane as eluent to give the title compound as a 
white solid (2.24 g, 88%). M.p.: 251.1 – 251.8 °C. 1H NMR (300 MHz, CD2Cl2, 298 K, ppm) δ 7.59 (s, 
2H), 7.07 (d, J = 8.2 Hz, 4H), 6.84 (d, J = 8.2 Hz, 4H), 1.21 (s, 18H), 0.00 (s, 18H); 13C NMR (75 MHz, 
CD2Cl2, 298 K, ppm) δ 149.43, 147.96, 140.35, 139.87, 132.80, 131.02, 123.75, 34.56, 31.43, 0.51; 
HRMS (MALDI) m/z: Calcd for C32H46Si2: 486.3138; Found: 486.3132 [M]+. 

 

Synthesis of 3',6'-dibromo-4,4''-di-tert-butyl-1,1':2',1''-terphenyl (3) 

 



To a solution of compound 12 (1.71 g, 3.51mmol) in 40 mL of methanol and 40 mL of dichloromethane 
was added bromine (1.68 g, 10.5 mmol) dropwise. The mixture was stirred at room temperature for 12 
h. Then, the reaction was quenched by saturated aqueous sodium sulfite solution. The aqueous phase 
was extracted by dichloromethane (three times). The combined organic phases were washed with water, 
and dried over magnesium sulfate. After the solvents were removed under reduced pressure, the residue 
was purified by column chromatography over silica gel using n-hexane as eluent to afford the title 
compound as a white solid (1.28 g, 73%). M.p.: 177.7 – 178.5 °C. 1H NMR (300 MHz, CD2Cl2, 298 K, 
ppm) δ 7.54 (s, 2H), 7.14 (d, J = 8.0 Hz, 4H), 6.86 (d, J = 8.0 Hz, 4H), 1.22 (s, 18H); 13C NMR (75 
MHz, CD2Cl2, 298 K, ppm) δ 150.33, 144.71, 137.60, 132.93, 129.96, 124.50, 123.49, 34.69, 31.34; 
HRMS (MALDI) m/z: Calcd for C26H28Br2: 498.0558; Found: 498.0574 [M]+. 

 

Synthesis of [4,4''-di-tert-butyl-(1,1':2',1''-terphenyl)-3'-yl]trimethylsilane (14) 

 

1,2-Dibromo-3-(trimethylsilyl)benzene (13) (10.0 g, 32.5 mmol), 4-tert-butylphenylboronic acid (23.1 
g, 130 mmol), tripotassium phosphate (41.4 g, 195 mmol) and [1,1'-
bis(diphenylphosphino)ferrocene]dichloropalladium(II) complex with dichloromethane (796 mg, 0.975 
mmol) were dissolved in a mixture of dimethylformamide (150 mL) and water (30 mL). The mixture 
was degassed via bubbling through argon for 1 h. Then, the mixture was heated to 90 ℃ with stirring 
for 12 h. The resulting mixture was cooled to room temperature, followed by addition of 200 mL of 
water. The mixture was then extracted with diethyl ether (three times) and washed with water. The 
combined organic phases were dried over magnesium sulfate. After the solvents were removed under 
reduced pressure, the residue was purified by column chromatography over silica gel using n-hexane as 
eluent to afford the title compound as a white solid (4.71 g, 35%). M.p.: 127.5 – 128.4 °C. 1H NMR 
(300 MHz, CD2Cl2, 298 K, ppm) δ 7.61 (dd, J = 6.8, 2.0 Hz, 1H), 7.43 – 7.29 (m, 2H), 7.25 – 7.08 (m, 
4H), 7.05 – 6.91 (m, 4H), 1.27 (s, 9H), 1.23 (s, 9H), 0.00 (s, 9H); 13C NMR (75 MHz, CD2Cl2, 298 K, 
ppm) δ 150.10, 149.09, 147.46, 141.54, 140.24, 139.70, 139.60, 133.81, 130.98, 129.84, 126.72, 124.50, 
124.22, 118.53, 34.63, 34.51, 31.42, 31.34, 0.66; HRMS (MALDI) m/z: Calcd for C29H38Si: 414.2743; 
Found: 414.2717 [M]+. 

 

Synthesis of 3'-bromo-4,4''-di-tert-butyl-1,1':2',1''-terphenyl (15) 

 

To a solution of compound 14 (2.34 g, 5.64 mmol) in 12 mL of methanol and 12 mL of dichloromethane, 
bromine (1.35 g, 8.46 mmol) was added dropwise. The mixture was stirred at room temperature for 12 
h. The reaction was then quenched by saturated aqueous sodium sulfite solution. The aqueous phase 
was extracted by dichloromethane (three times). The combined organic phases were washed with water, 
dried over magnesium sulfate. After the removal of the solvent under reduced pressure, the residue was 
purified by column chromatography over silica gel using n-hexane as eluent to give the title compound 
as a white solid (1.95 g, 82%). M.p.: 85.5 – 86.1 °C. 1H NMR (300 MHz, CD2Cl2, 298 K, ppm) δ 7.67 



(d, J = 7.9 Hz, 1H), 7.37 (d, J = 7.6 Hz, 1H), 7.26 (dd, J = 8.0, 5.6 Hz, 3H), 7.14 (d, J = 8.0 Hz, 2H), 
6.97 (dd, J = 17.5, 7.9 Hz, 4H), 1.29 (s, 9H) 1.24 (s, 9H); 13C NMR (75 MHz, CD2Cl2, 298 K, ppm) δ 
150.44, 149.91, 144.27, 141.62, 138.60, 137.69, 131.90, 130.62, 129.68, 129.64, 128.92, 124.91, 124.76, 
124.73, 34.78, 34.63, 31.44, 31.37; HRMS (MALDI) m/z: Calcd for C26H29Br: 420.1453; Found: 
420.1468 [M]+. 

 

Synthesis of 2-[4,4''-di-tert-butyl-(1,1':2',1''-terphenyl)-3'-yl]-4,4,5,5-tetramethyl-1,3,2-
dioxaborolane (4) 

 

Compound 15 (1.61 g, 3.81 mmol) in 55 mL of anhydrous tetrahydrofuran at −78 ℃ was added n-BuLi 
(2.6 mL, 1.6 M in hexanes) dropwise. The yellow solution was stirred at −78 ℃ for 1 h. 2-Isopropoxy-
4,4,5,5-tetramethyl-1,3,2-dioxaborolane (851 mg, 4.57 mmol) in 5 mL of anhydrous tetrahydrofuran 
was added dropwise into the solution. The resulting mixture was gradually warmed to room temperature 
and kept stirring for 3 h. The reaction mixture was then quenched by adding 30 mL of water. The 
aqueous phase was extracted by dichloromethane (three times). The combined organic phases were 
washed with water and dried over magnesium sulfate. After the removal of the solvent under reduced 
pressure, the residue was purified by column chromatography over silica gel using n-
hexane/dichloromethane (3:1) as eluent to afford the title compound as a white solid (1.60 g, 89%). 
M.p.: 143.5 – 144.1 °C. 1H NMR (300 MHz, CD2Cl2, 298 K, ppm) δ 7.58 (d, J = 6 Hz, 1H), 7.41 – 7.34 
(m, 2H), 7.20 (dd, J = 8.4, 3.1 Hz, 4H), 7.03 – 6.97 (m, 4H), 1.29 (s, 9H), 1.27 (s, 9H) 1.10 (s, 12H); 
13C NMR (75 MHz, CD2Cl2, 298 K, ppm) δ 149.62, 149.43, 145.58, 140.92, 139.74, 139.38, 132.62, 
132.22, 130.48, 129.91, 126.79, 124.83, 124.48, 83.90, 34.67, 34.64, 31.54, 31.45, 24.77; HRMS 
(MALDI) m/z: Calcd for C32H41BO2: 468.3200; Found: 468.3186 [M]+. 

 

Synthesis of [6'-bromo-4,4''-di-tert-butyl-(1,1':2',1''-terphenyl)-3'-yl]trimethylsilane (16) 

 

Compound 3 (2.00 g, 4.00 mmol) in 30 mL of anhydrous tetrahydrofuran at −78 ℃ was added n-BuLi 
(2.5 mL, 1.6 M in hexanes) dropwise. The yellow solution was stirred at −78 ℃ for 1 h. Trimethylsilyl 
chloride (521 mg, 4.80 mmol) was added dropwise into the solution. The resulting mixture was 
gradually warmed to room temperature and kept stirring for 18 h. The reaction mixture was then 
quenched by adding 20 mL of water. The aqueous phase was extracted by dichloromethane (three times). 
The combined organic phases were washed with water and dried over magnesium sulfate. After the 
removal of the solvent under reduced pressure, the residue was purified by column chromatography 
over silica gel using n-hexane as eluent to afford the title compound as a white solid (1.19 g, 60%). 
M.p.: 146.6 – 147.4 °C. 1H NMR (300 MHz, CD2Cl2, 298 K, ppm) δ 7.66 (d, J = 8.1 Hz, 1H), 7.46 – 
7.34 (d, J = 8.1 Hz, 1H), 7.14 – 7.07 (m, 4H), 6.85 (td, J = 8.3, 1.9 Hz, 4H), 1.21 (s, 9H), 1.20 (s, 9H), 
0.07 (s, 9H); 13C NMR (75 MHz, CD2Cl2, 298 K, ppm) δ 150.63, 150.06, 149.68, 142.37, 139.27, 139.15, 



138.13, 134.97, 130.93, 130.65, 130.23, 125.50, 124.31, 123.93, 34.63, 34.61, 31.40, 31.38; HRMS 
(MALDI) m/z: Calcd for C29H37BrSi: 492.1848; Found: 492.1859 [M]+. 

 

Synthesis of [4,4''-di-tert-butyl-6'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-(1,1':2',1''-
terphenyl)-3'-yl]trimethylsilane (6) 

 

To a solution of compound 15 (1.00 g, 2.03 mmol) in 20 mL of anhydrous tetrahydrofuran was added 
0.9 mL of n-BuLi (2.5 M in hexanes) dropwise at −78 ℃. The yellow solution was stirred at −78 ℃ for 
1 h. 2-Isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.13 g, 6.08 mmol) in 2 mL of anhydrous 
tetrahydrofuran was added dropwise into the solution. The resulting mixture was gradually warmed to 
room temperature and kept stirring for 12 h. Then, the reaction mixture was quenched by adding 30 mL 
of water. The aqueous phase was extracted by diethyl ether (three times). The combined organic phases 
were washed with water and dried over magnesium sulfate. After the removal of the solvent under 
reduced pressure, the residue was purified by column chromatography over silica gel using n-
hexane/dichloromethane (5:1 to 3:1) as eluent to afford the title compound as a white solid (825 mg, 
75%). M.p.: 165.1 – 166.2 °C. 1H NMR (300 MHz, CD2Cl2, 298 K, ppm) δ 7.56 (dd, J = 14.1, 7.4 Hz, 
2H), 7.12 (dd, J = 18.0, 8.3 Hz, 4H), 6.89 (dd, J = 15.9, 8.3 Hz, 4H), 1.25 (s, 9H), 1.23 (s, 9H), 1.05 (s, 
12), 0.08 (s, 9H); 13C NMR (75 MHz, CD2Cl2, 298 K, ppm) δ 146.76, 148.90, 147.29, 145.96, 141.78, 
140.14, 139.80, 132.83, 131.52, 131.09, 130.40, 124.02, 123.94, 83.78, 34.64, 34.53, 31.47, 24.71, 0.57; 
HRMS (MALDI) m/z: Calcd for C35H49BO2Si: 540.3595; Found: 540.3624 [M]+. 

 

Synthesis of 2-[6'-bromo-4,4''-di-tert-butyl-(1,1':2',1''-terphenyl)-3'-yl]-4,4,5,5-tetramethyl-1,3,2-
dioxaborolane (10) 

 

To a solution of compound 3 (2.38 g, 4.76 mmol) in 50 mL of anhydrous THF was added 2.1 mL of n-
BuLi (2.5 M in n-hexane) dropwise at −78 ℃. The yellow solution was stirred at −78 ℃ for 1 h. 2-
Isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.77 g, 9.52 mmol) in 3.5 mL of anhydrous THF 
was added dropwise into the solution. The resulting mixture was gradually warmed to room temperature 
and kept stirring for 12 h followed by quenching with 30 mL of water. The aqueous phase was extracted 
by diethyl ether (three times). The combined organic phases were washed with water and dried over 
magnesium sulfate. After the removal of the solvent under reduced pressure, the residue was purified 
by column chromatography over silica gel using n-hexane/dichloromethane (2:1) as eluent to afford the 
title compound as a white solid (1.92 g, 74%). M.p.: 225.1 – 225.7 °C. 1H NMR (300 MHz, CD2Cl2, 
298 K, ppm) δ 7.65 (d, J = 8.0 Hz, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.19 (d, J = 8.2 Hz, 2H), 7.09 (d, J = 
8.1 Hz, 2H), 6.92 (d, J = 8.2 Hz, 2H), 6.84 (d, J = 8.2 Hz, 2H), 1.25 (s, 9H), 1.22 (s, 9H), 1.06 (s, 12H); 
13C NMR (75 MHz, CD2Cl2, 298 K, ppm) δ 150.03, 149.60, 148.89, 141.83, 139.18, 137.83, 133.85, 



131.09, 130.41, 130.08, 126.69, 124.50, 124.09, 84.06, 34.70, 34.57, 31.42, 31.40, 24.69; HRMS 
(MALDI) m/z: Calcd for C32H40BBrO2: 546.2305; Found: 546.2317 [M]+. 

 

Synthesis of compound 5 

 

Compound 3 (1.20 g, 2.56 mmol), compound 4 (512 mg, 1.02 mmol), tripotassium phosphate (1.09 g, 
5.12 mmol) and [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium(II) (74.9 mg, 0.102 mmol) 
were dissolved in a mixture of dimethylformamide (20 mL) and water (2 mL) followed by degassing 
via bubbling through argon for 0.5 h. The resulting mixture was heated to 90 ℃ and stirred for 19 h. 
After cooling to room temperature, 50 mL of water was added. The aqueous phase was extracted by 
dichloromethane (three times). The combined organic phases were washed with water and dried over 
magnesium sulfate. After the removal of the solvent under reduced pressure, the residue was purified 
by column chromatography over silica gel using n-hexane/dichloromethane (5:1) as eluent to afford the 
title compound as a white solid (750 mg, 72%). M.p: > 300 °C. 1H NMR (500 MHz, C2D2Cl4, 393 K, 
ppm) δ 7.26 (t, J = 4.5 Hz, 2H), 7.19 (d, J = 4.8 Hz, 4H), 7.11 (m, 6H), 6.97 (d, J = 7.8 Hz, 4H), 6.90 
(d, J = 7.9 Hz, 4H), 6.73 (d, J = 8.0 Hz, 4H), 6.51 (d, J = 7.8 Hz, 4H), 6.30 (d, J = 7.9 Hz, 4H), 1.33 (s, 
18H), 1.30 (s, 18H), 1.18 (s, 18H); 13C NMR (125 MHz, C2D2Cl4, 393 K, ppm) δ 148.44, 148.10, 147.42, 
141.70, 141.50, 140.32, 139.74, 139.41, 139.38, 136.68, 136.28, 131.42, 131.22, 130.75, 129.42, 129.36, 
128.22, 125.35, 123.65, 122.84, 122.40, 33.91, 33.67, 31.14, 31.11, 31.05, 30.97; HRMS (MALDI) m/z: 
Calcd for C78H86: 1022.6730; Found: 1022.6765 [M]+. 

 

Synthesis of compound 7 

 

To a mixture of compound 3 (293 mg, 0.586 mmol.), compound 6 (700 mg, 1.29 mmol), and tetrakis 
(triphenylphosphine)palladium(0) (74.9 mg, 64.8 μmol) was added 1.8 mL of aqueous potassium 
carbonate solution (2.0 M) and 20 mL of 1,4-dioxane. The mixture was degassed via bubbling through 



argon for 0.5 h. Then, the resulting mixture was heated to 90 ℃ and stirred for 12 h. After cooling to 
room temperature, 50 mL of water was added. The aqueous phase was extracted by dichloromethane 
(three times). The combined organic phases were washed with water and dried over magnesium sulfate. 
After the removal of the solvent under reduced pressure, the residue was purified by column 
chromatography over silica gel using n-hexane/dichloromethane (5:1) as eluent to afford the title 
compound as a white solid (564 mg, 82%). M.p.: 138.6 – 139.2 °C. 1H NMR (500 MHz, C2D2Cl4, 393 
K, ppm) δ 7.37 (d, J = 7.8 Hz, 2H), 7.12 (d, J = 8.1 Hz, 4H), 7.03 (d, J = 8 Hz, 4H), 6.84 (d, J = 8.0 Hz, 
4H), 6.77 (d, J = 8.1 Hz, 8H), 6.39 (d, J = 7.7 Hz, 4H), 6.35 (d, J = 7.7 Hz, 4H), 1.27 (s, 18H), 1.26 (s, 
18H), 1.22 (s, 18H), 0.03 (s, 18H); 13C NMR (125 MHz, C2D2Cl4, 393 K, ppm) δ 148.78, 147.77, 147.45, 
147.37, 141.74, 140.01, 139.89, 139.74, 136.85, 136.41, 131.52, 131.47, 131.26, 130.74, 129.81, 129.14, 
122.81, 122.33, 122.30, 33.89, 33.78, 33.71, 31.10, 31.07, 31.01, 0.40; HRMS (MALDI) m/z: Calcd for 
C84H102Si2: 1166.7520; Found: 1166.7558 [M]+. 

 

Synthesis of compound 8 

 

To a solution of compound 7 (308 mg, 0.264 mmol) in 10 mL of methanol and 10 mL of 
dichloromethane was added bromine (132 mg, 0.826 mmol) dropwise. The mixture was stirred at room 
temperature for 12 h. The reaction was then quenched by saturated aqueous sodium sulfite solution. 
The aqueous phase was extracted by dichloromethane (three times). The combined organic phases were 
washed with water and dried over magnesium sulfate. After the removal of the solvent under reduced 
pressure, the residue was purified by column chromatography over silica gel using n-
hexane/dichloromethane (5:1) as eluent to afford the title compound as a white solid (306 mg, 98%). 
M.p.: 119.6 – 120.2 °C. 1H NMR (500 MHz, C2D2Cl4, 393 K, ppm) δ 7.48 (d, J = 8.6 Hz, 2H), 7.15 – 
7.02 (m, 8H), 6.86 (d, J = 8.1 Hz, 4H), 6.83 – 6.77 (m, 8H), 6.37 (d, J = 8.0 Hz, 4H), 6.28 (d, J = 8.2 
Hz, 4H), 1.28 (s, 18H), 1.27 (s, 18H), 1.22 (s, 18H); 13C NMR (125 MHz, C2D2Cl4, 393 K, ppm) δ 
149.10, 148.08, 147.70, 142.55, 141.87, 140.87, 140.25, 138.91, 137.68, 136.18, 135.72, 132.16, 131.34, 
130.99, 130.49, 130.21, 129.92, 123.91, 123.68, 122.90, 122.32, 34.28, 34.14, 34.03, 32.00, 31.38, 
31.33, 31.28, 29.80, 29.75, 29.45, 22.81, 14.34; HRMS (MALDI) m/z: Calcd for C78H84Br2: 1178.4940; 
Found: 1178.5010 [M]+. 

 

 

 

 

 

 



Synthesis of compound 9 

 

Compound 8 (28.4 mg, 24.0 µmol), compound 4 (33.8 mg, 72.1 µmol), tripotassium phosphate (25.5 
mg, 120 µmol) and [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium(II) (1.80 mg, 2.40 µmol) 
were dissolved in a mixture of dimethylformamide (5 mL) and water (0.5 mL). The mixture was 
degassed via bubbling through argon for 0.5 h. The resulting mixture was heated to 90 ℃ and stirred 
for 24 h. After cooling to room temperature, 20 mL of water was added. The aqueous phase was 
extracted by dichloromethane (three times). The combined organic phases were washed with water and 
dried over magnesium sulfate. After the removal of the solvent under reduced pressure, the residue was 
purified by column chromatography over silica gel using n-hexane/dichloromethane (5:1) as eluent to 
afford the title compound as a white solid (28.7 mg, 70%). M.p: > 300 °C. 1H NMR (500 MHz, C2D2Cl4, 
393 K, ppm) δ 7.27 – 6.68 (m, 37H), 6.47 (d, J = 8.1 Hz, 4H), 6.32 – 6.21 (m, 11H) 1.34 – 1.25 (m, 
72H), 1.19 (s, 18H); 13C NMR (125 MHz, C2D2Cl4, 393 K, ppm) δ 148.28, 147.87, 147.18, 147.11, 
147.00, 141.68, 141.02, 140.00, 139.86, 139.62, 139.28, 139.13, 139.08, 139.04, 136.58, 136.50, 135.91, 
131.41, 130.77, 129.67, 129.59, 129.37, 129.29, 128.32, 125.63, 125.49, 123.95, 123.88, 123.12, 122.41, 
34.04, 33.89, 33.78, 31.27, 31.22, 31.17, 31.14, 31.10; HRMS (MALDI) m/z: Calcd for C130H142: 
1703.1112; Found: 1703.1168 [M]+. 

 

Synthesis of triphenanthro-fused teropyrene 1  

 

A solution of compound 5 (20.0 mg, 19.5 µmol) in 30 mL of unstabilized dichloromethane was 
degassed by argon bubbling for 10 min. To the degassed solution was added a suspension of iron(III) 
chloride (285 mg, 1.76 mmol) in 1.5 mL of nitromethane. After stirring at room temperature for 5 h 



under continuous bubbling with argon pre-saturated unstabilized dichloromethane, the reaction was 
quenched with 5 mL of methanol. Then, 20 mL of water was added followed by extracting with 
dichloromethane (three times). The combined organic phases were washed with water and dried over 
magnesium sulfate. After the removal of the solvent under reduced pressure, the residue was purified 
by column chromatography over silica gel using n-hexane/dichloromethane (2:1) as eluent to afford 1 
as a yellowish-green solid (15.6 mg, 79%). M.p.: > 300 °C. 1H NMR (500 MHz, CD2Cl2, 298 K, ppm) 
δ 9.54 (d, J = 8.8 Hz, 2H), 9.39 (s, 2H), 9.33 (d, J = 8.7 Hz, 4H), 9.01 (s, 2H), 8.99 (d, J = 8.7 Hz, 2H), 
8.93 (s, 2H), 8.89 (s, 2H), 7.97 (dd, J = 8.5, 1.9 Hz, 2H) 1.84 (s, 18H), 1.66 (s, 18H), 1.27 (s, 18H); 13C 
NMR (125 MHz, CD2Cl2, 298 K, ppm) δ 151.24, 150.35, 148.21, 131.24, 131,12, 130.84, 130.30, 
128.77, 128.61, 128.57, 128.16, 126.31, 124.81, 124.71, 124.66, 124.63, 124.38, 124.11, 124.08, 122.17, 
122.05, 121.73, 120.16, 120.06, 119.69, 119.02, 36.37, 35.76, 35.49, 32.33, 31.84, 31.77; HRMS 
(MALDI) m/z: Calcd for C78H72: 1008.5634; Found: 1008.5622 [M]+. 

 

Synthesis of pentaphenanthro-fused quateropyrene 2 

 

 

A solution of compound 9 (50.0 mg, 29.3 µmol) in 35 mL of unstabilized dichloromethane was 
degassed by argon bubbling for 0.5 h. To the degassed solution was added a pre-degassed suspension 
of iron(III) chloride (693 mg, 1.12 mmol) in 6.0 mL of nitromethane. After stirring at 45 °C for 3 h, the 
reaction was quenched by addition of 7 mL of methanol. Then, 20 mL of water was added followed by 
extracting with dichloromethane (three times). The combined organic phases were washed with water 
and dried over magnesium sulfate. After the removal of the solvent under reduced pressure, the residue 
was purified by column chromatography over silica gel using n-hexane/dichloromethane (5:1) as eluent 
to afford 2 as a red solid (26.4 mg, 54% yield). M.p.: > 300 °C. 1H NMR (500 MHz, C2D2Cl4, 393 K, 
ppm) δ 9.67 – 8.97 (m, 24H), 8.05 (d, J = 8.5 Hz, 2H), 1.98 (s, 18H), 1.77 (s, 18H), 1.55 – 1.40 (m, 
54H); 13C NMR (125 MHz, C2D2Cl4, 393 K, ppm) δ 150.65, 149.92, 148.06, 131.13, 131.10, 130.63, 
130.57, 130.55, 128.16, 127.98, 127.77, 125.32, 124.85, 124.33, 124.07, 123.73, 123.67, 123.63, 121.40, 
121.36, 121.29, 121.10, 119.69, 119.60, 119.33, 119.07, 119.00, 118.94, 118.89, 118.80, 118.44, 74.00, 
73.78, 73.56, 35.00, 31.88, 31.51, 31.48, 31.45, 31.42, 31.39, 31.34, 31.32, 31.29, 30.85; HRMS 
(MALDI) m/z: Calcd for C130H116: 1676.9077; Found: 1676.9041 [M]+. 

 



Synthesis of P1 

To a Schlenk tube was added compound 10 (300 mg, 0.548 mmol), bis(tri-tert-
butylphosphine)palladium(0) (7.00 mg, 13.7 µmol), 1.4 mL of degassed aqueous tripotassium 
phosphate solution (3 M), and 1.4 mL of degassed THF under argon. The mixture was stirred at 50 ℃ 
for 24 h. Then, bromobenzene (86.0 mg, 0.548 mmol) was added, and the resulting mixture was stirred 
for 12 h. Subsequently, phenyboronic acid (66.8 mg, 0.548 mmol) in 0.5 mL of degassed THF was 
added, and the resulting mixture was stirred for another 12 h. Then, 20 mL of water was added before 
the aqueous phase was extracted by dichloromethane (three times). The combined organic phases were 
washed with water and dried over magnesium sulfate. After the removal of the solvent under reduced 
pressure, the residue was dissolved in 5 mL of dichloromethane followed by precipitation into 100 mL 
of methanol. The white precipitates were collected via filtration and dried under vacuum. The white 
solid was further washed by Soxhlet extraction with boiling acetone for 2 days, and then dried under 
reduced pressure at room temperature to afford P1 as a white solid (184 mg, 98%). FT-IR (powder) 
3085, 3052, 3033, 2958, 2902, 2866, 1514, 1477, 1461, 1440, 1391, 1361, 1268, 1199, 1109, 1028, 
1006, 942, 828, 780, 689, 655, 640, 581 cm–1. 

 

Synthesis of FGNR 

A solution of P1 (20.0 mg) in 25 mL of unstabilized dichloromethane was degassed by argon bubbling 
for 20 min. To the degassed solution was added dropwise a degassed suspension of iron(III) chloride 
(324 mg) in 3 mL of nitromethane. After stirring at 45 °C for 48 h, the reaction was quenched by 
addition of 10 mL of methanol. The precipitates were collected via filtration. Then, the collected solid 
was re-dispersed in 10 mL of THF followed by adding dropwise into 100 mL of methanol. The 
precipitates were collected via filtration followed by washing intensively with methanol and dried under 
vacuum to afford FGNR as a dark red solid (17.4 mg, 88% yield). FT-IR (powder) 2958, 2924, 2866, 
1702, 1598, 1461, 1397, 1365, 1341, 1249, 1200, 1123, 1073, 929, 899, 869, 838, 752, 658, 587 cm–1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Mass spectra 

 

Figure S1. MALDI-TOF mass spectrometry (MS) results of cyclodehydrogenation of 9 toward 2 under 
different conditions: (a-c) iron(III) chloride; (d-f) 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)/ 
trifluoromethanesulfonic acid (CF3SO3H). 

 

 



 

Figure S2. High-resolution MALDI-TOF MS results of (a) 1 and (b) 2; inset: the corresponding 
experimental and simulated isotopic distributions. 

 

 

4. Isomerization processes of 1 and 2 

To evaluate the isomerization processes of 1 and 2, DFT calculations were performed. As illustrated in 
Figure S3, the interconversion between [M]- and [P]-1 was proposed to adopt a transition state where 
terminal benzene rings of the [5]helicene substructure are oriented face-to-face because of the bulky 
tert-butyl groups (Figure S3a). Accordingly, the isomerization barrier was estimated to be 36.0 kcal/mol 
which is by 13 kcal/mol higher than that of [5]helicene.2 In addition to [M,M,M]- and [P,P,P]-2 
observed in the X-ray crystallography of 2, presence of their diastereomers was expected considering 
the up-down fluctuation of π-surfaces resulting from [5]helicene moieties. To catch a glimpse of the 
isomerization pathway of 2, computation of a specific interconversion between [M,M,M]-2 and [P,P,P]-
2 was performed. As demonstrated in Figure S3b, there are two plausible pathways, involving five 
transition states and three metastable diastereomers ([M,P,M]-, [M,M,P]- and [M,P,P]-2). The 
isomerization barrier estimated for each transition step surpassed 36 kcal/mol, ensuring stability against 
the interconversion at room temperature. 

 

Figure S3. (a) Isomerization process of 1 from [M]-1 to [P]-1. (b) Isomerization processes of 2 from 
[M,M,M]-2 to [P,P,P]-2 based on its crystal structure. Two different isomerization processes are 
proposed for 2. The relative Gibbs free energy ΔG (kcal/mol) was calculated at the B3LYP/6-31G(d,p) 
level. TS: transition state. The sequence of helicity annotated in 2 is from left to right. 



5. Optical resolution by HPLC 

 

Figure S4. (a) Chiral HPLC traces during the separation of 1 monitored at 400 nm. A mixture of 
isopropanol/n-hexane = 1:9 was used as the eluent with a flow rate of 1 mL/min. (b) CD spectra of the 
two enantiomers of 1 separated by chiral HPLC in CH2Cl2 and simulated CD spectra of [P]- and [M]-1 
based on time-dependent density functional theory (TD-DFT) calculations at the B3LYP/6-31G(d, p) 
level. 

 

 

 

 

 

Figure S5. (a) HPLC traces (THF/H2O, gradient condition: from 60%:40% (0 min) to 100%:0% (10 
min)) of 2 monitored at 260 nm with a flow rate of 1 mL/min. (b) Chiral HPLC traces of 2 monitored 
at 425 nm. A mixture of isopropanol/n-hexane = 2:98 was used as the eluent with a flow rate of 1 
mL/min. Enantiomeric resolution of 2 with chiral HPLC exhibited five distinct bands, indicating a 
mixture of different enantiomers. 

 

 

 

 



6. SEC and MALDI-TOF MS analysis of P1 

 

Figure S6. SEC characterization of P1. (a) SEC chart of P1 after Soxhlet extraction with acetone. (b) 
Molecular weight distribution calculated from the selected region in (a) between the dashed lines. 

 

 

 

 

Figure S7. MALDI-TOF spectrum of P1 (matrix: tetracyanoquinodimethane, linear mode). (a) Full 
range spectrum. (b) Zoom in spectrum (baseline was subtracted). The inset shows the chemical structure 
and average mass of the repeating unit of P1. Two sets of peaks were observed for each oligomer, 
corresponding to those with and without the phenyl end group. 

 

 

 

 



 

Figure S8. The comparison of MALDI-TOF spectra of P1 and FGNR (matrix: 
tetracyanoquinodimethane, linear mode). Inset: magnified region indicated by blue dashed frame 
showing the mass difference between P1 and FGNR. The representing number indicates the mass of 
P1 and FGNR with 10 and 12 repeating units terminated with one phenyl end-group. 

 

 

 

The solvent-free sample preparation allows FGNR to be detected as radical cation under the MALDI 
condition, similar to polycyclic aromatic hydrocarbons (PAHs) and fullerenes.3-5 The observed mass 
result of FGNR was used directly to evaluate cyclodehydrogenation efficiency by comparing the 
number of hydrogen atoms lost during the Scholl reaction, derived from mass difference between 
corresponding peaks of P1 and FGNR in their MALDI-TOF MS, with the theoretical number of 
hydrogen atoms removed.6 

 

Table S1. Estimation of the cyclodehydrogenation efficiency based on MALDI-TOF MS. 

 
an: Number of repeating unit. 

bN(Hcalc.): Calculated number of hydrogen atoms removed during the cyclodehydrogenation. 

cN(Hexp.): Number of lost hydrogen atoms derived from MALDI-TOF results of P1 and FGNR.  

 



7. FT-IR spectrum 

 

Figure S9. (a) Full FT-IR spectra of 1, 2 and FGNR as well as simulated spectra of 1 and FGNR. (b) 
FT-IR spectra of P1 and FGNR. Blue dashed rectangle indicates a peak from SOLO mode at 870 cm-1 
(wagging of an isolated aromatic C-H bond neighbored by two C-C bonds, orange-colored in inset of 
Figure S9b), which is absent in the spectrum of P1. 

 

 

 

 

8. Electrochemical properties of 1 and 2 

 

Figure S10. Cyclic voltammograms of (a) 1 and 2; (b) ferrocene. Only the oxidation process was 
observed for both 1 and 2. HOMO was estimated with ferrocene as an external standard. The oxidation 
potential of ferrocene was regarded as −4.8 eV from the vacuum level. 

 

 

 



Table S2. Summary of the photophysical and electrochemical properties of 1 and 2. 

Compound λmax
abs/nm λmax

em/nm aEg
opt/eV bHOMO/eV cHOMO/eV 

1 398 502 2.52 –5.37 −4.72 

2 427 561 2.25 –5.19 −4.56 

a Optical energy gap deduced from the absorption onset. 

b HOMO energy level obtained from cyclic voltammograms 

c HOMO energy level obtained from DFT calculation at the HSE06/6-31G(d) level. 

 

 

 

9. X-ray crystallographic analysis of 1 and 2 

The X-ray crystallographic coordinates for structures reported in this work have been deposited at the 
Cambridge Crystallographic Data Centre (CCDC), under deposition number 2058017 (1) and 2058018 
(2). These data can be obtained free of charge from CCDC via 
http://www.ccdc.cam.ac.uk/data_request/cif. 

 

Figure S11. X-ray single-crystal structure of 1 with thermal ellipsoids set at 50% probability level. (a) 
front view; (b) side view and (c) three-dimensional packing mode. 

 

 

 

Figure S12. X-ray single-crystal structure of 2 with thermal ellipsoids set at 50% probability level. (a) 
front view; (b) side view and (c) three-dimensional packing mode. 



Helicity of model compound 1 is obvious as only one [5]helicene subunit embedded. However, the 
situation becomes more complex for model compound 2 with two more incorporated [5]helicene 
subunits. Both NMR and chiral HPLC spectrum of 2 indicated the existence of multiple conformers, 
but only [M,M,M]-2 and [P,P,P]-2 were found in its crystal structures. In order to elucidate the 
conformations of compound 2, we performed the theoretical optimization (DFT-B3LYP/6-31G(d,p)) 
of the three possible diastereomers, [M,M,M]-, [M,M,P]-, and [P,M,P]-2, as shown in in Figure S13. 
Comparison of the relative stabilities of these three diastereomers of 2 suggested that [M,M,M]- and 
[M,M,P]-2 have similar stability, consistent with the experimental observations indicating the existence 
of multiple diastereomers.  

 

 

Figure S13. DFT-optimized geometries of 2 calculated at the B3LYP/6-31G(d,p) level. The sequence 
of helicity annotated in 2 is from left to right. 

 

 

 

 

 

10. DFT calculations 

DFT computations were carried out by using the Gaussian 16 software package.7 Different short 
oligomers and infinite GNR (using periodic boundary condition) were computed at the DFT level of 
theory with the HSE06 functional and 6-31G(d) basis set. Geometry optimization are followed by 
frequency calculations to obtain the IR spectra and by TD-DFT single point calculations to obtain the 
absorption spectra. In order to create the repeating unit for the infinite FGNR, FGNR-monomer (as 
shown in Figure S14b) is considered. tert-Butyl substituent is considered for all the oligomers and 
FGNR. 

 



Geometry of the optimized structures 

 

Figure S14. Optimized structures. (a) Model compound 1 and 2. (b) FGNR-monomer and FGNR-
tetramer. 

 

Electronic properties 

The extension of π-conjugation reduces the energy gap. The energy gap decreases from 2.65 to 2.08 eV 
going from the 1 to FGNR-tetramer. The band gap of FGNR is similar to the energy gap obtained for 
FGNR-tetramer, with a value of 1.93 eV, suggesting reaching of saturation already for short oligomers, 
as shown in Figure S15. The optical energy gaps of 1 and 2 deduced from the absorption onset are 2.52 
and 2.25 eV, respectively. It should be noted that 1 displays a smaller gap compared to its analog with 
a flat-lying geometry (2.64 eV),8 indicating the impact of distortion on electronic property. 

 

Figure S15. Calculated energy level of 1, 2, FGNR-tetramer, and infinite FGNR. 

 



The shapes of the frontier orbitals of 1, 2, and FGNR-tetramer are reported in Figure S16. All the 
HOMO orbitals propagate along the length direction, while the LUMO are oriented more along the 
width direction. 

 

Figure S16. The shapes of the frontier orbitals of 1, 2, and FGNR-tetramer. 

 

 

 

Optical properties 

The absorption spectra of 1, 2, and FGNR-tetramer have been calculated and is reported in Figure S17. 
A strong red shift is observed going from 1 to FGNR-tetramer, with the lowest absorption peak shifting 
from 466 to 600 nm. In specific, a total shift of 72 nm going from 1 to 2 and of 62 nm from 2 to FGNR-
tetramer is demonstrated. The longest wavelength absorption is described by a HOMO to LUMO 
transition for all oligomers. 

 

Figure S17. Calculated UV-vis absorption of 1, 2, and FGNR-tetramer. 



The absorption spectra are quite complex and show many peaks. Table S3 summarises the simulated 
transitions of 1, 2, and FGNR-tetramer. 

Table S3. The transitions at each absorption band of 1, 2, and FGNR-tetramer. 

 Energy (nm) Oscillator strength (f) Transition 

1   

S1 466 0.26 H → L 

S3 400  0.62 H-1 → L / H → L+1 

S4 389  0.13 H-1 → L+1 

S12 334  0.19 H → L+6 

2    

S1 538 0.57 H → L 

S8 443  0.21 H → L+2 

S10 427  0.56 H-1 → L+2 

S13 415  0.23 H-2 → L+2 

S14 400  0.71 H-3 → L+1 

FGNR-tetramer    

S1 600 1.01 H → L 

S6 516  0.33 H-1 → L+1 

S8 505  0.09 H-2 → L / H → L+3 

S10 488  0.15 H-3 → L 

S20 456  1.41 H-3 → L+2 

 

 

 

11. Terahertz spectroscopic study of FGNR 

Ultrafast optical pump−terahertz probe (OPTP) spectroscopy was employed to measure the 
photoconductivity of FGNR. The working principle of OPTP spectroscopy and its applicability for 
unveiling the charge transporting properties in nanostructured materials have been widely reported pre-
viously.9-11  

 

Drude-Smith (DS) model and fitting 

The Drude-Smith (DS) model, modified from the classic Drude model, has been employed intensively 
to characterize the charge transport properties in nanostructured semiconductors (such as graphene 
nanoribbons12, 13). In the DS model, a parameter c is introduced to characterize the backscattering 



probability, e.g., due to structural confinement. The frequency-resolved conductivity spectra of FGNR 
fitted by the DS model using the expression: 

 𝜎ሺ𝜔ሻ ൌ
𝜔
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where τ, 𝜔
  and 𝜀  are the charge scattering time, the plasma frequency, and vacuum permittivity, 

respectively.  

 

Reduced mass of photogenerated charge carriers 

Due to the presence of tert-butyl substituents at the peripheral sites which induces steric hindrance, the 
geometry of FGNR is distorted, with a tilt angle of the edge phenyl groups of about 40-45°, as shown 
in the unit cell (Figure S18) that applied for the calculation of infinite FGNR. This, in turn, affects the 
transport properties of FGNR. From the band dispersion, which are reported in Figure S19, we 
computed the reduced mass around the VB maximum (VBM) and CB minimum (CBM), as well as the 
VBM and CBM orbitals. As result, we obtained a value of 0.95 for both mh* (effective mass of the 
electron) and me* (effective mass of the hole). Furthermore, we estimated the effective reduced mass of 

charge carriers m*, by considering the averaged values for both charges, with the equation:  
ଵ

∗ ൌ
ଵ


∗ 

ଵ


∗ . The intrinsic charge mobility µ (ൌ 𝑒𝜏 ോ 𝑚∗) was estimated to be 104 ± 3 cm2 V-1 s-1. Note that, this 

mobility value is slightly lower than GNRs with more planar structure and similar charge scattering 
time (20~30 fs).13, 14 This is mainly due to a relatively large effective mass of the charge carriers in 
FGNR, originating from its non-planar geometry. 

 

 

Figure S18. (a)Unit cell for the calculation of infinite FGNR. (b) Highest occupied crystalline orbitals 
(HOCO) and lowest unoccupied crystalline orbitals (LUCO) of the unit cell of FGNR.  

 



 

Figure S19. Calculated band structure of FGNR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12. NMR spectra 

 

Figure S20. 1H NMR spectrum of compound 12 (300 MHz, CD2Cl2, 298 K). 

Figure S21. 13C NMR spectrum of compound 12 (75 MHz, CD2Cl2, 298 K). 



 

Figure S22. 1H NMR spectrum of compound 3 (300 MHz, CD2Cl2, 298 K). 

 

Figure S23. 13C NMR spectrum of compound 3 (75 MHz, CD2Cl2, 298 K). 



 

Figure S24. 1H NMR spectrum of compound 14 (300 MHz, CD2Cl2, 298 K). 

 

Figure S25. 13C NMR spectrum of compound 14 (75 MHz, CD2Cl2, 298 K). 



 

Figure S26. 1H NMR spectrum of compound 15 (300 MHz, CD2Cl2, 298 K). 

 

Figure S27. 13C NMR spectrum of compound 15 (75 MHz, CD2Cl2, 298 K). 



 

Figure S28. 1H NMR spectrum of compound 4 (300 MHz, CD2Cl2, 298 K). 

 

Figure S29. 13C NMR spectrum of compound 4 (75 MHz, CD2Cl2, 298 K). 



 

Figure S30. 1H NMR spectrum of compound 16 (300 MHz, CD2Cl2, 298 K). 

 

Figure S31. 13C NMR spectrum of compound 16 (75 MHz, CD2Cl2, 298 K). 



 

Figure S32. 1H NMR spectrum of compound 6 (300 MHz, CD2Cl2, 298 K). 

 

Figure S33. 13C NMR spectrum of compound 6 (75 MHz, CD2Cl2, 298 K). 



 

Figure S34. 1H NMR spectrum of compound 10 (300 MHz, CD2Cl2, 298 K). 

 

Figure S35. 13C NMR spectrum of compound 10 (75 MHz, CD2Cl2, 298 K). 



 

Figure S36. 1H NMR spectrum of compound 5 (500 MHz, C2D2Cl4, 393 K). 

 

Figure S37. 13C NMR spectrum of compound 5 (125 MHz, C2D2Cl4, 393 K). 



 

Figure S38. 1H NMR spectrum of compound 7 (500 MHz, C2D2Cl4, 393 K). 

 

Figure S39. 13C NMR spectrum of compound 7 (125 MHz, C2D2Cl4, 393 K). 



 

Figure S40. 1H NMR spectrum of compound 8 (500 MHz, C2D2Cl4, 393 K). 

 

Figure S41. 13C NMR spectrum of compound 8 (125 MHz, C2D2Cl4, 393 K). 



 

Figure S42. 1H NMR spectrum of compound 9 (500 MHz, C2D2Cl4, 393 K). 

 

Figure S43. 13C NMR spectrum of compound 9 (125 MHz, C2D2Cl4, 393 K). 



 

Figure S44. 1H NMR of 1. (500 MHz, CD2Cl2, 298 K). 

 

Figure S45. 13C NMR of 1 (125 MHz, CD2Cl2, 298 K). 



 

Figure S46. 1H-1H correlation spectroscopy (COSY) NMR spectrum of compound 1 (500 
MHz, CD2Cl2, 298 K). 

 



 

Figure S47. 1H-1H nuclear Overhauser effect spectroscopy (NOESY) NMR spectrum of 
compound 1 (500 MHz, CD2Cl2, 298 K). 

 

Figure S48. 1H NMR of 2 (500 MHz, C2D2Cl4, 393 K). 



 

Figure S49. 13C NMR of 2 (125 MHz, C2D2Cl4, 393 K). 
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