Supplemental Information

Probing heme active site of hemoglobin in functional red blood cells using resonance Raman spectroscopy

J. Dybas^{a,b*}, T. Chiura^a, K. M. Marzec^b, P. J. Mak^{a*}

^a Saint Louis University, Chemistry Department, 3501 Laclede Ave., 63103 Saint Louis, Missouri, United States

^b Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), 14 Bobrzyńskiego Str., 30–348 Krakow, Poland

This material includes:

Figure S1.

Figure S2.

Fig. S1. The UV-Vis absorption spectra of HbCN isotopic derivatives (Hb¹³CN, HbC¹⁵N and Hb¹³C¹⁵N).

Fig. S2. rR spectra of RBCs rich in metHb (A) and isolated metHb (B) treated with potassium cyanide (a) and its isotopic analogues ($K^{13}CN - b$, $KC^{15}N - c$, $K^{13}C^{15}N - d$) in 10-fold molar excess compared to the heme concentration. Spectra were recorded using 406.7 nm excitation line with power at the sample set approximately on 5 mW and are presented in middle wavenumber region ($1100 - 1700 \text{ cm}^{-1}$) with appropriate difference patterns (e-g). All spectra were averaged from 3 independent experiments from 3 single spectra in total (1 spectrum per experiment). Acquisition time was equal to 5 min per spectrum (10 s and 30 accumulations).