Psoriasis

T2D

TDMA

Supplementary Figure 1: Regional association plots for the chromosome 2, 11 and 17 loci in psoriasis and T2D (with the lead marker in the transdisease meta-analysis in purple).

Supplementary Figure 2: Colocalization posterior probabilities of being a shared locus. Calculated using COLOC for loci which meet the $p<1x10^{-4}$ (red) and $p<1x10^{-3}$ (blue) criteria, compared with the 59 other previously reported loci for psoriasis (black).

Supplementary Figure 3: Cell Type Enrichment for Identified Trans-Disease Meta-Analysis (Including the MHC). Calculated using DNAse hotspots in GARFIELD. The strong enrichment of blood tissue illustrates immune-cell involvement.

Marker ID	Chr	Position	Alleles (risk/non-	Meta-	analysis P-va	alues	Meta-ar	alysis Odds	Ratios
		(hg19)	risk)	P(Psoriasis)	P(T2D)	P(TDMA)	OR(Psoriasis)	OR(T2D)	OR(TDMA)
rs438650	1	8290082	C/T	1.9x10 ⁻⁸	3.4x10 ⁻¹	2.4x10 ⁻⁸	1.14	1.01	1.07
rs78312791	1	24513613	C/A	1.3x10 ⁻¹³	2.7x10 ⁻¹	2.3x10 ⁻¹³	1.25	1.01	1.12
rs11249215	1	25297184	A/G	1.9x10 ⁻¹⁴	2.9x10 ⁻¹	6.6x10 ⁻¹⁴	1.16	1.01	1.08
rs113935720	1	67713346	T/C	7.5x10 ⁻¹⁶	3.1x10 ⁻¹	3.8x10 ⁻¹³	1.41	0.99	1.18
rs6677595	1	152590187	T/C	7.4x10 ⁻¹⁶	8.1x10 ⁻¹	1.0x10 ⁻¹³	1.18	1.00	1.08
rs35741374	2	61072567	T/C	1.2x10 ⁻¹⁵	9.3x10 ⁻¹	1.1x10 ⁻¹³	1.17	1.00	1.08
rs840967	2	65701757	C/A	6.6x10 ⁻⁵	4.4x10 ⁻⁸	9.6x10 ⁻⁹	1.08	1.04	1.06
rs2111485	2	163110536	A/G	4.1x10 ⁻¹⁵	9.9x10 ⁻¹	2.8x10 ⁻¹³	1.16	1.00	1.08
rs7607980	2	165551201	T/C	6.7x10 ⁻³	8.3x10 ⁻²²	2.1x10 ⁻⁸	1.10	1.12	1.11
rs3906814	3	17011474	C/G	2.4x10 ⁻¹⁰	3.8x10 ⁻¹	2.7x10 ⁻⁸	1.13	0.99	1.06
rs771576	3	101616982	C/T	6.9x10 ⁻¹⁰	7.6x10 ⁻¹	4.9x10 ⁻⁹	1.13	1.00	1.06
rs4686392	3	185524081	G/A	4.7x10 ⁻²	9.4x10 ⁻⁴⁰	1.3x10 ⁻¹¹	1.04	1.12	1.08
rs39841	5	96120170	G/A	1.3x10 ⁻¹⁰	3.8x10 ⁻²	1.7x10 ⁻¹¹	1.14	1.02	1.08
rs1295685	5	131996445	A/G	1.5x10 ⁻¹⁵	5.9x10 ⁻¹	4.5x10 ⁻¹³	1.21	1.01	1.10
rs75851973	5	150464579	G/A	2.6x10 ⁻³⁹	2.1x10 ⁻¹	3.0x10 ⁻³⁵	1.61	1.02	1.28
rs12188300	5	158829527	T/A	5.9x10 ⁻⁶²	2.3x10 ⁻¹	2.4x10 ⁻⁵⁶	1.69	1.02	1.31
rs7756992	6	20679709	G/A	5.4x10 ⁻³	1.4x10 ⁻⁷³	2.0x10 ⁻²⁰	1.06	1.16	1.11
rs13214872	6	31255008	G/C	6.2x10 ⁻³⁵⁹	9.4x10 ⁻¹	1.9x10 ⁻³⁰²	2.78	1.00	1.67
rs9481169	6	111929862	T/G	4.5x10 ⁻²⁷	7.3x10 ⁻¹	1.3x10 ⁻²²	1.39	1.00	1.18
rs582757	6	138197824	C/T	6.4x10 ⁻¹⁶	5.6x10 ⁻¹	3.3x10 ⁻¹³	1.18	1.00	1.08
rs849135	7	28196413	G/A	1.8x10 ⁻¹	7.2x10 ⁻⁴¹	5.0x10 ⁻¹⁰	1.03	1.11	1.06
rs9650069	8	118204020	C/T	6.6x10 ⁻¹	1.5x10 ⁻⁵⁰	1.1x10 ⁻⁸	1.01	1.13	1.07
rs10811660	9	22134068	G/A	2.2x10 ⁻¹	5.9x10 ⁻⁶⁹	9.6x10 ⁻¹²	1.04	1.20	1.11
rs11795343	9	32523737	T/C	5.2x10 ⁻⁸	1.9x10 ⁻⁴	1.5x10 ⁻¹⁰	1.11	1.03	1.07
rs10761661	10	64525135	C/T	4.9x10 -6	4.1x10 ⁻⁴	3.4x10 ⁻⁸	1.09	1.03	1.06
rs2459446	10	75601596	с/т	1.5x10 ⁻¹⁰	3.8x10 ⁻³	1.8x10 ⁻¹²	1.13	1.02	1.08
rs12265333	10	102011211	A/G	1.6x10 -6	7.1x10 ⁻⁷	1.0x10 -9	1.12	1.04	1.08
rs35198068	10	114754784	C/T	1.8x10 ⁻¹	1.8x10 ⁻⁴²¹	9.1x10 ⁻⁴⁸	0.97	1.43	1.18
rs5215	11	17408630	С/Т	1.2x10 ⁻³	9.4x10 ⁻²⁵	1.4x10 ⁻¹¹	1.07	1.08	1.07
rs685870	11	64111928	T/C	8.5x10 ⁻⁹	7.8x10-5	1.0x10 ⁻¹¹	1.13	1.03	1.08
rs4561177	11	109962432	A/G	1.5x10 ⁻¹¹	9.4x10⁻¹	4.1x10 ⁻¹⁰	1.14	1.00	1.07
rs10893884	11	128410264	T/C	1.7x10 ⁻⁹	8.1x10 ⁻²	4.4x10 ⁻¹⁰	1.12	1.01	1.07
rs76895963	12	4384844	T/G	1.8x10 ⁻¹	1.3x10 ⁻⁶⁴	3.7x10 ⁻⁹	1.15	1.68	1.39
rs57137641	12	56741228	G/A	9.0x10 ⁻¹⁶	3.7x10 ⁻¹	4.6x10 ⁻¹⁵	1.38	1.01	1.18
rs653178	12	112007756	C/T	1.7x10 ⁻⁴	9.0x10 ⁻⁸	4.9x10 ⁻⁸	1.07	1.04	1.06
rs9591325	13	50811220	T/C	6.6x10 ⁻⁹	8.1x10 ⁻³	2.1x10 ⁻¹⁰	1.24	1.04	1.14
rs12884468	14	35852486	C/T	7.3x10 ⁻¹⁵	6.2x10 ⁻¹	1.8x10 ⁻¹²	1.16	1.00	1.08
rs2199036	16	31006972	T/C	1.0x10 ⁻¹¹	8.2x10 ⁻¹	4.7x10 ⁻¹⁰	1.14	1.00	1.07
rs17817712	16	53821125	G/A	2.2x10 ⁻⁴	1.9x10 ⁻¹²	1.9x10 ⁻⁹	1.07	1.05	1.06
rs28998802	17	26124908	A/G	2.0x10 ⁻¹⁶	7.5x10 ⁻¹	1.3x10 ⁻¹⁴	1.24	1.00	1.12
rs2292749	17	40818584	T/C	4.4x10 ⁻⁶	1.5x10-6	1.5x10 ⁻⁹	1.10	1.04	1.07
rs34536443	19	10463118	G/C	9.4x10 ⁻³⁰	2.6x10 ⁻¹	8.0x10 ⁻²⁹	1.95	1.02	1.41
rs6063454	20	48590791	G/T	3.1x10 ⁻¹⁶	8.0x10 ⁻¹	1.2x10 ⁻¹⁴	1.17	1.00	1.08

Supplementary Table 1: Shared Loci from Trans-Disease Meta-Analysis

Abbreviations are as follows: Chr, chromosome; OR, odds ratio; p, p-value; TDMA, trans-disease meta-analysis. Loci with lower p-value in trans-disease meta-analysis than either trait are marked in **bold**, of which those suggestive significant ($p<1x10^{-4}$) in both traits are marked in **red**.

Marker ID	Chr	Position	Alleles (risk/non-	Meta	Meta-analysis P-values		Meta-ar	alysis Odds	Ratios
_		(ng1a)	risk)	P(Psoriasis)	P(T2D)	P(TDMA)	OR(Psoriasis)	OR(T2D)	OR(TDMA)
rs4649201	1	24509435	G/A	2.1x10 ⁻¹³	5.0x10 ⁻¹	2.8x10 ⁻¹¹	1.25	1.01	1.11
rs6672420	1	25291010	T/A	8.8x10 ⁻¹⁵	4.8x10 ⁻¹	3.4x10 ⁻¹²	1.16	1.01	1.07
rs113935720	1	67713346	T/C	7.5x10 ⁻¹⁶	3.1x10 ⁻¹	2.2x10 ⁻¹⁵	1.41	0.99	1.19
rs11205044	1	152593437	C/T	6.3x10 ⁻¹⁶	7.4x10 ⁻¹	1.8x10 ⁻¹⁴	1.18	1.00	1.09
rs340874	1	214159256	C/T	3.0x10 ⁻²	4.8x10 ⁻²¹	3.2x10 ⁻⁸	0.96	1.07	1.06
rs6544662	2	43712093	C/A	4.6x10 ⁻¹	5.1x10 ⁻²²	2.6x10 ⁻⁸	0.98	1.19	1.10
rs35741374	2	61072567	T/C	1.2x10 ⁻¹⁵	9.3x10 ⁻¹	6.6x10 ⁻¹⁴	1.17	1.00	1.08
rs4672505	2	62560332	A/G	1.9x10 ⁻⁸	3.1x10 ⁻²	1.6x10 -9	1.12	0.98	1.07
rs1990760	2	163124051	T/C	5.7x10 ⁻¹⁵	8.8x10 ⁻¹	2.2x10 ⁻¹³	1.16	1.00	1.08
rs3906814	3	17011474	C/G	2.4x10 ⁻¹⁰	3.8x10 ⁻¹	5.4x10 ⁻¹⁰	1.13	0.99	1.07
rs771576	3	101616982	C/T	6.9x10 ⁻¹⁰	7.6x10 ⁻¹	1.9x10 ⁻⁸	1.13	1.00	1.06
rs1295685	5	131996445	G/A	1.5x10 ⁻¹⁵	5.9x10 ⁻¹	2.2x10 ⁻¹⁴	1.21	0.99	1.10
rs2233278	5	150467189	C/G	2.3x10 ⁻³⁹	2.2x10 ⁻¹	5.0x10 ⁻³⁰	1.61	1.02	1.26
rs62377586	5	158766022	G/A	3.5x10 ⁻⁵⁴	2.3x10 ⁻¹	3.1x10 ⁻⁵⁰	1.38	0.99	1.18
rs6928012	6	20728513	C/T	1.7x10 ⁻⁵	8.6x10 ⁻²⁰	2.4x10 ⁻¹³	0.92	1.07	1.08
rs10484554	6	31274555	T/C	7.5x10 ⁻³⁵⁸	9.1x10 ⁻¹	1.9x10 ⁻³⁰²	2.78	1.00	1.67
rs9481169	6	111929862	T/G	4.5x10 ⁻²⁷	7.3x10 ⁻¹	7.9x10 ⁻²⁴	1.39	1.00	1.18
rs610604	6	138199417	G/T	8.5x10 ⁻¹⁶	4.6x10 ⁻¹	8.6x10 ⁻¹⁵	1.17	0.99	1.09
rs1838488	9	75332795	С/Т	2.0x10 -6	1.8x10 ⁻³	4.4x10 ⁻⁸	1.12	0.98	1.07
rs1108617	10	81043573	A/G	2.8x10 ⁻¹⁰	3.0x10 ⁻²	3.1x10 ⁻¹¹	1.13	0.98	1.07
rs10882102	10	94466495	G/C	1.7x10 ⁻⁴	2.4x10 ⁻⁵⁷	1.6x10 ⁻²⁰	0.93	1.13	1.10
rs35198068	10	114754784	C/T	1.8x10 ⁻¹	1.8x10 ⁻⁴²¹	5.3x10 ⁻⁶⁵	0.97	1.43	1.21
rs1648153	11	109959638	G/A	1.6x10 ⁻¹¹	9.3x10 ⁻¹	2.7x10 ⁻¹⁰	1.14	1.00	1.07
rs7108992	11	128381867	A/C	6.9x10 ⁻⁸	4.7x10 ⁻²	7.8x10 ⁻⁹	1.11	0.98	1.06
rs111885088	12	56657216	A/C	1.1x10 ⁻¹⁵	4.1x10 ⁻¹	4.4x10 ⁻¹³	1.38	1.01	1.17
rs74899623	13	50794228	G/A	1.7x10 ⁻⁸	3.9x10 ⁻¹	2.5x10 ⁻⁸	1.34	0.98	1.17
rs8016947	14	35832666	G/T	3.8x10 ⁻¹⁴	2.6x10 ⁻¹	9.3x10 ⁻¹⁴	1.15	0.99	1.08
rs413024	16	11354091	A/G	1.2x10 ⁻⁸	6.4x10 ⁻¹	4.2x10 ⁻⁸	1.13	1.00	1.06
rs4889526	16	31030344	A/C	8.5x10 ⁻¹²	6.1x10 ⁻¹	6.0x10 ⁻¹¹	1.14	1.00	1.07
rs28998802	17	26124908	A/G	2.0x10 ⁻¹⁶	7.5x10 ⁻¹	7.9x10 ⁻¹⁴	1.24	1.00	1.11
rs34536443	19	10463118	G/C	9.4x10 ⁻³⁰	2.6x10 ⁻¹	1.8x10 ⁻²⁵	1.95	1.02	1.38
rs6063454	20	48590791	G/T	3.1x10 ⁻¹⁶	8.0x10 ⁻¹	5.1x10 ⁻¹⁴	1.17	1.00	1.08

Supplementary Table 2: Opposing Loci from Trans-Disease Meta-Analysis

Abbreviations are as follows: Chr, chromosome; OR, odds ratio; p, p-value; TDMA, trans-disease meta-analysis. Risk alleles and effect sizes are given with respect to the trait with more significant p-value for each marker. Loci with lower p-value in transdisease meta-analysis than either trait are indicated in **bold**, of which none are suggestive significant ($p<1x10^{-4}$) in both traits.

Enrichment p-Value	Cell type	Enrichment Mark
1.3x10 ⁻⁷	HeLa S3	H3K4me2
1.5x10 ⁻⁷	GM12878	H3K9ac
6.4x10 ⁻⁷	GM12878	H3K4me3
9.7x10 ⁻⁷	GM12878	H3K4me1
1.6x10 ⁻⁶	GM12878	H3K79me2

Supplementary Table 3: Top 5 Histone Modifications and DNAse Hotspots with Most Enrichment

|--|

Lead	Chr	Position	Alleles (risk/non-		Credible So	et Sizes	
Marker ID		(hg19)	risk)	Psoriasis	T2D	TDMA	Intersect
rs840967	2	65701757	C/A	2,195	33	27	24
rs12265333	10	102011211	A/G	46	62	20	20
rs685870	11	64111928	T/C	31	37	27	4
rs2292749	17	40818584	T/C	60	104	184	2

Abbreviations are as follows: Chr, chromosome; T2D, type 2 diabetes; TDMA, trans-disease meta-analysis.

Supplementary Table 5: Bayesian Credible Sets intersected in the TDMA and individual trait metaanalysis (95% Confidence Interval)

Marker ID	Chr	Position (hg19)	Alleles (risk/non- risk)	P-value (TDMA)	OR (TDMA)	Raw CADD score	PHRED- Scaled CADD score	GM12878 Overlap annotation ^a
rs6731993	2	65642097	A/T	8.3x10 ⁻⁸	1.06	-0.059	1.84	000000
rs7557569	2	65644561	T/C	6.3x10 ⁻⁸	1.06	-0.029	2.20	001010
rs62141075	2	65644616	C/T	7.1x10 ⁻⁸	1.06	0.224	6.18	001010
rs13383320	2	65645137	C/A	5.8x10 ⁻⁸	1.06	0.161	5.25	101010
rs10166100	2	65645750	C/T	6.3x10 ⁻⁸	1.06	-0.281	0.42	001010
rs10166362	2	65645774	G/A	6.0x10 ⁻⁸	1.06	-0.234	0.57	001000
rs7565437	2	65646966	T/C	5.8x10 ⁻⁸	1.06	0.177	5.49	000000
rs10153675	2	65649580	G/A	3.8x10 ⁻⁸	1.06	0.380	8.17	000000
rs55792977	2	65650864	G/T	4.7x10 ⁻⁸	1.06	-0.142	1.05	000000
rs12470883	2	65651851	G/A	4.6x10 ⁻⁸	1.06	0.119	4.58	000000
rs7572922	2	65652156	C/T	4.1x10 ⁻⁸	1.06	-0.013	2.43	000000
rs2028150	2	65655012	C/G	4.0x10 ⁻⁸	1.06	0.291	7.09	000000
rs2028151	2	65655613	A/T	4.8x10 ⁻⁸	1.06	1.702	16.80	000100
rs7569257	2	65656976	G/A	3.3x10⁻ ⁸	1.06	0.186	5.63	101111
rs7569113	2	65657041	C/T	4.1x10 ⁻⁸	1.06	0.372	8.08	101111
rs12185577	2	65659488	A/G	4.7x10 ⁻⁸	1.06	0.363	7.98	111101
rs12185610	2	65661468	A/C	3.2x10 ⁻⁸	1.06	-0.075	1.66	000000
rs1807337	2	65663167	G/C	3.5x10 ⁻⁸	1.06	1.282	14.84	111101
rs1437466	2	65664350	C/T	3.7x10 ⁻⁸	1.06	0.576	10.07	111101
rs2860773	2	65665641	G/T	3.0x10 ⁻⁸	1.06	0.062	3.63	000000
rs6752053	2	65666674	T/C	2.9x10 ⁻⁸	1.06	0.288	7.06	000000
rs62141115	2	65672192	A/G	5.0x10 ⁻⁸	1.06	0.314	7.40	000000
rs6546151	2	65676583	G/A	7.2x10 ⁻⁸	1.06	-0.477	0.10	000000
rs10184881	2	65684152	A/G	5.4x10 ⁻⁸	1.06	-0.036	2.11	000000
rs10786583	10	101946014	C/G	1.2x10 ⁻⁸	1.07	0.382	8.19	111111
rs7923726	10	101963299	G/T	1.2x10 ⁻⁹	1.08	-0.450	0.13	000000
rs7909855	10	101967212	C/G	1.4x10 ⁻⁸	1.07	0.191	5.71	000000
rs12269373	10	101972378	T/C	1.5x10 ⁻⁹	1.08	-0.182	0.81	000000
rs7898075	10	101973097	T/C	1.5x10 ⁻⁹	1.08	-0.303	0.36	000000
rs34136767	10	101973388	T/C	1.5x10 ⁻⁹	1.08	0.339	7.70	000000
rs2230804	10	101977883	C/T	1.4x10 ⁻⁸	1.07	2.206	21.40	000000
rs7905395	10	101996286	C/T	2.5x10 ⁻⁹	1.07	0.210	5.99	000000
rs7905302	10	101996295	A/G	2.3x10 ⁻⁹	1.07	0.087	4.05	000000
rs4917889	10	101999394	A/G	8.1x10 ⁻⁹	1.07	-0.316	0.33	000000
rs4919438	10	102006429	T/C	8.1x10 ⁻⁹	1.07	0.084	3.99	000000
rs6584354	10	102007714	A/C	1.2x10 ⁻⁹	1.08	0.024	3.01	000000
rs7079072	10	102008169	C/G	1.1x10 ⁻⁹	1.08	0.409	8.49	000000
rs12265333	10	102011211	A/G	1.0x10 ⁻⁹	1.08	0.873	12.40	000000
rs2270961	10	102016268	G/A	1.1x10 ⁻⁸	1.07	0.786	11.76	000000
rs7922807	10	102023006	C/T	1.2x10 ⁻⁹	1.08	0.059	3.59	000010
rs7922807	10	102028467	T/C	1.4x10 ⁻⁹	1.08	0.017	2.89	001000
rs12254005	10	102038685	T/A	1.6x10 ⁻⁹	1.08	0.043	3.31	000000
rs4919446	10	102039458	G/A	1.7x10 ⁻⁹	1.08	0.246	6.50	000000
rs4917896	10	102039463	T/C	1.5x10 ⁻⁹	1.08	0.317	7.44	000000

Marker ID	Chr	Position (hg19)	Alleles (risk/non- risk)	P-value (TDMA)	OR (TDMA)	Raw CADD score	PHRED- Scaled CADD score	GM12878 Overlap annotation ^a
rs588177	11	64024056	C/A	2.4x10 ⁻¹¹	1.08	0.091	4.12	000000
rs2244625	11	64026144	G/A	2.9x10 ⁻¹¹	1.08	0.250	6.55	000000
rs1662185	11	64100776	A/G	2.2x10 ⁻¹¹	1.08	0.188	5.66	000000
rs685870	11	64111928	T/C	1.0x10 ⁻¹¹	1.08	-0.223	0.61	000000
rs66918837	17	40799633	A/G	1.8x10 ⁻⁹	1.07	-0.262	0.47	000000
rs2292749	17	40818584	T/C	1.5x10 ⁻⁹	1.07	0.559	9.91	000000

Supplementary Table 5: Bayesian Credible Sets (95% Confidence Interval) continued

Abbreviations are as follows: Chr, chromosome; TDMA, trans-disease meta-analysis; CADD, Combined Annotation Dependent Depletion. ^aIndicates whether marker overlaps (1) or does not overlap (0) GM12878 (lymphoblastoid) cell type annotations using the following 6 marks: DNAse-seq, H3K27ac, H3K4me2, H3K4me3, H3K79me2, H3K9ac.

Supplementary Table 6: Significant eQTLs for Markers in Intersection of Bayesian Credible Sets

Gene	Chr	pcHi-C	eQ	TLGen		NESD	DA/NTR		GeneNet	work
			Marker	P-value	OR	Marker	P-value	OR	Marker	P-value
ACTR2	2	++++++				rs7557569-T	1.1x10 ⁻¹⁹	1.18		
CEP68	2	++++++	rs6752053-C	1.5x10 ⁻⁵	1.04					
SPRED2	2	++++++	rs10153675-G	3.3x10 ⁻⁵	1.14				rs7557569-T	2.4x10 ⁻³
BLOC1S2	10	+++++-	rs10786583-G	4.4x10 ⁻²³	1.08	rs7922807-T	1.3x10 ⁻²¹	1.20		
СНИК	10	++-+++-	rs10786583-G	4.3x10 ⁻¹⁹	1.07				rs12254005-A	2.3x10 ⁻⁶
CWF19L1	10	+++++-	rs10786583-G	3.3x10 ⁻³¹⁰	1.63	rs6584354-C	6.2x10 ⁻⁹	1.12	rs7922807-T	2.2x10 ⁻¹⁵²
DNMBP	10	++-++++	rs10786583-G	2.90x10 ⁻⁶	1.04					
ERLIN1	10	+++++-	rs10786583-C	6.3x10 ⁻²¹	1.08	rs4919438-T	2.3x10 ⁻⁹	1.12		
РНВР9	10		rs10786583-G	2.0x10 ⁻²⁶	1.09					
PKD2L1	10	++-+++-	rs10786583-G	2.3x10 ⁻²⁷	1.09					
RP11-316M21.6	10	++-+++-	rs10786583-G	3.1x10 ⁻¹³	1.06					
AP003774.1	11		rs1662185-G	3.3x10 ⁻³¹⁰	1.41					
AP003774.4	11	++-+++-	rs1662185-G	5.2x10 ⁻⁶	1.04					
AP003774.6	11		rs1662185-G	3.5x10 ⁻⁴⁵	1.13					
CCDC88B	11	++-	rs1662185-A	1.8x10 ⁻²¹⁹	1.31					
FERMT3	11	+++++-	rs1662185-G	1.5x10 ⁻⁸	1.05					
GPR137	11	++++-+-	rs1662185-A	3.2x10 ⁻⁴⁰	1.12				rs2244625-G	4.8x10 ⁻²⁵
PLA2G16	11	+	rs1662185-G	4.2x10 ⁻¹⁴	1.07					
PLCB3	11	++-+-+-	rs1662185-A	2.9x10 ⁻⁷	1.05					
PPP1R14B	11	++-+-+-	rs1662185-A	5.3x10 ⁻⁹	1.05					
PRDX5	11	+++++-	rs1662185-A	3.3x10 ⁻²⁹⁷	1.37				rs685870-T	5.2x10 ⁻¹⁰⁹
RPS6KA4	11	++++-+-	rs1662185-G	3.0x10 ⁻²³	1.09				rs685870-C	2.3x10 ⁻⁴
TRMT112	11	+++++-	rs1662185-G	1.3x10 ⁻⁶²	1.15	rs685870-C	9.8x10 ⁻⁶	1.10		
TRPT1	11	++-+-+-	rs685870-C	6.5x10 ⁻⁶	1.04	rs588177-A	5.9x10 ⁻¹⁹	1.20	rs2244625-G	1.2x10 ⁻⁴
BECN1	17	++++-+-	rs2292749-T	3.9x10 ⁻⁴⁴	1.13	rs2292749-C	1.3x10 ⁻²⁴	1.12	rs2292749-T	4.8x10 ⁻¹⁹
FAM134C	17	+++++++	rs2292749-C	1.8x10 ⁻¹⁵	1.07	rs66918837-G	7.1x10 ⁻²⁶	1.21		
HSD17B1	17	++++-	rs2292749-C	1.3x10 ⁻³⁸	1.12					
HSD17B1P1	17	++++-	rs2292749-C	1.3x10 ⁻¹¹	1.06					
JUP	17	++	rs2292749-T	5.7x10 ⁻¹⁴	1.07					
MLX	17	++++-+-	rs2292749-T	3.8x10 ⁻⁵¹	1.14					
NAGLU	17	++-+	rs2292749-C	9.0x10 ⁻²⁴	1.09					
NT5C3B	17	+	rs2292749-C	4.7x10 ⁻¹¹	1.06					
PSMC3IP	17	++++-++	rs2292749-T	8.1x10 ⁻²²	1.09					
STAT3	17	++	rs2292749-C	1.9x10 ⁻¹¹	1.06					

Abbreviations are as follows: Chr, chromosome; NESDA, Netherlands Study of Depression and Anxiety; NTR, Netherlands Tweelingen Register. Markers are presented using their reference SNP ID along with the risk allele. pcHi-C indicates whether promoter capture Hi-C contacts were identified between regions surrounding at least one of the markers in the Bayesian credible set intersection and a promoter for each gene in 7 different tissues (+: present; -: not present): lymphoblastoid, pancreas, adipose, liver, psoas, thymus, keratinocyte.

Supplementary Table 7: Comparing PHRED-Scaled CADD Scores for eQTLs Between the Intersection of the Bayesian Credible Set and All the eQTLs for Each Gene

Gene	С	redible Set Int	ersection	A	II eQTLs for Ger	e
	N	Mean	SD	N	Mean	SD
AP003774.1	4	4.24	2.61	1271	4.17	4.51
AP003774.4	1	5.66	NA	148	3.13	3.35
AP003774.6	4	4.24	2.61	909	4.08	4.57
BECN1	2	5.19	6.67	900	4.13	4.39
BLOC1S2	20	5.9	5.09	469	3.67	3.76
CCDC88B	4	4.24	2.61	1492	4.07	4.41
CEP68	1	7.06	NA	627	3.95	3.93
CHUK	20	5.90	5.09	617	3.62	3.66
CWF19L1	20	5.90	5.09	2137	3.78	3.93
DNMBP	20	5.90	5.09	520	3.59	3.62
ERLIN1	20	5.90	5.09	472	3.81	4.11
FAM134C	2	5.19	6.67	369	4.46	4.34
FERMT3	4	4.24	2.61	444	4.03	4.42
GPR137	4	4.24	2.61	405	4.74	4.75
HSD17B1	2	5.19	6.67	536	4.45	4.33
HSD17B1P1	2	5.19	6.67	551	4.23	4.35
JUP	2	5.19	6.67	1840	3.88	4.42
MLX	2	5.19	6.67	499	4.14	4.09
NAGLU	2	5.19	6.67	517	4.33	4.11
NT5C3B	2	5.19	6.67	1961	3.99	4.30
PHBP9	20	5.90	5.09	329	3.78	3.80
PKD2L1	20	5.90	5.09	661	3.60	3.75
PLA2G16	4	4.24	2.61	2213	3.42	4.14
PLCB3	4	4.24	2.61	286	4.30	4.37
PPP1R14B	4	4.24	2.61	233	4.82	4.77
PRDX5	4	4.24	2.61	1369	3.97	4.33
PSMC3IP	2	5.19	6.67	302	4.67	4.28
RP11-316M21.6	20	5.90	5.09	184	3.79	3.87
RPS6KA4	4	4.24	2.61	1136	3.92	4.37
SPRED2	24	5.44	4.31	535	3.95	3.98
STAT3	2	5.19	6.67	1141	3.95	3.95
TRMT112	4	4.24	2.61	930	3.98	4.36
TRPT1	1	0.61	NA	534	3.99	4.42

Abbreviations are as follows: N, number of eQTLs for gene; Mean, mean PHRED-Scaled CADD score of eQTLs for gene; SD, standard deviation of PHRED-Scaled CADD score of eQTLs for gene.

Gene	Chr	Psoriasis (G	udjonsson)	Psorias	is (Tsoi)	T2D P	ancreas	T2D Skeletal Muscle		cle T2D Liver		T2D Adipose	
		P-value	Log2(FC)	P-value	Log2(FC)	P-value	Log2(FC)	P-value	Log2(FC)	P-value	Log2(FC)	P-value	Log2(FC)
ACTR2	2	5.0x10 ⁻¹⁸	0.884	1.7x10 ⁻¹⁴	0.566	1.6x10 ⁻²	-1.71	8.7x10 ⁻¹²	0.817	1.0x10 ⁻²	0.821	2.4x10 ⁻²	0.656
CEP68	2	8.7x10 ⁻³¹	-1.05	6.0x10 ⁻²⁷	-0.867	4.8x10 ⁻²	0.326	1.3x10 ⁻⁵	0.591	1.4x10 ⁻³	-1.05	8.1x10 ⁻²	0.258
SPRED2	2	1.8x10 ⁻¹⁶	-0.541	9.0x10 ⁻⁴	-0.221	5.4x10 ⁻⁴	-1.19	7.7x10 ⁻²	-0.092	5.9x10 ⁻³	-1.48	1.7x10 ⁻¹	-0.064
BLOC1S2	10	5.1x10 ⁻²⁵	0.400	1.5x10 ⁻¹⁵	0.788							5.5x10 ⁻¹	0.080
СНИК	10	8.7x10 ⁻⁸	0.334	3.7x10 ⁻¹²	0.480	3.1x10 ⁻⁴	-1.74	1.6x10 ⁻⁶	0.528	2.0x10 ⁻²	-0.975	5.4x10 ⁻¹	0.120
CWF19L1	10	6.5x10 ⁻¹¹	0.297	1.8x10 ⁻¹¹	0.443	3.9x10 ⁻¹	0.199			5.5x10 ⁻¹	-0.398	8.9x10 ⁻²	0.476
DNMBP	10	1.4x10 ⁻²⁸	-0.638	1.6x10 ⁻²¹	-0.828	2.7x10 ⁻¹	0.238	2.0x10 ⁻¹	0.057	1.5x10 ⁻²	-0.815	2.5x10 ⁻²	1.12
ERLIN1	10	8.0x10 ⁻¹⁴	0.457	5.6x10 ⁻²	0.114	2.7x10 ⁻³	-0.817	1.8x10 ⁻⁶	-0.257	1.3x10-1	0.802	4.5x10 ⁻²	0.850
PHBP9	10			2.4x10 ⁻¹	0.210								
PKD2L1	10	6.3x10 ⁻¹	0.022			5.3x10 ⁻¹	0.113			7.1x10 ⁻¹	-0.197	5.7x10 ⁻¹	0.112
AP003774.1	11			1.0x10 ⁻²	0.706								
CCDC88B	11	5.0x10 ⁻⁹	0.281	7.9x10 ⁻¹⁶	1.49							2.8x10 ⁻¹	-0.046
FERMT3	11	4.9x10 ⁻²⁰	0.512	4.7x10 ⁻¹⁰	0.773							6.6x10 ⁻³	0.960
GPR137	11	3.8x10 ⁻³	0.126	2.5x10 ⁻¹⁰	0.516	7.6x10 ⁻³	0.403			1.8x10 ⁻¹	0.656	1.9x10 ⁻¹	-0.190
PLA2G16	11	5.5x10 ⁻¹³	-0.672	1.5x10 ⁻²	-0.526	2.8x10 ⁻²	-0.725	7.9x10 ⁻²	0.146	8.7x10⁻¹	0.046	7.6x10 ⁻²	1.35
PLCB3	11	7.4x10 ⁻⁶	0.217	2.5x10 ⁻¹⁷	0.696	1.2x10 ⁻⁵	0.730	7.1x10 ⁻⁸	-0.505	2.7x10 ⁻¹	0.479	3.4x10 ⁻¹	0.222
PPP1R14B	11	2.0x10 ⁻¹⁵	0.296	8.0x10 ⁻⁹	0.397	4.9x10 ⁻¹	-0.183			3.5x10 ⁻¹	0.315	1.4x10 ⁻²	0.668
PRDX5	11	2.2x10 ⁻⁹	0.204	1.1x10 ⁻¹⁴	0.746							8.7x10 ⁻²	0.670
RPS6KA4	11	3.7x10 ⁻¹⁷	0.421	3.0x10 ⁻²⁷	1.42	8.0x10 ⁻³	0.664	4.5x10 ⁻⁹	-0.317	8.4x10 ⁻¹	0.056	1.9x10 ⁻¹	-0.066
TRMT112	11	2.8x10 ⁻²²	0.290	5.4x10 ⁻¹³	0.649	4.8x10 ⁻³	-0.677			5.1x10 ⁻¹	0.155	7.3x10 ⁻¹	-0.094
TRPT1	11	4.5x10 ⁻⁸	0.171	1.2x10 ⁻⁹	0.487							2.6x10 ⁻¹	0.310
BECN1	17	6.3x10 ⁻⁷	0.195	1.6x10 ⁻¹³	0.449	3.3x10 ⁻²	-1.05	5.4x10 ⁻⁷	0.768	6.9x10 ⁻²	-0.523	2.9x10 ⁻²	0.438
FAM134C	17	5.0x10 ⁻²	-0.058	4.5x10 ⁻⁶	0.207	4.3x10 ⁻¹	0.178	2.5x10 ⁻²	0.212	1.8x10 ⁻¹	-0.343	7.6x10 ⁻²	0.380
HSD17B1	17	4.0x10 ⁻⁴³	1.43	1.7x10 ⁻⁹	0.564	2.1x10 ⁻¹	0.154	7.6x10 ⁻⁷	-0.622	7.3x10 ⁻¹	-0.255	1.8x10 ⁻¹	0.144
HSD17B1P1	17			2.6x10 ⁻⁵	-0.731								
JUP	17	4.0x10 ⁻¹¹	0.392	2.7x10 ⁻⁸	0.419	1.2x10 ⁻¹	0.378	1.0x10 ⁻²	0.186	2.2x10 ⁻¹	0.457	3.5x10 ⁻¹	0.204
MLX	17	1.8x10 ⁻³¹	0.502	1.7x10 ⁻¹²	0.495	6.4x10 ⁻⁴	-0.804	6.3x10 ⁻¹	0.033	6.5x10 ⁻²	0.691	2.7x10 ⁻²	-0.598
NAGLU	17	4.5x10 ⁻²	0.073	1.1x10 ⁻³	0.294	1.6x10 ⁻¹	-0.211	2.9x10 ⁻⁶	-0.279	4.8x10 ⁻¹	0.223	8.1x10 ⁻³	0.396
NT5C3B	17	4.7x10 ⁻¹	0.028	1.8x10 ⁻⁷	0.560							2.6x10 ⁻²	0.546
PSMC3IP	17	1.3x10 ⁻⁷	0.207	1.7x10 ⁻⁸	0.589	1.2x10 ⁻²	0.329	1.1x10 ⁻⁴	-0.212	7.2x10 ⁻¹	-0.371	7.7x10 ⁻²	0.444
STAT3	17	3.0x10 ⁻³⁵	1.09	4.6x10 ⁻²⁸	1.74	4.8x10 ⁻²	-0.699	8.3x10 ⁻²	0.201	1.0x10 ⁻²	1.37	3.3x10 ⁻⁴	0.796

Supplementary Table 8: Differential Expression for eQTL Gene Targets

Abbreviations are as follows: Chr, chromosome; FC, fold change. Values in **bold** indicate significant differential expression (FDR<0.05, |FC|>1

Supplementary Table 9: Single-Variable Mendelian Randomization

·				Psoriasis o	n T2D		T2D on Psoriasis					
	Approach	Num.	Num. Unadjusted B		BMI-a	adjusted	Num.	Unad	Unadjusted		BMI-adjusted	
		Markers	OR	Р	OR	Р	Markers	OR	Р	OR	Р	
	IVW (standard)		1.02	0.139	1.01	0.187		1.06	0.107	1.06	0.247	
Fatash liah ad	MR-Egger	261	1.04	0.196	1.03	0.334	2001	1.04	0.102	0.98	0.885	
Established (p<5x10 ⁻⁸) loci	Median	36	1.01	0.260	1.00	0.832	148	1.03	0.049	1.04	0.394	
	Mode		1.00	0.823	0.98	0.390		0.80	0.145	1.17	0.198	
	MR-RAPS		1.02	0.017	1.02	0.061		1.06	0.040	1.05	0.279	
	IVW (standard)		1.01	1.38x10 ⁻³	1.01	1.59x10 ⁻³		0.98	0.014	0.97	3.10x10 ⁻⁴	
Conomo wido	MR-Egger	5,877/	1.00	1.87x10 ⁻³	1.01	2.16x10 ⁻³	1 626/	0.95	0.014	0.94	5.08x10 ⁻⁷	
Genome-wide information	Median		1.01	2.27x10 ⁻³	1.01	2.62x10 ⁻³	4,636/	1.09	0.038	1.06	7.18x10 ⁻²	
	Mode	5,022	1.57	1.06x10 ⁻³	3.00	4.17x10 ⁻²	5,157	1.86	0.093	4.07	0.997	
	MR-RAPS		1.01	2.02x10 ⁻³	1.01	2.44x10 ⁻³		1.10	0.087	0.93	9.91x10 ⁻³	

Abbreviations are as follows: IVW, inverse variance weighted; Num., number of; T2D, type 2 diabetes; OR, odds ratio; p, p-value. Number of markers are given first using the unadjusted T2D summary statistics, and then using the BMI-adjusted summary statistics.

	Chr	Risk Allele Frequency											
		TDMA	IVW	RE2	ASSET								
-	2	rs840967											
	6					rs9273366							
	10	rs12265333	rs7923726	rs12265333	rs12265333	rs7923726							
	11	rs685870	rs1662185	rs685870	rs685870								
	17	rs2292749	rs684214	rs684214	rs684214	rs684214							

Supplementary Table 10: Lead Marker in Each Locus (Which Meet Our Criteria) Using Different Approaches for Trans-Disease Meta-Analysis

The results are largely consistent between techniques, with the chromosome 10 and 17 loci revealed by all, and all but ASSET revealing the chromosome 11 locus. Only TDMA identifies the chromosome 2 locus as significant because the lead marker for the other techniques (rs2860773) is not suggestive significant for T2D. This suggests the differences between techniques are not so much due to large changes in p-value, but rather small changes in the ordering of most significant markers. Abbreviations are as follows: Chr, chromosome; TDMA, Unweighted Trans-Disease Meta-Analysis; IVW, Inverse-Variance Weighted; CCMA, Compare and Contrast Meta-Analysis; RE2, Buhm Han's revised random effects model for meta-analysis; ASSET, ASsociation analysis based on subSETs.

Marker ID	Chr	Position (hg19)	Alleles (risk/non- risk)	Meta-analysis P-values			Meta-analysis Odds Ratios			Nearby	BMI	New GWS
				P(Psoriasis)	P(T2D)	P(Both)	OR(Psoriasis)	OR(T2D)	OR(Both)	Gene	LOCUS?"	Locus? ^a
rs11795343	9	32523737	T/C	5.2x10 ⁻⁸	1.9x10 ⁻⁴	1.4x10 ⁻¹⁰	1.11	1.03	1.07	DDX58	No	T2D
rs10761661	10	64525135	C/T	4.9x10 ⁻⁶	4.1x10 ⁻⁴	3.4x10 ⁻⁸	1.09	1.03	1.06	ZNF365	Yes	T2D
rs653178	12	112007756	C/T	1.7x10 ⁻⁴	9.0x10 ⁻⁸	4.9x10 ⁻⁸	1.07	1.04	1.06	BRAP	Yes	No

Supplementary Table 11: Additional Loci for Trans-Disease Meta-Analysis with p<1x10⁻³ Suggestive Significance Threshold

Abbreviations are as follows: Chr, chromosome; OR, odds ratio; p, p-value; T2D, type 2 diabetes; BMI, body mass index; GWS, genome-wide significant (i.e. p<5x10⁻⁸). ^aWe determine whether a locus is previously known to be associated with BMI, psoriasis, or T2D according to data from the GIANT and DIAGRAM consortium, as well as a search of the available literature.

	Chr	Position (hg19)	Alleles (risk/non- risk)	Risk Allele Frequency				
Marker ID				Control	Psoriasis (only)	T2D (only)	Both	
rs11795343	9	32523737	T/C	0.601	0.641	0.606	0.640	
rs10761661	10	64525135	C/T	0.567	0.585	0.565	0.572	
rs653178	12	112007756	C/T	0.491	0.523	0.501	0.536	

Supplementary Table 12: Additional Shared Loci (p<1x10⁻³) in the Michigan Genomics Initiative

Abbreviations are as follows: Chr, chromosome; T2D, type 2 diabetes.

Supplementary Note 1: Previous reporting of shared loci

The gene targets suggested for the loci in previous research are: *CEP68* (Mahajan et al., 2018) and *SPRED2* (Xue et al., 2018) for 2p14; *CHUK* (Tsoi et al., 2017, Xue et al., 2018) for 10q24.31; *PRDX5* (Ellinghaus et al., 2012, Stuart et al., 2015) and *RPS6KA4* (Stuart et al., 2015) for 11q13.1; *MLX* (Mahajan et al., 2018), *PTRF* (Tsoi et al., 2012), *STAT3* (Tsoi et al., 2012, Xue et al., 2018), *STAT5A* (Tsoi et al., 2012) and *STAT5B* (Tsoi et al., 2012) for 17q21.2. The chromosome 2 locus has not previously been identified as genome-wide significant for psoriasis, although the surrounding D2S134 region has been suggested through linkage analysis (Trembath et al., 1997) (*p=0.0077*) and is a known locus for rheumatoid arthritis (Stahl et al., 2010) (*p=5.3x10⁻¹⁰; OR=1.13*) and systemic lupus erythematosus (Bentham et al., 2015) (*p=2.3x10⁻⁸; OR=1.20*). The chromosome 11 locus has not previously been identified as genome-wide significant for T2D, although it was previously shown to be genome-wide significant for alopecia areata (Betz et al., 2015) (*p=8.7x10⁻¹⁴; OR=1.32*), primary biliary cirrhosis (Mells et al., 2011) (*p=2.1x10⁻¹⁰; OR=1.23*), primary sclerosing cholangitis (Ji et al., 2017) (*p=2.2x10⁻¹³; OR=1.20*), leprosy (Liu et al., 2015) (*p=8.8x10⁻¹⁴; OR=1.24*), Crohn's disease (Franke et al., 2010) (*p=6.0x10⁻¹⁰; OR=1.10*), multiple sclerosis (Beecham et al., 2013) (*p=2.0x10⁻⁹; OR=1.07*), sarcoidosis (Fischer et al., 2012) (*p=3.2x10⁻⁸; OR=1.32*), and vitiligo (Jin et al., 2016) (*p=4.81x10⁻⁸; OR=1.15*).

Supplementary Note 2: Patient Identification

Patients from the Michigan Genomics Initiative (MGI) were identified as having a diagnosis of psoriasis and/or type 2 diabetes (T2D) if they had at least one of the following ICD9/10 codes, respectively:

Psoriasis: L40.0, L40.1, L40.2, L40.3, L40.4, L40.8, L40.9, L40.50, L40.52, L40.54, L40.53, L40.59, L40.51, 696.1, 696.0

T2D: E11.9, E11.22, E11.319, E11.65, E11.40, E11.42, E11.21, E11.8, E11.69, E11.621, E11.29, E11.59, E11.329, E11.359, E11.43, E11.311, E11.610, E11.49, E11.649, E11.51, E11.39, E11.351, E11.00, E11.622, E11.52, E11.331, E11.321, E11.41, E11.628, E11.339, E11.620, E11.341, E11.36, E11.01, E11.618, E11.44, E11.349, E11.638, E11.641, E11.630, E11, 250.00, 250.02, 250.60, 250.52, 250.50, 250.40, 250.80, 250.90, 250.70, 250.92, 250.62, 250.10, 250.82, 250.42, 250.72, 250.12, 250.20, 250.30, 250.22, 250.32

Supplementary Note 3: Trans-disease meta-analysis (TDMA)

$$\beta_{PSV,T2D} = \frac{\beta_{PSV} + \beta_{T2D}}{2} \quad V_{PSV,T2D} = \frac{V_{PSV} + V_{T2D}}{4} \quad Z_{PSV,T2D} = \frac{\beta_{PSV,T2D}}{\sqrt{V_{PSV,T2D}}}$$

 β_{PSV} and β_{T2D} are the log odds-ratios for psoriasis vs. control and T2D vs. control meta-analyses, respectively; V_{PSV} and V_{T2D} are the corresponding variances. The meta-analysis effect size and variance equations were derived from a weighted sum with equal weight ($w = \frac{1}{2}$): $\beta_{PSV,T2D} = E(wPsV + wT2D) = wE(PsV) + wE(T2D) = \frac{\beta_{PSV} + \beta_{T2D}}{2}$; $V_{PSV,T2D} = Var(wPsV + wT2D) = Var(wPsV) + Var(wT2D) = w^2Var(PsV) + w^2Var(T2D) = \frac{V_{PSV} + V_{T2D}}{4}$.

Other approaches compared against: CCMA (Baurecht et al., 2016) (Compare and Contrast Meta-Analysis), RE2 (Han and Eskin, 2011) (random effects model), and ASSET (Bhattacharjee et al., 2012) (ASsociation analysis based on subSETs).

Colocalization: COLOC (Giambartolomei et al., 2014) tests the following hypotheses: H₀: no association with either trait; H₁: association with T2D, not with psoriasis; H₂: Association with psoriasis, not with T2D; H₃: association with both diseases, but with different causal variants; and H₄: association with both diseases with the same causal variant. We define the posterior probability of colocalization as the posterior probability of H₄. Psoriasis/T2D colocalization was compared between the loci identified by our approach and 59 other previously identified (Bowes et al., 2015, Patrick et al., 2018, Stuart et al., 2015, Tsoi et al., 2012, Tsoi et al., 2017, Yin et al., 2015) psoriasis loci more than 500kb away. The effect sizes and standard errors of markers within +-100kb of the lead marker for each locus were supplied as input to COLOC.

Supplementary Note 4: Locus interpretation

GARFIELD (lotchkova et al., 2019) (GWAS Analysis of Regulatory or Functional Information Enrichment with LD correction) was used to perform enrichment analysis across >1,000 different chromatin marks and identify the cell types/tissues involved. As input data for the enrichment, all LD-independent markers (with and without the MHC) from the TDMA that were more significant than in both the individual meta-analyses were used. To further investigate the results illustrating enriched chromatin marks among immune cell types, we studied eQTLs from different databases to identify potential gene targets: eQTLGen (Võsa et al., 2018) (31,684 whole blood samples), the Gene Network blood eQTL browser (Westra et al., 2013) (5,311 peripheral blood samples), and the NESDA/NTR eQTL catalog (Jansen et al., 2017) (4,896 peripheral blood samples). We explored the impact our loci might have on these genes using results from two differential expression studies for psoriasis (58 lesional skin and 64 controls from Gudjonsson et al. (Gudjonsson et al., 2009); 28 lesional skin and 38 controls from Tsoi et al. (Tsoi et al., 2019)) in addition to four differential expression studies for type 2 diabetes: skeletal muscle (Wu et al., 2007) (15 T2D cases and 20 controls), pancreatic islets (Dominguez et al., 2011) (6 T2D cases and 7 controls), liver (Pihlajamaki et al., 2009) (4 T2D cases and 5 controls) and subcutaneous adipose (Soronen et al., 2012) under hyperinsulinemia (5 T2D cases and 5 controls). We investigated the physical interaction between the gene target enhancers and potential causal variants (from Bayesian credible sets with 95% confidence interval) using promoter capture Hi-C data in 7 tissues from 2 different sources (pancreas, adipose, liver, skeletal muscle, lymphoblastoid and thymus from Jung et al. (Jung et al., 2019) and keratinocytes from Rubin et al. (Rubin et al., 2017)). Finally, enrichment analysis was performed across protein-protein interaction (PPI) sets (Chen et al., 2012), to identify hub proteins connecting the gene targets from each locus.

References

- Baurecht H, Hotze M, Rodriguez E, Manz J, Weidinger S, Cordell HJ, et al. Compare and Contrast Meta Analysis (CCMA): A Method for Identification of Pleiotropic Loci in Genome-Wide Association Studies. PLoS One 2016;11(5):e0154872.
- Beecham AH, Patsopoulos NA, Xifara DK, Davis MF, Kemppinen A, Cotsapas C, et al. Analysis of immunerelated loci identifies 48 new susceptibility variants for multiple sclerosis. Nature genetics 2013;45(11):1353-60.
- Bentham J, Morris DL, Graham DSC, Pinder CL, Tombleson P, Behrens TW, et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nature genetics 2015;47(12):1457-64.
- Betz RC, Petukhova L, Ripke S, Huang H, Menelaou A, Redler S, et al. Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci. Nature communications 2015;6:5966.
- Bhattacharjee S, Rajaraman P, Jacobs KB, Wheeler WA, Melin BS, Hartge P, et al. A subset-based approach improves power and interpretation for the combined analysis of genetic association studies of heterogeneous traits. Am J Hum Genet 2012;90(5):821-35.
- Bowes J, Budu-Aggrey A, Huffmeier U, Uebe S, Steel K, Hebert HL, et al. Dense genotyping of immunerelated susceptibility loci reveals new insights into the genetics of psoriatic arthritis. Nat Commun 2015;6:6046.
- Chen EY, Xu H, Gordonov S, Lim MP, Perkins MH, Ma'ayan A. Expression2Kinases: mRNA profiling linked to multiple upstream regulatory layers. Bioinformatics 2012;28(1):105-11.
- Dominguez V, Raimondi C, Somanath S, Bugliani M, Loder MK, Edling CE, et al. Class II phosphoinositide 3-kinase regulates exocytosis of insulin granules in pancreatic beta cells. The Journal of biological chemistry 2011;286(6):4216-25.
- Ellinghaus D, Ellinghaus E, Nair RP, Stuart PE, Esko T, Metspalu A, et al. Combined analysis of genomewide association studies for Crohn disease and psoriasis identifies seven shared susceptibility loci. American journal of human genetics 2012;90(4):636-47.
- Fischer A, Schmid B, Ellinghaus D, Nothnagel M, Gaede KI, Schurmann M, et al. A novel sarcoidosis risk locus for Europeans on chromosome 11q13.1. American journal of respiratory and critical care medicine 2012;186(9):877-85.
- Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, et al. Genome-wide metaanalysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nature genetics 2010;42(12):1118-25.
- Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet 2014;10(5):e1004383.
- Gudjonsson JE, Ding J, Li X, Nair RP, Tejasvi T, Qin ZS, et al. Global gene expression analysis reveals evidence for decreased lipid biosynthesis and increased innate immunity in uninvolved psoriatic skin. The Journal of investigative dermatology 2009;129(12):2795-804.
- Han B, Eskin E. Random-effects model aimed at discovering associations in meta-analysis of genomewide association studies. Am J Hum Genet 2011;88(5):586-98.
- Iotchkova V, Ritchie GRS, Geihs M, Morganella S, Min JL, Walter K, et al. GARFIELD classifies diseaserelevant genomic features through integration of functional annotations with association signals. Nature genetics 2019;51(2):343-53.
- Jansen R, Hottenga JJ, Nivard MG, Abdellaoui A, Laport B, de Geus EJ, et al. Conditional eQTL analysis reveals allelic heterogeneity of gene expression. Human molecular genetics 2017;26(8):1444-51.

- Ji SG, Juran BD, Mucha S, Folseraas T, Jostins L, Melum E, et al. Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and quantifies the genetic relationship with inflammatory bowel disease. Nature genetics 2017;49(2):269-73.
- Jin Y, Andersen G, Yorgov D, Ferrara TM, Ben S, Brownson KM, et al. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants. Nature genetics 2016;48(11):1418-24.
- Jung I, Schmitt A, Diao Y, Lee AJ, Liu T, Yang D, et al. A compendium of promoter-centered long-range chromatin interactions in the human genome. Nature genetics 2019;51(10):1442-9.
- Liu H, Irwanto A, Fu X, Yu G, Yu Y, Sun Y, et al. Discovery of six new susceptibility loci and analysis of pleiotropic effects in leprosy. Nature genetics 2015;47(3):267-71.
- Mahajan A, Wessel J, Willems SM, Zhao W, Robertson NR, Chu AY, et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nature genetics 2018;50(4):559-71.
- Mells GF, Floyd JA, Morley KI, Cordell HJ, Franklin CS, Shin SY, et al. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nature genetics 2011;43(4):329-32.
- Patrick MT, Stuart PE, Raja K, Gudjonsson JE, Tejasvi T, Yang J, et al. Genetic signature to provide robust risk assessment of psoriatic arthritis development in psoriasis patients. Nat Commun 2018;9(1):4178.
- Pihlajamaki J, Boes T, Kim EY, Dearie F, Kim BW, Schroeder J, et al. Thyroid hormone-related regulation of gene expression in human fatty liver. The Journal of clinical endocrinology and metabolism 2009;94(9):3521-9.
- Rubin AJ, Barajas BC, Furlan-Magaril M, Lopez-Pajares V, Mumbach MR, Howard I, et al. Lineage-specific dynamic and pre-established enhancer-promoter contacts cooperate in terminal differentiation. Nature genetics 2017;49(10):1522-8.
- Soronen J, Laurila PP, Naukkarinen J, Surakka I, Ripatti S, Jauhiainen M, et al. Adipose tissue gene expression analysis reveals changes in inflammatory, mitochondrial respiratory and lipid metabolic pathways in obese insulin-resistant subjects. BMC medical genomics 2012;5:9.
- Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S, Thomson BP, et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nature genetics 2010;42(6):508-14.
- Stuart PE, Nair RP, Tsoi LC, Tejasvi T, Das S, Kang HM, et al. Genome-wide Association Analysis of Psoriatic Arthritis and Cutaneous Psoriasis Reveals Differences in Their Genetic Architecture. American journal of human genetics 2015;97(6):816-36.
- Trembath RC, Clough RL, Rosbotham JL, Jones AB, Camp RD, Frodsham A, et al. Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Human molecular genetics 1997;6(5):813-20.
- Tsoi LC, Rodriguez E, Degenhardt F, Baurecht H, Wehkamp U, Volks N, et al. Atopic Dermatitis Is an IL-13-Dominant Disease with Greater Molecular Heterogeneity Compared to Psoriasis. The Journal of investigative dermatology 2019;139(7):1480-9.
- Tsoi LC, Spain SL, Ellinghaus E, Stuart PE, Capon F, Knight J, et al. Enhanced meta-analysis and replication studies identify five new psoriasis susceptibility loci. Nat Commun 2015;6:7001.
- Tsoi LC, Spain SL, Knight J, Ellinghaus E, Stuart PE, Capon F, et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat Genet 2012;44(12):1341-8.
- Tsoi LC, Stuart PE, Tian C, Gudjonsson JE, Das S, Zawistowski M, et al. Large scale meta-analysis characterizes genetic architecture for common psoriasis associated variants. Nature communications 2017;8:15382.

- Võsa U, Claringbould A, Westra H-J, Bonder MJ, Deelen P, Zeng B, et al. Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis. bioRxiv 2018:447367.
- Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nature genetics 2013;45(10):1238-43.
- Wu X, Wang J, Cui X, Maianu L, Rhees B, Rosinski J, et al. The effect of insulin on expression of genes and biochemical pathways in human skeletal muscle. Endocrine 2007;31(1):5-17.
- Xue A, Wu Y, Zhu Z, Zhang F, Kemper KE, Zheng Z, et al. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nature communications 2018;9(1):2941.
- Yin X, Low HQ, Wang L, Li Y, Ellinghaus E, Han J, et al. Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility. Nat Commun 2015;6:6916.