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Supporting Information

SI Shear modulus in the affine network model

Eq. 8 was obtained under the phantom network assumption, i.e., that the coordinates of the

vector rλ = Rλ + uλ transform according to Rx,λ = λRx,1 and ux,λ = ux,1. In this case, the

fluctuation term is unaffected by the deformation. One can also assume, on the contrary,

that the fluctuations deform affinely with the average end-to-end vector, i.e., rx,λ = λrx,1

and analogous for the other coordinates. In this case, one obtains

gaff = −TR
2

6V

[
dsn(r̃)

dr̃

1

r̃
+
d2sn(r̃)

dr̃2

]
, (S1)

which results in a different Gaussian modulus:

Gaff,G =
kBT

V

Ns∑
1

r2
i

nib2
=

〈
r2

nb2

〉
kBTν ≡ AaffkBTν, (S2)

where the sum is, as usual, taken over theNs elastically-active strands. Under the assumption

that the r2
i are Gaussianly distributed (see Sec. AI in the main text) we have

〈
r2

nb2

〉
= 1. (S3)

From Eqs. (S3) and (S2), get the commonly reported expression1,2

Gaff,G = kBTν. (S4)
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SII Monomer mean-squared displacement during equi-

libration
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Figure S1: The mean-squared displacement of the C = 1%, ρinit = 0.1 sample computed at
ρ = 0.1 and ρ = 1.5. The vertical dashed line signals the equilibration time we use.

In order to verify that the system has equilibrated correctly, we measure the monomer

mean-squared displacement (MSD). In Fig. S1 we report the monomer MSD of the C = 1%,

ρinit = 0.1 sample computed at ρ = 0.1 and ρ = 1.5. We note that the MSD quickly reaches

a plateau, signaling that the oscillation modes of all the strands have equilibrated.

SIII Density scaling of RMS equilibrium end-to-end

distance

We report in Fig. S2a for ρ = 0.5 the RMS equilibrium end-to-end distance of the strands,

defined as R(n) ≡ [〈R2(n)〉n]1/2 *, where 〈·〉n denotes the average over all the strands of length

n. We note that curves for different initial densities ρinit and crosslinker concentrations C fall

on the same master curve if divided by the quantity (ρcl
init)

1/3, where ρcl
init = Cρinit is the initial

crosslinker density. Since this quantity represents the inverse of the initial average distance

between neighboring crosslinkers, we can conclude that the initial spatial distribution of the

*We recall that the end-to-end distance is r(t) ≡ R+ u(t), and that r2 = R2 + u2.
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Figure S2: (a-b): RMS equilibrium end-to-end distance of the strands for C = 1%, 5%, 10%
for ρinit = 0.1, 85 and ρ = 0.5, rescaled by (a) the inverse of the initial average distance
between neighboring crosslinkers (ρAinit)

1/3 = (Cρinit)
1/3 and (b) by (γρAinit)

1/3, where γ = 0.74
for ρinit = 0.85 and γ = 1 for ρinit = 0.1. (c): Same quantity as in a-b, rescaled by ρ1/3, for
C = 5% and for different values of ρ.

crosslinkers completely controls the equilibrium end-to-end distance of the chains in the final

state. An even better collapse can be obtained by using slightly different (heuristic) factors

for the two values of the initial density we use here: Fig. S2b shows the same curves rescaled

by (γρAinit)
1/3, where γ = 0.74 for ρinit = 0.85 and γ = 1 for ρinit = 0.1. We note that the

same rescaling does not apply to [〈r2(n)〉n]1/2, since the fluctuation term u2 does not follow

this scaling. We also report in Fig. S2a the scaling behavior expected for Gaussian strands,

i.e., R(n) ∝ n1/2 (dashed line), and the one for stretched strands, i.e., R(n) ∝ n (solid line).

One can see that the short chains are on average stretched, and only for larger values of n

the Gaussian behavior is recovered. Finally, we remark that since the equilibrium end-to-end

distances deform affinely with the network, R(n) curves at different final densities ρ collapse

on the same master curve when multiplied by ρ1/3, as shown in Fig. S2c.
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SIV Chain end-to-end distributions

In the main text we state that the non-monotonic behaviour of the shear modulus has an

essentially entropic origin. Here we complement the results reported therein with two figures

that strengthen this message.
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Figure S3: Free energy of chains of different n as a function of the end-to-end distance
rescaled by the contour length (points) as computed in simulations and (lines) as estimated
theoretically for FJCs.

Figure S3 shows the free-energy of a Kremer-Grest chain of length n and (normalised)

end-to-end distance r/nb as computed in simulations (points) and estimated by using the

exact FJC equation (lines). Deviations from the FJC behaviour appear always quite close

to r/nb ≈ 1 and slightly depend on n. Regardless of this value, the figure shows that the

difference between the theoretical and numerical data for r/nb < 0.95 is always very small.

Figure S4 shows the probability distribution of the normalised chain end-to-end distance

under no applied stress for all the studied systems. Every system but the three highlighted

in the figure have a negligible fraction of chains that are above or close to the r/nb ≈ 0.95

threshold, shown by the red dashed line. All in all, figures S3 and S4 show that the enthalpic

contribution to the elasticity is negligible for the great majority of the systems considered

here.
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Figure S4: Probability distribution of the chain end-to-end distance rescaled by the contour
length for all the investigated systems in equilibrium. The coloured curves belong to the
only three systems which have a non-negligible amount of chains with r/nb > 0.95, and they
all have C = 10%. Red dashed line indicates r/nb = 0.95.
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