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Related Work
In-Silico Molecular Generation Many of the previously proposed generative models of
molecules focused on extending the variational autoencoder (VAE) for molecular generation.
Gómez-Bombarelli et al. [1] proposed the first variational autoencoder (VAE) [2] based
model for generating molecules in their SMILES representations. To address the issue of
VAEs generating syntactically invalid SMILES strings, Kusner et al. [3] explicitly added the
grammar of SMILES strings to VAEs for molecule generation. Wang et al. [4], Guimaraes
et al. [5] and Cao and Kipf [6] used a generative adversarial network (GAN) [7] to build a
generative model of small molecular graphs. Unlike most recent work that has focused on
neural network-based approaches, Jensen [8] showed that genetic algorithms based on Monte
Carlo Tree Search (MCTS) could be competitive on the task of molecular generation.

Masked Language Models Masked language models, such as BERT [9], have been shown
to bring significant improvements to a variety of discriminative language understanding
tasks such as question answering [10, 11] and natural language inference [12, 13]. Wang
and Cho [14], Ghazvininejad et al. [15] and Mansimov et al. [16] proposed ways to generate
text directly from trained masked language models. Wang and Cho [14] proposed the use
of Gibbs sampling, and Mansimov et al. [16] proposed the use of adaptive Gibbs sampling
approaches for effective text generation using masked language models. Ghazvininejad et al.
[15] used conditional masked language models for parallel decoding in machine translation.
They first predict all target words in parallel, and then repeatedly mask out and regenerate
the subset of words that the model is least confident about for a fixed number of iterations.
In parallel to the work investigating masked language models for text generation, Welleck
et al. [17], Stern et al. [18] and Gu et al. [19] proposed methods for non-monotonic sequential
text generation. Although these methods could be applied for generating molecular graphs in
flexible ordering, there has not been work empirically validating this. Due to the popularity
of masked language models in natural language processing tasks, there has been recent work
investigating a similar approach for learning graph representations. Hu et al. [20] investigated
the transfer to downstream tasks of graph neural networks that were trained to predict the
masked node and edge attributes of graphs. Maziarka et al. [21] proposed the molecule
attention transformer architecture that was pretrained to predict masked input nodes and
investigated its transfer to downstream property prediction tasks. Unlike our work, neither
Hu et al. [20] nor Maziarka et al. [21] investigated ways of generating novel molecular graphs
with their trained models.
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Effect of Generation Hyperparameters on Generation Quality
We analyze the effect of changing the masking rate and graph initialization on generation
quality. In order to do so, we must choose results corresponding to a certain number of
generation steps for each combination of masking rate and initialization. We therefore
evaluate samples at intermediate steps of the generation process, as shown in Supplementary
Figure 1, to determine how the values of the evaluation metrics change as the number of
generation steps increases.

For training initialization (Supplementary Figures 1a and 1c), the initialized molecules
have perfect validity, uniqueness, KL and Fréchet scores, and zero novelty score. As generation
proceeds, changes are made to the training molecules, yielding some invalid molecules, so the
validity decreases. Some of the changes yield new, valid molecules, so the novelty increases.
These molecules are less similar to the dataset distributions than the training molecules
are themselves, so the KL and Fréchet scores decrease. On the other hand, for marginal
initializations (Supplementary Figures 1b and 1d), the initialized molecules are less likely to
be valid or similar to the dataset molecules. The probability of obtaining duplicate molecules
is low as well. Over time, the molecules converge to valid structures similar to the dataset
molecules, so the validity, KL and Fréchet scores increase. For both training and marginal
initializations, different initialized molecules may converge to the same molecule over time,
lowering uniqueness.

For all configurations and all metrics, the slope of the score with respect to the number
of generation steps tends to flatten over time. When presenting the results of our model
for different masking rates and initializations, we use the benchmark scores at the final
generation step.

We now use these results to analyze the effect of changing the masking rate and graph
initialization for generation in Supplementary Table 1. On QM9, we find that using marginal
initialization leads to slightly higher validity and novelty scores however with lower KL-
divergence and Fréchet ChemNet Distance scores compared with using training initialization.
When using marginal initialization, the masked graph model generates marginally more novel
molecules at the expense of not capturing the properties of dataset molecules as well. On
ChEMBL, the marginal initialization strategy results in validity scores close to 0, which is
why we only consider the training initialization strategy in Supplementary Table 1. On both
QM9 and ChEMBL, novelty increases significantly when increasing the masking rate while
the validity, KL-divergence and Fréchet Distance scores drop.

Close observation of the results in Supplementary Table 1 suggests that the choice of
masking rate and initialization strategy impacts the balance among the five metrics. Most
significantly, increasing the masking rate results in a higher novelty score, and lower KL-
divergence and Fréchet Distance scores. We can trade off between different metrics as desired
by adjusting the initialization and masking rate.

Selecting Best Unconditional Generation Results
We have shown that the GuacaMol benchmark metrics are correlated and that our model
can efficiently trade these metrics off against each other. Thus we cannot say that one
generation strategy definitively outperforms another unless it achieves a higher score on each
of the five metrics. However, for the sake of comparison with baseline models, we pick one
generation strategy as follows: we select results from Supplementary Table 1 for each dataset
corresponding to the highest geometric mean among all five metrics.
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For QM9, the ‘best’ MGM results correspond to training initialization with a 10% masking
rate. For ChEMBL, the ‘best’ MGM results correspond to training initialization with a 1%
masking rate.

Effect of Validation Loss on Generation Quality
To determine whether validation loss is a suitable proxy for generation quality, we carry out
generation from different training checkpoints of our ‘best’ QM9 model. During training, we
carried out a hyperparameter search to find the configurations with the lowest validation
loss, which we used as the criterion to select the best model for generation. The experiments
in this subsection explore whether this choice is justified.

Supplementary Figure 2 shows the values of all five benchmark metrics corresponding to
different loss values (i.e., different checkpoints) of our model. In general, as the validation
loss increases, the metrics’ values decrease. We attribute the decrease in validity to the fact
that a less well-trained model is less likely to have learned enough about the relationship
between different parts of a graph to predict masked components that respect the chemical
constraints inherent in this type of data. The increase in novelty and decrease in KL and
Fréchet scores are explained by better-trained models being more likely to predict masked
components from the most similar context in the training/validation data. Occasionally this
causes our model to generate an exact copy of a molecule from the training dataset, lowering
the novelty; in general, it produces molecules whose local neighborhoods are similar to those
of molecules in the training/validation data, thereby increasing the KL and Fréchet scores.
The sharp decrease in novelty and uniqueness as the loss increases from 1.17 to 1.65 can be
attributed to the low validity, as GuacaMol implicitly penalizes all metrics when the validity
drops below 0.5.

We conclude that selecting the model with the lowest validation loss for generation is a
reasonable strategy. This implies that using more powerful graph neural networks within
our masked graph modeling framework could improve generation quality. Finding model
architectures that lower the validation loss is a good direction for future work.

B Supplementary Tables

Dataset Mask Rate Graph Init Valid Uniq Novel KL Div Fréchet Dist

QM9

10% train 0.886 0.978 0.518 0.966 0.842
10% marginal 0.922 0.972 0.568 0.930 0.645
20% train 0.678 0.988 0.789 0.901 0.544
20% marginal 0.719 0.982 0.792 0.893 0.529

ChEMBL 1% train 0.849 1.000 0.722 0.987 0.845
5% train 0.558 1.000 0.952 0.869 0.396

Supplementary Table 1: Effect of varying masking rate and graph initialization on
the benchmark results for our masked graph model on QM9 and ChEMBL.

3



d0 MPNNs Layers per MPNN Batch Size Learning Rate LR Decay Validation Loss
2048 1 4 100 0.0005 no 0.29
2048 1 4 800 0.0005 no 0.20
2048 1 6 512 0.0001 no 0.12
2048 1 6 512 0.0005 no 0.17
2048 1 6 512 0.005 yes 0.38
2048 1 6 1024 0.0005 no 0.16
2048 1 8 50 0.0005 no 0.32
2048 1 8 100 0.0005 no 0.23
2048 1 8 400 0.0005 no 0.19
2048 1 16 25 0.0005 no 0.40
2048 1 16 100 0.0005 no 0.23
2048 2 2 400 0.0005 no 0.22
2048 2 3 512 0.005 yes 0.38
2048 2 4 400 0.0005 no 0.17
4096 1 4 400 0.0005 no 0.28
4096 1 6 512 0.005 yes 1.00
4096 1 6 1024 0.0001 no 0.15
4096 1 6 1024 0.0005 no 0.19
4096 1 6 2048 0.0005 no 0.19

Supplementary Table 2: Hyperparameter configurations and corresponding valida-
tion set loss on the ChEMBL dataset. The rows are arranged in ascending order,
greedily by column from left to right. LR decay stands for learning rate decay and cor-
responds to decreasing the learning rate to a minimum of 0.0005 by halving the current
learning rate every 204,800 data points. The hyperparameter configuration corresponding to
the lowest loss is given in bold font and was used to generate the ChEMBL results presented
in the paper.
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C Supplementary Figures
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(a) Training initialization, 10% masking rate

10 50 100 150 200 250 300 350 400
Generation Steps

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Metric
Validity
Uniqueness
Novelty
KL
Frechet

(b) Marginal initialization, 10% masking rate
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(c) Training initialization, 20% masking rate
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(d) Marginal initialization, 20% masking rate

Supplementary Figure 1: Plots of generation scores as a function of number of
generation steps for each initialization and masking rate on QM9.
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(a) Training Initialization

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Loss

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Metric
Validity
Uniqueness
Novelty
KL
Frechet

(b) Marginal Initialization

Supplementary Figure 2: Benchmark metric results on QM9 corresponding to our
model’s checkpoints corresponding to different validation loss values. A masking
rate of 10% was used.
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(a) QM9
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(b) ChEMBL

Supplementary Figure 3: Plots of validity against novelty, two anti-correlated met-
rics from the GuacaMol [22] distribution-learning benchmark. The plots are gen-
erated in the same way as for Figure 1 in the main text.
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Initialize graph with 10
nodes

For each node
feature: mask
out the feature

from 1 randomly
chosen node

For each edge
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Supplementary Figure 4: Schematic for unconditional generation with an initial
graph with 10 nodes and a 10% masking rate. The initial graph can either be taken
from the training set (training initialization) or initialized using the training set distribution
(marginal initialization). At each of the K sampling iterations, 10

100 ∗ 10 = 1 node and
10
100 ∗ 10(10−1)

2 ≈ 5 prospective edges are masked out and replaced.
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Feedforward Network

Feedforward Network

Shared weights GRU

LayerNorm

(a) Node Update Step. The diagram shows the calculation of the updated representation of node v1
in the graph at the top of the figure.

⊗
denotes elementwise multiplication.

Feedforward Network

(b) Edge Update Step. The diagram shows the calculation of the updated representation of edge
e
(l+1)
1,2 in the graph at the top of the figure.

Supplementary Figure 5: MPNN update steps
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Supplementary Figure 6: A selection of unconditionally generated novel molecules
from ChEMBL. The molecules are randomly chosen from the subset of novel generated
molecules with QED score > 0.9.
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Supplementary Figure 7: A selection of unconditionally generated novel molecules
from QM9. The molecules are randomly chosen from the subset of novel generated molecules
with QED score > 0.6.
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