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Supplementary Note 
 
CNN architecture (using Keras1 syntax) 

Input: 1-hot encoding of sequence: (n_samples, L, 26). 

• 1D CNN layer x 16 (# filters = {512, 512, 512, 512, 512, 512, 512, 512, 
512, 512, 512, 512, 512, 512, 512, 512}, length = {8, 16, 25, 32, 40, 
48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128}, l2_reg = 2e-4) 

• Concatenate layer  
• BatchNormalization  
• Activation (ReLU)  
• Dropout (0.3)  
• GlobalMaxPooling  
• Dropout (0.6)  
• Dense (dim = |GO| or dim = |EC|)  
• Activation (sigmoid)  

Optimization:	loss =	binary_crossentropy;	optimizer =	Adam	(lr = 0.0005, β1 = 0.95, β2 = 
0.99);	batch_size = 64;	epochs	= 100;	EarlyStopping	(patience=5).		

	

LSTM-LM architecture  

Input: 1-hot encoding of sequence: (n_samples, L, 26).  

• LSTM (dim = 512, return_sequences=True, kernel_constrain=MinMax(-2.0, 
2.0), recurrent_constrain=MinMax(-2.0, 2.0))  

• LSTM (dim = 512, return_sequences=True, kernel_constrain=MinMax(-2.0, 
2.0), recurrent_constrain=MinMax(-2.0, 2.0))  

• TimeDistributed(Dense(26))  
• Activation (softmax)  

Optimization: loss = categorical_crossentropy; optimizer = Adam (lr = 0.001, β1 = 0.99, β2 
= 0.99); batch_size = 128; epochs = 5.  

 
GCN architecture 

Input: 1-hot encoding of sequence, S = (n_samples, L, 256); Normalized contact maps, A = 
(n_samples, L, L); Pre-trained LSTM-LM.  

• Sequence embedding:  
– SeqEmbedding_1 = Dense (dim = 128, use_bias=False)(S) 
– SeqEmbedding_2 = Dense (dim = 128, use_bias=False)(LSTM-LM(S)) 

 
1 https://keras.io/ 
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– Add()(SeqEmbedding_1, SeqEmbedding_2) 
– Activation (ReLU)  

• GCN layer (dim = 256, use_bias=False, l2_reg = 2e-4)  
• Activation (ReLU)  
• GCN layer (dim = 256, use_bias=False, l2_reg = 2e-4)  
• Activation (ReLU)  
• GCN layer (dim = 512, use_bias=False, l2_reg = 2e-4)  
• Activation (ReLU)  
• Concatenate layer (all GCN layers)  
• GlobalSumPooling  
• Dropout(0.3)  
• Dense (dim = 1024)  
• Activation (ReLU)  
• |GO| X Dense (dim = 2)  
• Activation (softmax)  

Optimization: loss = categorical_crossentropy; optimizer = Adam (lr = 0.001, β1 = 0.99, β2 
= 0.99); batch_size = 64; epochs = 200; EarlyStopping (patience=5). 	

 
Evaluation metrics 
 
We evaluate the performance of our method using both protein-level and residue-level metrics as 
follows:  
 

1) Protein-level evaluation: we measure the performance of our method in a) predicting 
functions for a particular protein (protein-centric) and b) predicting proteins associated 
with a particular GO/EC term (term-centric). To this end, we use two measures first 
proposed in CAFA[14]: 
 
a) Protein-centric F-max obtained by finding the maximum of F1 score over thresholds 

! ∈ [0,1]: 
!!"# = #$%

$
&%∙'()*+($)∙'()./($)'()*+($)0'()./($)'  Supplementary Equation 1 

 
 

where the precision is averaged over all proteins, m(t), for which we predict at least 
one term: ()*+,(!) 	= 	 !

"($)∑ 2,&"($)
&'! (!) , whereas recall is averaged over all 

proteins, n: ()*34(!) = !
(∑ ,4&(

&'! (!). For a given target protein, i, and some value 
of threshold ! ∈ [0,1], the precision and recall are computed as:  

()1(+) =
∑ 3(4∈*!($)∧4∈7!)"

∑ 3(4∈*!($))"
  Supplementary Equation 2 

 

)-1(+) =
∑ 3(4∈*!($)∧4∈7!)"

∑ 3(4∈7!)"
  Supplementary Equation 3 
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where f is a GO/EC term, Ti is a set of known GO/EC terms for protein i (for MF-GO, 
BP-GO and CC-GO we propagated annotations up to the root term), and Pi(t) is a set 
of predicted GO/EC terms with score ≥ t, 6(∙) – the indicator function.  

 
b) Term-centric area under the Precision-Recall curve (AUPR), where precision and 

recall for each term f are computed as: 
 

()4(+) = ∑ 3(4∈*!($)∧4∈7!)!
∑ 3(4∈*!($))!

  Supplementary Equation 4 

 

)-4(+) = ∑ 3(4∈*!($)∧4∈7!)!
∑ 3(4∈7!)!

  Supplementary Equation 5 

 
For each term, f, we compute PR curve using the sliding window method (i.e., 
across all threshold values of ! ∈ [0,1]) and then we compute AUPR using the 
trapezoid rule. Even though in same cases we report AUPR values for each 
individual GO term (e.g., Supplementary Fig. 7), in most cases we report the 
AUPR performance under micro- and macro- averaging; the micro-averaged PR 
curve is computed by first vectorizing the protein–function predicted scores and 
known binary annotations (i.e. flattening protein-function matrices), and then 
computing the PR curve using the sliding window method (e.g., Fig. 2A, B). The 
area under the PR curve, obtained by applying trapezoid rule, is known as micro-
AUPR. macro-AUPR (macro-AUPR) is computed by first computing the AUPR 
for each function separately, and then averaging these values across all functions.  
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Supplementary Figure 1. Performance of our method on MF-GO terms (A) and EC numbers 
(B) with different Graph Convolutional layers. Distribution of protein-centric Fmax score and 
function-centric AUPR score under 10 bootstrap iterations. Error bars represent standard 
deviation of the mean. 

. 
 
Supplementary Figure 2. Precision-recall curves showing the performance of different 
DeepFRI baseline architectures, in comparison to the sequence-only CNN, demonstrating the 
importance of both stages of DeepFRI shown in Fig. 1 (main manuscript). The DeepFRI model 
with deep neural network architecture instead of graph convolutions is trained only on Language 
Model features (DNN-LM), with simple one-hot encoding sequence features instead of Language 
Model features (GCN-1HOT), and with both graph convolutions and Language Model features 
(GCN-LM).  

 

(A)                Molecular Function (B)              Enzyme Commission
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Supplementary Figure 3. Performance of our method in comparison to state-of-the-art CNN 
(DeepGO) and BLAST baseline trained on different contact maps. The model is trained on 
proteins with experimental (EXP) MF-GO annotations. The results are averaged over 100 
bootstraps of the test set.  

 

 
Supplementary Figure 4. De-noising contact maps from Rosetta models. Here we plot features 
from using NATIVE contact maps as input vs. the features derived from using Rosetta-predicted 
contact maps of Rosetta models. We show these features for the 1st, 2nd and 3rd layer of graph 
convolution, and note that the features extracted from the third layer of the GCN exhibit strong 
NATIVE-Predicted correlations, providing strong evidence that our model is tolerant to even 
significant error in structure predictions, and can effectively denoise structure predictions. 
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Supplementary Figure 5. We stratify MF-, BP- and CC-GO terms into different groups based 
on their specificity, expressed as Information Content (IC), see methods, and show the number of 
each term in each category encompassed by both the PDB-only-trained (blue) and the PDB-and-
SWISS-MODEL trained DeepFRI models (red). 
 

 
 
 
 

Supplementary Figure 6. (A) F-max and AUPR scores, summarized over all proteins and GO 
terms, respectively, computed on the test set comprised of PDB and SWISS-MODEL chains 
chosen to have < 30 % sequence identity to the sequences in the training set. The numbers in 
brackets indicate the number of GO terms in different ontologies that are common to all four 
methods; asterisks indicate where the performance of DeepFRI is significantly better than 
DeepGOPlus (two-sided Wilcoxon rank-sum is used to compute significance with 3 asterisks 
indicating pval < 0.001). The F-max and AUPR scores averaged over 100 bootstraps of the test 
set. Error bars represent standard deviation of the mean. (B) Micro-average precision-recall 
curves for each method for MF-GO terms. The curves are averaged over100 bootstraps of the 
test set. Error bars represent standard deviation of the mean 
 

 
 

(A) (B)
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Supplementary Figure 7. (A) Experiments on experimentally annotated PDB chains show a difference in performance of our method 
vs. the CNN in predicting individual MF-GO terms. For each MF-GO term we show the DeepFRI and DeepGOPlus performance 
measured by the AUPR averaged over 100 bootstraps of the test proteins. Error bars represent standard deviation of the mean. Two-
sided Wilcoxon rank-sum is used to compute significance of the AUPR difference with 1 asterisk indicating pval < 0.05).  (B) 
Difference in the performance of these two methods. Only the top 30 MF-GO terms on which DeepFRI > DeepGOPlus are shown.  
 

(B)(A)
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Supplementary Figure 8. Grad-CAM for “DNA binding” (GO:0003677) mapped onto the 3D structure of the test PDB chains 
annotated with “DNA binding”. Their corresponding ROC curves measuring the overlap between the grad-CAM profile and DNA 
binding sites (retrieved from the BioLiP database) are shown in the bottom right corner. 

  

1RZR-C, Orthogonal Bundle2YVH-B, Orthogonal Bundle 5HAW-A, Orthogonal Bundle 2H7H-B, Up-down Bundle 2D5V-B, Orthogonal Bundle

4WZS-A, Orthogonal Bundle 4UMK-A 3ZKC-A, Orthogonal Bundle 4EYA-D, Orthogonal Bundle
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Supplementary Figure 9. Grad-CAM for “ATP binding” (GO:0005524) mapped onto the 3D structure of the test PDB chains 
annotated with “ATP binding”. Their corresponding ROC curves measuring the overlap between the grad-CAM profile and ATP 
binding sites (retrieved from the BioLiP database) are shown in the bottom right corner. 

 

1KH2-B, 3-Layer(aba) Sandwich 1J7K-A, Orthogonal Bundle 1RDQ-E, Orthogonal Bundle

3QAM-E, Orthogonal Bundle 4WC0-A, Orthogonal Bundle
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Supplementary Figure 10. Grad-CAM for “heme binding” (GO:0020037) mapped onto the 3D structure of the test PDB chains 
annotated with “heme binding”. Their corresponding ROC curves measuring the overlap between the grad-CAM profile and HEM 
binding sites (retrieved from the BioLiP database) are shown in the bottom right corner. 

 

3R9C-A, Orthogonal Bundle 3A1L-A, Orthogonal Bundle 3UGZ-A, Orthogonal Bundle

6F8C-A 1DM1-A, Orthogonal Bundle
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Supplementary Figure 11. Grad-CAM for “iron-sulfur cluster binding” (GO:0051536) mapped onto the 3D structure of the test PDB 
chains annotated with “iron-sulfur cluster binding”. Their corresponding ROC curves measuring the overlap between the grad-CAM 
profile and SF4 binding sites (retrieved from the BioLiP database) are shown in the bottom right corner. 
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Supplementary Figure 12. Grad-CAM for “magnesium ion binding” (GO:0000287) mapped onto the 3D structure of the test PDB 
chains annotated with “magnesium ion binding”. Their corresponding ROC curves measuring the overlap between the grad-CAM 
profile and MG binding sites (retrieved from the BioLiP database) are shown in the bottom right corner. 

 

1JP4-A, 2-Layer Sandwich 1E22-A, Beta Barrel 2WVA-E, 3-Layer(aba) Sandwich

3OE1-B, 3-Layer(aba) Sandwich 3I4K-G, Alpha-Beta Barrel1JBW-A, 3-Layer(aba) Sandwich
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Supplementary Figure 13. Grad-CAM for “iron ion binding” (GO:0005506) mapped onto the 3D structure of the test PDB chains 
annotated with “iron ion binding”. Their corresponding ROC curves measuring the overlap between the grad-CAM profile and FE 
binding sites (retrieved from the BioLiP database) are shown in the bottom right corner. 

 

4XQ1-A, Up-down Bundle 4WQ5-A, 2-Layer Sandwich

1J3Q-A, Sandwich
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Supplementary Figure 14. Grad-CAM for “zinc ion binding” (GO:0008270) mapped onto the 3D structure of the test PDB chains 
annotated with “zinc ion binding”. Their corresponding ROC curves measuring the overlap between the grad-CAM profile and ZN 
binding sites (retrieved from the BioLiP database) are shown in the bottom right corner. 

 
  

4QK3-A, Roll

1ZAB-D, 3-Layer(aba) Sandwich 2QN0-A, Alpha-Beta Complex 4QBF-A, 3-Layer(aba) Sandwich

2CD9-B, 3-Layer(aba) Sandwich 4CPD-A, 3-Layer(aba) Sandwich

3BL5-C, 3-Layer(aba) Sandwich
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Supplementary Figure 15. Grad-CAM for “calcium ion binding” (GO:0005509) mapped onto the 3D structure of the test PDB 
chains annotated with “calcium ion binding”. Their corresponding    ROC curves measuring the overlap between the grad-CAM 
profile and CA binding sites (retrieved from the BioLiP database) are shown in the bottom right corner. 

3QGV-A, Sandwich 4MRY-A, Orthogonal Bundle 2F8P-A, Orthogonal Bundle 5B7X-A,

2Y5I-A, Orthogonal Bundle 3KPX-A, Orthogonal Bundle 2K2F-A, Orthogonal Bundle
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Supplementary Figure 16. Sensitivity vs. false-positive rate curve for DeepFRI in predicting 
catalytic residues. ROC measures the overlap between the grad-CAM profile and know catalytic 
sites (hand curated from CSA database) for 38 evolutionary divergent enzymes obtained from 
ResBoost paper.  
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Supplementary Figure 17. Temporal holdout validation. (A) Average protein-centric F-max and term-centric AUPR values of our 
method in comparison to the CAFA-like BLAST baseline and DeepGOPlus applied on temporal holdout test PDB chains. The values 
are averaged over 100 bootstraps of the test set. Error bars represent standard deviation of the mean; asterisks indicate where the 
performance of DeepFRI is significantly better than the performance of DeepGOPlus (two-sided Wilcoxon rank-sum is used to 
compute significance with 3 asterisks indicating pval < 0.001); (B) PDB chains correctly annotated with our method (prediction score 
> 0.5) with very low BLAST and DeepGOPlus prediction scores; the low scores indicate the inability of BLAST and DeepGOPlust to 
correctly infer their GO terms. These PDB chains were selected because they have ligand-binding information in BioLiP that allows us 
to validate our Class Activation Mapping identification of functional sites on protein sequences and structures; (C) Grad-CAM profile 
mapped onto 3D stricture of the proteins in the Table. 

 

PDB-
chain

GO term GO name BLAST DeepGO DeepFRI

6AGZ-B GO:0010181 FMN binding 0.35 0.01 1.00

6Q72-E GO:0070279 vitamin B6 
binding

0.00 0.09 1.00

6E6B-A GO:0005509 calcium ion 
binding

0.45 0.98 0.99

6OR8-A GO:0051539 4 iron, 4 sulfur 
cluster binding

0.00 0.35 0.98

6NHG-E GO:0051537 2 iron, 2 sulfur 
cluster binding

0.00 0.25 0.98

6RTD-A GO:0020037 heme binding 0.00 0.21 0.87

6GTJ-A GO:0005507 copper ion 
binding

0.26 0.10 0.87

6ONS-A GO:0051539 4 iron, 4 sulfur 
cluster binding

0.47 0.10 0.86

6IWP-A GO:0008289 lipid binding 0.41 0.06 0.85

6JO6-A GO:0051536 iron-sulfur cluster 
binding

0.00 0.01 0.79

6OHK-A GO:0010181 FMN binding 0.37 0.02 0.79

6AIR-A GO:0051536 iron-sulfur cluster 
binding

0.00 0.27 0.78

6S0O-D GO:0005507 copper ion 
binding

0.34 0.04 0.73

6DE9-A GO:0051536 iron-sulfur cluster 
binding

0.00 0.02 0.69

6NCO-A GO:0008289 lipid binding 0.00 0.06 0.56

6S6X-J GO:0051539 4 iron, 4 sulfur 
cluster binding

0.00 0.06 0.52

(A)

(B)

(C) 6AGZ-B 6Q72-E 6E6B-A 6OR8-A 

6NHG-E 6RTD-A 6GTJ-A 6ONS-A 

6IWP-A 6JO6-A 6OHK-A 6AIR-A 
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Supplementary Figure 18. (A) Performance of our method in comparison to state- of-the-art 
CNN (DeepGO) and BLAST baseline trained with different sequence features (“1HOT” - 26-
dimensional binary one-hot encoding of residues, “LM” - features from the pretrained LSTM 
Language Model) and trained using protein chains with experimental (EXP) only and 
electronically inferred (EXP+IEA) MF-GO annotations. Again, all test proteins used to compose 
this metric were annotated with EXP evidence codes. (B) Performance of our model trained on 
CA-CA contact maps with experimental (EXP) annotations and evaluated on test set composed 
on CA-CA contact maps (“cmap”), generated contact maps with random contacts (“rand”) and 
contact maps with not contacts except for self-loops (“diag”). The AUPR values are averaged 
over 100 bootstraps of the test set. Error bars represent standard deviation of the mean. Asterisks 
indicate where the performance of our method trained on CA-CA contact maps is significantly 
better than its’ performance trained on “rand” and “diag”. Two-sided Wilcoxon rank-sum is used 
to compute significance with 2 asterisks indicating pval < 0.01.   

 
  

(A) (B)
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Supplementary Figure 19. (Top) Distribution of PDB chains across different protein families 
(Pfam) in the training (left) and the test set (right). (Bottom) Protein-centric Precision-Recall 
curves showing the performance of DeepFRI in comparison to FunFams and DeepGO averaged 
over test PDB chains belonging to the top 6 protein families in the test set.   
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Supplementary Figure 20. Performance of our method on a test set of proteins from different 
organisms measured as protein-centric Fmax score summarized under 10 bootstraps of the test set. 
Error bars represent standard deviation of the mean. See Supplementary Table 2 for the number 
of test proteins in each set. 
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Supplementary Figure 21. Protein-centric Precision-Recall curves showing the performance of 
DeepFRI in comparison to DeepGO and BLAST baseline averaged over PDB chains belonging to 
the top 23 largest protein families (PF00089, PF07654, PF07686, PF00072, PF00128, PF13499, 
PF00042, PF07714, PF13561, PF00171, PF00155, PF00073, PF00005, PF00069, PF00067, 
PF00004, PF00076, PF00085, PF07992, PF00071, PF01547, PF00440, PF00400) in the test set. 
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Supplementary Figure 22. Protein-centric Precision-Recall curves showing the performance of 
DeepFRI in comparison to DeepGO and BLAST baseline averaged over PDB chains belonging to 
the top 4 largest CATH folds: 3.20.20 (TIM barrel), 2.60.40 (Immunoglobulin-like), 2.60.120 
(Jelly Rolls), 3.30.70 (Alpha-Beta Plaits) in the test set. 
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Supplementary Table 1. Table showing the distribution of PDB chains in the test set with 30%, 
40%, 50%, 70% and 95% sequence identity to the training set (columns 2-6) and in different 
organisms (columns 7-9).  
 

Data Annotations Train Test Validation # terms 
 MF 29,902 3,416 3,323 489 

PDB BP 29,902 3,416 3,323 1,943 
 CC 29,902 3,416 3,323 320 
 EC 15,551 1,919 1,729 538 
 MF 220,297 3,416 24,478 489 

SWISS-MODEL BP 220,297 3,416 24,478 1,943 
 CC 220,297 3,416 24,478 320 

 EC 122,697 1,919 13,633 538 
 
Supplementary Table 2. Table showing the number of PDB & SWISS-MODEL chains in 
training, test and validation sets in GO and EC classification systems.  
 

Test 30% 40% 50% 70% 95% Eukaryote Bacteria Viruses 
GO 1,717 1,937 2,199 2,733 3,416 2,832 650 56 
EC 720 902 1,117 1,476 1,919 944 787 166 

 
 


