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Supplementary Note
CNN architecture (using Keras' syntax)
Input: 1-hot encoding of sequence: (n_samples, L, 26).

e 1D CNN layer x 16 (# filters = {512, 512, 512, 512, 512, 512, 512, 512,
512, 512, 512, 512, 512, 512, 512, 512}, length = {8, 16, 25, 32, 40,
48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128}, 12 reg = 2e-4)
Concatenate layer

BatchNormalization

Activation (ReLU)

Dropout (0.3)

GlobalMaxPooling

Dropout (0.6)

Dense (dim = |GO| or dim = |EC|)

e Activation (sigmoid)

Optimization: loss =binary crossentropy; optimizer = Adam (Ir = 0.0005, 1 = 0.95, B2 =
0.99); batch _size = 64;epochs = 100; EarlyStopping (patience=5).

LSTM-LM architecture
Input: 1-hot encoding of sequence: (n_samples, L, 26).

e LSTM (dim = 512, return sequences=True, kernel constrain=MinMax(-2.0,
2.0), recurrent constrain=MinMax(-2.0, 2.0))

e LSTM (dim = 512, return sequences=True, kernel constrain=MinMax(-2.0,
2.0), recurrent constrain=MinMax(-2.0, 2.0))

e TimeDistributed(Dense(26))

e Activation (softmax)

Optimization: loss = categorical crossentropy; optimizer = Adam (Ir = 0.001, B1 = 0.99, 2
=0.99); batch_size = 128; epochs = 5.

GCN architecture

Input: 1-hot encoding of sequence, S = (n_samples, L, 256); Normalized contact maps, A =
(n_samples, L, L); Pre-trained LSTM-LM.

e Sequence embedding:
— SegEmbedding 1 = Dense (dim 128, use_bias=False) (S)
— SegEmbedding 2 Dense (dim = 128, use bias=False) (LSTM-LM(S))

U https://keras.io/




— Add() (SegEmbedding 1, SeqgEmbedding 2)
— Activation (ReLU)
GCN layer (dim = 256, use_bias=False, 12 reg
Activation (ReLU)
GCN layer (dim = 256, use_bias=False, 12 reg
Activation (ReLU)
GCN layer (dim = 512, use_bias=False, 12 reg
Activation (ReLU)
Concatenate layer (all GCN layers)
GlobalSumPooling
Dropout(0.3)
Dense (dim = 1024)
Activation (ReLU)
|GO| X Dense (dim = 2)
Activation (softmax)

2e-4)

2e-4)

2e-4)

Optimization: loss = categorical crossentropy; optimizer = Adam (Ir = 0.001, B1 =0.99, 2
=0.99); batch_size = 64; epochs = 200; EarlyStopping (patience=5).

Evaluation metrics

We evaluate the performance of our method using both protein-level and residue-level metrics as
follows:

1) Protein-level evaluation: we measure the performance of our method in a) predicting
functions for a particular protein (protein-centric) and b) predicting proteins associated
with a particular GO/EC term (term-centric). To this end, we use two measures first
proposed in CAFA[14]:

a) Protein-centric F-max obtained by finding the maximum of F; score over thresholds
t € [0,1]:

vgPr(t)-AvgRe( )} Supplementary Equation 1

F = nlaxr{
max t AvgPr(t)+AvgRc(t)

where the precision is averaged over all proteins, m(?), for which we predict at least
: — 1 ym®
one term: AvgPr(t) = >

m(t) “i=1
n

proteins, n: AvgRc(t) = % =, 7c; (t). For a given target protein, i, and some value

pr; (t) , whereas recall is averaged over all

of threshold t € [0,1], the precision and recall are computed as:
T'(t) — Zfl(fepi(t)/\fETi)
Pl % 1(FEPL(D))

Supplementary Equation 2

2rI(fEP{()NFET)
XrI(feTy)

rc;(t) = Supplementary Equation 3



where fis a GO/EC term, T; is a set of known GO/EC terms for protein i (for MF-GO,
BP-GO and CC-GO we propagated annotations up to the root term), and P;(t) is a set
of predicted GO/EC terms with score > t, I(+) — the indicator function.

b) Term-centric area under the Precision-Recall curve (AUPR), where precision and
recall for each term f'are computed as:

Yil(fEP{(L)NfET})
Xil(fEP(L))

pry (t) = Supplementary Equation 4

Yil(fEP{(t)NfET})
Xil(f€ETy)

rCy (t) = Supplementary Equation 5

For each term, f, we compute PR curve using the sliding window method (i.e.,
across all threshold values of t € [0,1]) and then we compute AUPR using the
trapezoid rule. Even though in same cases we report AUPR values for each
individual GO term (e.g., Supplementary Fig. 7), in most cases we report the
AUPR performance under micro- and macro- averaging; the micro-averaged PR
curve is computed by first vectorizing the protein—function predicted scores and
known binary annotations (i.e. flattening protein-function matrices), and then
computing the PR curve using the sliding window method (e.g., Fig. 2A, B). The
area under the PR curve, obtained by applying trapezoid rule, is known as micro-
AUPR. macro-AUPR (macro-AUPR) is computed by first computing the AUPR
for each function separately, and then averaging these values across all functions.



Supplementary Figure 1. Performance of our method on MF-GO terms (A) and EC numbers
(B) with different Graph Convolutional layers. Distribution of protein-centric Fmax score and
function-centric AUPR score under 10 bootstrap iterations. Error bars represent standard
deviation of the mean.
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Supplementary Figure 2. Precision-recall curves showing the performance of different
DeepFRI baseline architectures, in comparison to the sequence-only CNN, demonstrating the
importance of both stages of DeepFRI shown in Fig. 1 (main manuscript). The DeepFRI model
with deep neural network architecture instead of graph convolutions is trained only on Language
Model features (DNN-LM), with simple one-hot encoding sequence features instead of Language
Model features (GCN-1HOT), and with both graph convolutions and Language Model features
(GCN-LM).
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Supplementary Figure 3. Performance of our method in comparison to state-of-the-art CNN
(DeepGO) and BLAST baseline trained on different contact maps. The model is trained on
proteins with experimental (EXP) MF-GO annotations. The results are averaged over 100

bootstraps of the test set.
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Supplementary Figure 4. De-noising contact maps from Rosetta models. Here we plot features
from using NATIVE contact maps as input vs. the features derived from using Rosetta-predicted
contact maps of Rosetta models. We show these features for the 1%, 27 and 3™ layer of graph
convolution, and note that the features extracted from the third layer of the GCN exhibit strong
NATIVE-Predicted correlations, providing strong evidence that our model is tolerant to even
significant error in structure predictions, and can effectively denoise structure predictions.
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Supplementary Figure 5. We stratify MF-, BP- and CC-GO terms into different groups based
on their specificity, expressed as Information Content (IC), see methods, and show the number of
each term in each category encompassed by both the PDB-only-trained (blue) and the PDB-and-
SWISS-MODEL trained DeepFRI models (red).
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Supplementary Figure 6. (A) F-max and AUPR scores, summarized over all proteins and GO
terms, respectively, computed on the test set comprised of PDB and SWISS-MODEL chains
chosen to have <30 % sequence identity to the sequences in the training set. The numbers in
brackets indicate the number of GO terms in different ontologies that are common to all four
methods; asterisks indicate where the performance of DeepFRI is significantly better than
DeepGOPlus (two-sided Wilcoxon rank-sum is used to compute significance with 3 asterisks
indicating pval < 0.001). The F-max and AUPR scores averaged over 100 bootstraps of the test
set. Error bars represent standard deviation of the mean. (B) Micro-average precision-recall
curves for each method for MF-GO terms. The curves are averaged over100 bootstraps of the
test set. Error bars represent standard deviation of the mean
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Supplementary Figure 7. (A) Experiments on experimentally annotated PDB chains show a difference in performance of our method
vs. the CNN in predicting individual MF-GO terms. For each MF-GO term we show the DeepFRI and DeepGOPlus performance

measured by the AUPR averaged over 100 bootstraps of the test proteins. Error bars represent standard deviation of the mean. Two-

sided Wilcoxon rank-sum is used to compute significance of the AUPR difference with 1 asterisk indicating pval < 0.05). (B)
Difference in the performance of these two methods. Only the top 30 MF-GO terms on which DeepFRI > DeepGOPlus are shown.
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Supplementary Figure 8. Grad-CAM for “DNA binding” (GO:0003677) mapped onto the 3D structure of the test PDB chains
annotated with “DNA binding”. Their corresponding ROC curves measuring the overlap between the grad-CAM profile and DNA
binding sites (retrieved from the BioLiP database) are shown in the bottom right corner.
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Supplementary Figure 9. Grad-CAM for “ATP binding” (GO:0005524) mapped onto the 3D structure of the test PDB chains
annotated with “ATP binding”. Their corresponding ROC curves measuring the overlap between the grad-CAM profile and ATP
binding sites (retrieved from the BioLiP database) are shown in the bottom right corner.
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Supplementary Figure 10. Grad-CAM for “heme binding” (GO:0020037) mapped onto the 3D structure of the test PDB chains
annotated with “heme binding”. Their corresponding ROC curves measuring the overlap between the grad-CAM profile and HEM
binding sites (retrieved from the BioLiP database) are shown in the bottom right corner.
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Supplementary Figure 11. Grad-CAM for “iron-sulfur cluster binding” (GO:0051536) mapped onto the 3D structure of the test PDB
chains annotated with “iron-sulfur cluster binding”. Their corresponding ROC curves measuring the overlap between the grad-CAM
profile and SF4 binding sites (retrieved from the BioLiP database) are shown in the bottom right corner.
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Supplementary Figure 12. Grad-CAM for “magnesium ion binding” (GO:0000287) mapped onto the 3D structure of the test PDB
chains annotated with “magnesium ion binding”. Their corresponding ROC curves measuring the overlap between the grad-CAM
profile and MG binding sites (retrieved from the BioLiP database) are shown in the bottom right corner.
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Supplementary Figure 13. Grad-CAM for “iron ion binding” (GO:0005506) mapped onto the 3D structure of the test PDB chains
annotated with “iron ion binding”. Their corresponding ROC curves measuring the overlap between the grad-CAM profile and FE
binding sites (retrieved from the BioLiP database) are shown in the bottom right corner.
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Supplementary Figure 14. Grad-CAM for “zinc ion binding” (GO:0008270) mapped onto the 3D structure of the test PDB chains
annotated with “zinc ion binding”. Their corresponding ROC curves measuring the overlap between the grad-CAM profile and ZN
binding sites (retrieved from the BioLiP database) are shown in the bottom right corner.
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Supplementary Figure 15. Grad-CAM for “calcium ion binding” (GO:0005509) mapped onto the 3D structure of the test PDB
chains annotated with “calcium ion binding”. Their corresponding ROC curves measuring the overlap between the grad-CAM
profile and CA binding sites (retrieved from the BioLiP database) are shown in the bottom right corner.
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Supplementary Figure 16. Sensitivity vs. false-positive rate curve for DeepFRI in predicting
catalytic residues. ROC measures the overlap between the grad-CAM profile and know catalytic
sites (hand curated from CSA database) for 38 evolutionary divergent enzymes obtained from
ResBoost paper.
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Supplementary Figure 17. Temporal holdout validation. (A) Average protein-centric F-max and term-centric AUPR values of our
method in comparison to the CAFA-like BLAST baseline and DeepGOPlus applied on temporal holdout test PDB chains. The values
are averaged over 100 bootstraps of the test set. Error bars represent standard deviation of the mean; asterisks indicate where the
performance of DeepFRI is significantly better than the performance of DeepGOPlus (two-sided Wilcoxon rank-sum is used to
compute significance with 3 asterisks indicating pval < 0.001); (B) PDB chains correctly annotated with our method (prediction score
> 0.5) with very low BLAST and DeepGOPlus prediction scores; the low scores indicate the inability of BLAST and Deep GOPlust to
correctly infer their GO terms. These PDB chains were selected because they have ligand-binding information in BioLiP that allows us
to validate our Class Activation Mapping identification of functional sites on protein sequences and structures; (C) Grad-CAM profile
mapped onto 3D stricture of the proteins in the Table.

MF-GO (603) BP-GO (3784) CC-GO (507)
A 0. 08 BLAST. 0. ‘
mmm DeepGOPlus 6AGZ‘B

m== DeepFRI

F-max  AUPR F-max  AUPR  °° F-max  AUPR
IPDB- GO term GO name BLAST [DeepGO|DeepFRI
B ichain
IBAGZ-B|G0:0010181| FMN binding 0.35 0.01 1.00
16Q72-E | GO:0070279 vitamin B6 0.00 0.09 1.00
binding
IBE6B-A [GO:0005509|  calcium ion 0.45 0.98 0.99
binding
IBOR8-A |G0:0051539| 4 iron, 4 sulfur 0.00 0.35 0.98
cluster binding
NHG-E|GO:0051537 2 iron, 2 sulfur 0.00 0.25 0.98
cluster binding
|6RTD-A[G0:0020037 heme binding 0.00 0.21 0.87
6GTJ-A | GO:0005507 copper ion 0.26 0.10 0.87
binding
IBONS-A| GO:0051539| 4 iron, 4 sulfur 0.47 0.10 0.86
cluster binding
I6IWP-A [GO:0008289| lipid binding 0.41 0.06 0.85
6J0O6-A | GO:0051536 |iron-sulfur cluster 0.00 0.01 0.79
binding
IBOHK-A| GO:0010181| FMN binding 0.37 0.02 0.79
IBAIR-A |GO:0051536 |iron-sulfur cluster 0.00 0.27 0.78
binding
16S00-D | GO:0005507 copper ion 0.34 0.04 0.73
binding
DE9-A | GO:0051536 | iron-sulfur cluster 0.00 0.02 0.69
binding
|leNCO-A|GO:0008289 lipid binding 0.00 0.06 0.56
16S6X-J |GO:0051539| 4 iron, 4 sulfur 0.00 0.06 0.52
cluster binding




Supplementary Figure 18. (A) Performance of our method in comparison to state- of-the-art
CNN (DeepGO) and BLAST baseline trained with different sequence features (“1HOT” - 26-
dimensional binary one-hot encoding of residues, “LM” - features from the pretrained LSTM
Language Model) and trained using protein chains with experimental (EXP) only and
electronically inferred (EXP+IEA) MF-GO annotations. Again, all test proteins used to compose
this metric were annotated with EXP evidence codes. (B) Performance of our model trained on
CA-CA contact maps with experimental (EXP) annotations and evaluated on test set composed
on CA-CA contact maps (“cmap”), generated contact maps with random contacts (“rand’’) and
contact maps with not contacts except for self-loops (“diag”). The AUPR values are averaged
over 100 bootstraps of the test set. Error bars represent standard deviation of the mean. Asterisks
indicate where the performance of our method trained on CA-CA contact maps is significantly
better than its’ performance trained on “rand” and “diag”. Two-sided Wilcoxon rank-sum is used
to compute significance with 2 asterisks indicating pval < 0.01.
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Supplementary Figure 19. (Top) Distribution of PDB chains across different protein families
(Pfam) in the training (left) and the test set (right). (Bottom) Protein-centric Precision-Recall
curves showing the performance of DeepFRI in comparison to FunFams and DeepGO averaged
over test PDB chains belonging to the top 6 protein families in the test set.
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Supplementary Figure 20. Performance of our method on a test set of proteins from different
organisms measured as protein-centric Fnax score summarized under 10 bootstraps of the test set.
Error bars represent standard deviation of the mean. See Supplementary Table 2 for the number
of test proteins in each set.
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Supplementary Figure 21. Protein-centric Precision-Recall curves showing the performance of
DeepFRI in comparison to DeepGO and BLAST baseline averaged over PDB chains belonging to
the top 23 largest protein families (PF00089, PF07654, PF07686, PF00072, PF00128, PF13499,
PF00042, PF07714, PF13561, PF00171, PF00155, PF00073, PF00005, PF00069, PF00067,
PF00004, PF00076, PF00085, PF07992, PF00071, PF01547, PF00440, PF00400) in the test set.
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Supplementary Figure 22. Protein-centric Precision-Recall curves showing the performance of
DeepFRI in comparison to DeepGO and BLAST baseline averaged over PDB chains belonging to
the top 4 largest CATH folds: 3.20.20 (TIM barrel), 2.60.40 (Immunoglobulin-like), 2.60.120
(Jelly Rolls), 3.30.70 (Alpha-Beta Plaits) in the test set.
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Supplementary Table 1. Table showing the distribution of PDB chains in the test set with 30%,
40%, 50%, 70% and 95% sequence identity to the training set (columns 2-6) and in different
organisms (columns 7-9).

Data Annotations Train Test Validation # terms
MF 29,902 3,416 3,323 489
PDB BP 29,902 3,416 3,323 1,943
CcC 29,902 3,416 3,323 320
EC 15,551 1,919 1,729 538
MF 220,297 3,416 24,478 489
SWISS-MODEL BP 220,297 3,416 24,478 1,943
CcC 220,297 3,416 24,478 320
EC 122,697 1,919 13,633 538

Supplementary Table 2. Table showing the number of PDB & SWISS-MODEL chains in
training, test and validation sets in GO and EC classification systems.

Test 30% 40% 50% 70% 95% Eukaryote | Bacteria Viruses
GO 1,717 1,937 2,199 2,733 3,416 2,832 650 56
EC 720 902 1,117 1,476 1,919 944 787 166




