Supplementary Note of “NEBULA is a fast negative binomial mixed model for
differential or co-expression analysis of large-scale multi-subject single-cell
data”
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A.1. Marginal expectation and variance of the NBGMM

We derive the marginal expectation and variance of y;; under the NBGMM defined in eq. (5) in the main
text. Here, by marginal expectation, we mean the expectation conditional only on x;; and m;;, but not
w; or v;;. Based on the model specification, the first and second moments of y;; conditional on w; and

Uij are
E(yij|a)l-,vl-j) =myj exp(xl-jﬂ + log(w;) + log(vij))
E(yij?|lwyvif) = E(vijlwivij) + E2(vijlwi, v5),

where x;; = (xjjq, .-, Xji) and B = (B4, ., Br)T. As w; follows a gamma distribution defined by eq. (3),

we have its first and second moments

E(w) =5 = exp(0?/2)

2

a“+a
E(w;?) = E*(w;) + Var(w;) = == exp(202).

Thus, after taking the expectation over v;; and w; and substituting E(w;), it follows that

E(yij) = Ew, (Eui,- (E(Yijlwirvij)))



=E,, (Evi]- (vij)m;exp (x;;B + 10g(wi)))

o2
= E,,(w;m;jexp (x;;B)) = m;; exp <xijﬁ + 7)
and

E(yy?) = Eo, (E”ii (E(yifz |wi’vij)))
= E(yij) + Eo, (Evif (Ez(y"flwi’ v”)))
= E(Yij) +E,, (Evij(vijz)niiz €Xp (Z(xijﬁ + log(a)i))))

1
= E(ylj) + (1 + 5) Ewi(wizﬂijz eXp(injﬁ))

= E(yl]) + (1 + %) exp(Zaz) T[ijz exp(injﬁ)

1
= E(y;) + (1 + 5) exp(c?) E%(y)

Therefore, the marginal variance of y;; is
Var(yi;) = E(yi?) — E2(yj) = E(vyj) + (exp(a?) — DE?(y;;) + %eXP(GZ) E*(yi;)-

A.2. Proof of convergence in probability

Denote by plim convergence in probability of a sequence to a random variable when n; = . Here, we

n;—oo
show that under the condition that y;; = exp (xijﬁ + log(nij)) has a finite non-zero first moment, we

have

Z?Ll(vij - 1)#3’) “ o

lim| X,,. = "
4 (nl A+ XK

n;—oo

that is, given any € > 0, we have lim Pr(ani| > 5) = 0. Rewrite the sequence X, as

n;—oo

7L (vij=1)mj;

— n
Xni T MTjug
nj

In fact, as v;; are i.i.d. gamma random variables defined by eq. (5), and ,u;’j is assumed to be i.i.d with a

finite first moment, by the weak law of large numbers (WLLN), it follows that



Zimals “ O _ p (1)) = B )EGwy) — (i) = 0,

plim

n;—oo n;

in which we also use the assumption that the random effects v;; and the fixed effects ,uz‘j are
independent. Applying the WLLN again to the denominator gives

plim —— “21”” E( ”)

nl—)OO

in which we use p11m — = 0. Thus, it follows by Slutsky's theorem and the assumption E(,ul]) > 0 that

n;—oo ni

plim (an.) =0.

A.3. Approximation of the marginal likelihood using the WLLN
Here we show that the integral for subject i in eq. (6)

+oo -(Zjyijta)
I; = fo <1_L Uijyij> (/1 + Zj (Uij exp (xijﬁ + IOg(”ij)))> njf(vij) dv;

©

can be approximated by eq. (8)

)‘(nytﬁa)

Xjyij +a)(vij — Duiy\ ¢?
1_[-[ yuexp(—( ] ]/1+%:(j#1ij ) ]>F(¢) 127 exp(—gv;;) duy;

under the condition n; — oo. Rewrite © in eq.(6) as
. i (vij=1)ui;
0 = exp <—(ijij +a)log <(/'l + 3 15) (1 + ](’“]Tﬂu]))»

. (G
A A.2 th 1 —_—
s proved in that EliTo < PSS

(O

A+ uyj

when n; is large. Thus, plugging f(vl-j) with the gamma density function defined in eq. (5), we can end

> = 0, we ignore the contribution to the integral from those

v; € S where § := <vi

<eK 1> for a small positive € because P(v; & §) is very small

up with eq. (8) as follows



f0+00(1—[j UijJ’ij) exp <—(Zj yij + 0:) log ((/1 +2; ‘u?j) (1 + 21(;:;:2}”u))>> X

¢
H?’ 1 rd()(p) ~exp(—¢uy;) dv;

~ fviGS(Hj v;;Y1) exp (—(Z]- yij + ) <log(l + X ui) + 10g<1 + Mﬁ;—ﬁ))) X

]
]'[;ll 1 1‘¢()¢) v exp(—¢v;;) dv;

~ fyes(TLjvi”Y) exp <_(Zj yij + @) <1og()t + X i) + Zj(ﬁré—:z%))) X

i 9*
]‘[7 =) vl] -1 exp(—g‘bvij) dv;

~ exp(—(Z;yi; + @) log(A + 2 1157)) fy (T3> exp <—(Z,- yij +a) M) X

A+XjHij

e _
H?L ——;;* " Lexp(—¢v;;) dv;
A\~ Zjyijta i [t . Yjyijta <\ 9? _
=(+X;u;) (575 )H;l:l N exp( SH’Z’ )( U—l)uij)rd))vijd’ Lexp(—ov;;) duy;

where the approximations in the second and fourth lines are due to ignoring and adding those Monte
Carlo samples v; & S, respectively. The approximation in the third line uses the first-order Taylor
expansion of a logarithm function, i.e., log(1 + x) = x for x close to zero. In the last equation, we
change the order between the integral and the product because v;; are now completely factorized in
(Zjyij+a)ui;
A+Ejmij
recognized as a kernel of a gamma density function with respect to v;;. Calculating this integral explicitly

the integrand. After moving the terms exp ( ) out of the integral, the integrand is now

gives eq. (9).

A.4. The estimating equations in NEBULA-LN

The estimating equations in NEBULA-LN are obtained by taking the first derivative of the approximated
marginal likelihood ¥; [; (B, 02, ¢) with respect to the parameters (8, 52, ), where

5 YjYij+ ;
L;(B, 0'2'¢) = alogd + logM + Zn 13’1110g(ﬂu) (21 yij + a) log(/l + Z} :uL]) +

I'(a)
I(yij+¢) (ijx'ﬁ“)#ij) (ijiﬁ“)#ij)
A+2j ki AT )

5 (#1080 +10g 0L — (y;; + ¢)1og (¢ +

To simplify the notations, we define

=24 )
J



5= 2jYyijta

1
< b+yij
Y ¢+&/’iﬂi'kj'
) S , d
We denote by a' and A’ the first derivatives of & and A with respect to o2, respectively (i.e., a’ d—:z

and X' = ) Through tedious but relatively straightforward calculation, the first derivatives are

ol;(B, 0%, ¢) @; U . e
Dfi,m = 2i+ = ziXiTYi A <Zj(1 - Uij)#ij>XiTﬂi — &, X;" (u; OV;)
D = ZM 2.2, (1089 +9(y; +9) = ¥(@) ~log(g + Gusiy) +1 - )

2 Z al;(B, 0%, )

DS =
nym 002

a
= Z a <log/1 +W¥ (Z yij + a> —¥(a) - log(,til-)) + A (I - &)’i)
i J
a' — A o; o\ .
e lz (1= 0
Hi j

dlog(T'(x)) .
dx

where ¥(x) = is the digamma function, ® stands for the Hadamard product, y; =

_ _ ~ /N~ « . B
Oivs o Yin) " Xi = (x5 oo Xin, DT 17 = Wi s i )7, and Uy = Wyg, ., Ui, )" Setting Dy 1y,

D,‘Z’m and D,‘{im to zero gives a group of estimating equations for (8, 02, ¢).

A.5. Asymptotic consistency of NEBULA-LN

We prove that the estimating equations Dy, », given in A.4 lead to a consistent estimator T, n, for
(B,0?,¢) whenn; —» o and m — oo, that is, we need to show that T, m asymptotically converges in
probability to its true value

plimT, m = (8,0%9)

m—oo

The estimator T, , defined implicitly by the sequence of solutions to the estimation equations
2

Dfﬁn(p = 0 is an M-estimator ! (also known as a Z-estimator 2). Asymptotically, the empirical equations
2

Dfﬁn(b under suitable normalization (that is, divided by n; and/or m as described below) will converge

to its deterministic equation pBo*e by the WLLN (see e.g., 3 section 7.2).

We assume that the following regularity conditions are satisfied. First, the model is identifiable within
the parameter space. This requires that, for example, the columns of the design matrix for # should be
linearly independent. Additionally, we assume that the parameter space that we are interested in lies in



. . B.o%¢ Bo%¢ .
a compact subset and contains the true values that are a unique zero of D As Dy " is
continuous, it is also bounded in the compact subset. Provided that these conditions are met, the
asymptotic consistency of T, , amounts to proving that the true values of (B, 02, ¢) are the solutions

to DBo*¢ = 0 (see e.g., > section 7.2 or % section 5.2).

First, we notice that D,I,i._m and D;Z’m are o, (mn;) and D;{iz_m is only 0, (m). Therefore, m — oo is
necessary in order to have an asymptotically consistent 2. This means that we need a large number of
subjects to obtain an accurate subject-level overdispersion g2. On the other hand, n; — oo is required
by all three equations to converge.

We begin by examining the term 1 — Uj;; present in D,%m. By the WLLN and E(yl-jluz‘j, a)i) = wi,ufj in

A.1, it follows that

Z. ..
13;1{+a _ wiE(u)) .
sz“;j E(ufj) v

n

plim®; = plim
n;—co n;—oo
L

Then because ¥ is continuous at w; uniformly in y;; and x;;, and its first moment is finite, by the
conditional expectation and Lemma 7.2.2A in 3, we have

AT, b+ yij ¢+E(}’ij
plim = ExijJ’ij — | = Exij

*
ng—soo My o+ Will;j

M?jr%)) _z <¢ + wi#fj) _q
=By ——2) =

b+ it b+ it

Hence, the terms in foi,m involving 1 — Uj;; cancel out. By this argument, we can also see that the terms

. DY CC T 2 L
involving G ] in Dfi'm and Dy, are all 0,,(1) under n; — oo. This is because under the

i

assumption given in A.2 that ,ufj has a finite non-zero first moment, we have

Yi(1- lv)ij)ﬂfj _ olim ¥i(1- lv’ij)#fj/ni _op(1)

lim - li _ _ - =
Tpli—>OO Hi 11’31-—>oo ui/ni E(‘uij)
Following 4,
.5
plim 2% £(z5) = E(E(@ )
m-oow M
* a *

_g <ZJE(yij|wi) + a> g <wi2j.uij + a> 7Lk te «a
A+ Lk A+Tiuy ) AT A

B

a ~ - 2 . . .
) - j . . . ’
Hence, the term — — &@; in Dy} ,, cancels out. In Dy, .., it remains to show that under suitable
A ir i

normalization,

0.

plim X"y — X" (u; o) _

nj—oo n;



In fact, for the kth component in 8, by the WLLN and conditional expectation, we have for the first term

plim X"y _ plim X XijkYij

n;—oco ni n;—oo nl

=Ey (xijkEy(}’ijlxijk)) = wiEx (xij1clt;)

and for the second term by the continuous mapping theorem, Slutsky's theorem and Lemma 7.2.2A in 3,

X, @(n;OF) o jxijrh Ui Xijickiy ((,b + Ey (i) |uij, “’i))
plim ——————— = plim®; - plim——— = w;E, p
nj—>oo i n;—oo n;—co n; ¢ + wi'ul'j
= wiEy (i)
hm

=0.

which proves that plim
ni—oo N
m—-0o

In D;{jm, it remains to show that plim i (logA —W(a) + ¥(T,yij + a) —log(j1;)) = 0. As w; follows a
ni—)w

m-—oo

gamma distribution defined by eq. (3), it can be verified based on the density function of log (w;) (also
see 4) that its expectation is

E(log(w;)) = ¥Y(a) — logA.
Now consider the posterior distribution of w; conditional on y; and v;, which can be shown as
f(wilyi,v)
< f(yilwy,v)f (w;)

= H'Pois(yijlwivijufj) Gamma(w;|a, 1)
j

= Gamma(a + i Yij, A+ Zjvij.“;'kj)'

Therefore, it follows that

E(log(w) ly;v) =¥ (Z Vij + a) —log </1 + Z ,Wj#fj)
j j

and

E(log(w;) ly;) = Ey,(E(og(w)) ly;,v;)) =¥ <z} yij + a> — Ey, log </1 + Z .Uijll;'kj)

J

Under the limit m — oo, by substituting E (log(w;) |y;), we have

olim Y W(Xyij +a) —log;

m—oo m



_ plimZin(Zj Vij + @) = Ey log(A + X jviui;) + Ey, log(A + X jvi5ui;) — log fi;

Moo m

_mZi‘P(Zj Vij + @) — Ey, log(A + X viui;) - lim Y Ey, log(A + X vui;) — log il

=pl
Elioo m m-o m
3By log (—Zi, = ”)
. L
= Ey,(E(log(wy) ly) + lim — = E(log(w;)).

The second term in the above equation converges to zero under n; = oo, thatis,

1+ Uij#?j) ~ 0

Hi

lim E,, log<
n;—oo

This is because by WLLN, Slutsky's theorem, and the continuous mapping theorem, we have

A+ X vy A+ X v A2ty
. + 'UijMij> . ( + jUijMij> . n;
lim log [ —=2—"Y} = plimlo —————— | =plimlogf ———=——]=0.
Si—wo g< i 711)i—>oo & /1+Zj,uij Ei—mo g\ A+Z].uu /
n;

. . VESNLIT, - ENITI
Under the reasonable and mild assumption that % has a finite second moment, % is
i L
uniformly integrable. By Theorem 1.4A in 3, convergence in probability implies convergence in mean in

o2

n;m

this case. Hence, we end up with plim =0.

nj—co
m—oo

. 1 1 ony - .
Finally, we show that gi%;z{’;ln—iz?zl logp + ¥ (v + ¢) — W(¢) —log(¢ + @;pj;) = 0in D,‘fi_m.
m—oo

As v;; follows a gamma distribution defined by eq. (3), it can be verified that
E(log(vij)) =Y(¢) — log¢.
Again, consider the conditional posterior distribution
f(is|yij i)
o f(yij|ws vif)f (viy)
= Pois(yl-j|wiviju§j)6amma(vij|¢, qS)
= Gamma(yij + q,'),wl-y;‘]- + ¢).

Therefore, conditional on w;, we have

E(log(vi) lyijs i) = ¥(yij + @) —log(¢ + wns;),



and

E(log(vi) 1Y) = Eu (EQ08(viy) Iy 1)) = ¥(viy + #) = Eu (log(6 + winiy)

Now by the continuous mapping theorem and plugging in the result plim®; = w;, it follows that

n;—oo

Z 2] Lp(ylj + d)) 10g(¢ + (‘)LMU)
m

n;

lz Y ¥ (ij + ¢) —log(¢ + wiuj;)
m i .

n;

= plim
nj—oo
m-—oo

Applying the WLLN to the first summation over w; and then to the second summation over y;;, it follows
that

Z] LIJ(yU + ¢) lOg(¢ + wil'[:f)

li
Elirollm n,
m—-0o
_ olimE Yi¥(yij + ¢) —log(¢ + wimj;)

= E,, ( Vi (P(yij + ¢) —log(¢ + wu“u)))

= E,, (Eyl.]. (E(log(vij) Vi wi))) = E(log(vij))

This completes the proof of the asymptotical consistency of the estimator Ty, ;..

A.6. Proof of asymptotic normality
2 (wi-1)u;)

We show that under mild conditions and the null model, an. = FYSSIE
jHij

asymptotically follows a

zero-mean normal distribution with a variance at the rate of 1/( n;p + 21 40 ( )) InA.l, we

£(uiy)

have shown that

n; *
plim [ X,, = 2ja(vy = Dy _
n;—»>o ™ A+ Z] ‘ll;k]

Hence, it remains to prove the asymptotical normality of Xn; and show that the variance of Xn, is

1/< n;¢ + 2(4’/1) +0 ( )) As v;; is i.i.d gamma random variable, by the Lindeberg central limit

theorem, when n; — oo and the Lindeberg’s condition is satisfied, we have



2 ((Uij - 1)”3')
\/Z,- (Var (- 1)#2‘1))

d
- N(0,1),

d
where — denotes convergence in distribution. Then, plugging in Var(vij) = 1/¢, it follows that

¥ - %5 (v — 1wy
" A+ %

_ \/Zf (Var ((Uij - 1)#?1‘)) 2 ((Uij — 1);1;‘].)
A +Z}'1u;j \/Z] (Var ((Uij — 1)‘11;]_))

2 (Var ((vij - 1),11;}-))

a 2
- N 0, TXn' =
L

N2
(’1+2j#ij)
* 2
=N O’T)%n- =L2 ]
l ¢(’1+2j#;j)

where T)Z(n, is the variance of the normal distribution. For simplicity but without loss of generality, we
l
first consider the null model where ufj = m;j exp(fBo) has only the intercept term and all variation of y;;

is included in ¢ and 2. In this case, T)Z(n‘ can be expressed as
i

- exp(2fy) X m;;
(;b(/lz + 22 exp(Bo) Xjmij + exp(2B0) (X 7Tij)z).

Ty, =
’Var(nij)/
Denote by T = E(nij) the mean of the scaling factor, and by ¢ = 1 the coefficient of

variation of the scaling factor. We found that c? is often small (~0.25) in most cell types (microglia,

oligodendrocytes, astrocytes, and OPCs) in e.g., the snRNA-seq data in ® when the total library size of a
cell is used as the scaling factor. In excitatory and inhibitory neurons, we observed c? = 0.8, probably
because different types of neurons varied significantly in terms of morphology. Then, when n; is large,
we can approximately rewrite T}Z(ni by plugging in m and c as

exp(2f,) X 7Tij2/ ,
n;

2 _
T, =

¢ (AZ +22exp(Bo) T mij + exp(2B0) (X ”ij)z)/

Tliz



exp(2By)(Var(m;;) + ”2)/11-

" (B I o)

1

gn, . 2ap . o7
14+c?2 " (A+c?)exp(Bo)m (14 c?)exp(2By) m?n;

(1+c?)
26, on
exp(Bo) T exp(2f) m2n,

on; +

2 ¢>

— oo, It is also clear that the second term can be large for

low- expressed genes because of exp(ﬁo) 1 < 1. Compared to the brain snRNA-seq data, some
covariates such as ribosomal and mitochondrial mRNA abundance in scRNA-seq data in e.g., peripheral
blood mononuclear cells can have very large effect sizes. In this case, we should take into account the
contribution of these covariates as well when deriving and using the asymptotic variance T)Z(ni' Consider

an alternative model y;; = m;; exp(Bo + Xk xl-jﬂk) = mjexp (Xk XijBx) exp(Bo). After replacing with

JVar(nl]eXp Qi xu.Bk))/

7 in the above derivation, we end up

m = E(mjexp (T xiiB)) and ¢ =
with the same formula for 7§ .

A.7. The Newton-Raphson algorithm for optimizing the h-likelihood
Here, we derive the NR algorithm for optimization of the h-likelihood in NEBULA-HL, which requires
calculating the first and second derivatives of the h-likelihood. After parametrizing using n; = log(w;) in
eq. (10), we obtain the following h-likelihood

WL, 1lo%,9) = ) Hi(Bilo,9)
= Zizjyij(xijﬁ + log(nij) + r)l-) — (yl-j + ¢) log(gb + exp(xl-jﬁ + log(nij) + ni))
+ an; — Aexp(n),

in which 8 and 1 are now on the canonical scale, and thus can be optimized simultaneously. For
readability, we introduce the definition yf]* = exp(xijﬂ + log(nij) + ni). Taking the first derivative
with respect to 8 and n; gives

dhl(B,nlo® ¢) n|a ) (g + B)uij
z z < ¢+u )xij

ohl(B,nlo?, $) Yij + &)ui;
ont\B.mo-,9) _ Z}( y _M

o + a — Aexp(n;).
ani ¢+#U ) PH



ohli(Bnilo®.¢) and ohli(Bmilo*¢)
op on;
matrix H with the following entries

9*hi(B.nlo* ¢) Z z
= — Z: XX
6ﬁsaﬁt ; ] Ljtjs ljt

Taking the derivative of again with respect to f and n; gives the Hessian

0%hl(B,nl|o?, ¢)
.2 —Aexp(m;) — Z Zjj
0%hl(B,nlo?, ¢) Z
aﬁsar]l ] lj l]Sr]l

+ . 2
M And all second derivatives Ohli(Bnilo” ¢)
(#+2) o,

sparse and the bottom-right block matrix is diagonal. Then, an NR algorithm updates (8, ) at each

where z;; = equal zero. Therefore, H is highly

iteration using

OhL(B, |02, d) ahl(ﬁ,maz,cp))T

new new\T _ old pold\T _ g-1
B, ") = (B”,n°) H< 3B : o,

until the increase of the h-likelihood is smaller than a pre-defined tolerance parameter and reaches
convergence.

A.8. The Hessian matrix for the Newton-Raphson algorithm in
NEBULA-LN

We derive an NR algorithm for optimizing [;(8, 52, ¢) in NEBULA-LN. The first derivatives of [;(8, o2, ¢)
are given in A.4. It remains to calculate the Hessian matrix by taking the second derivatives. We use an
approximation for some terms by taking the expectation over y;; to simplify the results. For the sake of
readability, it is convenient to introduce the following definitions: ¢7; := ¢ + &;u;;, X; = w.'X;, and
X; := X;"diag(u})X;. We denote by a" and 1"’ the second derivative of a and 1 with respect to o2.
Through some calculations, it follows that

27 2 ~ 2 = ~ * 2 ~ 2 — ~ * 2 * 2
d li(ﬁ;o' ;¢) _ _(‘)i xisz Uij:uij xijt _wi xitZ vij:uij xijs wl xleltz Ulj#ij
j j

- v * v * *
0Bs0PB; i ¢ij Hi ¢ij ¢ij
WXt S WiXis
— o; vuyuxusxl]t +—= UjjlijXijs ¥ —— .Uij.uijxijt
i J Hi J
ey Uij.“ij xijsxijt @; xlsxlt Xist 1—
w; b ( Uu)“u
ij

2
w; xlsxlt Z (1 UU)#U



azzi(ﬁi 0-2' ¢)
92

2L,(B, 0% ¢) 2/ ad? ad"

gt @ log A + PR + p +a’ |V Ejyi]-+a - ¥Y(a)
14 14 ! Zalll 11 v 11~ 2’,261

a' (¥ E yijta|—¥(a)|-———a"logp —A"d; + —

j My Hi
a =@ il a' =G 20X =207, L
+< > E lip i < — - 7 l) § (1= 0y

ij Hi i j

*L;(B,o%d) ' — miz (1 = vy)uij
dpdc? 4 R

Z¢+‘P(yu+¢) () - %

921, (B o? qb) (1 = Uypuijxijs B @; xls (1 = Ty
- 0pops Z i) Z i

921,(B, o2, @) a’ /1’0)
oorap, i T L Bk
. k2
a' —No;\ _ Uijlij xijs Xis Uijlij
+|—— ) @; T T ax )
25 i b5 Hi £aj ¢y

ii (B,O'Z,(l))
90208,

where W' (x) = —d log(I'x))

= 5(1 =i ~ 0

is the trigamma function, and is approximated by plugging in

A.9. The higher-order Laplace approximation in NEBULA-HL

We find that the first-order LA is not sufficient for the NBGMM to obtain an accurate estimate of the
subject-level overdispersion o2 when the count variable is highly sparse or a2 is relatively large
(Supplementary Fig. S17). For example, when the count per subject of a gene is <2, NEBULA-HL using the
first-order LA underestimates o2 with a substantial bias. This issue arises because the h-likelihood of the
NBGMM becomes highly skewed when almost all of the counts are zero (Supplementary Fig. S18). The
skewness results from the penalizing term in the h-likelihood, which, unlike the NBLMM, is an
exponential function rather than quadratic. Therefore, the first-order LA, which relies on a Gaussian
distribution to approximate the integral, produces a large bias under this setting. In contrast, this issue is
less serious in the NBLMM because its distribution of the random effects is quadratic (See
Supplementary Fig. S18).

To improve the performance of estimating o2 for low-expressed genes, we develop an efficient higher-
order LA method for NEBULA-HL when the non-zero count per subject is <4. This method includes
second-order and higher-order terms in the multivariate Taylor expansion to correct for the skewness.
Following the notation used in ¢, we modify the marginal log-likelihood in eq. (12) into
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h 2 * *) * * 2 _l
l (O- '¢|B :71) hl(ﬁ N |O- id)) Zlog( a %2

) + log(A),

where A =1+ E(T,) + E(T5Ts) + E(T32)/2 is a correction including three higher-order terms in the
Taylor expansion of the exponential of the Taylor expansion of the h-likelihood in eq. (11). The
evaluation of E(T,), E(T5Ts), and E(T32) is given in the next paragraph. The optimization algorithm in
NEBULA-HL for low-expressed genes thus iterates between the h-likelihood in eq. (11) and the modified
marginal log-likelihood 1" (a2, ¢|B*,n™). In this algorithm, we use the h-likelihood to estimate 8 and 7,
and then use [ (a2, ¢|B*,11") to estimate o and ¢. This is conceptually equivalent to the method
named as HL(0,2) in 7 except for a minor modification. The difference is that HL(0,2) evaluates the
derivative with respect to both B and n in I (62, ¢|B*, "), while our method computes the derivative
with respect to n; only. This modification can be justified by two facts. First, as the sample size of single-
cell data is generally large, ignoring the uncertainty of the estimate of # practically has little effect on
estimating 02 and ¢. Second, omitting the derivative with respect to 8 will dramatically simplify the
calculation of those higher-order terms in A (i.e., E(T,), E(T32), etc) as we show in the following
derivation.

Briefly, the higher-order LA method first rewrites the h-likelihood hl(,17|02, ¢) in eq. (11) using the
0?hi(Bmlo®.¢) m-n")*
611*2 2
a kernel of the normal distribution, the marginal likelihood in eq. (10) is proportional to the expectation

Taylor expansion. If we view the second-order term T, = in the Taylor expansion as

of the exponential of the third- and higher-order terms, denoted by T3, T4, and so on, under the normal
distribution. By applying the Taylor expansion to the expectation again, we can rewrite the marginal
likelihood as

a *2 21

2 2
L%, 918" 1) =exr><hl(ﬁ*,n*|02,¢)—%log< O HE nlo”, ¢)D>E(1+R+R—+---),

where R = },725 T; and E (%) is the expectation over 1. The detailed derivation of the higher-order
multivariate LA can be found in e.g., ®, the first equation on p. 89 in °, or Chapter 6 in 8. Hence the
marginal log-likelihood becomes

log(L(a?, $18", 1))
1
= hl(B", 0’ |0%,¢) - 5108<

2 2
4 hl(g "'26 ¢)D+log<1+E(R)+E<};>+-">,

and keeping the first few items gives " (a2, ¢|B*,n*). In principle, we can achieve any accuracy as much
as we want by adding more higher-order terms T;. On the other hand, including more terms requires the
additional computation of higher-order multivariate derivatives. We find that including E (T,), E(T32)/2,
and E(T5Ty) = S0
already achieves a substantial improvement in reducing the bias of estimating o for the NBGMM
(Supplementary Fig. S17). Taking the logarithm of L(a2, ¢|B*,17*) by including E (T,), E(T32)/2, and
E(T5Ts) leads to %; 1" (%, ¢ 1B, 1").

works practically well as a trade-off between accuracy and efficiency, and
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an*

3,4,5) are all constants, the expectation is equivalent to the higher-order joint moments of a zero-mean

Next, we turn to the calculation of the terms E (T,), E(T32), and E(T3Ts) in A. As

normal distribution, the calculation of which follows from Isserlis' theorem (see e.g, °, p. 85). More
specifically, we have the following formulae in general

h: o R K
E(T,) =——2
8
E(15?) = O jichimn R R R™™ 4 6y hypy T RIT RET
’ 36
45h; i hpmno hijhklhmnh0p+60hi ikPimno nilpjmpknpop
E(T5Ts) = . P j p ,

720

where hijklhijhkl =Y Xt Xke1 Xt hijklhifhkl (m is the number of subjects) uses the Einstein
summation notation described in %, Rijie, hijir, Rimnop are the corresponding elements in the third,

fourth, and fifth derivatives of the negative h-likelihood, and kY is the corresponding element in the

92ni(Bnlo?,¢)
an*Z

Table 1 of the Appendix of °. Note that another option can be further expressing the log of the

inverse of — . The coefficients in the numerator of these formulae can be derived using

2
expectation log <E (1 + R+ % + - )> in terms of the cumulant generating function as proposed in *°,

This method requires counting complementary partitions (that is, only those complementary partitions
should be included in the numerator, although there is no difference for the three terms that we
consider here). Because the Hessian matrix is diagonal (h;; = 0 if i # j) in our model, these formulae
then simplify to

.o W R
E(T4) - _ llll8
S5h. i hEEhEERE
E(T32) _ iii 1;4

Thi::Riiies hiihiihiihii
E(T3T5) — iii 1111148 :

The same results can also be reached by using Theorem 2 in ©. Hence, the major additional

computational burden in this higher-order LA is to calculate the higher-order derivatives h;;;, h;;;;, and

O*hBmlo®9)
oni?

A.7 that

_OPr(B,mlo* ¢) o (yij + d)uij (¢ — mij
iii = an;3 = —Aexp(m;) — zj (¢ N 'u;; 3
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Supplementary Figures



Supplementary Figure S1. The computational time (measured in logio(seconds)) of fitting an
NBMM by NEBULA, glmer.nb, and gimmTMB for 10,000 genes with respect to the number of
fixed-effects variables included in the model. The number of subjects was set at 50, and CPS
was set at 100. The average benchmarks are summarized from scenarios of varying subject-
level and cell-level overdispersions and the mean count per cell ranging from exp(-4) to 1.
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Supplementary Figure S2. Comparison of estimated cell-level and subject-level overdispersions
between NEBULA-LN and NEBULA-HL under a situation in which the CV of the scaling factor
(m;;) is one. The summary statistics were calculated from n=500 simulated replicates in each of
the scenarios. (A) The cell-level overdispersion estimated by NEBULA-LN and NEBULA-HL
under different combinations of CPS, S, (a lower g, corresponding to a lower CPC value), and
¢. The number of subjects was set at 50. (B) The subject-level overdispersion estimated by
NEBULA-LN and NEBULA-HL under different combinations of 8, o2, and ¢. The number of
subjects was set at 50. The CPS value was set at 400. (C) The subject-level overdispersion
estimated by NEBULA-LN and NEBULA-HL under different combinations of the number of
subjects, o2, and ¢. The CPS value was set at 400, and 8, was set at 0.05. (D) The subject-
level overdispersion estimated by NEBULA-LN and NEBULA-HL under different combinations of
CPS, o2, and ¢. The number of subjects was set at 50, and 5, was set at 1.
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Supplementary Figure S3. Comparison of estimated cell-level overdispersion between
NEBULA-LN and NEBULA-HL under different combinations of the number of subjects, S,, and
¢. The CPS value was set at 200. The summary statistics were calculated from n=500
simulated replicates in each of the scenarios.
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Supplementary Figure S4. Comparison of estimated cell-level and subject-level overdispersions
between NEBULA-LN and NEBULA-HL under an unbalanced design in which the cell counts
across the subjects were sampled from a negative binomial distribution with size=3. The
summary statistics were calculated from n=500 simulated replicates in each of the scenarios.
(A) The cell-level overdispersion estimated by NEBULA-LN and NEBULA-HL under different
combinations of CPS, S, (a lower S, corresponding to a lower CPC value), and ¢. The number
of subjects was set at 50. (B) The subject-level overdispersion estimated by NEBULA-LN and
NEBULA-HL under different combinations of ,, o2, and ¢. The number of subjects was set at
50. The CPS value was set at 400. (C) The subject-level overdispersion estimated by NEBULA-
LN and NEBULA-HL under different combinations of the number of subjects, o2, and ¢. The
CPS value was set at 400, and 8, was set at 0.05. (D) The subject-level overdispersion
estimated by NEBULA-LN and NEBULA-HL under different combinations of CPS, ¢2, and ¢.
The number of subjects was set at 50, and g, was set at 1.
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Supplementary Figure S5. Empirical type | error rate of testing a subject-level variable using
NEBULA-LN under different combinations of CPC, 2, and ¢. The CPS value was set at 400
and the number of subjects was set at 50. The empirical type | error rate was calculated from
n=500 simulated replicates in each of the scenarios and was evaluated at the significance level
of 0.05 (the dashed lines).
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Supplementary Figure S6. Empirical type | error rate of testing a cell-level variable using
NEBULA-LN under different combinations of CPC, o2, and ¢. The number of subjects was set
at 50 and the CPS value was set at 400. The empirical type | error rate was calculated from
n=500 simulated replicates in each of the scenarios and was evaluated at the significance level
of 0.05 (the dashed lines).
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Supplementary Figure S7. Empirical type | error rate of testing a subject-level variable using
PGMM under different combinations of the number of individuals, o2, and ¢. The CPS value
was set at 200. The empirical type | error rate was calculated from n=500 simulated replicates in
each of the scenarios and was evaluated at the significance level of 0.05 (the dashed lines).
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Supplementary Figure S8. Distribution of the library size (the total number of reads) of each cell
grouped by the seven major cell types in the shRNA-seq data in the human frontal cortex.
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Supplementary Figure S9. The cell-level overdispersion of genes with CPC>0.1% in five major
cell types in the frontal cortex estimated by NEBULA with respect to the CPC of the gene. No
covariates other than the intercept were included in the model.
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Supplementary Figure S10. The subject-level overdispersion of genes with CPC>0.1% in five
major cell types in the frontal cortex estimated by NEBULA with respect to the CPC of the gene.
No covariates other than the intercept were included in the model.
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Supplementary Figure S11. The distribution of (A) the estimated cell-level overdispersion and
(B) subject-level overdispersion in the excitatory neurons (Ex) and the 11 subpopulations in the
excitatory neurons (Ex0-Ex12) annotated in the ROSMAP 48-subject shRNA-seq data set. All
genes with CPC>0.1% in each of the cell populations were included.
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Supplementary Figure S12. The cell-level overdispersion estimated by NEBULA versus those
estimated by glmer.nb with NnAGQ=0 for 16,207 genes with CPC>0.1% in the excitatory neurons
in the ROSMAP 48-subject snRNA-seq data set.
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Supplementary Figure S13. The subject-level overdispersion estimated by NEBULA versus
those estimated by glmer.nb with nAGQ=0 for 16,207 genes with CPC>0.1% in the excitatory
neurons in the ROSMAP 48-subject snRNA-seq data set.
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Supplementary Figure S14. The log(FC) of a subject-level variable estimated by NEBULA
versus those estimated by glmer.nb with nAGQ=0 for 16,207 genes with CPC>0.1% in the
excitatory neurons in the ROSMAP 48-subject snRNA-seq data set.
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Supplementary Figure S15. The cell frequency of the four subclusters in astrocytes across the
48 individuals. The 3386 astrocytes in the human frontal cortex are from the ROSMAP 48-
subject snRNA-seq data.
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Supplementary Figure S16. Scatter plots of the normalized expression for the calculation of the
Pearson correlation in the co-expression analysis of BCL3 with two genes (CX3CR1 and
LINC02446) in the memory CD4+ T cell population. The outliers are highlighted in red.
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Supplementary Figure S17. The comparison of the performance of estimating a2 between the
first-order and the higher-order LA methods. The simulation results are based on the parameter
setting with ¢ = 2, CPS=100, and 30 subjects. The dashed horizontal lines are the true value of
a2. The summary statistics were calculated from n=500 simulated replicates in each of the
scenarios.
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Supplementary Figure S18. The comparison between the h-likelihoods of the NBGMM and
NBLMM. The sample size in all h-likelihoods is 100. The plotted h-likelihood functions with
respect to n; are based on the parameter setting with ¢ = 1, 62 = 0.5, and B, = —5. (A) An h-
likelihood of the NBGMM in which there are no positive counts in the sample. (B) An h-likelihood
of the NBGMM in which there are two positive counts in the sample. (C) An h-likelihood of the
NBLMM in which there are no positive counts in the sample.
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