Observation of Electric-Field-Induced Structural Dislocations in a Ferroelectric Oxide

Donald M. Evans,^{1†*} Didrik René Småbråten,^{1‡} Theodor S. Holstad,¹ Per Erik Vullum,² Aleksander B. Mosberg,³ Zewu Yan,^{4,5} Edith Bourret,⁵ Antonius T. J. van Helvoort,³ Sverre M. Selbach,¹ and Dennis Meier^{1*}

*E-mail: <u>donald.evans@uni-a.de</u> and <u>dennis.meier@ntnu.no</u>

¹ Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.

² SINTEF Industry, 7491 Trondheim, Norway.

³ Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.

⁴ Department of Physics, ETH Zürich, 8093 Zürich, Switzerland.

⁵ Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

Supplementary Materials

Table S1. Comparison of calculated *a* and *c* lattice parameters, bulk polarization (*P*), apical (θ) and planar (α) MnO₅ tilt angles, and electronic band gap (*E*_g) in YMnO₃ and ErMnO₃.

Parameter	YMnO₃	ErMnO₃
a (Å)	6.100	6.049
c (Å)	11.420	11.370
$P(\mu C/cm^2)$	7.051	7.968
θ (°)	5.107	5.273
α (°)	7.082	7.569
E_g (eV)	1.531	1.565

Figure S1. Calculated electronic density of states (DOS) of a YMnO₃, and b ErMnO₃.

Figure S2 | A *c*/4 and *a*/3 dislocated structure viewed at 60 ° to the interface. DFT calculations showing one of the symmetrically equivalent c/4, a/3, dislocated structures viewed along the [110] direction, or symmetrically equivalent projections. In this case, there is a continual merging of the *R*-cation and Mn atomic columns, as observed in the HAADF-STEM of Figure 2c.

Figure S3 | Viewing directions and depth effects. Left: Illustration of the atomic structure in the unit cell of hexagonal manganites with space group symmetry $P6_3cm$, viewed along the [001] and [$\overline{1}$ 00] directions. Er and Mn atoms are represented by gold and purple spheres, respectively. Middle: Comparison of dislocated structures; Er (gold and blue) and Mn (purple). Right: Superposition of the structures seen on the left and in the middle.

Figure S4 | Change in local orbitals at a dislocation. a, Visualization of the calculated partial charge density for the highest occupied wavefunction, illustrating the position of the valence band edge in the supercell. **b**, Visualization of the calculated partial charge density of the lowest unoccupied wavefunction, illustrating the position of the conduction band edge in the supercell.