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1 Deep neural network model and training

We trained our ab initio-based deep neural network (DNN) potential using the iterative

procedure proposed by Zhang et al.1. As shown in Fig. S1, we started training a coarse

DNN potential using computed DFT energies and forces for a small set of 100 equally

spaced snapshots taken from ab initio simulations of bulk anatase TiO2, liquid water and

the anatase (101)–water interface2. This coarse DNN potential is then used to start an iter-

ative training procedure consisting of: 1) exploration of the configurational space for each

of the three systems using molecular dynamics simulations at different thermodynamic

conditions; 2) evaluation of the maximum standard deviation (MSTD) on atomic forces

predicted by DNN potentials trained with random initialization of their parameters; 3)

first-principles calculations of energy and atomic forces for the configurations with MSTD

larger than a pre-defined threshold; and 4) new training of the DNN after adding the new

set of ab initio data to the reference data set. Convergence is achieved when the the mean

absolute deviation of atomic forces, predicted during a 100 ps DPMD simulation of the

anatase (101)–water interface at 330 K, falls bellow 0.05 eV/Å. At the exploration step of

our DNN training, we sampled the following thermodynamic conditions for each system
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Figure S1: Neural network training procedure

from DPMD:

• anatase TiO2 (108 atoms): 200−1200 K at 1 bar;

• Water (192 atoms): 200−400 K at 1 bar, and 400−800 K at constant volume (experi-

mental density);

• anatase (101)–water interface (426 atoms): 200−800 K at constant volume.

Given a converged DNN potential, we further refined it by including configurations

collected from enhanced sampling simulations. We adopted an iterative procedure similar

to that shown in Fig. S1, but in this case our convergence criterion was based on the free

energy barrier for water dissociation.

Our converged DNN potential contains a training set with the following number of

configurations: 769 for anatase TiO2; 5583 for water; 250 for water adsorbed on the

anatase (101) in vacuum; and 15248, for the anatase (101)–water interface, for which

configurations with some of the interfacial water molecules either dissociated or near the

transition state were included.
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2 Ab initio calculations

First-principles energies and forces were computed with the DFT functional SCAN3, as

implemented in the PWscf code of Quantum ESPRESSO4,5 and the Libxc package6.

Norm-conserving pseudopotentials of TM7 (oxygen and hydrogen) and RRKJ8 (titanium)

types replaced core-valence electron interactions. Kohn-Sham wavefunctions were repre-

sented in plane-wave basis including terms up to 110 Ry kinetic energy. Only the Γ point of

the Brillouin zone was sampled. A detailed study on the accuracy of the SCAN functional

to predict structural properties of TiO2 can be found in the supporting information of2.

3 DPMD performance relative to AIMD

In this section we provide a more extensive comparison between results given by DPMD

and AIMD with the density functional SCAN. All comparisons are performed using the 1×3

anatase (101) surface supercell described in the main text.

Vibrational properties. We compare the vibrational densities of states (VDOS) of water

and TiO2 as obtained from 40 ps of AIMD2 and DPMD simulations of the TiO2–water inter-

face. Interfacial water is discretized into layers, as defined in a previous study by some of

the present authors2, with higher layer indexes referring to water molecules at larger dis-

tances from the TiO2 surface. As shown in Fig. S2, DPMD correctly captures the evolution

of the vibrational spectrum of water as a function of the distance from the surface, in good

agreement with AIMD. The VDOS of the TiO2 slab obtained from DPMD also agrees with

the ab initio spectrum (Fig. S3), showing the ability of DPMD to reproduce the ab initio

potential energy surface of both water and TiO2.

Water dissociation on TiO2. We performed calculations of the minimum energy path

to dissociate a water molecule on the anatase (101) surface in vacuum using the Nudged

Elastic Band (NEB) method9. A single water molecule was adsorbed on one side of a 5

layers 1×3 anatase (101) slab with a 15Å vacuum separating periodic images along the

surface normal. As shown in Fig. S4, the NEB-DNN calculations agree, within the devia-

tion of four DNN potentials, with the results from DFT. In particular, our DNN potentials
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Figure S2: Vibrational density of states of water at the TiO2–water interface. Water layers
are defined as in Ref.2. Shaded areas indicate the standard deviation obtained from four
independent DPMD simulations.
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Figure S3: Vibrational density of state of the TiO2 slab used to simulate the TiO2–water
interface. Water layers are defined as in ref.2. Shaded areas indicate the standard deviation
obtained from four independent DPMD simulations.

reproduce the energy difference between molecular and dissociative adsorption of water

as well as the energy barrier separating these two stable states given by DFT.

We further compared the DNN and ab initio results for water dissociation at the anatase (101)–

water interface, by evaluating the work to move a H+ from a TiO2 undercoordinated oxy-

gen (bridging hydroxyl) to a nearby terminal hydroxyl group. Atomic coordinates along the

reaction path were taken from the umbrella sampling described in section 4 (see below).

The work was computed as the integral of the force projected on the unit vector connecting

a O2c to the nearest H atom. As shown in Fig. S4, the DPMD results are in close agreement

with DFT.

4 Umbrella sampling

As mentioned in the main text, we computed the free energy of water dissociation on

anatase from a two-step procedure. In the first step we evaluated the free energy (F(SO))

as a function of the minimum distance, SO, between a particular surface oxygen atom
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Figure S4: Left: Minimum energy path to dissociate an adsorbed water molecule on the
anatase (101) surface in vacuum into a terminal and a bridging hydroxyl. Right: Work
to move a H+ from a surface O2C to an OHt adsorbed on an adjacent Ti5c at the anatase
(101)-water interface. Shaded areas indicate the standard deviation obtained from four
different DNN potentials.
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(O) and any hydrogen atom in the system. Here we give further details on the umbrella

sampling technique used to evaluate F(SO).
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Figure S5: Free energy (F(SO)) as a function of the minimal distance SO of a surface O2c to
any hydrogen in the system.

Our umbrella sampling simulations consisted of 9 independent DPMD simulations of

the 1×3 anatase (101) in contact with a 20 Å slab of water. In each of these simulations,

we applied a quadratic (or umbrella) potential V (SO) = k(SO−S f ix
O )2 centered at one of the

following values of S f ix
O , in Å (with corresponding value of the force constant k given in

parenthesis, in kJ mol−1 Å−2): 1.0 (200), 1.1 (4000), 1.2 (4000), 1.25 (4000), 1.3 (4000), 1.4

(2000), 1.5 (2000), 1.6 (500), 1.7 (100). The probability distribution of SO was re-weighted

using the WHAM method10. The resulting free energy curve is given in Fig. S5.

5 Lattice gas model

To obtain an additional independent estimate of the equilibrium coverage of dissociated

water at the anatase (101)–water interface, we used a simple lattice gas model, where

each site corresponds to a surface water adsorption site (Ti5c) that is occupied by either a

molecular or dissociated water. We assume the adsorption energy of molecular water to
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be 8.0 kJ/mol more favorable than dissociated water, as given by our enhanced sampling

simulations (Figure 4 in the main text). Our model also includes a constraint present

in the real system: no two water molecules can donate H+ to the same O2c site on the

surface. This constraint prevents water dissociation at Ti5c sites where the two adjacent

O2c’s are already protonated, decreasing even further the probability of water dissociation

at high surface hydroxylation. Our model relies on the negligible correlation between

water dissociation at neighboring adsorption sites on anatase (101). On this surface, the

distance between neighboring Ti5c sites is indeed quite large, 3.8 Å, thus allowing only

weak H-bonds (≈ 2.5 Å) between water or hydroxyl groups adsorbed on such sites. As a

result, the water dissociation free energy is largely independent from the degree of surface

hydroxylation (see Fig. S5). Similarly, water adsorption on the anatase (101) surface in

vacuum depends negligibly on the surface coverage below one monolayer11.

Our lattice gas model has the following Hamiltonian:

H =


ε

N,M
∑

i=1, j=1
|ni, j|, if ni, j−ni, j+1 6= 2

∞, otherwise
(1)

where ε is the adsorption free energy difference of dissociated vs. molecular water at

the anatase (101)–water interface, and ni, j represents the adsorption state of water at site

(i, j). We set ε = 8.0 kJ/mol, ni, j = 0 for adsorbed molecular water, and ni, j =±1 for disso-

ciated water. where ni, j = −1 and ni, j = 1 represent a dissociated water donating a H+ to

an O2c atom on the left and on the right, respectively (see Fig. S6). The above Hamiltonian

prohibits the formation of doubly protonated O2c sites through the energy constraint on

the adsorption state ni, j = 1,ni, j+1 = −1. In this model, rows (i) and columns ( j) repre-

sent adsorption sites along the [010] and [1̄01] directions of the anatase TiO2 crystal lattice,

respectively. A model with 96 adsorption sites (as in the 4x12 anatase surface supercell

used for DPMD simulations) was represented by N = 12 columns and M = 8 rows. The

probability P(C) of observing the surface with C hydroxyl sites was numerically evaluated

with Metropolis Monte Carlo sampling, and the total number of hydroxyls is defined by
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Figure S6: Scheme of the lattice gas model used to compute the free energy of the
anatase (101)–water interface as a function of the surface hydroxylation coverage. Empty
red circles represent bare O2c sites, while a red circle with a “H” represents a bridging hy-
droxyl group. Empty squares represent adsorbed molecular water, and squares with a “OH”
represent terminal hydroxyl groups on top of Ti5c sites. The model contains N×M water
adsorption sites.

C = ∑
i, j
|ni, j|. The temperature was set at 330 K, the same used in our DPMD simulations.

At each Monte Carlo step, a trial change in an adsorption state ni, j randomly selected a

molecular (ni, j = 0) or dissociative (ni, j = ±1) state with equal probability. The move was

accepted/rejected based on the Metropolis criteria.

From the free energy surface F(n) presented in Fig. S7, we estimated a 5% equilibrium

hydroxyl coverage from
∫ 1

0 e−βF(n)ndn/
∫ 1

0 e−βF(n).

Although water dissociation is in itself thermodynamically unfavored, the configura-

tional entropy contribution gives rise to a finite probability of observing dissociated water.
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Figure S7: Free energy of the lattice gas model as a function of the fraction of dissociated
water. Inset restricts the dissociation fraction to the range from 0 to 0.15 in order to show
the minimum in free energy. The lattice gas model was evaluated on a 96 sites model, the
same number of water adsorption sites as our DPMD simulations.

6 Water confinement effect

All simulations reported in the main text were performed for a 2 nm water slab confined

between TiO2 surfaces. With this geometry, the density profile of water at the center of

the water slab was found to converge to the equilibrium density of bulk water in AIMD

simulations with the SCAN functional2. To further test the influence of the water slab

thickness, we compared DPMD simulations for 2 and 4 nm confined water slabs. As shown

in Fig. S8, the density profile of water changes negligibly by increasing the water slab

thickness from 2 nm to 4 nm. This indicates that a 2 nm water slab should be sufficient to

properly simulate the anatase (101)–water interface with a negligible confinement effect.
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Figure S8: Comparison of the water density profiles obtained from DPMD simulations
of anatase (101)–water with 2 nm and 4 nm water slab confined between anatase (101)
surfaces. The water density profiles for 2 and 4 nm were matched close to the TiO2 surfaces.
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