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S1. Primate host species and subspecies included in this study 
 
To better understand oral microbiome evolution and ecology in primates, dental calculus from six host 
species spanning three hominid genera and one New World howler monkey outgroup were collected and 
analysed in this study (Table S1). These taxa were selected to focus on African members of the family 
Hominidae (great apes including ‘archaic’ and modern humans) and using the New World howler monkey 
species Alouatta palliata as an outgroup. A cladogram illustrating the relationships between these host 
species is provided in Fig. S1A.  
 
Dental calculus samples in this study were obtained from primate research stations, museums, dental 
clinics, and archaeological collections originating from 19 countries in Africa, Europe, and Central 
America (Fig. 1a; Data S1). For present-day modern humans, dental calculus was obtained under 
informed consent during routine dental cleanings, and research protocols for analyzing de-identified 
samples were approved by the Institutional Review Board for Human Research Participant Protection at 
the University of Oklahoma (IRB#4543). Archaeological dental calculus within the genus Homo was 
obtained from three groups chosen to represent distinctive phases in human history: 1) pre-antibiotic era 
modern humans, 2) pre-agricultural modern humans, and 3) extinct Homo. All non-human primate dental 
calculus was obtained postmortem from wild populations. To avoid potential group- or collection-specific 
batch effects, dental calculus samples for each host species were drawn from at least two different 
populations, with the exception of the howler monkey outgroup, which were all obtained from a single 
island in Nicaragua.  
 
A total of 115 new dental calculus samples from 109 individuals were initially screened for this study, of 
which 75 individuals passed genetic quality filters. In addition, we also analysed previously published 
calculus data from four Neanderthals, one chimpanzee (1), and ten present-day modern humans (2), of 
which all but one Neanderthal sample passed our genetic quality filters. Our combined total sample size 
was thus 124 individuals, of which 89 passed genetic quality filters. An overview of each host species, 
contributing institution, and collection details are provided below and are summarised in Data S1. Below 
we describe each species, their dietary habits, and known factors affecting their oral environment (e.g., 
saliva production, salivary pH, salivary protein composition, and antifeedant intake), which may influence 
their oral microbiome. Please note that in the following sections we use the following temporal 
terminology: ‘Ma’ for million years ago; ‘ka’ for thousand years ago. 
 
S1.1 Alouatta (Outgroup)  
 
Alouatta is a genus of New World monkeys in the family Atelidae native to tropical forests in Central and 
South America. New World monkeys (Platyrrhini) are estimated to have diverged from Old World 
monkeys and apes (Catarrhini) approximately 40 Ma (3, 4). 
 
S1.1.1 Alouatta palliata (Mantled howler monkey) 
 
Mantled howler monkeys are among the largest Central American monkeys. They consume a seasonal 
diet mostly of young leaves and ripe fruits, focusing primarily on trees in the family Moraceae, especially 
Ficus spp., Brosimum alicastrum, and Poulsenia armata, but also the trees Cecropia obtusifolia, Spondias 
radlkoferi, and Dipholis minutiflora (5). Microwear analysis of A. palliata dentition shows a high degree of 
anisotropy (6) reflecting the relative toughness of their diet and repetitive masticatory abrasion by plant 
phytoliths. Leaves in howler monkey diets are rich in plant defensive compounds, especially tannins (7, 
8), which are antifeedants produced by plants that bind dietary proteins and interfere with nutrient 
digestion (9). In response, A. palliata has large salivary glands to aid in food lubrication and the 
neutralization of dietary tannins (9). A. palliata saliva is slightly alkaline, which reduces complexing of 
tannins with dietary proteins, and it contains high amounts of proline-rich proteins (PRPs), which have a 
high affinity for binding and neutralizing tannins and other polyphenolic compounds (7). Consequently, 
salivary expression of tannin-binding salivary proteins, such as PRPs, is thought to be a physiological 
adaptation to a tannin-rich diet (7). Although PRP expression can be dietarily induced in other taxa, such 
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as rodents (9), PRP expression in howler monkeys is thought to be continuous (8). Like all New World 
monkeys, A. palliata do not express ɑ-amylase in saliva. In primates, ɑ-amylase expression in saliva 
emerged in Catarrhini (Old World monkeys, apes, and humans) through the insertion of a γ-actin 
pseudogene after the Platyrrhini-Catarrhini lineages split approximately 40 Ma, followed by a retroviral 
insertion in the hominoid lineage (superfamily Hominoidea) after the split with Old World monkeys 
approximately 20 Ma (10). Heavy dental calculus deposits are regularly observed in A. palliata skeletal 
remains (11). 
 
The historic A. palliata dental calculus included in this study (n=5) was obtained from the Ometepe 
Biological Field Station operated by the Maderas Rainforest Conservancy (MRC) on Ometepe Island, 
Nicaragua. Dental calculus (Fig. S1B) was collected postmortem from a skeletal anatomy collection 
prepared from animals that had died of natural causes between 2000 and 2013. The skeletons were 
collected from the forest floor, and, if not already decomposed, bodies underwent a brief period of burial 
prior to integration into the skeletal anatomy collection. Permissions for dental calculus sampling and 
destructive analysis were provided by the director of the Maderas Rainforest Conservancy at the 
Ometepe Biological Field Station, Nicaragua. Further details about the individuals sampled are included 
in Data S1. 
 
S1.2 Gorilla  
 
Gorilla is an Old World hominid genus in the family Hominidae (great apes) and subfamily Gorillinae that 
includes two extant species: G. beringei (eastern gorillas) and G. gorilla (western gorillas). Gorillas are 
estimated to have diverged from other African great apes 5.6-11.2 Ma, and eastern and western lineages 
are estimated to have split approximately 150-300 ka (12). 
 
S1.2.1 Gorilla beringei (Eastern gorilla) 

 
Eastern gorilla is a critically endangered species of gorilla native to parts of central and eastern Africa 
(13). Individuals belonging to its two subspecies, mountain gorilla (Gorilla beringei beringei) and Grauer’s 
gorilla (Gorilla beringei graueri, formerly known as eastern lowland gorilla), were sampled in this study; 
these subspecies are estimated to have diverged during or just before the Younger Dryas approximately 
10 ka (14). Mountain gorillas primarily inhabit medium and high altitude Afromontane forests located 
along the volcanic slopes of the Virunga mountains and within the Bwindi Impenetrable National Park in 
East Africa (15). The population size of the Virunga mountain gorillas dropped to below 300 individuals in 
the 1980s, but subsequent conservation efforts have resulted in population increases to over 600 
individuals in the wild today (16–18). The current estimate of total mountain gorillas today (Virunga and 
Bwindi populations) is approximately 1,000 (19). Mountain gorillas subsist almost entirely on an 
herbivorous diet focused on hard and tough plant structural material, such as leaves, stems, roots, wood, 
bark, and pith, as well as flowers and fruit (20). Mountain gorilla diet shows relatively little seasonal 
variation, with the exception of the seasonal availability of bamboo shoots (21). As with A. palliata, the 
dentition of the mountain gorilla exhibits anisotropic microwear consistent with repetitive masticatory 
abrasion by plant phytoliths. Mountain gorillas have been previously noted to consistently harbour ‘black’ 
calculus deposits (22, 23), which were also observed across all gorillas sampled in this study (Fig. S1c,d), 
and to have high levels of dental disease in general (24). Grauer’s gorillas are the largest gorilla 
subspecies, and they inhabit tropical lowland forests in eastern central Africa. Their current population is 
estimated at under 4,000 individuals (18). They consume a more seasonal diet than mountain gorillas, 
and their diets are characterised by a greater proportion of fruit (21). The salivary composition of eastern 
gorillas is not well-studied. However, like all great apes, eastern gorillas express salivary amylase (25). 
 
The historic eastern gorilla dental calculus samples in this study (n=21) were obtained from the Natural 
History Museum of Stockholm (NRM; mountain gorilla, n=15; Grauer’s gorilla, n=1), the Royal Belgian 
Institute of Natural Sciences  (Grauer’s gorilla, n=1), and the Royal Museum of Central Africa (Grauer’s 
gorilla, n=4) (18, 26). All eastern gorillas in this study were wild individuals from the early 20th century. 
Permissions for dental calculus sampling and destructive analysis were provided by the curators of the 
Vertebrate (Royal Museum of Central Africa) and Mammalogy (Royal Belgian Institute of Natural 
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Sciences; Naturhistoriska Riksmuseet, Stockholm) collections, respectively. Further details about the 
individuals sampled are included in Data S1. 
 
S1.2.2 Gorilla gorilla (Western lowland gorilla) 

 
Western lowland gorillas (Gorilla gorilla gorilla) are a critically endangered species of gorilla native to 
parts of central and western Africa, where they inhabit lowland rainforests (27). Western gorillas consume 
a seasonally varied diet consisting of fruits, leaves, herbs, roots, bark, pith, and termites (28). During the 
fruiting season, a majority of feeding time is spent consuming ripe tree fruits, while leaves make up the 
bulk of the diet during the rest of the year. Overall, western gorillas are more frugivorous than their 
eastern counterparts, and they selectively consume food parts or plants with higher nutrient (sugar, 
protein) and lower antifeedant (tannin) content than Old World monkeys (29). Western gorillas exhibit a 
high amount of dietary overlap with sympatric chimpanzees, differing only during periods of fruit scarcity; 
during these periods, western gorillas are more likely to consume fibrous foods containing tannins and 
phenols than chimpanzees (30). Compared with chimpanzees, gorillas have a larger body size, larger 
colons, and slower digesta passage rates, which enables digestion of more fibrous foods. With respect to 
their dentition, western gorilla molars are less highly crested than their eastern counterparts, which may 
be related to the higher amount of soft ripe fruit in their diet (30). However, despite differences in their 
diets, western and eastern gorillas do not exhibit significant differences in dental microwear (6). The 
salivary composition of western gorillas was recently studied and found to have an overall high protein 
concentration, and major salivary proteins were shared across gorillas, chimpanzees, and modern 
humans, although at different abundances and with different glycosylation patterns (31). Gorillas also 
express latherin (LATH/BASE), a surfactant and wetting agent found in the saliva and sweat of a range of 
mammals (32), but not in modern humans due to pseudogenization (31, 32). Copy number variation of 
the AMY1 gene in gorillas is uncertain, but previously published quantitative PCR data have confirmed 
that modern humans have a higher AMY1 copy number than either chimpanzees or gorillas (33). Basal 
salivary ɑ-amylase activity in western gorillas is lower than that of modern humans but significantly higher 
than that of chimpanzees (31, 34), and it increases with age (35). The basis of this elevated activity is not 
known. Stress is known to stimulate salivary ɑ-amylase expression; however, gorillas have relatively low 
cortisol levels compared to chimpanzees (35). Tannin-rich diets have also been shown to induce salivary 
ɑ-amylase expression in mice (36), and gorillas consume more tannin-rich diets and starch (in the form of 
roots) than chimpanzees (35); however, it is not known if dietary tannins influence salivary ɑ-amylase 
expression in apes. Tannins inhibit salivary ɑ-amylase activity and bind salivary ɑ-amylase with only 
slightly lower affinity than PRPs, and it has been proposed that tannin neutralization may be a secondary 
function of salivary ɑ-amylase, after its primary function in starch digestion (36).  
 
The historic western gorilla dental calculus samples in this study (n=8) were obtained from the Hamann-
Todd Collection at the Cleveland Museum of Natural History (CMNH; Cleveland, USA; n=7) and the 
Natural History Museum of Stockholm (NRM, n=1). All CMNH individuals were a part of the collection of 
C. Hamann and T. Todd who obtained wild-shot primates from Africa in the early 20th century and 
subsequently donated them to the CMNH. Permissions for dental calculus sampling and destructive 
analysis were provided by the collections manager of the CMNH Physical Anthropology department. The 
NRM individual was originally classified as Gorilla beringei beringei, but was later confirmed using genetic 
testing by T. van der Valk and K. Guschanski to be Gorilla gorilla gorilla. Permission for destructive 
sampling of dental calculus was provided by the NRM mammal curator. Further details about the 
individuals sampled are included in Data S1. 
 
S1.3 Pan  
 
Pan is a genus in the subfamily Homininae and tribe Panini, and it includes two extant species: P. 
troglodytes (common chimpanzee) and P. paniscus (bonobo). Chimpanzees are estimated to have 
diverged from Hominini 3.7-7.5 Ma (12). Only Pan troglodytes were analysed in this study.  
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S1.3.1 Pan troglodytes (Common chimpanzee)  
 
Common chimpanzees are an endangered species of chimpanzee native to parts of west, central, and 
east Africa. Individuals belonging to three subspecies, eastern chimpanzee (Pan troglodytes 
schweinfurthii), Nigeria-Cameroon chimpanzee (Pan troglodytes ellioti) and western chimpanzee (Pan 
troglodytes verus), were sampled in this study. Eastern chimpanzees are estimated to have diverged from 
the other subspecies 540-630 ka, and Nigeria-Cameroon and western chimpanzees are estimated to 
have split around 250 ka (37). Chimpanzees live in diverse habitats, including savannas and forests (both 
deciduous and evergreen), and they are among the most consistently frugivorous primates, maintaining 
frugivory even during times of fruit scarcity (38). As such, they can be considered ripe fruit specialists 
(39). Chimpanzees are highly selective feeders, and their diet quality is similar even across diverse 
landscapes. As a result, chimpanzee habitat quality is a poor predictor of diet quality (38). Fruits from 
trees and climbers make up the majority of the chimpanzee diet, but herbs and insects are also eaten, 
and vertebrate animal prey is occasionally consumed. Consistent with their primarily frugivorous diet, 
chimpanzee molars exhibit high microwear complexity and low anisotropy (6). Ripe fruits are a strongly 
preferred food, and the main fallback foods are piths and leaves, which are preferred over unripe fruits 
(39, 40). Food selection appears to be driven by sugar content rather than antifeedant avoidance (41), 
and many preferred chimpanzee fruits are rich in indigestible components. Chimpanzees in part reduce 
their intake of lignin and other toxic or digestibility-reducing compounds (such as tannins) through 
“wadging”, or compacting unpalatable plant material (such as seeds or fibrous material in leaves or fruit 
skins) for expectoration. Wadging is not known to be performed by other non-human primates, such as 
gorillas, but it is similar to quid production by modern humans (42, 43). Despite a preference for sugary 
food content, dental disease in wild individuals, including calculus formation (Fig. S1 E-F), generally 
remains low compared to gorillas (24), although it can appear more extensive when associated with the 
loss of molar attached gingival tissue (44). In captive individuals, calculus occurs at lower amounts in 
younger individuals primarily on labial surfaces of anterior teeth, whereas in adult individuals it is 
prevalent across all teeth (45). The salivary composition of chimpanzees has been studied and was found 
to have a lower protein concentration than gorillas, but higher than modern humans (31). Major salivary 
proteins identified within chimpanzee saliva were also shared with gorillas and modern humans, but 
differed in concentration and glycosylation patterns (31). Salivary immunoglobulins were found at 
relatively high levels in chimpanzees and modern humans, but not gorillas (31), suggesting greater 
immunological activity in the chimpanzee and modern human oral cavity. Chimpanzees have two diploid 
copies of the AMY1 gene (46), and copy number variation has not been observed. Salivary amylase 
expression in chimpanzees is significantly lower than in modern humans (46, 47), gorillas (35), and 
starch-utilizing Old World monkeys, such as hamadryas and gelada baboons (47).  
 
A total of 21 historic wild chimpanzee dental calculus samples are included in this study. Dental calculus 
from eastern chimpanzees (n=7) was obtained from Kibale National Park histological collection (KNP; 
Fort Portal, Uganda). Dental calculus samples were collected from wild individuals who had died between 
1992 and 2007 from illness or injury. All samples were collected postmortem after a brief period of burial, 
followed by storage in the KNP histological collection. Permissions for dental calculus sampling and 
destructive analysis were provided by R.W. of the Kibale Chimpanzee Project. Dental calculus from 
Nigerian-Cameroon chimpanzees (n=6) was obtained from the Hamann-Todd Collection at the Cleveland 
Museum of Natural History (CMNH; Cleveland, USA). All skeletons were obtained from wild-shot 
individuals from Africa in the early 20th century (see Gorilla section above for more details about the 
collection). Permissions for dental calculus sampling and destructive analysis were provided by the 
collections manager of the Physical Anthropology department. Dental calculus from western chimpanzees 
(n=7) was obtained from the chimpanzee skull collection housed in the Department of 
Palaeoanthropology at the Senckenberg Research Institute and Natural History Museum Frankfurt in 
Germany. Permission for dental calculus sampling and destructive analysis were provided by the curator. 
The chimpanzee skeletal material was obtained from local villages in Liberia where the chimpanzees had 
been hunted, killed, and cooked for food (48). Data for one additional western chimpanzee sample from 
Gola Forest, Sierra Leone was obtained from a public data repository (1). Further details about all 
chimpanzees included in this study are provided in Data S1. 
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S1.4 Homo  
 
Homo is a genus in the subfamily Homininae and the tribe Hominini (hominins), and it includes one extant 
species: H. sapiens (modern human), and multiple extinct (‘archaic’) species, of which Neanderthals are 
best understood. We use the term ‘modern’ here as it is a widely-known term, although  we acknowledge 
the ongoing and active debate surrounding the definitions and descriptions of Homo groups (49) Modern 
humans and Neanderthals are estimated to have diverged approximately 400-740 ka (50, 51).  
 
S1.4.1 Neanderthal 
 
Neanderthals are a group of Homo that inhabited parts of the Middle East, Europe, and Asia during the 
Middle and Late Pleistocene, and they went extinct during the Middle to Upper Palaeolithic transition 
approximately 40 ka (52). A total of 17 Neanderthal dental calculus samples are included in this study 
(Data S1). The age of the samples range from early Neanderthals dating to approximately 100 ka at 
Pešturina (53) to Neanderthals dating to approximately 70 ka at De Nadale Cave (54) and Banyoles (55), 
to late Neanderthals dating between 55 and 47 ka such as at Fumane Cave (56–58), the Troisième 
caverne of Goyet (59), and Zafarraya (60) (chronological difficulties described in 61, 62–66). Analysis of 
Neanderthal genomes has revealed that they were highly inbred (67), suggesting a long history of 
population bottlenecking and small population sizes. Neanderthals admixed with both Denisovans (68, 
69) (another ‘archaic’ Homo species) and Upper Palaeolithic modern humans (70–72). With respect to 
Neanderthal diet, bone collagen stable isotope analysis and faunal assemblages have been 
conventionally interpreted to indicate a near complete reliance on large game hunting (73, 74), making 
them top level predators. Although some researchers have described them as carnivores (74), other 
research has complicated this view (75). A number of Neanderthal sites have yielded evidence for a 
broader resource exploitation of birds (i.e., at Fumane (76)), small prey (77), and even fish, shellfish, and 
marine mammals (78, 79). Dental enamel micro- and mesowear suggests that Neanderthals living in 
southern wooded environments consumed a broader range of dietary items than those living in more 
northern or open environments (80–82). Charred seeds and plant microfossils of starch-rich foods have 
been recovered at many Neanderthal sites (83, 84), and starch granules and phytoliths have been 
identified within Neanderthal dental calculus, providing a glimpse of the diverse range of starchy foods in 
the diet, including grass seeds, legumes, fruit, and underground storage organs (USOs), that otherwise 
leave few traces in the archaeological record (85–88). Elevated nitrogen stable isotope values that have 
been observed in Neanderthal bone collagen have also been reevaluated in light of broader patterns of 
Pleistocene isotopic ecology (89, 90), and recent compound-specific isotopic analysis of glutamic acid 
and phenylalanine indicates that plants may have accounted for as much of 20% of their dietary proteins 
(90–92). An attempt has been made to characterise Neanderthal diet using eukaryotic DNA sequences 
recovered from calculus (1), but improbable findings (93) and unresolved questions regarding sediment 
leaching, aDNA characteristics authentication, and sample treatment history have raised doubts about the 
study methodology, so this will not be further considered here. At present, a broad body of current 
evidence suggests that Neanderthals both hunted and gathered and that wild starchy foods were likely 
consumed when present in the environment. 
 
To date, two high coverage Neanderthal genomes (Vindija and Altai) have been published (67, 69), but 
with the exception of MUC7 and AMY1, the genes of salivary proteins in Neanderthals have not been 
studied. However, it is known that Neanderthals have two diploid copies of the AMY1 gene, and copy 
number variation has not yet been observed. Modeling of the evolutionary history of the AMY1 gene in 
modern humans suggests that the high copy number observed in modern humans postdates the modern 
human-Neanderthal split (94). The gene MUC7 encodes an abundant salivary protein involved in 
microbial aggregation, and variants in this gene in modern humans are associated with microbiome 
structure at oral and pharyngeal mucosal surfaces, as well as supragingival plaque (95). 
 
A total of 18 Neanderthal dental calculus samples were included in this study. These samples originate 
from six sites in Spain (Banyoles (55), La Güelga (96), Cueva de Valdegoba (97), El Sidrón (1), Cueva 
del Boquete de Zafarraya (60, 98), Sima de las Palomas del Cabezo Gordo (99–101), one site in Serbia 
(Pešturina Cave (53, 102)), two sites in Italy (Fumane (103), de Nadale (54)), and two sites in Belgium 
(Troisième caverne of Goyet (59, 104), Spy (1)). Permission for sampling and destructive analysis for 
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plant microfossils of the dental calculus sample from Banyoles (BAN, n=1; ca. 66 ka) was obtained from 
the private owners of the mandible by D.C.S.G and R.C.P, and later extended to genetic analysis of a 
subsample from the original sampling. Permissions for sampling and destructive analysis of the dental 
calculus samples from La Güelga (GUE, n=1; >45 ka), Cueva de Valdegoba (VLD, n=1; >45 ka), and 
Sima de las Palomas del Cabezo Gordo (SPM, n=2; ca. 63-37 ka) were provided by the respective 
excavation leaders and head (palaeo)anthropologists (M.J.W. for SPM) to D.C.S.G (and R.C.P for VLD). 
Samples from La Güelga were obtained from the Universidad Nacional de Educación a Distancia, the 
sample from Cueva de Valdegoba was obtained from Universidad de Burgos, and calculus from Sima de 
las Palomas Cabezo Gordo was taken as a subsample from previous analyses (88) and the remains now 
curated at the Murcian Association for the Study of Palaeoanthropology and the Quaternary 
(MUPANTQUAT). The dental calculus sample from Cueva del Boquete de Zafarraya (ZAF, n=1; ca. 45 
ka) was obtained and sampled at the Museo de Málaga (Spain), with permissions for sampling and 
destructive analysis provided to D.C.S.G and R.C.P. by the Junta de Andalucía. The dental calculus 
sample from Pešturina (PES, n=1; ca. 102 ka) was obtained from the University of Belgrade and 
permissions for sampling and destructive analysis were given by the director of the Center for the 
Palaeolithic and Mesolithic Studies, Faculty of Philosophy, University of Belgrade (D.M.). Dental calculus 
samples from Fumane cave (FUM, n=3; ca. 54-48 ka) and de Nadale cave (GDN, n=2; ca. 70 ka) were 
obtained from the University of Ferrara and permissions for sampling and destructive analysis were 
provided by the University of Ferrara (M.P.) and Soprintendenza archeologia, belle arti e paesaggio per le 
province di Verona, Rovigo e Vicenza (SAPAB – VR). Dental calculus samples from the Troisième 
caverne of Goyet (GOY, n=2; 45-40 ka) were collected from remains housed in the Anthropology and 
Prehistory collections of the Scientific Heritage Service of the Royal Belgian Institute of Natural Sciences. 
Permission for dental calculus sampling and destructive analysis were provided by the curator of the 
Anthropological and Prehistory Collections, and by the Troisième caverne of  Goyet project coordinator 
(H.R). Finally, data from two additional Neanderthal sites at El Sidrón (n=2; ca. 49 ka) and Spy (n=2; 40 
ka) were obtained from a public data repository (1). Further details about the individuals sampled are 
included in Data S1. 
 
S1.4.2. Homo sapiens (Modern Human) 
 
Modern humans (Homo sapiens) evolved in Africa approximately 300 ka (105, 106) and subsequently 
radiated throughout the Old World ca. 220-40 ka (107–111), admixing with other members of Homo, at 
least with Neanderthals and Denisovans, in the Near East/Europe and Asia, respectively (70–72). By the 
terminal Pleistocene (ca. 15 ka), modern human populations had expanded to the Americas and now 
inhabited every continent except Antarctica (107). Pleistocene modern human populations were diverse, 
practicing a wide variety of gathering, hunting, and fishing food acquisition strategies that were adapted to 
local environments. Early gathered foods included starchy geophytes (corms, bulbs, tubers, and 
rhizomes), which were likely cooked, and charred rhizomes and parenchyma fragments are attested in 
South Africa as early as 170 ka at Border Cave (112) and at 120 ka at the Klasies River site (113). The 
Klasies River site has also yielded modern human remains with dental calculus containing starch 
granules from grass seeds (Triticeae) and probable USOs, and similar grass and USO starch granules 
have also been reported in modern human dental calculus at Skhul, Israel (ca. 120 ka) (85, 114). The 
continued targeting of geophytes through the end of the Pleistocene in Africa, Eurasia, and Australia is 
supported by a wide body of evidence, including charred geophytes dating to 55 ka in Australia (115), 
starch granules and charred tubers and corms dating to 45 ka in Malaysia, and starch granules and 
charred plant tissues dating to ca. 30 ka in Europe and central Africa (85, 116–118). At the same time, 
diverse modern human populations in western Eurasia also began experimenting with collecting and 
grinding wild grains (117, 119, 120). Following the Younger Dryas and the onset of the Holocene ca. 11.7 
ka (121, 122), agriculture began to develop in different locations, with early centers of domestication 
forming in the Near East and China (123, 124), and later in Mexico, Northern and Andean South America, 
Eastern North America, Central and West Africa, South Asia, Japan, and New Guinea (125).  
 
In this study, we focus on prehistoric, and historic modern human populations from Africa and Europe, 
and contemporary modern human populations from Europe. Although the chronological systems of these 
two continents differ, the African Later Stone Age (beginning ca. 50-20 ka (126, 127) roughly corresponds 
in time with the European Late Middle and Upper Palaeolithic (ca. 50-11 ka). The earliest modern 
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humans in our study date to the Upper Paleolithic ca. 30 ka, approximately 15 ky after modern humans 
first arrived in Europe and 10 ky after the extinction of Neanderthals. Although these humans did not 
directly interact with Neanderthals, earlier populations did (128, 129). Subsequent post-glacial warming 
ca. 14 ka during the Bølling-Allerød interstadial is associated with major modern human population 
turnovers in Europe, and in particular an influx of ancestry from the Near East (130, 131). Following the 
Mesolithic period (which has a large range of start and end dates across Europe (132–138), Europe 
underwent a Neolithic transition beginning ca. 8.5-5 ka (139–141) as farming and animal husbandry 
largely replaced foraging in most regions. This Neolithic transition was initiated by a migration of Near 
Eastern farmers who replaced and admixed with local populations (142, 143). In Africa, the transition from 
foraging to food production was slightly later and more variable (144, 145). Ruminant pastoralism began 
ca. 7 ka in the Nile Valley and Sudan, and subsequently spread to the south-central Sahara by 6 ka 
(146). With the desertification of the Sahara, pastoralism continued to move southwards, spreading into 
West Africa and the East African savannas by 4 ka, and into Southern Africa within the last few millennia 
(146). Crop cultivation of Southwest Asian plant domesticates, such as wheat and barley, appeared by 5 
ka in the Egyptian and Nubian Nile Valley and by 2.8 ka in the northern Horn of Africa (147, 148). 
Indigenous African plant domesticates appear as early as 4 ka in the West African Sahel, such as pearl 
millet, followed by the emergence of a wide range of African crops across much of the continent during 
the subsequent three millennia. 
 
Modern human oral biology and microbiology is well-studied, and more than 600 prevalent microbial 
species are characteristic of the modern human oral microbiome (149). Dental calculus formation is 
nearly ubiquitous among modern human populations, but varies in abundance and prevalence within 
populations (150). Modern human saliva is well-studied, and to date more than 5,000 host proteins have 
been identified in saliva, of which salivary ɑ-amylase is the most abundant, accounting for 4.8% of the 
total salivary proteome (151), and proteins in the salivary PRP family collectively account for 20-30% of all 
salivary proteins (w/w) (152). Although most salivary proteins are shared among the great apes, humans 
lack latherin, a surfactant protein likely involved in food lubrication, due to a frameshift mutation in the 
gene (31). Modern human saliva is very watery, having the lowest protein concentration of the great apes, 
a property that may be related to vocalization or food lubrication in modern humans (31). Proteomic 
studies have also identified 130 proteins in the modern human acquired enamel pellicle (AEP), of which 
salivary ɑ-amylase is also the most abundant, after excluding keratin contaminants (153). Alpha-PRPs 
(aPRPs), histatins, and statherins are also present in modern human AEP, but they are less detectable 
using current methods (153), making them difficult to quantify, and evidence suggests aPRPs rapidly 
degrade in the AEP after initial formation (154). In contrast to non-human primates and ‘archaic’ humans, 
modern humans exhibit high salivary ɑ-amylase (AMY1) copy number variation, with a mean of ~6-8 
diploid copies in most populations, and a reported range 1-30 diploid copies overall (155, 156). The copy 
number expansion observed in modern humans is argued to relate to dietary shifts in early human 
evolutionary history, and specifically to an increased reliance on starch-rich geophytes, such as rhizomes, 
bulbs, corms, and tubers (46), which are important edible resources in grasslands and arid environments 
(157). Further correlations between copy number and dietary starch reliance in living populations today 
are less clear (155), but recent work on archaeological populations has found AMY1 diploid copy 
numbers of 5, 6, and 13 among European Mesolithic hunter gatherers (158), confirming that AMY1 copy 
number expansion occurred prior to agriculture (155), and a copy number of 6 has been imputed for a 45 
ka genome from Ust’Ishim in Siberia (94). Further genetic modeling indicates AMY1 copy number 
expansion was likely already established in modern human populations prior to their expansion out of 
Africa, and possibly as early as the Middle Pleistocene, shortly after the split with Neanderthals (94).  
 
To account for biogeographic variability as well as changes that may have occurred in the modern human 
oral microbiome across major lifestyle and dietary transitions, we analysed 39 ancient and historic 
modern human dental calculus samples across 34 individuals from Africa and Europe dating prior to the 
adoption of food production (n=25) and after the adoption of food production but before use of therapeutic 
antibiotics (n=14), as well as 18 present-day calculus samples from two populations in Europe (see Table 
S1 for individual site details and citations). We analysed thirteen samples dating to the African Later 
Stone Age prior to food production from the sites of Oakhurst, South Africa (n=5; ca. 7-5 ka), Taforalt, 
Morocco (n=7; ca. 15-14 ka), and Mota, Ethiopia (n=1; ca. 4.5 ka). We analysed thirteen samples dating 
to the European Upper Palaeolithic or Mesolithic prior to food production from the sites of Pavlov, Czech 
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Republic (n=1; ca. 30 ka), Dolní Věstonice, Czech Republic (n=2; ca. 31 ka), El Mirón, Spain (n=1; ca. 
18.7 ka), Rigney, France (n=1; ca. 15.5 ka), El Collado, Spain (n=6; ca 9.6-8.4 ka), and Große 
Ofnethöhle, Germany (n=1; ca 8.3 ka; Fig. S1G). We analysed ten samples from African food producing 
but pre-antibiotic sites at Essasoira (Mogador), Morocco (n=5, ca. 280 ya) and Polyoak, South Africa 
(n=5, ca. 200 ya). We analysed four samples from European food producing but pre-antibiotic sites from 
Lisbon, Portugal (n=3, ca. 280 ya) and Basque region, Spain (n=1, ca. 1.9 ka). Present-day dental 
calculus was obtained from dental clinics in Jaen (n=10) and Valencia (n=8), Spain, and represents a 
sampling of the general population, including both periodontally healthy and diseased individuals (2).  
 
Permission for destructive DNA analysis for samples for Oakhurst (OAK) and Polyoak (PYK) (South 
Africa) was provided by the UCT Human Skeletal Repository Repository Committee.  Ethics approval was 
provided by the UCT Human Research Ethics Committee  (Division of Clinical Anatomy and Biological 
Anthropology, University of Cape Town) under approval #715/2017, which was obtained in collaboration 
with V.E.G. Additional permission was granted from the South African Heritage Resources Agency and 
Heritage Western Cape for this study; part of the process included community consultation. Permission 
for collection and destructive analysis of calculus samples from individuals from Taforalt (Morocco; TAF) 
for archaeobotanical and archaeogenetic analysis were provided by the director of the National Institute 
of Archaeology and Heritage (INSAP), with export permission was granted to A.G.H. The Ethiopian 
Authority for Research and Conservation of Cultural Heritage and the National Museum of Ethiopia 
granted permission for destructive analysis of calculus taken from Bayira who was discovered in Mota 
Cave, Ethiopia. Samples from the Czech sites of Pavlov (PLV) and Dolní Věstonice (DLV) were taken as 
subsamples from previously published archaeobotanical analysis (159). Permission for additional 
destructive sampling for DNA analysis on these subsets was obtained from the collections curator (J.Sv.) 
at The Czech Academy of Sciences, Institute of Archeology (Brno), Centre for Palaeolithic and 
Palaeoanthropology in Dolní Věstonice. The sample from El Mirón (EMN) was obtained by subsampling 
previously collected calculus for archaeobotanical analysis (118, 160). Permission for destructive analysis 
of this sample was obtained by the excavation leaders (L.G.S., M.M.G) and obtained from the 
Universidad de Burgos. Dental calculus from the Rigney I (RIG) specimen was housed in the collections 
of the Regional Archaeological Service of Bourgogne-Franche-Comté (Besançon, France), who also 
provided the permission for sampling and destructive analysis (C.C.). Permission for sampling and 
destructive analysis for biomolecular methods of the samples from El Collado (ECO) was received from 
the Museo de Prehistòria de València to D.C.S.G. Dental calculus from the modern human individual from 
Große Ofnethöhle (Germany, Collection ID: OSUT 4043; OFN) was obtained from the Osteological 
Collection housed at the Institute for Archaeological Sciences, Section Palaeoanthropology at the 
University of Tübingen in Germany. Permission for dental calculus sampling and destructive analysis 
were provided by the director of the collection (K.H.). Permission for destructive DNA analysis for samples 
from Essaouira (Morocco; ESA), Lisbon (Portugal; LIS), and a sample from the modern day Basque 
Pyrenees region (Spain; BSQ) was provided by the curator of the Rudolf-Virchow-Sammlung in Berlin, 
Germany (B.T.). The data from present-day samples from Jaen (Spain; JAE) have been previously 
published in Velsko et al. (2). Permission for collection of present-day samples from VLC (Valencia, 
Spain) for analysis of oral microbiome and food debris was given under informed consent by anonymous 
patients undergoing routine dental healthcare cleaning by odontologists. To protect their privacy, human 
DNA has been removed from the sequencing data by discarding reads that map to the HG19 human 
reference genome. Further details about the individuals sampled are included in Tables S1 and S2. 
 
We also generated 8 new accelerator mass spectrometry dates for modern humans, supplementing 36 
previously published radiometric and trapped charge dates, for a total of 44 directly or indirectly dated 
ancient individuals in this study (Data S1). 
 
S2. Laboratory procedure 
 
For the purposes of this study, all calculus samples other than the present-day modern human samples 
(JAE and VLC) were treated as ancient during laboratory procedures and data analysis. This includes 
20th and 21st century primate samples because, despite being relatively recent, they had undergone 
maceration and/or burial processes prior to analysis. 
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All ancient and historic calculus samples except from the OME and KNP individuals were extracted in a 
dedicated ancient DNA cleanroom facility at the Max Planck Institute for the Science of Human History 
(MPI-SHH). OME and KNP samples were extracted in a dedicated ancient DNA cleanroom facility at the 
Laboratories of Molecular Anthropology and Microbiome Research (LMAMR; University of Oklahoma). 
DNA was extracted using standard ancient DNA protocols following Dabney et al. (161), with minor 
adaptations for each laboratory. Present-day modern human calculus samples (JAE and VLC) were 
extracted in a modern DNA laboratory at the MPI-SHH using a DNeasy PowerSoil DNA extraction kit. The 
PowerSoil kit is widely used in both medical and ecological studies and has become a field-wide standard 
for modern microbiome research (162–164). Prior research has shown that both protocols yield 
equivalent microbial profiles when applied to ancient microbiome samples (165), but the Dabney protocol 
allows greater ancient DNA recovery. For this reason, we chose to extract the present-day calculus 
samples using the DNeasy PowerSoil kit and the ancient microbiome samples using the Dabney protocol.  
 
All library constructions for shallow sequencing analysis (non-UDG treated libraries) and deep 
sequencing analysis (with full-UDG treatment) libraries were performed at the MPI-SHH. All library 
constructions for Illumina sequencing followed the double stranded, dual-indexed protocols of Meyer and 
Kircher (166, 167), with minor modifications. Negative controls were included in each extraction and 
library batch. Details for DNA extraction and library construction are provided below. Sample codes 
followed the internal conventions of the internal MPI-SHH LIMS system. See the External Data 
Repository Section R6.2.3 for details.  
 
S2.1 Dental calculus collection  
 
Unless otherwise stated, ancient and historic dental calculus samples were collected at their respective 
institutions or in the sampling room at the dedicated ancient DNA laboratory at the MPI-SHH. Prior to 
sampling, surfaces were cleaned with NaOCl, NaOH, or covered in aluminium foil to create a clean 
working environment. Wearing latex or nitrile gloves and a facemask, the tooth, cranium or mandible was 
held over either a constructed foil catchment bowl with a microcentrifuge tube perforated through the 
bottom (for loose teeth) (168), or a plastic weigh boat lined with a folded wax-weigh paper or aluminum 
foil square in the middle (for intact crania or mandibles). Calculus deposits were then gently removed 
using the broad edge of a sterile dental scaler or scalpel into the corresponding container and transferred 
to a microcentrifuge tube. Gloves and foil were replaced after each sampling and all utensils were 
thoroughly wiped down with bleach or alcohol wipes prior to reuse. Photos before and after sampling 
were taken where possible. Calculus was pooled from multiple teeth depending on the amount of 
available deposits, and further details regarding the specific teeth sampled are provided in Data S1. Full 
Protocols for both methods can be seen in https://dx.doi.org/10.17504/protocols.io.7hphj5n  and 
https://dx.doi.org/10.17504/protocols.io.bqecmtaw). 
 
Calculus from El Mirón (EMN), Dolní Věstonice (DLV), and Pavlov (PLV) were collected prior to this 
study, and the collection methods are described in (118, 159). Present-day modern human dental 
calculus for Jaén and Valencia was collected as described in (2) and stored frozen until analysis. 
 
S2.2 DNA extraction  
 
All ancient, historic, and non-present day modern human dental calculus samples were processed as 
follows, unless otherwise noted below. For pretreatment, if samples had evidence of consolidants, large 
deposits underwent a 15 min 0.5 ml acetone (VWR BDH Chemicals) soak without rotation, were spun 
down (1 min, 15,800 RCF), and acetone removed via pipette and evaporation. For surface DNA 
decontamination, samples of 2-10 mg were placed in a weigh-boat and UV irradiated for 1 min each side 
followed by a 15 min wash of 1 ml pH 8 0.5 M EDTA (Life Technologies) (169) with 15-20 min rotation at 
room temperature (RT). For very small or powdery calculus, UV irradiation was performed on open tubes 
for 1 min and the EDTA wash was performed with a short vortexing instead of the 15 min incubation. 
Samples were centrifuged (2 min, 8,000 RCF) and the wash supernatant removed. Due to concerns for 
sample loss because of very powdery and small sample size, EDTA surface decontamination was not 
performed for samples from MTM, MTS, MTK, LOB, CDC, GOY, and MOA. Following decontamination, 
calculus chunks were crushed using a pestle and the resulting fine powder was decalcified by incubation 
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in a solution of 1 ml 0.5 M EDTA for 24 h at RT or 37˚C under gentle rotation, and then additionally 
digested for 48-72 h at RT following the addition of 50 µl 10 mg/ml Proteinase K (Sigma-Aldrich). The 
suspension was then centrifuged and supernatant transferred into a binding buffer, following Dabney et 
al.(161), but substituting the High Pure Viral Nucleic Acid Large Volume Kit (Roche) in place of the 
MinElute PCR Purification Kit (Qiagen), as described in (170). In brief, DNA was bound onto silica 
membrane filter columns and purified following the High Pure Viral Nucleic Acid Kit workflow by twice 
washing the membrane with the manufacturer’s wash buffer. Before elution, a dry spin of the silica 
membrane was performed (30 sec at 8000 RCF, rotate tube 180o, spin again for 30 sec at 8,000 RCF, at 
room temperature) to remove excess ethanol. DNA was eluted in 100 µl EB-Buffer (Qiagen) with added 
0.05% Tween 20 across two eluting steps (1 min each, 8,000 RCF). DNA concentrations were measured 
with a Qubit 3.0 (Life Technologies) High Sensitivity Kit for double-stranded DNA (Life Technologies).  
 
Calculus from the site KNP was extracted in the ancient DNA facility at LMAMR, as above but with the 
following laboratory-specific adaptations. Following the initial 24 h decalcification, 250 µl of mixed 
pellet/EDTA was removed for other analyses. This volume was replaced with 250 µl of fresh 0.5 M EDTA, 
and 100 µl of proteinase K (Qiagen) was added and the solution. Digestion proceeded for 96 h at RT 
under gentle rotation. Following digestion, samples were extracted with the Dabney et al. protocol (161) 
using the MinElute PCR Purification Kit (Qiagen), as described in Ozga et al. (171). For historic calculus 
from individuals from the site OME, DNA was extracted also at LMAMR but following in Ozga et al. (171).  
 
Present-day calculus extraction and library preparation of the VLC samples were performed using a 
DNeasy PowerSoil DNA extraction kit (Qiagen) as described for JAE as described in (2). Per-sample 
details of the decontamination extraction procedure can be seen in Data S1. 
 
Bench protocols for both ancient and modern dental calculus DNA extraction procedures are accessible 
at: https://dx.doi.org/10.17504/protocols.io.bqbmmsk6 and 
https://dx.doi.org/10.17504/protocols.io.7p8hmrw respectively. 
 
S2.3 Library preparation and sequencing  
 
We produced two sets of libraries for this project. We first constructed libraries without uracil-DNA 
glycosylase (UDG) treatment to retain characteristic deaminated cytosines (resulting in uracils, interpreted 
as Ts by DNA polymerases) indicative of aDNA (designated the ‘shallow sequencing’ or ‘screening 
dataset’). We then used a subset of the extracts to construct UDG-treated (172) libraries, which removes 
aDNA associated damage, which we then deeply sequenced (‘deep sequencing dataset’ or ‘production’ 
dataset). For a summary, see Data S1 and External Data Repository File R1. Bench protocols are 
available as follows: non-UDG library preparation for ancient DNA from dental calculus 
(https://dx.doi.org/10.17504/protocols.io.bqcsmswe); full-UDG library preparation for dental calculus 
ancient DNA (https://dx.doi.org/10.17504/protocols.io.bmysk7we) and modern dental calculus DNA 
(https://dx.doi.org/10.17504/protocols.io.bqd7ms9n); indexing and amplification/pooling 
(https://dx.doi.org/10.17504/protocols.io.bakticwn and https://dx.doi.org/10.17504/protocols.io.beqkjduw).  
 
S2.3.1 Shallow Sequenced Dataset 
 
Libraries were generated for all samples at the MPI-SHH following previously described methods (166 
with full modified protocol at: https://dx.doi.org/10.17504/protocols.io.bqcsmswe), unless otherwise noted. 
Prior to library construction, DNA from present-day clinical calculus (JAE and VLC) was sheared to a 
target length of 200 bp using a Covaris M220 Focused-Ultrasonicator. For all samples, an input up to 20 
µl of DNA extract (to a maximum of 100 ng DNA) was used to create each library. Blunt ends of the DNA 
were repaired with 0.4 U T4 DNA Polymerase and 0.024 U T4 Polynucleotide Kinase (New England 
Biolabs), including NEB Buffer 2 (New England Biolabs), 1 mM ATP (New England Biolabs), 0.8 mg/ml 
BSA (New England Biolabs) 0.25 mM dNTPs for present-day samples/0.1 mM dNTPs for ancient 
samples (Thermo Scientific), and balanced with water. Reactions were incubated for 15 min at 15°C 
followed by 15 min for 25°C. Afterwards, extracts were purified by MinElute Purification (Qiagen) following 
the manufacturer's protocol, and eluted in 20 µl EB-Buffer (Qiagen) containing 0.05 % Tween 20 (Sigma-
Aldrich). Sequencing adapters were ligated with the Quick Ligation Kit (New England Biolabs) using 1x 
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Quick Ligase Buffer, 18 µl of the blunt end repaired DNA and 0.25 uM of the Adapter Mix, and incubated 
for 20 min at 22°C. DNA again was purified with the MinElute Purification Kit (Qiagen), but eluting in 22 µl 
of EB/Tween buffer. Adapter fill in was performed with 0.4 U Bst 2.0 DNA Polymerase (New England 
Biolabs) using 1x Isothermal Buffer (New England Biolabs), 0.25 nM dNTPs for present-day 
samples/0.125 mM dNTPs for ancient samples (ThermoScientific), and balanced with water and 20 µl of 
the adapter ligated DNA. Incubation was for 30 min at 37°C followed by 10 min for 80°C. Quantification of 
libraries was carried out with IS7 and IS8 primers in a quantitative PCR (qPCR, DyNamo SYBR Green 
qPCR Kit; Thermo Fisher Scientific) on a LightCycler 48 (Roche), the libraries were split into 1*10^10 
Copies DNA per reaction for the following indexing step. PfuTurbo DNA Polymerase (Agilent) was used to 
dual-index libraries (167) with 0.25nM dNTPs for present-day samples/0.38 mM dNTPs for ancient 
samples, 0.3mg/mL BSA, and 0.2uM each of P5 and P7, and amplified in a 100 µl reaction, after which a 
MinElute-Purification (Qiagen) was performed and the samples eluted in 50 µl EBT. The post-indexing 
libraries were then quantified with IS5 and IS6 Primers with the qPCR quantification above. Afterwards 
they were then quantified with an Agilent 4200 TapeStation NucleicAcid System with the D1000-Kit 
(Agilent). Every library that showed a concentration under 10 nM underwent a second amplification using 
Herculase II Fusion DNA Polymerase (Agilent) including 2-4 µl of the indexed library in a 100 µl reaction 
with 0.25mM dNTPs and 0.4uM of each of the IS5/IS6 Primers. After MinElute-Purification, the libraries 
were eluted in 20 µl EBT and quantified again on the Agilent 4200 (see above). An equimolar pool of 
each batch of non-UDG treated libraries (negative controls separately) were then prepared for 
sequencing.  
 
S2.3.2 Deep Sequenced Dataset 
 
In order to perform more detailed analyses of specific genomes and genes, we selected a subset of 
individuals for UDG treatment and deeper sequencing: Alouatta, OME002, OME003, OME005; Gorilla, 
DJA002, MTM009; Pan, EBO003, KNP001, KNP004, KNP005, KNP009; Homo (Neanderthal), FUM002, 
GOY005, PES001; Homo (pre-agricultural), ECO002, ECO004, EMN001, OAK002, OAK005, TAF008 
(tab labelled ‘Deep Sequenced Dataset’ in Data S1, and see section S6 for selection procedure). UDG 
treatment was performed following the protocol of Briggs et al. (172) to remove damage (cytosine to uracil 
deamination) for more accurate SNP calling. In brief, up 30 µl of extract (to a maximum of 100 ng DNA) 
was UDG treated by incubating the extract for 3 h at 37°C with 0.06 U of USER Enzyme (New England 
Biolabs), 0.4 U of T4 PNK (New England Biolabs) NEB Buffer 2 (New England Biolabs), 0.1 mg/ml BSA 
(New England Biolabs), and 0.3 mM dNTPs (New England Biolabs), balanced with water, up to a total 
volume of 75 µl. After the incubation, 0.115 U of T4 DNA Polymerase (New England Biolabs) was added 
to continue with a blunt end-repair. Following an incubation at 25°C for 20 min and 12°C for 10 min, the 
DNA was purified with the MinElute PCR Purification Kit (Qiagen) following the manufacturer's protocol, 
but eluting into 20 µl of EB-Buffer (Qiagen) containing 0.05 % Tween 20 (Sigma-Aldrich). Sequencing 
libraries were built using 30 µl of UDG-treated DNA extract following the protocol described for the 
shallow sequenced dataset above.  
 
For KNP samples, up to 30 µl of extract were UDG-treated as above followed by library preparation with a 
modified NEBNext DNA Library Prep Set (NEB E6076) and blunt-end modified Illumina adapters at 
LMAMR. In brief, 100 ng of DNA extract or 30 µl of extract was incubated for 3 h at 37°C with 10x NEB 
Buffer 2, 300 µM dNTP mix, 0.1 mg of BSA, 1 mM of ATP, 2 µl of T4 PNK (10 U/µl), and 3 µl of USER 
enzyme (NEB, 1U/µl) in a 50 µl reaction volume. Following incubation, 2.5 µl of the End Repair enzyme 
from the NEBNext Library Kit was added to the reaction and the sample incubated for 40 min at room 
temperature and 20 min at 37 °C. The reaction was purified with a MinElute column (Qiagen) and eluted 
with 30 µl of EB following a 5 min incubation at 37 °C. Illumina adapters (10 µM P5/P7) were ligated to the 
end-repaired sample with the NEBNext DNA kit in 50 µl reactions. Ligation reactions were purified with a 
MinElute column as described above and eluted in 30 µl of EB buffer. The adapters were filled in with 2 µl 
of BsT polymerase (NEBNext kit), 5 µl of reaction buffer in 50 µl reactions. Each reaction was incubated 
for 30 min at 37 °C and 20 min at 80 °C. qPCR was used to determine appropriate cycle number for 
indexing PCR. Indexing reactions were performed with unique dual 8 bp indexed primers in triplicate in 25 
µl reactions with 0.25 µl of Phusion High-Fidelity DNA Polymerase (Thermo Scientific), 0.3 µM of each 
indexing primer, 200 µM of dNTPs and 4 µl of template. Reactions were denatured at 98 °C for 30 sec, 
followed by variable cycle numbers of 98 °C for 10 sec, 60 °C for 15 sec, 72 °C for 30 sec and a final 5 
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min elongation step at 72 °C. Triplicate reactions were pooled and purified with a MinElute column as 
described above. The resulting libraries were sent to the MPI-SHH for sequencing. 
 
Per-sample details of the library construction procedure for both samples and controls are provided in 
External Data Repository Table R1 under ‘Production’ columns. 
 
S2.4 Sequencing 
 
S2.4.1 Dental calculus 
 
Sequencing of all calculus DNA was performed on Illumina NextSeq 500 and HiSeq 4000 platforms at the 
MPI-SHH with paired-end 75 bp or single-end 150 bp cycle chemistries. Calculus sequencing depth 
targets for shallow sequencing data was 10 million post-merging reads (Data S1), and deep sequencing 
data was calculated per sample (see section S6 below) to achieve 5x coverage of selected genomes, 
resulting in a sequencing depth of 60-480 million post-merging reads per sample (Data S1).  
 
S2.4.2 Controls 
 
Extraction and library controls were sequenced on a HiSeq 4000 platform at the MPI-SHH using paired- 
or single-end 75bp chemistry to a target depth of 2 million reads (Data S1). A subset of controls were 
sequenced on a MiSeq using reagent kit v3 with paired-end 75 bp chemistry at LMAMR.  

 
In addition to the calculus samples and laboratory controls in this study, we also re-sequenced half-UDG 
treated shotgun libraries of ten archaeological bone samples from a previous study (170) to serve as 
archaeological environmental proxy controls (see section S3.1 and section S3.6 for rationale): ARS001, 
ARS004, ARS005, ARS010, ARS011, ARS012, ARS013, ARS015, ARS017, and ARS020. Bone 
environmental proxy controls were sequenced on a HiSeq 4000 using paired-end 50bp chemistry to a 
target depth of 30 million reads per library (Data S1).  
 
S2.4.3 Sequence data 
 
Per-sample details of the sequencing results and ENA accession numbers are reported in External 
External Data Repository File R2. The ENA project accession for all sequence files is under 
PRJEB34569. The re-sequencing data of archaeological bone control samples, containing all human and 
non-human sequences, fall under run accessions ERR3579689-ERR3579698. All uploaded data are 
adapter- and base-quality trimmed (20), however are not length filtered nor merged. Present-day modern 
human calculus samples have had reads mapping to the modern human reference genome (HG19) 
removed (section S3.2). 
 
S3. Data processing and quality filtering  
 
Unless otherwise noted, all table-based data manipulation was performed using R v3.6.1 (173) and the 
‘tidyverse’ v1.2.1 (174) set of packages - in particular readr (175), tidyr (176), dplyr (177), ggplot2 (178), 
purrr (179), magrittr (180), tibble (181), stringr (182). Other regularly used packages were data.table 
(v11.8) (183), RColorBrewer (v1.1.2) (184), ggtree (v1.16.5) (185), and patchwork (v0.0.1) (186). A 
graphical overview of data processing procedures is shown in Fig. S2. All code notebooks, scripts and 
commands and small data files are provided in the External Data Repository: 
https://github.com/jfy133/Hominid_Calculus_Microbiome_Evolution. A long-term Zenodo archive can be 
found at the following DOI: 10.5281/zenodo.3740493. 
 
S3.1 Publicly available data 
 
S3.1.1 Dental calculus 
 
Sequencing data of additional calculus samples (1) were downloaded from the OAGR database 
(https://www.oagr.org.au/dataset/68) in pre-adapter clipped and merged format. In the event of unmerged 



 
 

16 
 

and/or orphaned singletons reads being in a separate file, these were concatenated together. 
 
S3.1.2 Modern human microbiome and environment 
 
Comparative sequencing data for source comparison analysis (termed here as comparative sources) 
were downloaded from the EBI ENA (https://www.ebi.ac.uk/ena), and NCBI SRA 
(https://www.ncbi.nlm.nih.gov/sra) archives. This included cave sediment data (187), ‘traditional society’ 
modern human fecal samples (188, 189), skin swabs from hand palms (190), supra- and subgingival 
plaque and fecal samples from the Human Microbiome Project (191), and additional ‘industrialised 
society’ fecal samples (192). SRR accessions were downloaded and converted to FASTQ with the fastq-
dump function from sratoolkit (v2.8.0) (193). ERR accessions were downloaded directly in FASTQ format. 
Download commands and a list of ERR and SRR accessions can be seen in External Data Repository 
Section R5.2 and Data R4. 
 
Finally, as an additional ‘environmental proxy’ control comparison source to represent the type of bacteria 
that colonise archaeological osteological material, we used 10 resequenced Late Bronze Age modern 
human femur samples (site code ARS; see above section S2.4.2). These samples, originating from 
Bronze Age Mongolia (Arbulag Soum, Khövsgöl, Mongolia), were selected because they had been 
previously shown to contain a high proportion (>90%) of environmental (soil) bacterial DNA that is 
typically found in archaeological skeletal material ((170) and section S3.4). All bone samples were 
obtained from femora, and thus are not expected to contain any oral bacteria. Tooth samples were 
avoided as environmental proxy controls because it was recently shown that approximately 20% of teeth 
are decomposed by bacteria originating from the oral microbiome (194).  
 
S3.2 Sequencing Quality Control and Human DNA Removal  
 
For newly sequenced samples, raw sequencing BCL files were converted to FASTQ with bcl2fastq 
(v2.20.0.422), and demultiplexed. Demultiplexed FASTQ files for shallow and deep sequencing libraries 
were then pre-processed following the EAGER pipeline (v1.92.55) (195) to remove adapters, trim low 
quality sequences, and merge overlapping paired reads. AdapterRemoval settings were --minlength 30 --
minquality 20 --minadapteroverlap 1 with --trimns and --trimqualities. Unmerged reads and orphaned 
singletons were combined with merged reads and considered equivalent to merged reads. Note that the 
datasets from Slon et al. (187) and Weyrich et al. (1) were already clipped and merged, therefore this 
step was skipped for these files.  
 
Because it is known that some bacterial reference genomes contain contaminating human sequences 
(196–198), we first removed all human DNA from our entire dataset of calculus samples, controls and 
comparative sources, by mapping our sequences to the modern human HG19 reference genome 
(GRCh37; NCBI RefSeq Accession: GCF_000001405) (199) . We did not map each set of samples to 
their respective host genomes, as the aim of this procedure was only to remove contaminating present-
day human DNA that may confound analysis - i.e., present-day modern human DNA from sample and/or 
laboratory handling, or endogenous DNA that is similar enough to human DNA to map to contaminated 
regions of microbial reference genomes. EAGER settings are provided in the External Data Repository 
Section R6.1.2, and for human DNA removal we used the relaxed bwa aln (200) mismatch value (-n 0.01) 
(201), and map quality threshold at 0 to ensure all possible human reads are found. For human DNA 
statistics reporting, mapped reads were deduplicated with DeDup (195). BAM files with only unmapped 
reads were then converted back to FASTQ files using samtools fastq (202). FASTQ files with only 
unmapped reads were then concatenated together, when either: multiple calculus samples were derived 
from a single individual (e.g., TAF018.A and TAF018.B), multiple libraries were generated from the same 
extract with the same treatment (e.g., TAF018.A0101 and TAF018.A0102), or when libraries were 
sequenced over multiple runs (e.g., pre-2018: TAF018.A0101.171215 and TAF018.A0101.180215, or 
post-2018: TAF018.A0101.SG1 and TAF018.A0101.SG2). For further information about library 
concatenation, see the External Data Repository Section R6.2.3. All preprocessing steps and scripts are 
described in External Data Repository Section R6. 
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S3.2.1 Shallow sequenced dataset 
 
For the shallow sequencing dataset, we newly generated a total of 2,573,264,971 raw reads for ancient 
and historic African hominid and howler monkey dental calculus (mean: 25,477,871 ± sd 13,417,354; 
minimum: 159,310; maximum: 70,895,520), and 520,054,720 raw reads for present-day modern human 
calculus (mean: 65,006,840 ± sd 21,962,897 per individual, minimum: 31,782,890, maximum: 
89,173,288). For negative controls, the mean and standard deviation were 2,166,638 ± sd 1,575,696. For 
environmental (archaeological bone) controls, the mean and standard deviation was 34,067,925 ± sd 
9,619,220 reads. Per individual sequencing details for all newly sequenced libraries for this study of the 
shallow sequencing dataset are provided in Data S1 and External Data Repository Section R6 and Fig. 
R1).  
 
After poly-G trimming of newly sequenced calculus (to remove NextSeq artefacts that can map to 
repetitive regions of the modern human reference genome), the proportion of human DNA per group was 
as follows: Alouatta, 0.737% ± sd 0.176; Gorilla, 5.705% ± sd 10.198; Pan, 0.594% ± sd 0.853; Homo 
(Neanderthal), 16.079% ± sd 21.805; Homo (Modern Human), 2.93% ± sd 13.901. For present-day 
modern human calculus, the mean and standard deviation of human DNA was 2.205% ± sd 5.599. For 
controls, the mean and standard deviation of human DNA was 3.168% ± sd 5.812 (External Data 
Repository Section R6.4 and Fig. R1C).  
 
Following sequence quality filtering, preprocessing (adapter removal and read merging), and human DNA 
removal, the mean and standard deviation of ancient reads per group in the 'analysis ready' shallow 
sequenced dataset used for downstream analysis (including previously published calculus from Weyrich 
et al. (1) and Velsko et al. (2)) were as follows: Alouatta (n = 5), 11,266,889 ± sd 2,860,592; Gorilla (n = 
29), 10,257,550 ± sd 7,083,471; Pan (n = 21), 11,448,782 ± sd 4,776,739; Homo (Neanderthal, n = 17), 
15,572,537 ± sd 14,354,052; Homo (Modern Human, n = 34), 12,897,453 ± sd 5,488,578. The mean and 
standard deviation for present-day modern human calculus (n = 18) samples were 51,131,788 ± sd 
22,278,698. Controls (n = 35) had a mean and standard deviation of 750,969 ± sd 615,420 reads. 
Additional summary figures can be seen in the External Data Repository Section R6.4 Fig. R1. 
 
S3.2.2 Deep Sequenced dataset 
 
For the deep sequenced dataset, we newly sequenced a total of 3,875,041,498 raw reads, with a mean 
and standard deviation of 203,949,553 ± sd 123,359,872.3 reads per UDG-treated ancient/historic 
calculus individual (minimum: 61,703,682; maximum: 479,828,768). After sequence quality filtering, 
preprocessing, and human DNA removal (all as above), the mean and standard deviation of reads per 
group in the 'analysis ready' deep sequenced dataset were as follows: Alouatta (n = 3), 110,247,421 ± sd 
50,136,787; Gorilla (n = 3), 88,927,251 ± sd 59,587,055; Pan (n = 4), 155,248,637 ± sd 72,527,567; 
Homo (Neanderthal, n = 3), 133,092,916 ± sd 167,706,862; Homo (Modern Human, n = 6), 56,926,392 ± 
sd 25,792,155. Present-day modern human samples used for analysis with this dataset (JAE008, 
JAE014, VLC004, VLC009) are the same as for the shallow sequencing dataset above; no UDG 
treatment was performed as this is unnecessary for present-day samples that lack damage, and have 
52,724,105 ± 16,956,171 reads. For UDG-treatment library negative controls (n = 6), these had an 
average of 497,092 ± 316,696 reads. Further preprocessing statistics for all newly sequenced samples for 
this study of the deep sequenced dataset are provided in Data S1. Additional information regarding library 
merging and sequencing statistics are provided in the External Data Repository Section R6.4 and Fig. R2. 
 
S3.3 Taxonomic binning and classification  
 
At present, there is no consensus on the most suitable taxonomic classifier or database for the 
assignment of taxonomy to ancient microbial short read data (203, 204). Because there is no one-size-
fits-all classifier (204), we performed taxonomic binning and classification on all concatenated unmapped 
reads of the shallow sequencing dataset non-UDG libraries and SRR and ERR comparative sources 
using MALT, because of its previously demonstrated good overall classification performance on ancient 
microbial sequences (204), and because of its ability to produce useful alignment information for 
downstream ancient DNA characteristics assessment (205). Detailed information regarding the 
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commands and scripts used for the following steps are provided in the External Data Repository Section 
R7.1.  
 
Our primary metagenomic binning method was to use the aligner MALT (v040) (206, 207) with the NCBI 
Nucleotide database (‘nt’, October 2017). As an additional check we also ran MALT against a custom 
Genome RefSeq (‘RefSeq’, October 2018) (208) database. The RefSeq database consisted of all 
bacterial and archaeon assemblies at scaffold, chromosome and complete levels, with a maximum of 10 
randomly-selected genomes per species but with completeness prioritisation (i.e. reference > 
representative; complete > chromosome > scaffolds) and the addition of the modern human reference 
genome HG19 (199). Details on database construction for both nt and custom RefSeq databases can be 
seen in External Data Repository Section R4.1. A list of genomes used for the custom RefSeq Database 
can be seen in External Data Repository Data R10. 
 
All shallow sequencing, controls and comparative source data was searched and binned using the MALT 
nt (External Data Repository Section R7.1.1) and RefSeq databases. For the RefSeq database, we 
additionally produced SAM files for downstream functional analysis (see External Data Repository 
Section R12.5). For the MALT alignment step, we followed Vågene et al. (207) and used a relaxed 
percent identity parameter of 85% to account for potentially damaged reads, and possibly more divergent 
endogenous microbial genomes from the modern human-biased reference entries in existing genetic 
databases. We also extracted the ‘MinSupport set to:’ field from the MALT log files to allow manual 
adjustment of minimum abundance thresholds. The resulting subsetted log file was then formatted to 
TSV, and downstream manual adjustment of reads was performed by multiplying the ‘MinSupport set to’ 
entry of the log files in the script (External Data Repository Section R7.1.2).  
 
MEGAN6 CE (209) was used to export OTU (Operational Taxonomic Unit) tables at species and genus 
levels using the taxonNameToCount and summarised options. Two variants were created: one with all 
domains, and a variant with the option to exclude non-Prokaryotes turned on. The former were used for 
preservational screening purposes, whereas Prokaryotes-only tables were used for all downstream 
microbial analysis.  The corresponding tree was then exported in newick format. The OTU tables 
generated using the nt database are provided in Data S2.The procedure, ‘.megan files’, RefSeq OTU 
table, log file summaries, and tree files can be located in the External Data Repository Section R7.2.1 and 
Data R11. 
 
For alignment to the NCBI nt database, across all individuals, laboratory controls and comparative 
sources, the group with the lowest taxonomic assignment rate was sediment with a mean percentage of 
taxonomically assigned reads (over all non-human reads) of 8.9% ± 2.4; library controls were the highest 
group with 52.7% ± 13.8 of reads assigned. Across ancient, historic, and present-day calculus samples, 
each group had a mean percentage of taxonomically assigned reads as follows: Alouatta: 18.7% ± 1.8, 
Gorilla: 30.5% ± 11.2, Pan: 17.5% ± 2.7, Homo (Neanderthal): 26.1% ± 17.5, Homo (Modern Human): 
35.6% ± 15.2. For alignment to the NCBI RefSeq database, across all samples, laboratory controls and 
comparative samples, the lowest group was likewise sediment with a mean percentage of taxonomically 
assigned reads of 9.7% ± 2.8, and 60.5 ± 15.5 in library controls as the highest group. Across ancient, 
historic, and present-day calculus samples, each group had a mean percentage taxonomically assigned 
reads and standard deviation of: Alouatta 30.3% ± 3.4, Gorilla 39.1% ± 10.9, Pan 27.6% ± 5.3, Homo 
(Neanderthal) 35.6% ± 18.2, Homo (Modern Human) 50.5% ± 19.9. For more information on 
comparisons, see External Data Repository Section R7.3 and Fig. R3.  
 
Comparison between the percentage of aligned sequences with taxonomic assignments showed an 
increase across all groups between the NCBI nt 2017 to custom RefSeq 2018 databases. Present-day 
gut (additional 24.1% assigned on average) and plaque (additional 33.5% on average) showed the 
greatest increases, whereas sediment showed the smallest (additional 0.8% on average). Estimation 
statistical analysis and Gardner-Altman plots were generated via the dabestr package (v.0.2.1, (210)). A 
paired mean comparison with 5000 bootstrap resamples showed a high confidence in the increase in the 
mean percentage of across all groups (additional 11.1%), and within ancient, historic, and present-day 
calculus only (additional 10.9%, see External Data Repository Section R7.3 and Fig. R4). The greater 
number of reads being taxonomically assigned in the RefSeq database is likely due to the inclusion of 
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many more modern human microbiome derived ‘MAGs’ (Metagenome-assembled genomes) since the 
download of the nt database, however these remain biased primarily towards industrialized societies 
(despite improvements in sampling diversity (211)), and therefore not directly useful for assignments to 
non-humans. We note that the custom RefSeq database is not directly comparable with the nt database, 
as the former does not include eukaryotic genomes other than Homo sapiens, so a portion of the 
metagenome (e.g., dietary and fungal DNA) is undetectable using this database. This suggests that most 
likely we have an underestimate in the amount of reads than can be taxonomically assigned, and, given 
an expansion of computational resources and a larger database, a greater fraction of reads could be 
potentially assigned. 
 
For calculus and plaque specifically, in the both databases we observe that there are roughly similar 
percentages of assignment between calculus of present-day modern human individuals and that of 
present-day plaque (nt: ~50% and RefSeq: ~80%) - however this value decreases with older samples. 
We cannot currently state whether the decrease in the older samples is due to greater amounts of 
environmental background or past oral microbial diversity being not represented in modern databases. 
The custom RefSeq database shows an increase in the amount assigned reads (as above), however 
there is also a slightly increased amount of reads assigned  to present-day plaque compared to present-
day calculus (see External Data Repository Section R7.3 and Fig. R5). This may be due to more recently 
added genomes, as well as MAGs, having been sequenced from plaque rather than calculus sources, 
given industrialised populations tending to be the main isolation sources of such studies (211) and these 
populations having better dental care. 
 
The ratio of bacterial/archaeal/viral to eukaryotic sequences, as detected by the NCBI nt database, and 
after removal of possible human DNA sequences during preprocessing, ranged from 0.02 to 1762.56 
across all calculus samples, laboratory controls and comparative sources, with a mean and standard 
deviation of 170.48 ± 303.49 (see External Data Repository Section R7.3 and Fig. R6). The ratio of these 
alignments increased across groups: Alouatta 15.61 ± 5.84; Gorilla 32.90 ± 34.50; Pan 99.51 ± 81.24; 
Homo (Neanderthal) 58.86 ± 105.33; Homo (Modern Human) 275.15 ± 247.49. Visual inspection of OTUs 
in calculus samples with low ratios, e.g., BAN001.A0101 (0.17) or TAF016.B0101 (0.48) showed very 
high levels of eukaryotic taxa either known to have adapter-contaminated reference sequences (e.g. 
Cyprinus carpio, http://grahametherington.blogspot.com/2014/09/why-you-should-qc-your-reads-and-
your.html) or to be common handling and storage contaminants, such as cotton (Gossypium raimondii) 
and environmental fungi (Aspergillus glaucus (212)). 
 
Calculus from present-day modern humans generally had more bacterial/archaeal/viral alignments 
(494.61 ± 251.80) than eukaryotic alignments compared to present-day plaque (277.14 ± 334.42); 
whereas archaeological modern human calculus had a smaller ratios (Preagricultural modern humans 
98.32 ± 108.54; Preantibiotic modern humans 244.71 ± 157.19, see External Data Repository Section 
R7.3 and Fig. R7). This suggests that the present-day calculus has a very high non-eukaryotic microbial 
biomass compared to ancient calculus. The low ratios in present-day plaque samples appear to be from 
high levels of taxa such as Cyprinus carpio, Homo sapiens, Spirometra erinaceieuropaei and Onchocerca 
flexuosa. The first two are well-known to have contaminated reference sequences, and the latter two 
appear to be specific to the Human Microbiome Project samples, and thus likely represent contaminants 
within the libraries used to generate those datasets. 
 
S3.4 Preservation assessment and removal of low quality samples  
 
Two common challenges for ancient DNA research are (1) the degradation of the original tissue of the 
organism of interest, and (2) high levels of environmental DNA contamination originating from postmortem 
burial and/or storage environments.  
 
For ancient microbiome research in particular, decomposition and alteration of the original bacterial 
community can pose a major challenge. Decomposition is the postmortem process by which some 
microbes proliferate at the expense of others as nutrients stop being supplied by the deceased host. This 
process often involves a large influx and bloom of non-endogenous taxa (and occasionally the overgrowth 
of particular endogenous taxa (194, 213)) that invade host tissues, leading to the formation of a 
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‘necrobiome’ (214, 215) that breaks down decaying biological material (216). This microbial 
decomposition can also lead to further DNA fragmentation and damage of host and other endogenous 
(i.e., host microbiome) DNA, as the necrobiome enzymatically metabolises the components of older cells 
(217). However, degradation proceeds at different rates in different contexts depending on the nature of 
the burial microenvironment. For example, postmortem decay occurs slower in colder and drier 
environments (218, 219), which are less favorable for microbial growth, and this delays the breakdown of 
endogenous DNA and slows the overgrowth of environmental taxa.  
 
A first task of any ancient DNA study is to screen for samples that have undergone heightened levels of 
decomposition such that they no longer preserve a reasonable representation of the state of the original 
microbiome prior to the death of the organism. As the modern human oral microbiome is relatively well-
studied, we can utilise previously generated modern human oral microbiome reference metagenomes 
and taxonomic inventories (e.g., (191, 220)) as a benchmark to assess the prevalence and abundance of 
oral-associated taxa in ancient or historic calculus samples. This approach is possible because there is 
very little overlap at the species (and even genus) level in the microbial taxa that inhabit the modern 
human oral cavity and those that inhabit soil and other environmental contexts (149, 220–222), and 
source ambiguity typically only occurs for clades that are poorly characterised (e.g., Actinomyces) or 
paraphyletic (e.g., Clostridia, Bacillus).  
 
Here we employ two tools to assess oral microbiome preservation to identify poorly preserved samples 
for removal from the dataset: (1) a new visualisation termed here as ‘cumulative percent decay’, and (2) 
SourceTracker (223). We applied these tools to dental calculus datasets from 124 individuals (106 
ancient/historic, 18 present-day) and identified 89 individuals (71 ancient/historic, 18 present-day, with the 
NCBI nt database criteria) with sufficient ancient microbiome preservation for downstream analyses, 
alongside controls and comparative sources. 
 
S3.4.1 Cumulative percent decay 
 
To test whether a given sample retains an oral microbiome signature, we first plotted the ‘decay’ of a 
cumulative percentage of oral-associated taxa along a per-sample OTU abundance rank.  
 
For this, we used the metagenomic binning data from MALT in the form of the OTU tables, to perform the 
following procedure: 

 
1. Per sample, rank the identified taxa by abundance; 
2. Compare each taxon to a database of common isolation sources of that taxa - assigning whether 

it has been commonly found in the oral cavity or not; 
3. For each abundance rank, calculate the fraction of oral-derived taxa over all taxa that are 

observed up until this rank (as in step 1); 
4. Plot a curve based on the percentage of oral-associated taxa (y-axis) until the rank (x-axis). 

 
A schematic diagram of the concept can be seen in External Data Repository Section R8.1 and Fig. R8.  
 
To generate an isolation source database, we first compiled a list of taxa as reported from the MALT 
alignment to the NCBI nt database of a variety of calculus samples that have been sequenced in our 
laboratory. We then extracted isolation sources of these taxa from two online databases: (1) the Human 
Oral Microbiome Database (HOMD, homd.org (220), all considered ‘oral’), and (2) for those without a 
listing in the HOMD, from the ‘isolation_source’ metadata field in NCBI nt database, as reported when 
using the eutils package (https://www.ncbi.nlm.nih.gov/books/NBK25500/). 
 
The results from the eutils command were then parsed in R. We then performed manual curation of the 
isolation sources of the two databases. Those with NCBI isolation sources matching the keywords ‘oral, 
mouth, plaque, calculus, tartar, saliva, periodont’ were listed as coming from the oral cavity. Manual 
checks removed certain keywords such as ‘coral’ or ‘floral’. All other taxa were listed as ‘unknown’ source. 
We then manually curated the list to remove taxa known to also commonly reside in the general 
environment and certain non-oral specific pathogens (e.g., Yersinia pestis) that are in the HOMD. This R 
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code for isolation source database construction and the resulting ‘database’ are provided in the External 
Data Repository under Section R8.1 and Data R16.  
 
In testing this approach using present-day comparative sources (Fig. S3A; External Data Repository 
Section R8.1 and Fig. R9), we observed that all non-plaque microbiome controls and bone environmental 
proxy sources never exceeded an oral fraction of 50% (nt) or 65% (RefSeq) across all abundance ranks. 
Most of the ancient and historic calculus samples exhibited similar curves to the present-day reference 
dental plaque - i.e., the majority of the most abundant taxa being derived from the oral cavity, and the 
proportion of non-oral taxa increased gradually only at lower abundance ranks. In addition, this pattern 
was observed across host genera, with even the outgroup Alouatta showing a strong oral profile using 
this approach, indicating that the method can be applied broadly to primate oral samples, and is not 
limited only to modern humans. We decided to utilise these observations to develop a threshold for the 
detection and removal of poorly preserved ancient and historic calculus samples prior to downstream 
compositional analysis. 

 
During testing, we observed that a single extraction blank, EXB015.A2801, exceeded the oral fraction 
threshold value for a few of the most abundant taxa, despite the rest of the distribution matching other 
laboratory controls. This is likely due to low level laboratory cross-contamination in low complexity 
libraries, combined with the artefact effect of the higher ‘weighting’ of more abundant taxa - as the low 
abundance rank number leads to a small denominator and a large fraction value. Further, we observed 
that while many ancient/historic calculus and modern calculus samples also had the majority of the most 
abundant taxa having > 50% (for nt) or > 65% (for RefSeq) oral fractions, this pattern could fluctuate 
rapidly. There are three factors that may contribute to this effect. First, some taxa in the isolation source 
database, despite being true endogenous oral taxa, may be listed as ‘unknown’ in the database if the 
source information is incompletely reported in its metadata (missing metadata). Second, for oral taxa that 
are not in the database, reads from that species may exhibit a best hit to a closely related non-oral 
species in the database (incomplete database). And third, some samples obtained from museum 
collections have an overgrowth of a few environmental taxa from the storage environment that rank 
among the most abundant taxa, even though the remaining taxa detected in the sample originate from the 
original oral microbiome (overgrowth). 
 
To account for these artefacts, we calculated a ‘burn-in’ threshold (External Data Repository Section 8.1 
and Fig. R8B), then evaluated the samples. This ‘burn-in’ reduces the influence of taxonomic fluctuations 
from overgrowth, minor contamination, and missing database information, by focusing sample evaluation 
on the section of the curve where the oral fraction distribution is more stable - i.e., when the changing 
denominator has less of an effect. The burn-in mechanism selected was as follows, per sample: 

 
1. In descending order, measure the difference in oral fraction between a given abundance rank and 

the next abundance rank. 
2. Calculate the standard deviation from the mean of differences of all abundance ranks. 
3. Identify the abundance rank position and onwards down the rank, the fluctuation in oral fraction 

differences between a position and next, does not exceed above or below the overall standard 
deviation of these differences. 

 
After establishing this parameter, we then discarded any sample that did not exceed a 50% (for the nt 
analyses) or 65% (for the RefSeq analyses) threshold at any point after the abundance rank position 
identified (Fig. S3A, External Data Repository Section 8.1 and Fig. 9). Samples that had decay profiles 
similar to skin or sediment (and had high proportions of these two comparative sources according to 
SourceTracker - see below) - particularly in the Neanderthal group - were also indicated by the ‘burn-in’ 
threshold to be less preserved, suggesting this method performs well. Implementation of this procedure is 
provided as an R notebook referred to in the External Data Repository Section R8.1.  
 
Of the 124 total individuals included in this study, 89 (71 ancient/historic, 18 present-day) remained after 
cumulative percent decay analysis against the NCBI nt database, and 77 (59 ancient/historic, 18 present-
day) when compared against the custom RefSeq database. The percentage of samples per group that 
passed the filters is described in the External Data Repository under Section R8.1 and Table R1. 



 
 

22 
 

Comparing the two databases, there was a high degree of concordance in the estimated preservation 
status, although more samples were retained when using the nt database. The largest number of 
changes were observed for the PreagriculturalHuman_2 group (European preagricultural individuals) with 
3 individuals (ECO002, ECO010, PLV001) being retained by the nt database and rejected by the custom 
RefSeq. Neanderthals have the fewest samples passing the threshold in both cases. A complete list of 
individuals remaining after these filtering steps is provided and described in the External Data Repository 
under Section R8.1 and Data R17. Calculus samples that did not pass the threshold set for each 
database, respectively, were subsequently removed for downstream compositional analysis.  
 
S3.4.2 SourceTracker 
 
As an additional method of preservation assessment, we used SourceTracker (v1) (223) to estimate the 
proportion of endogenous oral microbiome in our samples (203) and controls, through comparison to our 
comparative sources. Because SourceTracker was primarily designed for 16S rRNA amplicon data, we 
extracted 16S rRNA reads from our shotgun dataset of samples, laboratory controls and comparative 
sources and performed SourceTracker on this data subset, as has been performed in previous studies (2, 
165). We utilise the older but less precise percent sequence similarity approach for OTU clustering 
(despite more recent higher-accuracy ASV techniques (224)), as we only are interested in an 
approximate estimation of preservation and ultra-short shotgun reads (rather than amplicon) may not be 
suitable for ASV approaches e.g. with DADA2 (225). Furthermore, it has been previously found that 
shallow-shotgun aDNA data cannot produce sufficient coverage for the DADA2 error correction methods 
(204). 
 
To extract 16S rRNA reads, we mapped the shallow sequenced data against the SILVA SSU Ref Nr 99 
trunc (v128) (226) database (with uracil replaced with thymine) using BWA, and then converted to QIIME 
(v1.9.1) (227) compatible FASTA files. The procedure is described in External Data Repository Section 
R8.2.1 and the number of mapped 16S rRNA reads is provided in External Data Repository File R12. 
 
Across all samples, laboratory controls and comparative sources, the percentage of 16S rRNA mapped 
reads of the total processed non-human reads ranged from 0% to 0.5%, with a mean of 0.15%. Within 
calculus samples, each group had a mean and standard deviation as follows: Alouatta 0.21% ± 0.03; 
Gorilla 0.21% ± 0.08; Pan 0.12% ± 0.02; Homo (Neanderthal) 0.12% ± 0.07; Homo (Modern Human) 
0.15% ± 0.05. (External Data Repository Section R8.2.1. and Fig. R10). These values are close to the 
predicted value of 0.2% for a microbial community, assuming an average 16S rRNA gene of length 1500 
bp present in four copies in a 3 Mbp bacterial genome (228). Note that the percentages for Neanderthals 
do not include the individuals from Weyrich et al. (1) because these data were preprocessed in a different 
way prior to data upload.  

 
Present-day human calculus yielded a greater fraction of 16S rRNA mapping reads (0.16% ± 0.04) than 
ancient/historic calculus (pre-agricultural humans: 0.12% ± 0.02; pre-antibiotic humans: 0.16 ± 0.07) 
(External Data Repository Section R8.2.1. and Fig. R11). This reduced fraction in the pre-agricultural 
ancient samples could either be due to age or taphonomic-related fragmentation leading to shorter reads 
that result in nonspecific mapping, or a reduced endogenous microbial biomass relative to present-day 
eukaryotic contamination. The latter will mean 16S rRNA reads are less likely to be ‘sampled’ from the 
library during sequencing. 
 
QIIME closed-reference OTU clustering against the GreenGenes (v13.8) (229) database was then 
performed at 97% identity with the settings as shown in External Data Repository Section R8.2.2 Table 
R3. All other parameters were left at default. The procedure for closed-reference clustering is provided in 
the External Data Repository Section R8.2.2. 
 
The number of identified OTUs across all samples, laboratory controls and samples ranged from 2 to 
214,624 with a mean of 28,292. The lowest number of OTUs identified in a calculus sample was 
DLV002.A0101 with 27, which is consistent with its generally poor preservation indicated by both the 
cumulative frequency decay and Sourcetracker analyses. The mean and standard deviation of identified 
OTUs for each calculus group was as follows: Alouatta 16,244 ± 4,160; Gorilla 13,954 ± 11,885; Pan 
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8,877 ± 4,626; Homo (Neanderthal) 15,482 ± 20,200; Homo (Modern Human) 42,860 ± 52,705 (External 
Data Repository Section R8.2.2 and Fig. R12). A summary table of closed-reference clustering can be 
seen in External Data Repository File R13.  
 
Present-day modern human calculus and plaque recovered a greater number of OTUs as represented in 
the GreenGenes database (External Data Repository Section R8.2.2 and Fig. R13), whereas ancient 
samples (pre-agricultural and pre-antibiotic modern humans) have a mean and standard deviation of 
11,331.5 ± 7,524.7 and 14,254 ± 8,652.0 identified OTUs, respectively, whereas calculus from present-
day individuals yielded 100,140.61 ± 53,809.9 OTUs and present-day plaque 50,9082.6 ± 26,393.7 
OTUs.  
 
After clustering, we removed any sample that did not have at least 1000 detected OTUs. This filter 
removed one chimpanzee (KNP004), one Neanderthal (BAN001), two preagricultural modern humans 
(DLV001, DLV002), and all but one library control blank (LIB0015.A0101). Next, the summarize_taxa.py 
QIIME utility script was used to subset the table to include OTUs at only genus level. 
 
We do not use the 16S rRNA read data downstream for other analysis due to the low yield of these reads 
in many samples (External Data Repository Section R8.2.1 and Fig. R12), likely from the fragmented 
nature of our reads. Additionally, it is known that QIIME 1 assigns a very high number of low-abundance 
false-positive taxa, and is not reliable for fine scale taxonomic profiling of ancient metagenomes (204). 
This data therefore does not provide enough resolution for compositional analysis. However, despite the 
low yield and known biases, it is useful for estimating the approximate contribution of the oral microbiome 
in each sample using SourceTracker. 
 
We provide the final OTU table from the clustering in biom format (230) and the post-rarefaction (see 
below) and cleaned OTU table in .tsv format in External Data Repository Section R8.2.2 and File R14. 
Code for visualisation of summary data can be seen in External Data Repository Section R8.2.2. 
 
We ran SourceTracker (v1.0.1) (223) on the 16S rRNA QIIME OTU tables to estimate the proportion of 
the calculus from each individual that resembled supra- and subgingival plaque, urban and rural gut, 
sediment, skin and bone ‘environmental proxy controls’ (in the form of the Bronze Age Mongolian 
femurs). These comparative sources (indicated by SRR*, ERR* and ARS sample prefixes, Data S1 - 
Literature Dataset Tab) were selected based on the following criteria:  
 

1. Data is from Illumina shotgun sequencing; 
2. Data is from ‘unmodified’ samples (e.g. no treatment or disease);  
3. Samples are from independent individuals (in the case of modern human samples); 
4. A sample has enough data to find more than 1000 OTUs based on reads mapping to a 16S rRNA 

database. 
 
SourceTracker analysis was then performed on the QIIME OTU table, which was rarefied to 1000 OTUs 
per individual, using calculus samples from this study and Weyrich et al. (1) as sinks and using SRR, 
ERR, and ARS samples as sources. While rarefaction has been described as ‘inadmissible’ (231) for 
most ecological analyses, it is recommended for use with Sourcetracker by its developers. For other 
analyses in our study we do not use rarefaction but rather apply more appropriate data normalization 
approaches (see SI Appendix section S4).  
 
For analysis, we interpreted estimated contributions from any modern human gastrointestinal microbiome 
(i.e., dental plaque and gut) as indicative of endogenous oral microbiome preservation. This is because it 
has been previously shown that there is frequent misassignment between related oral and gut taxa using 
QIIME-based approaches, even when analyzing present-day oral samples (2, 204).  
 
Subsequently, we visualised the results using R (see External Data Repository Section 8.2.3 and Fig. 
R14). The sink prediction results from Sourcetracker are provided in External Data Repository File R18. 
No clear threshold for a preservation cut-off was identified via visual inspection of per-calculus source 
proportions (Fig. S3B).  
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S3.4.3 Comparison of methods  
 
Figure S3b shows a comparison between the estimated modern human gastrointestinal (oral, gut) source 
contributions across all calculus samples with more than 1000 OTUs based on 16S rRNA clustering and 
samples that passed the shotgun data-based cumulative decay threshold (Fig. S3a). The two methods 
show a general concordance in preservation assessment between both shotgun and 16S rRNA read 
based approaches, with most samples that were estimated to have low modern human gastrointestinal 
(oral, gut) contributions also not passing the cumulative decay threshold. In some cases, certain 
individuals such as MTS002 and MTM011 were unable to pass the threshold despite having a reasonable 
proportion of 16S rRNA reads resembling the expected endogenous content of calculus. These samples 
exhibited long tails of very low abundant OTUs (with very small fraction oral changes), which caused the 
standard deviation of fluctuation from the mean fraction to be very narrow. Subsequently, the rank where 
the fraction threshold fell within the standard deviation was pushed far along into the tail of very low 
abundant OTUs, where the tail was consistently under the 50% threshold for the NCBI nt database. 
These samples were discarded from our analysis. Other samples, such as MTM010 and TAF017 were 
retained via the cumulative decay method despite having comparatively low plaque and gut content. 
These were retained due to tails having minimal decay along the rank, containing many low-abundant 
oral taxa intermixed with non-oral taxa, rather than most of oral taxa being at the most abundant level. We 
retained these two samples for analysis because they do preserve oral taxa, but we acknowledge that 
they are borderline cases. Both cases show that further development of the cumulative percent decay 
method is required. Nevertheless, the two methods generally show a high degree of concordance, and 
the cumulative decay threshold approach has the advantage of utilizing a larger amount of available data, 
with fewer biases introduced by the QIIME taxonomic classification step. Overall, the cumulative decay 
threshold approach presents a straightforward, quantitative method for the rapid detection and removal of 
ancient or historic metagenomic samples with insufficient preservation for downstream compositional 
analysis. Code for comparison of cumulative percent decay and SourceTracker results can be located in 
External Data Repository Section R8.2.3. 
 
S3.4.4 Abundance of eukaryotic content as a preservation indicator? 
 
As noted above in section S3.3, the ratio of bacterial/archaeal/virus alignments to eukaryotic alignments 
was higher in present-day calculus than in ancient and historic calculus. We considered the possibility 
that this may be an indicator of microbiome preservation, assuming that the vast majority of DNA within 
calculus should originate from microbial and viral members the oral biofilm, whereas postmortem 
contaminants are more likely to include fungal and present-day human DNA (human DNA may persist 
even after filtering because of imperfect removal when using a consensus modern human reference 
genome). We tested this hypothesis by comparing the bacterial/archaeal/virus to eukaryotic ratios of 
ancient and historic calculus samples that passed the cumulative decay preservation threshold (n=71) 
versus those that did not (n=35). A one-way unpaired wilcoxon sum test was performed using the 
‘wilcox.test’ function in R. The null hypothesis of the average ratio of ‘pass: false’ being the same average 
ratio as ‘pass: true’ by change was rejected, with the ‘pass: false’ average being less than ‘pass: mean’ (p 
= < 0.001; alpha = 0.05; U = 2175). While this metric was not used to reject samples because of the the 
level of overlap between the two distributions, a low bacterial/archaeal/viral to eukaryotic alignment ratio 
could be an additional ‘initial’ indicator of poor preservation across a whole ancient microbiome dataset 
before carrying out the more detailed procedures described above (External Data Repository Section 
R8.3 and Fig. R15). Code for statistical testing and visualisation of the eukaryotic content can be located 
within the External Data Repository Section R8.3. 

 
S3.5 Ancient DNA authentication  
 
Having removed low quality samples, we retained a set of 71 ancient/historic and 18 modern dental 
calculus samples whose microbial profile resembled an oral microbiome based on the MALT NCBI nt 
database screening. For the ancient and historic samples, we next sought to validate the authenticity of 
the oral microbial sequences to determine whether they exhibit appropriate molecular behavior for ancient 
DNA (203). To do this, we ran MaltExtract (v1.5) (205) on the shallow sequenced dataset (i.e., DNA 
sequences without UDG treatment) to generate statistics on well-known ancient DNA characteristics such 
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as C to T miscoding lesions at ends of fragments, and length distributions indicating highly fragmented 
DNA (217, 232). To generate these statistics, we used reference genomes selected from all oral genera 
determined to be ‘core’ across the primate groups in this study (Alouatta:Gorilla:Pan:Homo; see section 
S5 below).  
 
To facilitate the visualization and examination of these patterns in the output of MaltExtract, we created 
the interactive R shiny (233) application ‘MEx-IPA’ (MaltExtract - Interactive Plotting Application). All well-
preserved samples in our analysis set exhibited indications of authentic ancient DNA across multiple core 
taxa. For example, Neanderthal calculus from Pešturina Cave (PES001, ~100 ka) and Grotta de nadale 
(GDN001, ~70 ka) exhibited frequencies of C to T mismatches at the end of reads in excess of 40% and 
short fragment lengths (45-55 bp) across a range of species level nodes of oral taxa (e.g., Fretibacterium 
fastidiosum, Fusobacterium nucleatum, Tannerella forsythia, Treponema denticola ATCC 35405, as 
shown in Fig. S4 and External Data Repository Section R8.4.2 and Fig. R16). MEx-IPA data for all 
samples can be seen on the External Data Repository Section R8.4.2. 
 
To further validate these patterns using a more formalised model of ancient DNA damage against specific 
reference genomes, we then repeated this analysis using the tool DamageProfiler (234). For this analysis, 
we used the EAGER pipeline (see settings in section S3.2) to map the non-human reads of the entire 
shallow sequencing dataset to a selected set of reference genomes representative of core oral taxa (see 
section S5 below), including both Gram-positive (Pseudopropionibacterium, Streptococcus) and Gram-
negative (Tannerella, Treponema) members. We then plotted the damage patterns generated by 
DamageProfiler in R using ggplot2, and inspected them manually to confirm the presence of DNA 
damage. All ancient and historic samples in our analysis set exhibited characteristic DNA damage 
patterns across these oral taxa, while present-day clinical samples did not. Representative examples of 
DNA damage patterns observed for Neanderthal (PES001), Upper Palaeolithic modern human 
(EMN001), and present-day modern  human (JAE006) dental calculus are shown in Fig. 1C and External 
Data Repository Section 8.4.2 and Fig. R17. Source-code for MEx-IPA can be downloaded from the 
External Data Repository (https://github.com/jfy133/MEx-IPA, doi: 10.5281/zenodo.3380012). 
Visualisation of the DamageProfiler output was performed using an R script described in the External 
Data Repository Section R8.4.2. 
 
S3.6 Contamination assessment and removal  
 
Within our sample set (including both new and published data), we established that the dental calculus of 
71 newly sequenced ancient and historical individuals show signs of being well-preserved, exhibiting both 
an oral microbiome-like taxonomic profile and having characteristic ancient DNA damage. However, even 
well-preserved ancient microbiome samples may contain trace amounts of contaminant environmental 
and laboratory DNA. While conservative approaches, such as removing from the samples all OTUs found 
in extraction and library controls have been previously used to remove potential contaminants from 
ancient microbiome datasets (1), this brute-force method is highly problematic and may lead to the 
removal of highly abundant endogenous taxa due to the presence of even a single misclassified DNA 
read in a control sample (235). Such extreme approaches to contaminant removal can substantially skew 
downstream datasets by removing entire oral clades, contributing to potentially erroneous results. 
Recently, more sophisticated and statistically robust methods for contaminant removal have been 
developed that consider the abundance and/or prevalence of potential contaminants, and we use these 
methods here. 
 
To identify and remove potential laboratory and environmental contaminant OTUs from our calculus 
datasets, we used the R package ‘decontam’ (235) 
(https://benjjneb.github.io/decontam/vignettes/decontam_intro.html). To identify laboratory contamination, 
we used as proxies the extraction and library controls from this study. To identify environmental 
contaminant OTUs, we used as proxies ten ancient femur samples known to contain a high amount of 
exogenous, environmental DNA typical of archaeological skeletal remains; these samples (site code 
ARS; see Data S1 - Literature Dataset tab for full list) were analysed in a previous study (170), but were 
resequenced here to a higher depth to provide a suitable dataset for decontam processing (see section 
S2.4.2). We chose not to use sediment or soil samples for decontam processing because archaeological 
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remains contain a skewed subset of soil microbial communities (236), as not all microbial taxa colonise 
skeletal remains, thus present-day soil and sediment datasets are not suitable proxies for this analysis.  
 
Due to the low biomass nature of our samples and following the recommendation of the tool creators 
(235), we applied the ‘combined’ method (frequency and abundance) to our dataset. For comparison, we 
performed decontam at both the species and genus taxonomic levels on both the ‘nt’ and ‘RefSeq’ 
MALT/MEGAN OTU tables, as well as on MetaPhlAn2 taxonomic tables that we later generated for 
HUMANn2 functional analysis (see section S7.1). By using the combined frequency and abundance 
method, we were able to account for the fact that the archaeological bone taxa would not follow the 
inverse abundance correlation of putative laboratory contaminants in extraction and library controls. To 
increase sensitivity of contaminant detection, we did not apply minimum support filtering to the 
MALT/MEGAN OTU tables prior to analysis. In addition, we included low-preservation samples in this 
analysis to improve sample size and statistical power. The probability threshold for contaminant 
identification (the threshold that a OTU was required to pass to reject the null hypothesis that the OTU 
was not a contaminant - see Davis et al. (235) for more detail) was modified here to take a conservative 
approach due to the expected higher level of contaminants given our degraded samples. We set this 
threshold by testing increasing values until well-known and common environmental contaminants such as 
Pseudomonas and Streptomyces were marked as contaminants, while well-known oral taxa such as 
Tannerella or Streptococcus were kept as ‘not contaminants’. For both the nt and RefSeq MALT/MEGAN 
OTU tables, we set the combined method p-value to 0.99 for both the genus and species level analysis. 
For MetaPhlAn2 at the genus level, we also used a combined method p-value of 0.99 but relaxed this 
slightly to 0.9 at the species level. The final lists of potential contaminants are provided in the External 
Data Repository Section R8.5.1 and File R19. 
 
In all cases more potential contaminants were identified at the species level than at genus level. The 
number of contaminants detected using our strict thresholds are provided in External Data Repository 
Section R8.5.1 and Table R4. For the MALT/MEGAN binning, approximately half of the OTUs detected in 
samples were considered possible contaminants at both the species and genus levels, and around one 
sixth of OTUs for MetaPhlan2. However, although the fraction of putative contaminant OTUs was 
relatively high, the actual number of reads contributing to these OTUs was very low for well-preserved 
samples (see External Data Repository Section R8.5.2 and Fig. R18), suggesting these contaminant 
OTUs are a part of the low-abundance tail that is often observed in metagenomic analyses (237). We 
used these OTU lists to remove likely contaminants from the MALT/MEGAN OTU tables for downstream 
analysis. The entire OTU ‘decontamination’ filtering procedure is described in the External Data 
Repository Section R8.5. 
 
S4. Microbial compositional analysis 
 
Having removed low quality samples and likely contaminants, we proceeded with compositional analysis 
of the 89 well-preserved (71 ancient/historic; 18 modern) dental calculus samples in this study.  
 
As an initial step in comparing the calculus microbiome among the different African hominid groups in this 
study, we first tested the hypothesis that the oral microbial community of each primate genus was distinct 
at a compositional level. For this we performed two methods of clustering and statistical validation: (1) 
principal coordinate analysis with PERMANOVA, and (2) hierarchical clustering with cluster validation. 
 
S4.1 Principal coordinates analysis (PCoA)  
 
For distance matrix generation we performed an isometric-log-ratio transformation (ILR), to account for 
the compositional nature of our data (231, 238). The phyloseq (v1.26) (239) and PhILR packages (v1.8) 
(240) were used following the introductory tutorial of PhILR 
(https://bioconductor.org/packages/release/bioc/vignettes/philr/inst/doc/philr-intro.html), to normalise our 
data with additional consideration of microbial OTU phylogenetic similarities. OTU tables as generated by 
MALT/MEGAN were loaded in R and filtered for genus and species levels accordingly. To reduce noise, 
we removed OTUs falling below minimum-support (i.e. abundance) threshold values at the genus (0.07%) 
and species (0.04%) levels (see section S5.2 for threshold details). OTUs listed as potential laboratory 
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and environmental contaminants were also excluded, and the resulting OTU table was converted to a 
matrix. As a phyloseq object requires an associated taxonomy table to an OTU table, we used the 
‘get_uid’ and ‘classification’ functions of the taxize (v0.9.6) package to get the NCBI taxonomy ID and 
taxonomic paths of each OTU in the table. The newick tree as exported by MEGAN was then loaded 
using the ‘read.tree’ function from the ape (v5.3) (241) package. Polytomies were removed using the 
‘multi2di’ function, and internal nodes on single branches were removed using ape’s ‘collapse.singles’ 
function (http://blog.phytools.org/2018/05/when-phylogeny-fails-isbinary-but-is.html). A phyloseq object 
was then created, and a pseudo-count of 1 was applied to remove 0s (log-ratio methods require positive 
values) using the ‘transform_sample_counts’ function. We acknowledge that others have suggested that 
pseudo-counts are not the most optimal zero-replacement solution (242); however comparisons using 
more sophisticated methods (e.g., the cumulative zero multiplication method as implemented in the 
‘cmultRepl’ function of the zComposition package (243)) resulted in only minor topological differences 
while most relationships were maintained (External Data Repository Section R9.1 and Fig. R19). We 
elected to use the pseudo-count method for its simplicity and because it is the recommended method in 
the PhILR tutorial. Code for zero-replacement method comparison and visualisation is provided in the 
External Data Repository Section R9.1.  
 
We performed the PhILR transform using the ‘philr’ function, with the part.weights parameter as 
‘enform.x.m.counts’ and ilr.weights set to ‘uniform’. The resulting transformed table was converted to an R 
dist object using the base R function ‘dist’ with method set as euclidean, and ordinated using Principal 
Coordinate Analysis (PCoA; also known as multidimensional scaling or MDS) by the ‘ordinate’ function in 
phyloseq. 
 
The above procedure was applied to multiple sample sets. For example, External Data Repository 
Section R9.1 and Fig. R20 (panels A, C, E, and G) shows where highly decomposed calculus samples 
(identified for removal in section S3.4) ordinate compared with other samples and controls, while External 
Data Repository Section R9.1 and Fig. R20 (panels B,D,F,H) shows the same plots but with the highly 
decomposed samples removed. Overall, oral samples and comparative sources (ancient and present-day 
dental calculus and present-day dental plaque) cluster together, whereas non-oral comparative sources 
tend to fall away from this cluster, with distance correlating with the level of association to modern 
humans - i.e., non-oral human microbiome comparative sources such as gut and skin in some cases 
partially overlap with the plaque/calculus, whereas sediment and archaeological bone (as an 
environmental proxy control) fall further away. This is expected due to taxonomic similarities between 
microbial species across the modern human body, as well as in the case of skin from contamination 
during handling of ancient and historic samples. Samples detected as having low preservation generally 
fall in a space between calculus samples and other non-oral comparative sources, suggesting these low 
preservation samples contain a large fraction of non-oral metagenomic content. These patterns are 
consistently observed for both the NCBI nt and RefSeq MALT/MEGAN datasets. 
 
Principal coordinate analysis of only well-preserved calculus samples indicates that samples tend to 
cluster by host genus, albeit with varying levels of overlap (External Data Repository Section R9.1 and 
Fig. R21). For both databases (nt and RefSeq), Principal Component (PC) 1 generally separates 
Alouatta/Gorilla/Homo from Pan, whereas PC 2 separates Gorilla/Alouatta from Pan/Homo. Neanderthal 
individuals generally fall between Gorilla and Homo. PC 3 separates differently for each database, with nt 
partially separating Alouatta/Gorilla from Homo/Chimp, whereas there is no clear separation of host 
genera with the custom RefSeq database. The full distance matrix, ordination procedure and code are 
provided in the External Data Repository Section R9.1. 
 
S4.2 PERMANOVA  
 
To determine whether the clustering of well-preserved calculus microbiomes by host genus is statistically 
significant, we performed a nonparametric ANOVA (PERMANOVA (244)) on the PhILR transformed 
euclidean distance MALT aligned matrix (omitting contaminants and low preservation samples), as 
implemented by the ‘adonis’ function in the R package vegan (v.2.5.4) (245). For this analysis we also 
removed Alouatta as it had a small sample size and originated from a single population. Gorilla, Pan and 
Homo had significantly different (alpha = 0.05; p < 0.01) centroids in euclidean space for both the nt and 
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RefSeq MALT/MEGAN datasets and at both the microbial genus and species taxonomic levels. A 
summary of these results is provided in External Data Repository Section R9.2 and Table R5. 
 
It is known that PERMANOVA is sensitive to heterogeneity in the dispersion of samples from a cluster’s 
core. While the method is robust against this when sample sizes are equal, this is not the case when 
there are different numbers of samples per group (246). To measure dispersion, we used the PERMDISP 
test (247) as implemented in vegan with ‘betadisp’. The base R function ‘anova’ and vegan’s ‘permutest’ 
were both used to check if there was a significant difference in the amount of dispersion between each 
group. In all cases, heterogeneity was shown to be borderline given an alpha value of 0.05 in both tests 
(see External Data Repository Section R9.2 and Table R6). 
 
Because methods for correcting for beta-dispersion heterogeneity in unequal sample sizes (248) have not 
yet been implemented in R, we accounted for this by repeatedly subsampling (with replacement) each 
genus group to 10 individuals and running the adonis() function on these subsets 100 times. Alouatta was 
not included because this group only contained 5 individuals. External Data Repository Section R9.2 and 
Table R7 shows that the distribution of pseudo-F and p values across all runs confirm that Gorilla, Pan 
and Homo cluster around statistically distinct, host genus-specific centroids (alpha = 0.05; mean p < 0.01, 
mean pseudo-F > 5 across all database taxonomic level combinations). Larger sample sizes are required, 
as well as more preservational and storage history information to control for these additional variables,  to 
provide enough power to test for population structure within each host genus, and therefore did not test 
this here. The beta dispersion and PERMANOVA procedure and code are provided in the External Data 
Repository Section R9.2. 
 
S4.3 Hierarchical clustering  
 
Although the calculus communities of each host genus were generally distinct, the PCoA visualisation 
showed large areas of overlap between groups along different combinations of principal coordinate axes. 
To further understand the relationships between each host genus, we performed hierarchical clustering to 
visually identify species that drive these overlaps. To prepare the dataset, we used the MALT/MEGAN 
OTU tables from both the NCBI nt and custom RefSeq databases (excluding low preservation samples 
and after removal of contaminants) and applied a low-abundance OTU tail filtering threshold of 0.04% for 
species, 0.07% for genus (see section S5.2 for threshold selection and taxon retention or removal). We 
then also applied a prevalence filter by removing any microbial taxon that was not present in at least 5 
individuals across the whole dataset. To again account for the compositional nature of our data, we then 
applied a pseudo-count of 1 and a Centered-Log-Ratio (CLR) transform to the filtered OTU tables 
(following https://github.com/ggloor/CoDa_microbiome_tutorial/wiki/Part-1:-Exploratory-Compositional-
PCA-biplot). Although CLR can cause some downstream issues with further statistical testing (which is 
why PhILR was used above) (249), ILR transformation causes loss of species specific information (i.e., 
single values for each species rather than balances between different species). We therefore chose to 
use CLR to retain this information, and we do not perform the type of downstream statistical testing that 
may be compromised by this approach. The resulting CLR-transformed OTU tables were converted to the 
euclidean distance using the ‘dist’ function in R, and a range of hierarchical clustering algorithms were 
applied to both the individuals and the microbial taxa, as offered by the ‘hclust’ function. To identify the 
optimal algorithm that best describes the original relationships in the distance matrix, the ‘cophenetic’ 
function from the vegan R package was used to inform which hierarchical clustering had the greatest 
correlation with the distance matrix. In all cases, either the unweighted (‘average’) or weighted (‘mcquitty’) 
versions of the UPGMA algorithm were selected. To estimate the uncertainty in the support of the clusters 
identified by the optimal algorithm, the pvclust R package (250) was used to perform bootstrapping on the 
hierarchical clustering with 1000 bootstraps. To extract the pvclust support values for display in ggtree, a 
modified version of the ‘as.phylo.hclust.node.attributes’ function from the fastbaps package (251) was 
used. Heatmaps for both NCBI nt and the custom RefSeq database are provided in the External Data 
Repository Section R9.3 and File R20. Clusters of microbial taxa within the heatmap were visually 
identified, and phenotypic metadata for all microbial taxa was collated from the BacDive database (252) 
(https://bacdive.dsmz.de/) via the BacDiveR R package (v0.9.0, https://doi.org/10.5281/zenodo.1308060). 
Of the 278 taxa in the NCBI nt database remaining after filtering, 148 had phenotypic data recorded in the 
BacDive database. 



 
 

29 
 

 
In general, individuals cluster within their host genus (Fig. 3; External Data Repository Section R9.3 and 
File R20). In both cases (nt and RefSeq), Alouatta and Gorilla cluster together as sister groups, and a 
subset of ancient modern humans fall with Pan. Neanderthals also consistently fall within the diversity of 
Homo, slightly more often within the non-Pan associated Homo cluster. Present-day Homo fall in a 
distinct cluster either within the wider Homo cluster (nt), or as an ‘outgroup’ to all other clusters (RefSeq). 
The bootstrap support values for the described clusters range from 85% (Pan/Pan-associated Homo 
bifurcation) to 96% (Present-day Homo/Ancient Homo bifurcation) in nt, and 77% (Pan/Pan-associated 
Homo bifurcation) to 87% (Pan and Pan associated ancient Homo/non-Pan associated ancient Homo 
bifurcation) in the custom RefSeq heatmap (Fig. 3; External Data Repository Section R9.3 and File R20). 
 
A collection of Actinomyces, Streptococcus, Pseudopropionibacterium, Fusobacterium, Ottowia and 
Campylobacter species are found present across all individuals. The three strongest signals across all 
host genera are Pseudopropionicum propionicum, Actinomyces sp. oral taxon 414, and Ottowia sp. oral 
taxon 807 (External Data Repository Section R9.3 and File R20). It is remarkable that the three most 
prevalent species identified in our dataset - both in present-day and ancient/historic individuals - are 
virtually uncharacterised and two out of three are unnamed. Further investigation is warranted to 
understand the role of these taxa in the oral biofilm and why they are prevalent: for example, whether this 
is an artifact from cross-mapping or misidentification; whether they possess phenotypic characteristics 
that result in unusually good preservation; or whether they play a special role in the hominid oral biofilm.  
 
Within the heatmap, Gorilla and Alouatta share blocks of aerobic and microaerophilic taxa, and in 
particular they harbour a large diversity of streptococci (External Data Repository Section R9.3 and File 
R20). Part of the Streptococcus diversity in Gorilla and Alouatta is also shared with most Homo 
individuals, alongside other aerobic and microaerophilic taxa such as Neisseria, Haemophilus, Rothia, 
Aggregatibacter, and Eikenella. Less prevalent among Gorilla and Alouatta are taxa typically considered 
to be ‘late colonisers’, such as the anaerobic bacteria Fretibacterium, Tannerella, Treponema and 
Porphyromonas.  

 
Pan has a notably low abundance and diversity of Streptococcus compared to other African hominids, 
and anaerobic bacteria are the major component of Pan individuals, as well as a subset of ancient 
modern humans. Pan harbours the four major late colonisers not found in Gorilla, as well as a wide 
diversity of other anaerobic species within the genera Slackia, Prevotella, Olsenella and Eggerthella 
(External Data Repository Section R9.3 and File R20). The ‘Pan-like’ modern human individuals originate 
from diverse locations (Europe, as well as northern and southern Africa) and time periods (both pre-
agricultural and pre-antibiotic periods), suggesting that this pattern is not related to a specific geographic 
or temporal origin (External Data Repository Section R9.3 and File R20). Furthermore, these samples are 
from both adult male and female individuals, and originate from a variety of tooth types. Although lacking 
the wide breadth of anaerobic diversity seen in Pan, these modern human individuals do share other 
features with Pan, such as having low to absent levels of early coloniser microaerophilic Streptococcus 
taxa (such as S. gordonii, S. sanguinis and S. cristatus), which are otherwise prevalent across Gorilla, 
Alouatta and most Homo.  
 
Neanderthals present a very similar range of taxa to modern humans. This highlights that compositionally, 
there appear to be few microbial differences among members of Homo, albeit based on the contents of 
the databases currently available that are biased towards Western-industrialised populations. Homo 
calculus in our dataset in general contains a range of taxa consistent with current knowledge of the 
modern human dental plaque microbiome, including Streptococcus, Actinomyces, Fusobacterium, 
Neisseria, Haemophilus, Campylobacter, Capnocytophaga, Prevotella, Tannerella, Treponema, and 
Porphyromonas (253) (External Data Repository Section R9.3 and File R20). One species of particular 
interest is Fusobacterium nucleatum. It is able to coaggregate with a wide diversity of other taxa, making 
it a ‘bridging’ taxon between early and late stages of oral biofilm formation (254). We find this taxon to be 
ubiquitous across all host genera (slightly less with the custom RefSeq database), with a similar relative 
abundance in each individual. Following our filtering criteria, we note that - at the species level - we do 
not find members of Corynebacterium, a genus recently shown to play an important role in acting as a 
‘structural pylon’ between early and late colonisers (255). However, we do detect Corynebacterium at the 
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genus level (see section S5), which suggests that we have poor species-level resolution and thus likely 
insufficient database representation for this genus. These patterns are found for both the NCBI nt and 
custom RefSeq databases.  
 
In the late 1990s, periodontologist Sigmund Socransky classified dental plaque bacteria into a series of 
complexes, each with different health and disease associations (256). Of these, the ‘red complex’, which 
consists of Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola, was considered to 
be associated with periodontal disease and the species within it remain targets of clinical interest. Across 
the analysed African hominids and howler monkey outgroup, we found that most host genera harbour at 
least some alignments to these species (External Data Repository Section R9.3 and File R20). However, 
red complex taxa were less prevalent in Alouatta and Gorilla, and, while present in all individuals in Pan, 
they were less abundant than in Homo. Contrary to previous studies, it is now known that the presence of 
these taxa in calculus does not necessarily indicate severe disease (2, 23), even in present-day modern 
human populations, and we are not able to comment on the periodontal disease status of many of the 
individuals in this study because this information was not available or not recorded for a large number of 
individuals.  
 
Although the genus-level assignments across African hominids appear to be robust, it is important to note 
that for species-level identifications, some of these alignments may represent mis-mappings between 
closely related species of the same genus that are absent from the databases. As the diversity of 
sequenced genomes in public databases increases, it is clear that past alignments and identifications 
may have been biased towards Western and clinically ‘relevant’ taxa (211, 257, 258). In these cases, 
reads from uncharacterised commensal relatives have been mis-assigned to closely related (often 
pathogenic) species present in the database, resulting in false positives (see for example the case of P. 
propionicum and P. acnes (203)). Each of the ‘red complex’ species belong to genera containing multiple 
other oral species, and it is likely that the species diversity of these genera has not yet been fully 
characterised. Indeed, we note that Tannerella sp. oral taxon HOT-286, an unnamed health-associated 
species (259) not included in all databases, has a similar prevalence to Tannerella forsythia across all 
samples in our analyses, suggesting that care should be taken by archaeogeneticists before reporting on 
oral ‘pathogens’. Further evidence of this effect is discussed in section S6.3, where we show that many 
single genome alignments of our dataset resulted in high numbers of multi-allelic SNP calls for these 
haploid bacterial references, indicating the presence of multiple strains and - potentially - additional 
uncharacterised species. 
 
The hierarchical clustering procedure and code is provided in the External Data Repository Section R9.3. 
The location of the script used to collate phenotypic metadata (‘bacdive_searcher’) is also provided in 
External Data Repository Section R9.3. 
 
S4.4 Indicator analysis  
 
To further investigate the characteristics of the host specific clusters defined above, we performed 
Indicator analysis (260) as implemented in the indicspecies R package (261) on the dataset described in 
section S4.3 using default settings and the nt database. Indicator analysis considers the mean relative 
abundance of a taxon versus the abundance across all other groups, and considers the frequency 
(prevalence) of the species in the given group to identify taxon that can be a ‘signal’ species of a given 
group. The indicspecies package performs this procedure on each group and on all possible 
combinations of groups, and generates a significance value by randomly reassigning individuals to other 
groups to assess the uncertainty of taxon assignment as an indicator of that group(-combination). We 
again used the BacDiveR package to collate phenotypic characteristics for the taxa. Whether or not a 
taxon was ‘oral related’ was determined by searching for any sample type that contained the following 
keywords: oral, dental, caries, plaque, perio, mouth, dentine, gingiva, and saliva. False keywords, such as 
“coral” or “floral”, were excluded. 
 
In this analysis, 140 taxa were identified as statistically significant indicator species (alpha ≤ 0.05). 
Alouatta and Pan each had 23 distinct species that were considered to be indicators for each group, 
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whereas Gorilla had 6 and Homo had 7; the remainder indicated various host combinations. Of the total 
140 indicator species, 100 had phenotypic data in the BacDive database. Aerobes and microaerophiles 
made up the largest fraction of indicator species for Alouatta and Gorilla, as well as combinations 
between Alouatta and Gorilla with Homo. In contrast, all indicator taxa for Pan were anaerobes, as were 
the majority of all combinations involving Pan. Few overall patterns were observed for Homo, but the 
seven Homo-specific indicator taxa included three species of Capnocytophaga (a group of bacterial 
anaerobes with gliding motility), three species of Methanobrevibacter (a group of archaeal methanogens), 
and Selenomonas sputigena (a motile bacterium that coaggregates with Actinomyces and 
Fusobacterium). All three groups have been associated with subgingival plaque and periodontal disease 
in modern humans (262, 263), and of these, members of the genus Methanobrevibacter were indicators 
of Homo exclusively, suggesting that the modern human oral biofilm provides a particularly favorable 
environment for the growth of these methanogens, which only grow in a highly reduced and anaerobic (H2 
and CO2 rich) local environment, such as that found in mature subgingival plaque biofilms (264). The list 
of all taxa identified by indicator analysis and associated metadata is provided in External Data 
Repository Section R9.3.2 and File R21. The code used to perform indicator analysis is also provided in 
the External Data Repository Section R9.3.2.  
 
S4.5 Are dietary practices associated with oral microbiome composition?  
 
Adler et al. (265) and Weyrich et al. (1) have previously reported phylum-level ancient oral microbiome 
structure correlating to broad dietary (subsistence) patterns in modern humans. However, in each study 
sample sizes were small and population factors were not controlled. Specifically, Weyrich et al. (1) 
defined four oral microbiome clusters using UPGMA hierarchical clustering of Bray-Curtis distances of 
shotgun data: (1) Forager-gatherers (Chimpanzees, African pre-pastoralist individuals and two the 
Neanderthals from El Sidrón), (2) Ancient agriculturalists (Individuals from the Industrial revolution period, 
Medieval England and Germany, and Neolithic Linear Band Keramik [LBK] individuals from Germany), (3) 
Hunter-gatherers (Polish Mesolithic individuals, the well-preserved Neanderthal from Spy, African 
pastoralist period individuals and an individual from the LBK), and (4) a single present-day individual. 
However, there were outliers in these clusters that did not match the expected dietary practices of the 
individual’s time period, such as an LBK individual in the hunter-gatherer group (1).  
 
Using our larger dataset, improved preservation assessment tools, more appropriate analytical methods 
for compositional data, and more balanced sampling strategy, we attempted to replicate these results. We 
divided individuals from our data into four groups that primarily differ by temporal period, but also by 
broad dietary practices: (1) Neanderthals, (2) Pre-agricultural modern humans (hunting and gathering), 
(3) Pre-antibiotic modern humans (traditional agriculture and pastoralism), and (4) Present-day individuals 
(industrialised diets). To perform the test, we replicated our principal coordinate analysis above at genus 
level, but only on individuals from the members of Homo. We found large overlaps between all four 
groups (Fig. S5E-F and External Data Repository Section R9.4 and Fig. R22). No variation in beta-
dispersion was observed, and PERMANOVA as performed by the ‘adonis’ function showed a significant 
difference in centroids of each group (ɑ = 0.05, p = 0.001, pseudo-F = 4.98, R2 = 0.23). However, 
pairwise adonis functions found a significant difference only between the present-day individuals and Pre-
agricultural and Pre-antibiotic era modern humans; all other group comparisons were not significantly 
different.  
 
To more closely approximate the hierarchical clustering approach used Weyrich et al. (1), we applied the 
UPGMA (average-linkage) hierarchical clustering method using the hclust() R function on the euclidean 
distances of the PhILR transformed OTU table (again accounting for the compositional nature of our 
data). This also did not result in any clear clustering by group (Fig. S6, External Data Repository Section 
R9.4, and Fig. R23). Indeed, while individuals from each time period and region (Europe or Africa) appear 
to somewhat group together, clusters were always interspersed with individuals from other temporal or 
geographic areas. Programmatically dividing the outcome of the hierarchical clustering into four clusters 
(corresponding to our four groups, performed by the ‘cutree’ R function), and comparing to our defined 
temporal/dietary clusters using the adjustedRand and Jaccard metrics, again showed low 
correspondence between the ‘expected’ and actual clustering (adjusted rand index (HA) = 0.017, Jaccard 
= 0.29). The two values being closer to 0 than 1 suggest random clustering rather than following the 
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expected grouping. Thus, we were unable to replicate the previously described pattern of oral microbiome 
clustering by dietary practice, as reported by Weyrich et al. (1), at least at the present resolution of the 
data.  
 
Although we observe no large-scale compositional differences among modern humans based on dietary 
practices, there may be more subtle differences that fall below the limits of our detection, perhaps driven 
by low abundance taxa. However, due to variable levels of environmental contamination in ancient DNA 
datasets, it is currently difficult to separate true and false endogenous low abundance taxa. Although we 
do not follow exactly the approach described by Weyrich et al. (1), we believe our analytical approach is 
robust, having a larger sample size, using more balanced population groupings, and employing distance 
calculation methods more suited for compositional data (ILR transform). In addition, we performed our 
analysis at the genus level rather than at the phylum level, which should be more sensitive to 
compositional differences, and we believe it unlikely that a phylum level analysis would provide any 
further insights as it would only represent a data reduction.  
 
One problematic aspect of previous ancient DNA reports of oral microbiome structuring by diet (1, 265) is 
that these studies did not have a systematic approach to managing environmental contaminants or other 
artifacts related to preservation. As such, the clustering they observed could have been driven more by 
preservational factors rather than diet. It is noteworthy that studies of present-day oral microbiome 
variation to date have found little evidence of systematic compositional differences among groups with 
differing diets (266–268) or related to the intake of specific food and drink (269–272). On the basis of our 
evidence, we do not find support for higher taxonomic-level structuring of the oral microbiome by diet 
within Homo. Rather, we believe such structure, if present, should be sought at the level of species or 
strains, a level that currently lies at the very limits of detection for ancient microbiome studies using 
available technologies. The locations of the scripts and procedures for generating PCoA, PERMANOVA 
and hierarchical clustering by subsistence strategy analysis are provided in the External Data Repository 
Sections R9.4.  
 
S5. Core microbiome 
 
As shown by PERMANOVA (section S4.2), the calculus oral microbiomes of African hominids (Gorilla, 
Pan, Homo) are generally distinguishable by taxonomic composition. However both PCoA (section S4.1) 
and hierarchical clustering (section S4.3) demonstrate that large taxonomic overlaps between each group 
are observed when considering the most abundant taxa in each of the samples. Furthermore, it was 
noted that despite the fact that the reference genomes used for taxonomic assignment have a strong bias 
towards those found in present-day modern humans from Western, industrialised nations, the cumulative 
frequency decay plots and Sourcetracker plots produced during preservational assessment (Fig. S3) 
were still able to clearly detect a distinctively oral signal even in evolutionary distant host species, such as 
Alouatta. Together, this suggests that there is a level of similarity in the compositional makeup of the oral 
microbiome of each host genus. We therefore decided to explore these shared microbial features and 
their evolutionary time depth by performing a core microbiome analysis of the host genera in this study. 
But first, we review the current state of knowledge regarding oral biofilm spatial organization and 
development in modern humans. 
 
S5.1 Biofilm spatial organization and development: current state of knowledge  
 
Dental plaque is a highly structured and spatially organised (255, 273–278) biofilm composed 
predominantly of bacteria (149) but it also contains viruses (279), archaea (149), and eukaryotes (280). 
Early studies on dental plaque development both in vitro and in vivo revealed that there is a temporal 
progression of the species present (with species being classified as “early” and “late” colonisers (256, 
281) and that plaque structure is related to microbial composition (273). Much of the work on biofilm 
plaque development was performed before DNA sequencing was commonly available, and biochemical 
traits were used to identify species. This, along with updated nomenclature and taxonomic classification, 
as well as the description of novel species in the intervening years, has resulted in some inconsistencies 
in our knowledge of the species that form the early biofilm.  
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In brief, modern human dental plaque biofilm formation is initiated by the adsorption of salivary proteins 
and glycoproteins to the enamel surface of teeth, forming the ‘acquired enamel pellicle’ (AEP) (282). Oral 
bacteria cannot bind directly to the hydroxyapatite mineral of enamel, but a subset of bacteria - notably 
some members of Actinomyces and Streptococcus - can bind to proteins in the AEP, and thereby initiate 
dental colonization. Proteins and glycoproteins making up the AEP include salivary amylase, proline-rich 
proteins (PRPs), statherin, histatins, mucins (MUC5B, MUC7), cystatins, lysozyme, and lactoferrin, 
among others (283). Two particular saliva-derived components of the enamel pellicle, PRPs and salivary 
ɑ-amylase, may be especially important in the formation of the oral biofilm because of their specific 
interactions with oral bacteria. Proline-rich proteins (PRPs) are a family of salivary proteins that are 
constitutively expressed in humans and make up the majority of salivary proteins (284). Plant tannins, 
which can cause toxicity in mammals, have a high affinity for PRPs (285), and ingestion of dietary tannins 
induces expression of PRPs in rodent models (284), although PRPs may be continuously expressed in 
primates (8). Proline-rich proteins appear to protect against dietary tannins by binding and precipitating 
them, thereby neutralizing their effects. Proline-rich proteins also bind to hydroxyapatite, the main mineral 
in both tooth enamel and dental calculus. Binding to a hydroxyapatite surface can induce conformational 
changes in PRPs that reveal novel epitopes, to which oral bacteria bind (286). Such epitopes, called 
cryptitopes, are masked when PRPs are in solution but are exposed on binding. PRPs are major salivary 
proteins in primates, with the exception of gelada baboons, which have low tannin, grass-based diets and 
do not express PRPs in saliva (287). Salivary ɑ-amylase is the most abundant enzyme in saliva (288), 
and it breaks down dietary starch into maltose and dextrins. Salivary amylase complexes with the 
abundant salivary mucin MUC-5B (formerly MG1), which is strongly attracted to hydroxyapatite, and may 
make up a large proportion of the enamel pellicle depending on the location in the mouth (288), but not of 
the mucosal pellicle (289). Salivary ɑ-amylase is distributed throughout the pellicle with no obvious 
pattern of localization (290). The enzyme remains active after adsorption (288), and although salivary ɑ-
amylase spontaneously desorbes from the tooth surface, constant amylase activity can be detected at the 
pellicle surface (Hannig 2005). Salivary ɑ-amylase expression in primates varies substantially between 
species (Pajic et al. 2019), and dietary tannins inhibit salivary ɑ-amylase activity (288). Members of both 
Actinomyces and Streptococcus are capable of binding to PRPs in the AEP, while only members of 
Streptococcus are known to bind to salivary ɑ-amylase (291, 292). For an extended discussion of the 
special relationship between Streptococcus and salivary ɑ-amylase, see section S5.6.1. 
 
Plaque development can be classified into distinct stages based on the timing and characteristics of the 
organisms present (281, 293, 294). Early biofilms are dominated by Gram-positive cocci for 1-2 days, 
followed by a proliferation of fusiforms and filaments, and finally a proliferation of Gram-negative species 
around 5-7 days. Temporal succession from predominantly Gram-positive species in the early plaque 
biofilm to predominantly Gram-negative species in mature plaque biofilms is well-reported in both 
microscopic and culture-based studies of plaque development. Beneath a surface layer of aerotolerant 
taxa, the bulk of the mature dental plaque contains predominantly Gram-negative anaerobic species, 
while the deepest layers of plaque that develop earlier contain mainly Gram-positive facultative 
anaerobes. This transition is readily seen in Gram-stained modern and ancient dental calculus sections, 
in which clearly defined calcified layers each repeat a pattern of a layer of Gram-positive aerotolerant 
biofilm initiators followed by an overlying layer of Gram-negative, largely anaerobic cells that proliferate 
within the growing biofilm (221, 277).  
 
Early biofilms are dominated by members of Streptococcus and Actinomyces, which is related both to 
their ability to bind to the AEP and to their metabolism as carbohydrate-fermenting facultative anaerobes 
(295), but other organisms including Neisseria and Nocardia are also present (296–300). In addition to 
being able to bind to components of the AEP, both Streptococcus and Actinomyces are also able to 
coaggregate with each other (286, 301, 302), which is important for initiating biofilm formation on the 
tooth surface.  
 
Proliferation of the species Fusobacterium nucleatum in the biofilm allows the transition to a mature 
plaque profile. Fusobacterium nucleatum acts as a “bridging organism”, meaning that it is able to bind to 
many other biofilm species, both early colonisers and late colonisers, that often cannot otherwise interact 
with each other (302). Interestingly, this function is disrupted in the presence of lactose (303–306), which 
may explain why young children rarely develop periodontitis (307) and do not generally show stable 
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colonization by some late coloniser bacteria, such as Aggregatibacter actinomycetemcomitans and 
Porphyromonas gingivalis, until late childhood or adolescence (308).  
 
The growth and stable binding of Fusobacterium nucleatum to multiple bacterial partners signals a 
transition to a mature biofilm profile, in which the predominantly anaerobic late coloniser species rise in 
abundance. Late colonisers are typically anaerobic and proteolytic, and include taxa frequently 
associated with periodontal disease (274–277). Following this change, the biofilm community remains 
stable, with no additional structural changes (281, 294). Biofilm formed above the gum line is referred to 
as supragingival plaque, while that below the gum line is known as subgingival plaque. Due to the 
anaerobic and serum-rich environment within the gingival crevice, subgingival plaque generally contains a 
greater abundance of anaerobic and proteolytic bacteria than supragingival plaque (309).  
 
Plaque thickens as bacteria proliferate, forming morphologically distinct clusters called microcolonies 
(273). Large clusters, termed ‘hedgehogs’ arise from a core set of genera that are highly abundant and 
prevalent in plaque (255). The architecture of hedgehog structures is related to the functional needs of 
the participating species, in which different groups occupy different layers according to, for example, 
oxygen tolerance, an organizational trait previously noted in dental plaque (255, 274–277). One distinct 
morphology in dental plaque is the ‘corn cob’ structure, made of long thin filamentous species coated with 
small cocci, and resembling an ear of corn-on-the-cob. Pairs of early and intermediate coloniser species 
making up these various ‘corn cobs’ include Corynebacterium matruchotii-S. sanguinis and F. nucleatum-
S. sanguinis (255, 310). Certain microbial genera appear to play especially important roles in biofilm 
structuring, including Corynebacterium, a filamentous clade of bacteria that form the structural basis of 
hedgehog structures, and Capnocytophaga gingivalis, a motile species that can move non-motile species 
throughout the biofilm as though transporting cargo (255, 311). Bacterial co-adhesion is also important for 
introducing late colonisers into plaque biofilms. Species that do not bind well or at all to the enamel 
pellicle, such as Porphyromonas gingivalis, bind readily to other species that do, such as S. gordonii, F. 
nucleatum, and C. matruchotii (273).  
 
Calculus formation occurs through the periodic mineralisation of the biofilm community, although the 
initiation mechanism remains unclear (312). Ancient and historical dental calculus, collected from skeletal 
material without soft tissues, cannot be reliably classified as supra- or subgingival, and the difference may 
be indistinct in part because such biofilms reach a high degree of maturity (i.e., experience a proliferation 
of anaerobes) before calcification (2). Following calcification, biofilm formation starts again through the 
same process of salivary protein adherence to the mineralised biofilm surface. Abundant plaque buildup, 
and the presence of calculus, are strongly linked to inflammation of the gingiva, called periodontal 
disease.  
 
S5.1.1 Periodontal disease and associated microbial taxa 
 
Early work to understand the relationship between plaque and dental diseases such as caries and 
periodontal disease considered the multispecies nature of the biofilm to be at the heart of plaque 
pathogenicity (313). This community-driven disease initiation later developed into the ‘ecological plaque 
hypothesis’ (314). When research on specific organisms that could be isolated from plaque and grown in 
culture in labs became routine, the focus on the pathogenic nature of plaque switched from community-
centered to a specific species-centered view, called the ‘specific plaque hypothesis’ (313). Until the 
application of Next-Generation Sequencing (NGS) technologies to the study dental plaque, the specific 
plaque hypothesis dominated thinking about plaque pathogenicity, and much research focused on 
individual species that are abundant at sites of disease, such as Streptococcus mutans in caries and 
Porphyromonas gingivalis in periodontal disease. There is now a growing return to the idea that 
pathogenicity is driven by changes in the entire plaque community rather than the actions of specific 
species (314, 315).  
 
Certain abundant species could be detected or cultured out of disease-site plaque that were rarely 
cultured from healthy-site plaque, and because of this, specific species were considered causative agents 
of dental caries and periodontal disease (256, 274, 309). In vivo animal infection studies confirmed the 
virulent potential of these species, and much periodontal microbial research has focused on 
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understanding their pathogenicity (275). Like most microbiology work prior to the development of NGS, 
these studies were based on culturing and biochemical characterization, which limited research to only 
those species that could be grown in the lab. The now classic study by Socransky and colleagues (256) 
used DNA-DNA checkerboard hybridization to detect 40 culturable species in >12,000 subgingival plaque 
samples. This study reduced the complex nature of plaque into a more easily comprehensible collection 
of 5 complexes, named after colours, consisting of species that were statistically significantly associated 
with health or disease states and with each other. In particular, the group of three species making up the 
“red complex”, Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, were 
significantly correlated with each other and with clinical parameters of periodontal disease (256), and are 
commonly and popularly referenced in periodontal microbial research. These “red complex” species are 
all fastidious, asaccharolytic, obligate anaerobes that are relatively easy to grow in culture, compared with 
other species in their genera. However, NGS technologies have allowed researchers to detect many 
more species in plaque, including those that could not be grown in culture, and from these studies 
numerous other species have been subsequently associated with periodontal disease (309, 316–320). 
Supragingival plaque samples from healthy teeth contain low levels of species associated with 
periodontal disease (321). Culturing these biofilms in media that mimics conditions of inflamed gingiva 
(protein-rich or added serum) enriched many species associated with periodontal disease, several of 
which were undetectable in the initial inocula, all detected by shotgun metagenomics. This supports the 
ecological plaque hypothesis, in which the entire community composition changes to promote disease 
(321).  
 
Metabolic interactions between members of the “red complex” enhance the growth of these species. All 
three species grow better when co-cultured or when grown in spent media from one another than when 
grown alone or in fresh media (322–325), suggesting that the metabolic products of one species can be 
used as nutrition by the others. It has also been shown that metabolic pathways that are not fully covered 
by the genome of one species can be completed by another to enable full pathway activity in culture 
(326). Although these three species are rare in healthy tooth-site plaque of present-day populations and 
strongly associated with periodontal disease, they are much more prevalent and abundant in the dental 
calculus of historic populations from both healthy and periodontitis-affected teeth (2, 89). Because of the 
clinical interest in the “red complex” and other periodontal disease-associated species, we present a brief 
introduction to several of these species below.  
 
Porphyromonas gingivalis Porphyromonas gingivalis is the most heavily-studied member of the “red 
complex”. It is a Gram-negative, non-motile, asaccharolytic, obligately anaerobic coccobacillus. Growth 
media for P. gingivalis is supplemented with heme for optimal growth, and colonies grown on blood agar 
turn dark brown to black from accumulation of heme on their surface, indicating that the species acquires 
iron from the host, a pathogenic trait. P. gingivalis is detectable in early biofilms by DNA-DNA 
checkerboard hybridization, but only at very low levels (327), and it is considered a late coloniser. 
However, it is able to grow as a biofilm with the early colonisers S. gordonii, A. oris, and Veillonella sp., as 
well as with S. oralis together with S. gordonii (328), which may explain its low-level presence in early 
biofilms. It can also form corncob-like interactions with filamentous species (255) in the part of the biofilm 
closest to the gingiva (farthest from the tooth surface). Dipeptides are the preferred nutrient source of P. 
gingivalis (275), and it expresses several proteases, most notably the gingipains (275), to release 
peptides from larger proteins. Lipopolysaccharide structure varies depending on the environment (329, 
330), but it is less immunogenic than the LPS of enteric species.  
 
Treponema denticola Treponema denticola is a Gram-negative, motile, asaccharolytic, obligately 
anaerobic spirochete, and the second member of the “red complex”. It is found at the surface of plaque 
biofilms (277, 293), in anaerobic conditions with readily-available host-derived proteins. The presence of 
T. denticola correlates with periodontal disease progression, even when its abundance is low (331, 332). 
Growth in culture requires media supplementation with iron as well as short-chain volatile fatty acids. In 
turn, T. denticola produces a variety of short-chain volatile fatty acids including lactate, succinate, and 
formate, as well as methyl mercaptan and hydrogen sulfide from protein metabolism, all of which 
contribute to halitosis (333, 334). The proteases cystalysin and dentilisin, major surface protein MSP, 
chemotaxis proteins, and lipooligosaccharide are all virulence factors that promote pathogenicity towards 
host immune cells, epithelial cells, and fibroblasts (275, 335, 336). Direct interaction between T. denticola 
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and T. forsythia was shown through the leucine-rich repeat proteins LrrA of T. denticola and BspA of T. 
forsythia (337).  
 
Tannerella forsythia Tannerella forsythia is a Gram-negative, asaccharolytic, obligately anaerobic 
bacillus, and the third member of the “red complex”. The genus and species name has changed twice, 
from the originally designated Bacteriodes forsythus to Tannerella forsythensis to the now-accepted 
Tannerella forsythia. Much less is known about this species than the other members of the “red complex” 
because it is fastidious and difficult to grow in laboratory settings (338). Growth in culture requires 
addition of N-acetylmuramic acid, a component of peptidoglycan, which suggests that T. forsythia 
scavenges this molecule from the biofilm rather than synthesizing it. Like P. gingivalis, T. forsythia 
acquires iron from the host by binding heme (339), and cleaves dipeptides from host proteins for nutrition 
(340). Virulence factors include the leucine-rich repeat protein BspA (341), the cysteine protease PrtH 
(342), and sialidases NanH and SiaHI (343). Tannerella forsythia is coated in a unique protein-based 
capsule called the S-layer that appears to be characteristic of the genus Tannerella (344), although it is 
found in several Gram positive and Gram negative genera (345). The S-layer contributes to T. forsythia 
virulence (275) by assisting in adhesion to epithelial cells and aiding the bacterium in evading the immune 
system (346, 347). The two glycoproteins that make up the S-layer, TfsA and TfsB, have no known 
homology to any other prokaryotic S-layer proteins, and they are among the most abundant proteins 
expressed by T. forsythia cells. Glycosylation of the S-layer proteins modulates immune cell recognition of 
the organism (348), as well as its role in biofilm formation (349).  
 
Fretibacterium fastidiosum Fretibacterium fastidiosium is a recently described species that is associated 
with periodontal disease (350). It is a member of the phylum Synergistetes, one of the many understudied 
and poorly characterized phyla. It is a Gram-negative, asaccharolytic, motile, obligately anaerobic, curved 
rod, yet relatively little is known about this species, since it is only recently possible to grow it in the lab. In 
vitro cultivation depends on co-culture with other oral taxa such as F. nucleatum (350) or supplementation 
of growth media with siderophores (351). Acetic acid, propionic acid, hydrogen sulfide, and proteases are 
produced by F. fastidiosum during culture, similar to other characterised periodontal taxa (350). It is more 
abundant in plaque of patients with chronic periodontitis than healthy patients (319, 352, 353), and is 
more abundant in moderate to deep periodontal pockets than in shallow pockets (354), which is 
concordant with its designation as an obligate anaerobe.  
 
S5.2 Parameter selection of core microbiome analysis  
 
A core microbiome is roughly defined as the microbial genes or taxa that are present across all (or nearly 
all) individuals of a given group, population(s) or species (355). Defining the core microbiome of different 
modern human body sites has been a primary goal of many studies (276) including the Human 
Microbiome Project (356), with the reasoning that these taxa are fundamental for the formation and 
maintenance of health within a given microbiome. Deviation from this core structure is often described as 
dysbiosis and is frequently associated with disease (357, 358). While research into ‘core’ microbiomes at 
highly variable body sites, such as the gut, has shifted from a focus on core taxa to a focus on core 
functions (359, 360), the plaque biofilm differs in that it is a stable (361), stratified system with a known 
developmental process (253, 255, 277, 282). A consistent set of genera have been shown to dominate 
dental plaque communities compared to other oral surfaces (253, 255, 277, 282), and a growing body of 
evidence suggests that there is a core oral microbiome present at healthy oral sites (276). To date, 
however, this research lacks an evolutionary framework and has focused almost exclusively on dental 
plaque samples from modern human subjects in urban centers from Western industrialised societies. To 
better understand and define the core human oral microbiome in a broader, evolutionary context, we 
compared the microbial species and genera found within the dental calculus of the African hominid 
groups in this study. We sought to determine whether a core microbiome could be defined for each group, 
whether the core was phylogenetically coherent, and whether some members of the core were specific to 
certain host groups. We also sought to determine what roles core members play within the biofilm, and 
whether certain functions are more phylogenetically conserved than others.  
 
Because our study includes both present-day and archaeological samples, we devised a strategy that is 
robust to minor variations in sample preservation. We selected a three-level threshold approach to 
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identify potential ‘core’ OTUs in the MALT/MEGAN taxonomic assignments, and a flowchart diagram 
illustrating this selection process is provided in Fig. S9A and External Data Repository Fig. R24. We then 
identified a provisional core microbiome for each host genus separately, then in all host-genus 
combinations following the branching of the host phylogenetic tree, as well as controls (e.g., Pan:Homo, 
Gorilla:Pan:Homo, Alouatta:Gorilla:Pan:Homo). Specific details of this process are as follows, with 
technical descriptions in the scripts described in External Data Repository Section R10.1.1.  
 
First, using the high-quality, filtered dataset described in Sections S3.4 and S4.6, we assigned a taxon as 
‘present’ if it had a non-zero value in the OTU table, and ‘absent’ if had a zero value (see below for the 
minimum fraction of reads required to be a non-zero value). We then required that the taxon be present in 
a minimum of 50% of samples of a given host genus ‘population’ to be considered core to this population. 
We kept this first threshold relatively low for three reasons: 1) small samples sizes for some populations, 
2) known variability in sample preservation and limited knowledge of taxon-specific preservation 
characteristics (194), and 3) knowledge that periodontal disease can cause shifts in abundant taxa, 
making core ‘health’ associated taxa less detectable.  
 
Second, of taxa that we defined as ‘core’ to a host genus population, we further defined the taxon as 
being core to the host genus overall if it was designated a core taxon in at least two-thirds (66%) of all 
populations of that host genus. This ensured that taxa that were specific to only one particular population, 
geographic region, or subspecies were not counted as core for the genus overall. Alouatta was exempt 
from this parameter as only a single population was available. We then intersected the host genus core 
lists in all possible combinations using the ‘upset’ function from the UpSetR (v1.3.3) package (362, 363).  
 
Third, we observed that when using taxonomic tables generated with a lower minimum abundance 
thresholds (i.e., the proportion of alignments a taxon has over the total alignments of the sample), well-
known environmental contaminants such as Pseudomonas and Streptomyces were reported as being 
‘core’ to African hominids. The finding of such taxa at low abundance in our samples is not unexpected, 
given that these highly robust environmental species are nearly ubiquitous in burial soils, as well as in 
museum collections, storage facilities, and even laboratories (364, 365). For example, we have 
successfully cultured numerous live Pseudomonas species and strains (>40) from archaeological bone, 
and we believe that low-level surface colonization by such taxa is typical for most archaeological and 
museum collections. Wet lab methods (EDTA wash and UV irradiation) remove some of these 
contaminants, but not all. Additionally, the ‘decontam’ filter that we applied in section S3.6 was also not 
sufficient to remove these highly ubiquitous contaminants due to the fact that they were identified in more 
samples and at higher abundance than other contaminant taxa, in part because of their 
overrepresentation in reference databases.  
 
To address this, and to increase the confidence that taxa identified as ‘core’ are truly endogenous oral-
related taxa, we repeated the analysis with increasing minimum support values until most of these well-
known laboratory and environmental contaminants were removed but most well-known oral taxa were 
retained. Categorization of taxa as oral vs. environmental was based on the predominant reported 
isolation sources as identified in literature reviews and databases (e.g., human oral microbiome database 
(HOMD), PubMed, and BacDive). Specifically, we increased the minimum support threshold until there 
were no host genus-combinations that included the ‘control’ category (consisting of all extraction blanks, 
library blanks, and bone environmental proxy samples) for the following monophyletic human lineage 
groups: Homo, Homo:Pan, Homo:Pan:Gorilla, Homo:Pan:Gorilla:Alouatta). This ensured that the 
microbial taxa identified as ‘core’ were highly abundant across most samples and above the ‘noise’ 
threshold of contaminants present in controls. The corresponding cutoffs were found to be 0.07% and 
0.04% for genus and species taxonomic levels, respectively. Setting higher minimum abundance 
thresholds did not improve the results, and only led to the removal of lower abundance well-known oral 
taxa. These thresholds were valid for both NCBI nt and custom RefSeq databases, and we therefore 
applied these cut-offs prior to the compositional analyses described above. 
 
The effect of increasing the minimum support value from baseline (0.01%) to the final selected values 
(0.07% for genus and 0.04% for species) on host group core microbiome assignment is shown in Fig. S7, 
External Data Repository Section R10.1.2, and Fig. R25 for the refseq database (see External Data 
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Repository File R23 for tabular comparisons). Notably, the number of taxa shared by controls and all 4 
host genera is much higher than the number shared by controls and 2 or 3 host genera, suggesting these 
are indeed widespread background contaminants, and that these contaminants are successfully removed 
by increasing the minimum support value. More taxa are lost when increasing the minimum support value 
from 0.01% to 0.04% than when increasing it from 0.04% to 0.07%, which is expected given the ‘long-
tails’ of very low abundance (often spurious) taxa typically assigned to large metagenomic datasets (237), 
a classification artifact that is also known to affect MALT-derived taxonomic tables (204). There are few 
reassignments of taxa to new host-genera combinations when increasing the minimum support value 
from 0.04% to 0.07%, suggesting these assignments are robust. These reassignments consist of 2 
changes for the nt database at genus level, 4 for nt species, 4 for custom RefSeq genus, and 3 for 
custom RefSeq species. After this point, the assignments are generally stable, and are not improved by 
stricter thresholds.  
 
In this step, the taxa that are reassigned from a core combination with a control, to a core combination 
with host genera only, are Streptococcus, Actinomyces and Corynebacterium. All three of these genera 
are host-associated and contain many different species that reside in different parts of the modern human 
body (366), most notably the oral cavity and skin. Without filtering, these genera are likely identified within 
controls due to low-level skin contamination. However, by increasing the genus minimum abundance 
threshold to 0.07%, this background skin contamination signal is removed, leaving only the highly 
abundant oral assignments. 
 
With regard to other reassignments during this step, most represent minor, predictable reclassifications. 
For example, both reassignments of taxa from Alouatta:Gorilla:Pan:Homo to the subclade Pan:Homo 
were anaerobic bacteria (Porphyronomas, Treponema). This is expected, given the much greater 
abundance of these taxa in Homo and Pan, compared to Gorilla and Alouatta, which have a lower 
abundance of late colonisers in general and these genera in particular (See section S4.3).  
 
Among the taxa remaining after the application of this filter, all have been previously identified in the oral 
cavity, with the exception of Mycobacterium (External Data Repository Section R10.1.5 and File R22). 
Mycobacterium is only identified as a core member at the genus taxonomic level when using the nt 
database. This genus consists of a highly diverse set of primarily environmental taxa (367), of which only 
a small subset causes disease in mammals and may be present in the oral cavity (368). Such diversity is 
a common obstacle in ancient DNA analysis, where it is difficult to distinguish pathogenic Mycobacterium 
tuberculosis from closely related environmental species (369), especially because, being clinically 
relevant, pathogenic Mycobacteria are substantially overrepresented in reference databases (especially 
the nt database) than environmental Mycobacteria. Because our core assignments do not take into 
account abundance (beyond filtering by the minimum support value), Mycobacterium is likely retained in 
our core dataset as an artifact of its combination of relatively high abundance in control samples and 
variable abundance in samples, rather than it being a true oral taxon. Indeed, External Data Repository 
Section R10.1.5 and Fig. R27 shows that the sources with the greatest number of Mycobacterium 
alignments are from sediment, ancient bone and skin samples by an order of magnitude. The most 
common Mycobacterium detected at the species level were M. kansasii and M. avium - both taxa that are 
most commonly isolated from water (370). Because this genus is almost certainly a contaminant, and not 
a true oral member, we excluded it from downstream analysis. Following the removal of Mycobacterium, 
all remaining core taxa are known to be oral associated, having been previously isolated from the oral 
cavity or identified through genetic screens.  
 
At the species level, we accepted three taxa as core that failed to meet the above requirements on 
technical grounds, namely because they either belong to poorly described microbial families that do not 
yet have accepted genus- and species-level designations (Candidatus Saccharibacteria TM7x and 
Anaerolineaceae bacterium oral taxon 439) or because their current genus is paraphyletic and 
undergoing reorganization ([Eubacterium] minutum). All three taxa meet species-level threshold 
requirements, despite not having an accepted genus designation. We have included these taxa in all 
downstream reporting.  
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Overall, we found that applying a minimum support threshold prior to core microbiome assignment was 
critical for removing spurious assignments due to background environmental contamination. We selected 
our final thresholds (genus 0.07%; species 0.04%) based on the fact that they are the minimum values 
required to remove most known contaminants without also removing known oral taxa. By setting a 
minimum support threshold, some oral taxa previously core to larger clades were reassigned to 
subclades; however, this affected relatively few taxa. Specific changes included reassignment of 
Desulfovibrio, Olsenella, and Tannerella from Alouatta:Gorilla:Pan:Homo to Gorilla:Pan:Homo; 
reassignment of Porphyromonas and Treponema from Alouatta:Gorilla:Pan:Homo to Pan:Homo; and 
reassignment of Mogibacterium from Gorilla:Pan:Homo to Pan:Homo.  
 
As a final check to ensure that the core microbiome assignments are robust and not strongly influenced 
by sampling or preservation effects, we examined the effect of our initial sample filtering step (section 
S3.4) on core microbiome assignments. We found that following the removal of low quality samples, one 
Gorilla population was reduced to a single individual. We then checked for the influence of this individual 
on the calculation of the core taxa (Fig. S8, External Data Repository Section R10.1.3, and Fig. R26, with 
a tabular comparison in File R24). Very few changes were observed at the genus level, and for both the 
genus and species levels, only two reassignment combinations occurred within our human lineage core 
combinations of interest (i.e., Alouatta:Gorilla:Pan:Homo, Gorilla:Pan:Homo, Pan:Homo, and Homo). In 
both cases (Capnocytophaga at genus level, and Streptococcus constellatus at species level), this 
consisted of a reassignment from Alouatta:Gorilla:Pan:Homo to the Alouatta:Pan:Homo combination. 
Outside of the primary core combinations of interest, all combination reassignments at genus level 
consisted of Alouatta:Gorilla assignments being reassigned to just Alouatta. Equally, all species affected 
by reassignments are combinations including Alouatta that result in Gorilla being removed from the 
combination. Two Staphylococcus species that were core to Gorilla were removed entirely from the core 
calculations. Due to the similarity of Alouatta and Gorilla in all of our analysis, we decided to retain the 
single individual population for this calculation. Furthermore, the two taxa that are reassigned away from 
core combinations of interest are known oral taxa in modern humans and are otherwise ubiquitous across 
all other host genera - thus suggesting that they are true core oral taxa, even if at lower prevalence 
across the two multi-individual Gorilla populations.  
 
A table of all taxa that are considered a part of the host genus phylogenetic core at each minimum 
support level is provided in Data S3. Final summary statistics and core taxa can be seen below in section 
S5.4. 
 
S5.3 Comparison among African hominid core microbiomes  
 
In order to explore the identified core microbiome(s) in more detail, we used UpSet (362, 363) plots to 
visualise the number of core taxa in all possible host group combinations at both the genus and species 
levels and for both the NCBI nt (Fig. 2A-B) and custom RefSeq databases (External Data Repository 
Section R10.1.6 and Fig. R28). 
 
In all cases we observe that the number of unique core taxa in Pan and Alouatta is higher than in Homo 
and Gorilla. This suggests that Homo and Gorilla each share a high number of core taxa with all of the 
other host genera. At the genus level, the number of taxa shared across Alouatta:Gorilla:Pan:Homo is the 
next highest, highlighting the similarity of all of the primate oral microbiomes included in this study. 
However, this pattern is less clear at the species level, suggesting that while there is a general 
conservation of the core oral microbiome, there are host-specific differences at the microbial species 
level. 
 
To assess the support for core microbiome assignments, we compared the assignments made using the 
NCBI nt and NCBI RefSeq databases for corroboration (External Data Repository Section R10.1.6 and 
File R25). Of the 75 microbial genera assigned to the core microbiome of a host genus, 26 taxa were in 
agreement between databases, 14 taxa had different host genus assignments, and 35 taxa did not pass 
the prevalence thresholds in one or the other database (18 assigned in the nt database and not assigned 
in the custom RefSeq, and 17 vice versa). Of the 223 core-microbiome species assignments, 34 were in 
agreement, 30 had different host genus assignments, and 159 did not pass the prevalence thresholds in 
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one or the other database (81 assigned only in the nt database, and 78 in vice versa). In both cases more 
than half of the taxon combination assignments were not shared between the two databases, highlighting 
the importance of database selection and representation. While the core taxa corroborated by both 
databases are likely highly robust, the status of those in disagreement may change over time as a wider 
diversity of taxa (especially from living primates and more diverse modern human groups) are sequenced 
and databases improve (258). Revisiting this data in the future will likely improve the identification of core 
taxa shared across hominids, as well as identify additional core taxa for each host genus.  
 
When looking specifically at host phylogenetic clade combinations, corroboration of core microbiome 
assignments between the two databases was much higher at both the genus level (≥ 50% of assignments 
corroborated for Pan:Homo, Gorilla:Pan:Homo, and Alouatta:Gorilla:Pan:Homo) and species level (all ≥ 
60%) (External Data Repository Section R10.1.6 and File R25). Of the combinations that do not 
corroborate, none involve genera being reassigned to other host-groups and only 4 result from the 
reassignment of a microbial species to a different host-group. Of these, 3 species (Anaerolineaceae 
bacter oral taxon 439, Olsenella sp. oral taxon 807, Tannerella forsythia) were reassigned from a hominid 
combination containing Gorilla in the nt database assignments to the same combination but without 
Gorilla in the custom RefSeq database, and one (Campylobacter gracilis) was reassigned from the 
Alouatta:Gorilla:Pan:Homo group in the nt database to the Gorilla:Pan:Homo group in the custom RefSeq 
database. The remaining 40 non-corroborating combinations were due to a given taxon not passing 
prevalence thresholds in one or the other database (9 at genus level, 31 at species level). Given the 
differences between the two databases, this pattern is not entirely unexpected and may be attributed to 
evolutionary divergences between the actual microbial species present in each host and the closest 
reference sequence in the database, as well as to the problem that databases with large numbers of 
reference genomes can reduce the specificity with which specific (especially conserved) reads are 
assigned at the species level, thereby spreading such reads across many closely related species (258).  
 
To further add support to our core microbiome assignments, we performed bootstrapping to assess the 
stability of taxon assignments to particular host-genus combinations. For each host-genus, we randomly 
subsampled individuals (with replacement) and re-performed the core calculation for a total of 1000 
replicates. To assess the effect of including controls, we ran the bootstrapping procedure on datasets for 
both databases (NCBI nt and RefSeq) and microbial taxonomic levels (species and genus) with and 
without controls (excluding blanks from both). The majority of Alouatta:Gorilla:Pan:Homo combinations 
with the NCBI nt database were robust when considering a minimum bootstrap support of 75%, with only 
Capnocytophaga falling below this, at 71.6%, when excluding controls (External Data Repository Section 
R10.1.4 and Table R8). This adds robusticity to our core microbiome calculations, despite small sample 
sizes for each host genus, by showing relatively low stochasticity in the assignment.  
 
The procedures used to perform core microbiome calculations, alluvial plot visualizations, Mycobacterium 
analyses,UpSet plot visualizations and bootstrapping are described in the External Data Repository 
Section R10. 
 
S5.4 Evolutionary and ecological relationships among core oral microbes of African hominids 
 
In total we determined 23 genera and 5 independent species to be core to the human oral microbiome 
(Fig. 2C), of which 19 genera and 4 species (in both cases excluding Mycobacterium, see section S5.2) 
fall exclusively within expected host phylogenetic groupings: ((((Homo)Pan)Gorilla)Alouatta). Nearly half 
of these human core taxa (10 genera) are core members of all four host genera in this study 
(Alouatta:Gorilla:Pan:Homo), suggesting a high level of taxonomic conservation in the primate oral 
microbiomes in this study. The spatial location of these organisms (Actinomyces, Streptococcus, 
Campylobacter, Capnocytophaga, Corynebacterium, Fusobacterium, Ottowia, Prevotella, 
Pseudopropionibacterium, Selenomonas) spans the entire biofilm, from the basal to external layers (255, 
274–277, 371–375). Many of these core genera play key roles in biofilm architecture. For example, 
Actinomyces and Streptococcus are responsible for initial colonization and biofilm initiation (see section 
S5.1). Corynebacterium form long filaments that co-aggregate with other taxa to produce 'corncob' and 
'hedgehog' scaffolds that act as 'structural pylons' in biofilm architecture and create habitats for other 
bacteria to grow and exchange nutrients (255, 376, 377). Capnocytophaga are capable of gliding motility 
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and serve as microbial shuttles for non-motile taxa throughout the biofilm (378), and Fusobacterium is a 
critical bridging taxon that expresses numerous surface adhesins and links to early and late biofilm 
colonisers (379). Selenomonas use their flagella to form interwoven web-like structures that are thought 
to fulfill architectural functions in the biofilm (375). Less is known about the specific roles of 
Campylobacter, Ottowia, Pseudopropionibacterium, and Prevotella in oral biofilms. We note that the 
genus name Pseudopropionibacterium was mis-applied and may soon be reassigned to Arachnia (380). 
 
To more closely examine the spatial relationships, biofilm roles, potential coevolutionary partners of core 
microbiome taxa, we developed a schematic representation of the biofilm (Fig. 2C) based on previously 
reported species and/or genus localization determined by a variety of in situ imaging techniques (255, 
274–277, 371–375). A three-layer model of dental plaque based on microbial succession has been 
described using FISH (255, 277), and we followed this model in our analyses. In Fig. 2C, we have 
coloured each microbial genus according to its respective host group, focusing on those groups cladal to 
humans (Alouatta:Gorilla:Pan:Homo, Gorilla:Pan:Homo, Pan:Homo, and Homo). Four taxa were 
represented by species rather than genera, either because they lacked valid genus designations 
(Anaerolinaceae bacterium oral taxon 439 (phylum Chloroflexi); [Eubacterium] minutum; TM7x) or 
because the genus had insufficient genome representation in the database (Filifactor alocis) to meet 
genus-level thresholds. No spatial information was available for several core taxa (Anaerolineaceae 
bacterium oral taxon 439, Desulfomicrobium, [Eubacterium] minutum, Gemella sp. oral taxon 928, 
Mogibacterium, Olsenella, and Ottowia), and so we have omitted these taxa from the figure. In addition, 
four genera were found to be core to paraphyletic host groups, but were included in the Fig. 2 because 
they are core microbiome members of Homo: Leptotrichia (Alouatta:Homo); Aggregatibacter, Eikenella, 
and Neisseria (Alouatta:Gorilla:Homo). These taxa were shaded gray.  For Gemella and Filifactor, there 
was an inconsistency in the core host group between the bacterial genus and species: Gemella (genus) 
and Filifactor (genus) are core to Pan only, but Gemella sp. oral taxon 928 (species) is core to 
Alouatta:Gorilla:Homo while Filifactor alocis (species) is core to Pan:Homo. For these 2 species, we have 
included them in the Fig. 2 with their species core host groups.  
 
Importantly, the core Alouatta:Gorilla:Pan:Homo taxa make up all but two of the genera forming the basal 
layer of the oral biofilm. This suggests that the earliest stages of biofilm development are conserved, 
while the metabolic processes stemming from the growth and interactions of these organisms likely can 
support a larger and more variable community of additional species in their hosts. Together, members of 
the Alouatta:Gorilla:Pan:Homo core and the Alouatta:Gorilla:Homo core (Aggregatibacter, Eikenella, 
Neisseria) are largely associated with oral health in present-day modern humans, while those in the 
Gorilla-Pan-Homo core (Fretibacterium, Olsenella, Tannerella) and especially the Pan-Homo core 
(Desulfomicrobium, Mogibacterium, Parvimonas, Porphyromonas, Treponema) are more typically 
associated with oral disease, particularly periodontal disease (256, 309), in present-day modern humans. 
Unfortunately, we do not have periodontal health assessments for the majority of teeth sampled in this 
study, and thus we are unable to comment on their disease status. However, it is possible that the strong 
clinical association of species such as Porphyromonas, Treponema, Filifactor, Mogibacterium, etc., with 
periodontal disease in humans may stem from their more recent evolutionary association or from 
extensive modern oral hygiene procedures that disrupt the biofilm community. This suggests a disconnect 
between the biofilm species profile and the immune response, rather than these species being inherently 
pathogenic (381). Specifically, the gingival immune response evolved to respond to biofilms that 
developed undisturbed, and reached a particular balance of microbes and microbial gene expression. 
The immune response tolerates these homeostatic conditions, while disturbances in relation to it trigger a 
response. Now through modern hygiene practices and antibiotic use, biofilm development is frequently 
disturbed, and may not reach the same balance of microbes and microbial gene expression. 
Consequently, the metabolic signals produced by the community may be eliciting a strong inflammatory 
immune response, in part because the immune system of the host has yet not adapted to these new 
conditions. 
 
The only core genus that was found to be Homo-specific was Veillonella. Species in this genus have a 
close metabolic dependency on Streptococcus species, whereby Veillonella use Streptococcus-produced 
organic acids as a primary carbon source (382), possibly explaining why it is uniquely core in Homo. 
Certain Streptococcus species, specifically those considered to be characteristically oral taxa, are more 
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abundant and prevalent in Homo than in other host genera, as shown in section S5.6, and these 
streptococci may be necessary for Veillonella to flourish. Although other Streptococcus species are 
prevalent and abundant in other host genera, the relationship between Streptococcus and Veillonella may 
have uniquely developed in Homo.  
 
S5.5 Evolution of oral disease virulence factors in late-colonisers  
 
We observed above that several classic periodontal disease-associated taxa (256) (see section S5.1.1) 
were sufficiently prevalent and abundant to be considered core to Gorilla:Pan:Homo or Pan:Homo. Even 
when not core to a particular group, we observed that reads matching these taxa were sometimes 
relatively high in a few individuals. Because many modern human pathogens evolve from non-disease-
causing commensal relatives (383), we wished to determine whether the reads assigned to these taxa in 
non-human primates included the specific virulence factors that are associated with pathogenicity in 
modern humans. To test this, we focused on a set of relatively well-characterised virulence factors from 
Tannerella forsythia and Porphyromonas gingivalis (275, 338). We did not include Treponema denticola 
in this analysis because the genus was not found to be sufficiently represented, even at low levels, in 
members of Alouatta or Gorilla to allow meaningful comparison (see section S6.2). We also excluded 
Fretibacterium fastidiosum, as this is a more recently identified periodontitis-associated taxon for which 
specific virulence factors are not well-characterised. 
 
Using the deep sequencing dataset, we mapped all well-preserved samples to the reference genomes of 
Tannerella forsythia and Porphymonas gingivalis (see section S6.2), and we calculated the depth and 
breadth of coverage for all annotated genes in the two genomes using bedtools coverage (v.25.0) (384). 
To account for possible high divergence of virulence gene sequences across host genera, as well as low 
coverage mappings with insufficient information, we discarded all annotated genes that did not have a 
breadth of coverage of ≥ 70%. This resulted in a clear differentiation between individuals with low and 
high coverage genomes (External Data Repository Section R12.1 and Fig. R35), and we next discarded 
all individuals who had fewer than 500 annotated genes passing the breadth of coverage filter. For the 
remaining mappings, we calculated median gene depth coverages for each individual. To remove likely 
outlier genes with unusually high or low coverage we then discarded any gene with a depth of coverage 
that fell outside of the range of ± 75% of the median. This ensured that samples with normal or nearly 
normal distributed gene coverage distributions retained most of their genes, while some of the more 
outlier genes were removed from samples with highly skewed or uniform distributions (in lieu of a better 
consistent threshold across heterogeneous coverage distributions). We did this because very high gene 
coverage can be an indication of multicopy genes or of taxonomic crossmapping of highly conserved (i.e., 
housekeeping) genes, while very low coverage may not afford sufficient information for analysis. For each 
virulence factor gene (External Data Repository Section R12.1 and File R35), we then calculated the ratio 
of the average depth coverage of all well-supported genes to the depth coverage for each virulence 
factor, with the assumption that a virulence factor that is truly present should be found at a ratio of 1:1 
with other single copy genes. The results of this analysis are provided in Fig. S9B-C and External Data 
Repository Fig. R36. 
 
We find that P. gingivalis and T. forsythia virulence factor genes appear to be present within the oral 
microbiomes of all African hominids and the howler monkey outgroup. Thus, neither these taxa nor their 
virulence factors are specific to modern humans. All of the T. forsythia virulence genes were identified in 
the majority individuals harboring the species, and at mostly similar coverage depths as other genes in 
the genome. P. gingivalis virulence genes exhibited higher variability, and in particular the Mfa series of 
genes was absent in three quarters of Pan mappings, both Alouatta mappings, and one Homo mapping. 
By contrast, gingipains (kgp, rgpA and rgpB) were present across all individuals carrying P. gingivalis, 
although at a reduced coverage in Aouatta and Gorilla, suggesting that not all strains in these groups 
have these virulence factors. The shared presence of virulence factors in most individuals harboring P. 
gingivalis and T. forsythia suggests that the acquisition of these genes, and the pathogenic lifestyle they 
enable (381), has a time depth long predating modern humans. The pathogenic potential of such genes in 
non-human hosts has been demonstrated by their in vitro expression in animal models (385). 
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Although most virulence genes were identified in non-human primates, other genes systematically 
differed between host groups, suggesting host genus-specific strain differences. For example, we found 
that several regions of the P. gingivalis reference genome were not covered by chimpanzee samples. 
Ozga, et al. (386) mapped their chimpanzee dental calculus to the same P. gingivalis reference genome 
that we used, and also found a similar pattern. Although they did not further investigate the missing 
genes, the concordance in the findings of the two studies supports the notion that chimpanzees and 
modern humans carry different host-specific clades of P. gingivalis, with different gene content and 
different virulence potential. The code for generating virulence gene coverage ratios is provided in the 
External Data Repository Section R12.1.   
 
S5.6 Host-associated differences in early-coloniser Streptococcus species  
 
Streptococcus is a large and diverse genus of Gram-positive bacteria. They have undergone numerous 
name changes and re-classifications based on biochemical and phylogenetic analyses, and current 
nomenclature is still under debate (2, 387, 388). Broad categories of Streptococcus were described in 
early classification, such as the modern human-ubiquitous oral streptococci (formerly the viridans group), 
and the pyogenic group, which includes species infrequently isolated from modern humans, except in the 
context of disease (i.e., S. pyogenes and S. agalactiae).  
 
In modern humans, members of Streptococcus are the most abundant species in the mouth (149), and 
they are universally present in all sites of the oral cavity (389). They are the dominant genus found in 
saliva and on soft tissues of the mouth (389), and they are one of the most abundant genera in modern 
human supragingival plaque (390) and healthy-site subgingival plaque (309). Many Streptococcus 
species have been isolated from dental plaque, the most common of which comprise two oral 
Streptococcus groups, the mitis group and the sanguinis group (390, 391). Members of these groups, 
together with a third group known as the salivarius group, have been found to express one or more 
salivary ɑ-amylase-binding proteins that allow them to derive nutrition from dietary starches (392). They 
are the only oral species known to have this ability. Further information about these streptococcal groups 
with ɑ-amylase activity is provided in section S5.6.1. 
 
During hierarchical clustering analysis, we observed that Pan has a very low prevalence and relative 
abundance of Streptococcus, while Homo has a very high prevalence and abundance of this same genus 
(see section S4.3). Consequently, we wished to examine the relative abundance and distribution of 
different Streptococcus species across the host genera in more detail. To do this, we first filtered the 
species-level MALT OTU table that was used for core microbiome analysis (Section 5.2) to include only 
Streptococcus species assignments. Based on species level 16S rRNA gene and whole genome 
sequences (391, 393, 394), we then assigned each Streptococcus species to a broader Streptococcus 
group (389): mitis, sanguinis, anginosus, salivarius, mutans, pyogenic, or other. The group assignments 
are provided in External Data Repository Section R12.2.1 and File R33. We then calculated the fraction of 
alignments to each Streptococcus group over total alignments to Streptococcus references at species 
level, and the results are shown in Fig. 5B and External Data Repository Section R12.2.1 and Fig. R64 
(for sample labels).  
 
To further verify these patterns, we then repeated this analysis on our much deeper sequencing dataset, 
which we aligned to a concatenated Streptococcus super-reference genome (see section S6.1 for details) 
that included one reference genome per NCBI species-level name in the genus Streptococcus (External 
Data Repository Section R12.2.1 and Fig. R37). We performed this analysis to account for the 
taxonomically imbalanced range of reference sequences in the NCBI nt database, as well as to account 
for the lower sequencing depth of the shallow sequencing dataset. This test is described in detail in the 
External Data Repository Section R12.2.1. Note that the larger fraction of unknown in the super-reference 
plot is likely due to the absence of a minimum support value being applied - i.e., many of the unknown 
group species have few aligned reads by MALT, and thus are removed when the increased minimum 
support value (0.04%) is applied as in Fig. 5B. 
 
Overall, we observe high concordance between both analyses. In both cases, we observe that 
streptococci within Homo oral biofilms are particularly dominated by alignments to the sanguinis group. 
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By contrast, this group makes up a much smaller fraction of streptococci in Alouatta and Gorilla, and - 
with the exception of a single individual - it is entirely absent in Pan. Although Alouatta and Gorilla have 
fairly balanced distributions of the different Streptococcus groups, Pan differs from the other groups in 
having very low streptococcal diversity consisting mostly of anginosus and pyogenic group streptococci, 
with a few individuals also having mutans group streptococci. We note that a subset of the modern 
human individuals appear to have similar distributions of taxa to Pan, i.e., the lack of sanguinis, mitis and 
salivarius groups. These individuals overlap with those appearing ‘Pan-like’ in taxonomic profiles (see 
Section 4.3), who span both Europe and Africa, pre- and post-agricultural lifestyle transitions, biological 
sex and teeth type. We do not have in this study consistent health status information to infer health 
related factors for this pattern. However the very low streptococcal diversity observed in Pan may be 
related to the overall much lower relative abundance of aerobic and microaerophilic early colonisers 
(including Streptococcus) observed in chimpanzee oral biofilms by hierarchical clustering and indicator 
analysis. 
 
Of all the host genera, Alouatta has the highest diversity of private streptococcal species, an observation 
that is consistent with the high number of unique and associated ‘combinations’ also identified by 
indicator analysis (see section S4.4) and by hierarchical clustering heatmap analysis (see section S4.3). 
This high level of diversity may either be due to an actual greater diversity of Streptococcus species in the 
oral cavity of Alouatta, or to the absence of sufficiently related reference sequences in the database for 
true Alouatta streptococcal species. If reference sequences are too distant from the true sequence for 
adequate mapping, this can lead to a seemingly ‘random’ spreading of read assignment across other 
species in the genus. This artifact, which often manifests as a diverse distribution of alignments over less 
well-characterised species and strains, may explain the relatively high fraction of ‘unknown’ and 
‘unnamed’ Streptococcus group assignments for both Alouatta and Gorilla. 
 
S5.6.1 Streptococcus ɑ-amylase-binding proteins as an indicator of host-microbe coevolution 
 
Several oral streptococci are capable of binding salivary ɑ-amylase, which provides easy access to 
nutrition and may assist with biofilm formation (392). These taxa use amylase-binding protein genes to 
‘hijack’ the high levels of ɑ-amylase enzymes in modern human saliva for two purposes: (1) to access the 
simple sugars released by enzymatic activity of ɑ-amylase on dietary starch, and (2) to assist in the 
anchoring of the bacterial cells to the enamel tooth surface (onto which salivary ɑ-amylase is adsorbed) 
during plaque biofilm initiation (395). Salivary ɑ-amylase is the most abundant enzyme in modern human 
saliva (288), where it breaks down dietary starch into maltose and dextrins, and it is an important 
component of the acquired enamel pellicle (AEP). It is also among the most abundant modern human 
proteins found in ancient and historic dental calculus (2, 89, 396).  
 
Salivary ɑ-amylase in the hominid lineage evolved from pancreatic amylase by a gene duplication event 
followed by the insertion of a gamma-actin pseudogene and later the insertion of an endogenous 
retrovirus (397–401). Salivary ɑ-amylase is a multi-copy gene in some apes (33, 46), but humans have 
the highest reported copy numbers (mean ~5-8 copies) as well as the highest copy number variation (up 
to 30 diploid copies) (33, 34, 155, 156). Copy number expansion of the modern human salivary ɑ-
amylase gene occurred after the split with chimpanzees, within the last 5-7 my (400)Neanderthals and 
Denisovans appear to only have two diploid copies of the salivary ɑ-amylase gene, suggesting that high 
AMY1 copy number variation may be a distinctly modern human trait that emerged after the modern 
human lineage split with the Neanderthal and Denisovan lineages (402). Among modern human 
populations, those that consume more dietary starch appear to have higher average copy numbers than 
populations that consume low levels of dietary starch (33, 46), suggesting that salivary ɑ-amylase copy 
number variation may track changes in starch consumption during recent human evolution. In addition, 
salivary ɑ-amylase copy number has also been correlated with salivary microbiome richness (156), 
suggesting a link between diet-related evolutionary change and microbiome composition. Taken together, 
promoter region variation combined with copy number variation and microbiome associations make 
salivary ɑ-amylase a unique marker for understanding the relationship between diet and hominid 
evolution.  
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Human salivary ɑ-amylase concentrations are higher than other apes, as well as most Old World and 
New World monkeys (25, 34, 35, 403). Only baboons have higher salivary amylase than humans (despite 
having a low AMY1 copy number), which may be related to their unique use of cheek pouch food storage 
(47). Humans have the highest measured salivary amylase activity of the apes, while gorillas and 
orangutans have higher activity than chimpanzees or bonobos, which are comparable (34, 35, 404). 
Secretion of amylase has been shown to increase with increasing salivary flow rate, but solubilized starch 
solutions have minimal effect on stimulating salivary secretions in the parotid gland (405). Salivary ɑ-
amylase is detectable in low levels in saliva of a variety of herbivores and omnivores that consume plants 
that are high in starch, but not in carnivores (406). Domesticated dogs exhibit convergent evolution in 
having also undergone amylase copy number expansion, but in pancreatic β-amylase (34, 407, 408). 
Across mammals, salivary ɑ-amylase expression is highest in animals with broad range diets (34), and 
although salivary ɑ-amylase expression is highly variable among primates, it is thought to be related to 
diet (406).  
 
A variety of human-associated Streptococcus species, many of which are abundant early biofilm 
colonisers (409, 410), are able to bind salivary ɑ-amylase. They use a variety of ɑ-amylase-binding 
proteins termed amylase-binding protein A (AbpA), AbpB, AbpC, and several other poorly-characterised 
proteins (392). These different ɑ-amylase-binding proteins share no homology, but rather appear to 
confer a similar phenotype through convergent evolution. Amylase-binding activity has been reported in 
nine oral Streptococcus species: S. australis, S. infantis, S. mitis, S. oralis, and S. parasanguinis (the 
mitis group), S. cristatus, S. gordonii, and S. sanguinis (the sanguinis group) and S. salivarius (the 
salivarius group) (392). Amylase-binding activity is not universal in any species, and there is considerable 
strain variation for this trait (411, 412). Amylase-binding proteins have not been reported in any bacteria 
outside the Streptococcus mitis, sanguinis, and salivarius groups. 
 
abpA Amylase-binding protein A (abpA) in S. gordonii was the first genetically identified streptococcal 
amylase-binding protein (413). It is 588 nucleotides long, contains a signal peptide (413, 414) and is 
active at the cell surface near sites of cell division (414, 415) , but it is also detectable in cell culture 
supernatants (412, 414, 416). The gene is co-transcribed with a downstream sortase srtB that anchors 
ApbA in the cell wall (414, 417). The gene is expressed in cultures of S. gordonii only in the presence of 
both starch and salivary ɑ-amylase (418), and is likely regulated by the breakdown products of starch 
(418). Salivary ɑ-amylase stimulates the growth of AbpA-containing S. gordonii strains, and it also 
increases their resistance to low pH (419). Phylogenetic analysis of the N-terminal sequence of AbpA-like 
sequences, identified in a variety of Streptococcus species by BLAST searches, cluster the sequences 
into 5 groups, which were suggested to have evolved independently (392). The two genes abpA-srtB 
appear to be horizontally-transferred together as a genetic island (392), but the origin of these genes in 
Streptococcus is not known and homologs have not been found in other taxa (however, Haase et al. 
argue there may be an ortholog in Gemella haemolysans M341 (392)).  
 
abpB Amylase-binding protein B (AbpB) was first described in S. gordonii (420), is 1,959 nucleotides long 
and shares homology with dipeptdyl-peptidases of other species, but not with AbpA (421). Unlike AbpA, 
AbpB does not bind ɑ-amylase to the cell surface (420), and instead cleaves collagen and fibrinogen, and 
interacts with glycosyltransferase G (Gtf-G), yet is needed for optimal colonization of tooth surfaces by S. 
gordonii (421). A complex of AbpA, AbpB, and Gtf-G, which produces extracellular glucans from sucrose, 
can be precipitated from saliva by ɑ-amylase (420–422), suggesting a close association in vitro. Sucrose 
breakdown and production of alpha-linked glucans by Gtf-G is elevated in the presence of AbpB but not 
AbpA (421), and therefore AbpB may participate in bacterial tooth colonization and biofilm formation by 
complexing AbpA and Gtf-G to bring dietary starch metabolism and bacterial glucan production in close 
proximity (421).  
 
abpC and others Amylase-binding protein C (AbpC) and other putative amylase-binding proteins are to 
date poorly characterised (392), and are not further considered in this study. AbpC differs greatly from 
AbpA and AbpB, and shares domain sequence similarities to glycosyltransferases and choline-binding 
proteins in S. oralis (419, 423). It is found thus far in strains without AbpA and AbpB, and the protein 
appears to be associated with the cell wall (419). Other putative amylase-binding proteins also exhibit 
possible homology to choline-binding proteins and ABC-transporter substrate-binding proteins (392); 



 
 

46 
 

however their functional significance remains to be determined. Another recently identified group of 
putative amylase-binding proteins form fimbriae or pilus structures capable of binding to surface-bound 
salivary ɑ-amylase (419). These proteins are found in the sanguinis and mutans Streptococcus groups, 
and appear to be more involved in biofilm initiation and adhesion to teeth than in nutrient harvest.  
 
S5.7 Detection of amylase-binding protein genes abpA and abpB  
 
During compositional analysis, we observed that among early colonisers, Streptococcus species that are 
known to have amylase-binding capability in modern humans were found at relatively high abundance in 
the calculus of Homo (Fig. 5b; excluding the Pan-like individuals, see section S4.3). These species were 
found at lower abundances in Alouatta and Gorilla, and were effectively absent from the calculus of Pan, 
even though strains of Streptococcus oralis (a member of the mitis group) have been previously isolated 
from chimpanzee saliva (wadges) (424). The observation in our dataset of greater proportions of these 
taxa in Homo is interesting due to the much higher copy number of salivary ɑ-amylase genes in the 
modern human genome compared to other primates (46). The ability to procure and digest starch has 
been proposed to confer an evolutionary advantage to Homo (46, 157, 425). We therefore wanted to 
further investigate amylase-binding protein genes in our calculus dataset and determine whether they 
may assist in understanding the evolution of hominid diets and the role of dietary starches in shaping 
human evolution.  
 
To identify potential amylase-binding-protein genes in the Streptococcus super-reference (see below 
section S6.1), we downloaded from NCBI the corresponding Genbank files for each of the reference 
genomes in the concatenated super-reference, and removed any that did not contain annotations. We 
then ran panX (v1.5.1) (426) with default parameters to cluster annotations. We loaded the output of the 
panX analysis into a local instance of the panX visualisation web server. We searched for the gene 
clusters containing ‘abpA’ (amylase-binding-protein A) and ‘abpB’ (amylase-binding-protein B; both 
derived from the S. gordonii reference genome, NCBI Assembly Accession: GCA_000017005.1), and 
downloaded the corresponding FASTA alignments from the sequence alignment table. Visual inspection 
of the alignments showed some divergent and/or low quality alignments. To filter for confident alignments 
similar to the well-characterised abpA and abpB sequences in S. gordonii, we first calculated a pairwise 
distance matrix using the ‘dist.alignment’ function in the seqinr R package (v3.4.5) (427). - Clusters of 
identity similarity were observed at different levels (e.g., sequences clustering at ~50%, 63% and 73% 
identity, respectively). Therefore to retain more confident alignments, for abpA we retained alignments 
with ≥ 80% identity, and for abpB ≥ 70%. As a sanity check, we cross-referenced the taxa containing 
these alignments with those showing in vitro evidence of amylase activity as reported by Haase et al. 
(392), by extracting taxonomic information from the assembly using the Rentrez R package (v1.2.2) (428). 
Most publicly available Streptococcus genomes do not have an annotated abpB CDS. In our search, 
often the genes that were aligning to the abpB reference sequence were annotated as a dipeptidase. 
Therefore we retained annotations labelled “abpB-like_dipeptidase_lipoprotein”, due to very high 
sequence similarity to the abpB gene sequence itself, and to maximise the identification of as many 
potential abpB reads possible (given the low coverage nature of our genomes).  
 
The procedure for the identification of amylase-binding-protein gene-like annotations is provided in the 
External Data Repository Section R12.2.2. The identified annotations with corresponding NCBI assembly 
ID are provided in External Data Repository File R34. The procedure for identifying the location of these 
annotations in the Streptococcus super-reference is also provided in External Data Repository Section 
R12.2.2. We used bedtools intersect (see section S5.5)to extract read counts for these regions from each 
individual. We then normalised the number of abpA and abpB-like reads to the total number of 
Streptococcus reads identified by alignment to the super-reference, as described in External Data 
Repository Section R12.2.2. 
 
As shown in Fig. 5C and External Data Repository Section R12.2.2 and Fig. R65 (for sample labels), we 
find that the relative abundance of abpA-like reads in non-human primates is negligible, in contrast to 
Homo where they were identified in 8 of 10 modern humans and 1 of 3 Neanderthals. More reads were 
found to align to abpB overall, but far greater levels were detected in Homo than in non-human primates. 
Among Homo, abpB was detected in all individuals, and at moderate to high levels in 3 of 3 Neanderthals 
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and 9 of 10 modern humans. Mann-Whitney U tests applied to the ratios of mapped abpA and abpB 
reads to total Streptococcus reads, respectively, showed significant (α = 0.05) differences between Homo 
and non-Homo groups (albeit with wide confidence intervals due to the small sample sizes). The results 
are as follows: abpA - U = 112, p = 0.001657995, effect size of r: 0.663, 95% confidence interval (CI) = 
0.398-0.861; abpB - U = 128, p = 0.000006992604, effect size of r = 0.815, 95% CI = 0.686-0.851. Effect 
sizes were calculated using the rcompanion R package (429). Additionally, a randomisation test of Mann-
Whitney U tests applied to 100 random shuffles of sample group assignments showed the p-values of the 
true results fell well-outside the distribution of  the random shuffles (see External Data Repository Section 
R12.2.2 and Fig. R63), supporting that the difference between Homo and non-Homo groups is not due to 
random chance.This pattern of absent-to-low abpA and abpB in non-human primates and conversely 
moderate to high abpA and abpB in modern humans is striking in its similarity to known AMY copy 
number differences between non-human primates and humans. If both are connected to starch 
consumption patterns, the Streptococcus amylase-binding proteins would present a good target for 
investigating host and commensal microbe evolution, with the advantage that ancient dental calculus 
provides evolutionary scale calibration points.  
 
Although only three Neanderthals had sufficient sequencing depth for this analysis, they exhibited an 
interesting, contrasting pattern with respect to amylase-binding proteins. Overall, Neanderthals had little 
representation of abpA, which was found at very low proportions, not dissimilar from non-human 
primates. However, in contrast, abpB was found among Neanderthals, and the proportion of abpB reads 
falls within the range seen for modern humans.  
 
This observation for abpB is interesting in light of Inchley et al. (94), who proposed that the selective 
sweep of the salivary ɑ-amylase locus in modern humans occurred after the split from Neanderthals. The 
high levels of abpB observed in Neanderthals suggests that dietary starch may have been important in 
the diet of Homo prior to the split with Neanderthals. However, the presence of apbB without equivalent 
amounts of apbA is difficult to interpret, as AbpB is also a peptidase, and amylase-binding may have 
initially emerged as a secondary function. Further research is therefore required to confirm the presence 
of different types of amylase-binding-proteins (and their genes) in Neanderthals to better understand 
potential microbial responses to starch consumption. 
 
S5.8 Salivary amylase, cooked starches, and the Expensive-Tissue Hypothesis of human 
evolution  
 
Homo differs substantially from other great apes in many features, including by having a greatly enlarged 
brain and a reduced gut, but an otherwise normal basal metabolic rate for their body size (430). This 
paradox has long posed a puzzle to evolutionary anthropologists because the brain is an energetically 
expensive organ, requiring a substantial amount of glucose to function (accounting for 20% of adult basal 
metabolic expenditure (425, 431)), and yet a reduction in gut size would seemingly result in less - not 
more - nutrient availability to support a large brain. In 1995, Aiello and Wheeler proposed a potential 
solution to this problem, which they called the Expensive-Tissue Hypothesis (430). Their hypothesis 
posited that the encephalization seen in Homo coincided with a major dietary shift towards higher quality 
(i.e., more energy dense) foods that were more easily digested, and thus did not require a large hind gut 
for extended fermentation and digestion. Under this model, higher quality diets relax the metabolic 
constraints on encephalization and allow the gut to reduce in size, which also reduces the metabolic cost 
of maintaining the gut, and the gain in brain size and cognitive function enables more complex foraging 
patterns, which further increases the quality of the diet. Recently, a modification of this theory was 
proposed, whereby the role of reducing adipose fat reserves was examined as an important factor in 
encephalization (432). During the course of hominin evolution, brain size tripled between early 
australopithecines and humans, with a period of major growth associated with the emergence of Middle 
Pleistocene ‘archaic’ Homo species that expanded both within and outside of Africa, leading to the 
colonization of Eurasia beginning ca. 2 Ma (430, 433), followed by a subsequent expansion ca. 800 ka 
(434). Meat acquisition through hunting or scavenging, a widespread human trait, has been proposed as 
one driver of this process (430, 435), as has a transition to more fat-rich dietary resources (e.g., bone 
marrow and brain tissue) (436), and more efficient food preparation skills, such as cooking (430, 437). 
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Pleistocene stone tools and cut marks on animal bones confirm that Australopithecus afarensis and - to 
an even greater degree - early Homo processed and consumed animal products (438–440), but the 
targeting of energy dense underground storage organs (USOs), such as roots, tubers, and bulbs, has 
also long been proposed as an increasingly important (albeit archaeologically invisible) food source 
during hominin evolution (437, 441, 442). Together with nuts and seeds, USOs are widely sought after by 
modern forager groups, and in most cases they represent a more reliable and consistent source of 
calories than hunting (443–446). Many of these plant resources are notably high in starch, an energy-
dense food and a ready supply of the glucose needed to support a large brain. In addition, cooking and 
the controlled use of fire would have dramatically enhanced the nutrient availability - and thus quality - of 
many animal products (437, 447, 448) and especially USOs (437, 448), although it is not necessary to 
efficiently access fats (marrow, brains). Even very short forms of cooking, such as brief tuber roasting, 
provide benefits by easing mastication (449) or reducing toxins (450). As a form of external digestion, 
prolonged cooking denatures proteins and gelatinises starches, rendering both more accessible to human 
digestive enzymes (i.e., proteases and amylases) for hydrolysis and absorption (87, 442, 448, 451, 452). 
It has thus been argued that cooking, which emerged during the Middle Pleistocene, may have been the 
driving factor behind the final encephalization leap observed in later Homo erectus and other ‘archaic’ 
Homo species (453).  
 
Dating the origins of cooking necessarily requires a good understanding of when hominins first began 
controlling fire (454). Clear evidence for the controlled use of fire, including hearths and pyrotechnic 
hafting technologies, has been documented at Middle Pleistocene Neanderthal sites in Europe from 
approximately 400 ka onwards, and evidence of fire and cooking is frequently observed at Late 
Pleistocene Neanderthal and modern human sites in both Europe and Africa (455, 456). However, some 
cold climate Neanderthal sites lack evidence of fire, which to date remains unexplained (455). Although 
evidence of fire use is widespread after 400 ka, such finds do not likely indicate the earliest uses of fire. 
Sporadic evidence of fire has been found as early as 1.5-1.0 Ma at Oldowan and Acheulean sites such as 
Chesowaja in Kenya (457) and Wonderwerk Cave in South Africa (458), and strong evidence for the 
controlled fire usage has been documented as early as 780 ka at the Acheulean site of Gesher Benot 
Ya’aqov (GBY) in Israel (459), where palaeoethnobotanical analysis has also revealed a complex 
foraging strategy that included more than four dozen species of seeds, fruits, nuts, vegetables, and plants 
producing underground storage organs (460). Based on the inferred digestive abilities of lower 
Pleistocene Homo as well as these and other finds, an early date for regular fire use and cooking by 
Homo has been proposed, beginning approximately 2 Ma and correlating with the encephalization and 
transcontinental expansion of Middle Pleistocene Homo species (i.e., Homo erectus) (453). Although 
there is not yet consensus within the field about the exact timing of the origins of cooking - whether it 
became widespread 2 Ma, 750 ka, or 400 ka - it is clear that the technology predates Homo sapiens and 
was likely widely, although perhaps not uniformly, practiced by Neanderthals and other similarly aged 
Middle Pleistocene ‘archaic’ Homo species (454).  
 
Cooking has been shown to dramatically improve the digestibility and nutrient bioaccessibility of both 
animal and plant foods (442), and the inherent palatability of cooked foods is demonstrated by the 
general preference of great apes for cooked rather than raw meats and tubers (461). Although Homo 
meat and fat consumption can be inferred from the abundant evidence of cut-marked and fractured 
animal bones in the archaeological record, plants preserve less well and have likely been greatly 
underestimated at Palaeolithic sites (87, 462–464). Recent technological improvements in macrobotanical 
recovery (flotation) and the emergence of new methods for recovering microbotanical remains (pollen, 
phytoliths, and starch granules), however, are greatly improving the recovery and identification of specific 
plants and plant classes consumed by Middle and Late Pleistocene Homo (85, 87). For example, in 
addition to the palaeoethnobotanical studies conducted at GBY, water flotation of Middle Palaeolithic 
sediments from the Neanderthal site at Kebara Cave in Israel produced more than 4,000 charred seed 
and fruit fragments belonging to at least 48 different species of plants, including legumes, acorns, 
pistachios, and a variety of taxa that produce edible USOs (83). Wild olives and pine nuts have been 
recovered at the presumed Neanderthal site of Gorham's Cave in Gibraltar (465), and tree fruits have 
been found in Neanderthal layers at Douara Cave in Syria and at Amud Cave in Israel (87). Grass seed 
phytoliths, plant starches, and other plant microfossils have been identified in sediments and on artifacts 
at Neanderthal sites in Israel, the Crimea, and France (84, 464, 466), and morphologically diagnostic date 
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palm phytoliths and starch granules from grass seeds (Triticeae, Andropogoneae), legumes (Fabaceae), 
USOs, and other plants have been identified in Neanderthal dental calculus from more than a dozen sites 
in the Near East and throughout Europe (85, 86, 88, 467). Some of these starches also show evidence of 
deformation that is consistent with thermal processing, and specifically heating in the presence of water 
(467), as is characteristic of cooking techniques such as roasting/baking or boiling (451, 468, 469), 
although admittedly some of these morphological changes may also derive from taphonomic processes 
(470). 
 
Evidence for plant consumption and cooking at modern human sites is widespread (85, 117, 118, 471), 
and wild plant foraging, with a focus on starch-rich plants that were further improved by cooking, was 
probably a general feature of early Homo sapiens. In addition, recent experimental work in modern 
humans suggests that cooking is a necessary biological trait of modern humans, meaning that modern 
humans are unable to maintain reproductive fitness (regular cycles of ovulation and pregnancy success) 
on a diet of raw wild foods (437, 454, 472). When such a dependence on cooked foods emerged, and 
whether it is specific to Homo sapiens or also extended to Neanderthals, Denisovans, or other ‘archaic’ 
Homo, is unknown - and possibly unknowable.  
 
It is clear from the growing body of evidence on Middle and Late Pleistocene Homo diets that both 
cooking and starch consumption likely played important roles in Homo evolution, although perhaps to 
different degrees. A major selective sweep and copy number expansion of the salivary ɑ-amylase gene 
AMY1 in Homo sapiens (up to 30 diploid copies) has been interpreted by most researchers as clear 
evidence for an increasing reliance on starch-rich foods (USOs and seeds) by modern humans (46, 94, 
425), and this expansion has been dated using genetic modeling to just after the split ca. 550-765 ka 
between Homo sapiens and the Homo branch leading to Neanderthals and Denisovans (94). Although 
some have speculated that this salivary ɑ-amylase copy number expansion in modern humans had a 
non-dietary cause (155), as the enzyme also plays minor roles in reducing tannin condensation (36, 473, 
474) and stress response (35, 475), the convergent evolution of pancreatic β-amylase copy number 
expansion in domesticated dogs (407, 408) makes this argument doubtful. Moreover, salivary ɑ-amylase 
has independently evolved from pancreatic β-amylase in multiple mammal groups (e.g., primates and 
rodents), and amylase genes have repeatedly undergone copy number expansions in animals consuming 
starch-rich diets (e.g., humans, baboons, mice, rats, pigs, and dogs) (34).  
 
There is general consensus that AMY1 copy number expansion in humans is a response to a starch-rich 
diet, and high levels of ɑ-amylase are expressed by modern humans, where it is the most abundant 
protein in saliva (151). In the oral cavity, ɑ-amylase contributes to the partial hydrolysis of the two major 
constituents of starch (amylose and amylopectin), and it also contributes to taste perception (476), 
including increased sweetness sensation through minor maltose perception (477) and altered starch 
viscosity and mouth feel (478). Cooking has been found to further increase the hydrolysis rate of ɑ-
amylase, and this effect scales with both ɑ-amylase expression levels and length of mastication (479). 
Interestingly, ɑ-amylase is expressed in modern human saliva from birth, whereas expression of 
pancreatic β-amylase is low in modern human infants and only reaches adult levels around 16 months of 
age (480, 481). Although the period of breastfeeding in modern humans is extended, lasting on average 
more than 2 years in modern forager societies, plant foods are nevertheless generally introduced within 
the first year (482, 483). Enhanced salivary ɑ-amylase production may thus be advantageous during the 
early stages of plant food introduction in young children's diets, especially until pancreatic β-amylase 
reaches adult levels. This may complement salivary ɑ-amylase provided by adults through pre-
mastication, a widespread practice performed by adults to soften foods for young children before they 
have sufficient dental development to efficiently chew foods on their own (484).  
 
Beyond salivary ɑ-amylase copy number variation, other loci in the modern human genome hint at early 
diet- mediated evolutionary changes within the genus Homo, such as the pseudogenization of the 
masticatory myosin gene (MYH16), two bitter taste receptor genes (TAS2R62 and TAS2R64), the major 
urinary protein genes (MUP), and the enzyme CMP-sialic acid hydroxylase (CMAH), all of which are 
involved in food perception, mastication, or digestion (402, 485). In addition, seven additional genes 
found to have differential expression patterns in mice fed cooked and raw diets show evidence of recent 
selection in humans and all were found to have changed between the chimp-Homo split and not between 
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Neanderthal/Denisova and modern Homo (485). Relatively few diet-related genetic changes are known to 
have occurred in the modern human lineage after the split with the branch leading to Neanderthals and 
Denisovans; however, these include a functional change in the aryl hydrocarbon receptor gene (AHR) 
that alters the toxicity of cooking-related polycyclic aromatic hydrocarbons (PAHs) (486). Overall, timing 
the adaptation of Homo to dietary starches using genetic data is challenging, in part because the 
evolution of mammalian genomes is slow, many genes have inadequately understood functions, and 
polygenic phenotypic traits are generally poorly understood (487–490).  
 
Commensal microbes of the modern human microbiome represent an underutilised and independent 
source of information about host evolutionary changes (491, 492). With generation times orders of 
magnitude shorter than their hosts and the ability to acquire new functions through horizontal gene 
transfer across distantly related groups, microbes represent a particularly dynamic and temporally 
resolved system for investigating changes in host behavior. The finding made here of an expansion of 
Streptococcus groups capable of binding and utilizing salivary amylase in both Neanderthals and modern 
humans supports hypotheses for an early importance of dietary starches in Homo evolution. Moreover, 
because some Streptococcus amylase-binding proteins, such as AbpA, are only robustly expressed in the 
presence of both salivary ɑ-amylase and dietary starch (395, 418), it again emphasises the connection 
between these microbial genes and host diet, and not merely to host stress response or other minor 
functions of ɑ-amylase. In addition to their dietary function, amylase-binding proteins also facilitate 
Streptococcus colonization of the oral biofilm (either through direct binding to the AEP, as in AbpA, or 
through competitive advantage, as in AbpB) (419), and this may explain why Streptococcus has become 
the most abundant genus in modern human oral biofilms, whereas it is one of the least abundant core 
genera in the chimpanzee oral biofilm.  
 
Our finding that amylase-binding proteins are present in Homo (Neanderthals and modern humans), but 
not other African hominids nor the howler monkey outgroup, and that the Streptococcus clades in which 
these genes are found have greatly expanded in abundance in Homo compared to other taxa, suggest 
that dietary starches played an important and early role in Homo evolution prior to the split between 
Neanderthals and modern humans. Moreover, because the period during which starches are present in 
the oral cavity is transient (with only small amounts of starch persisting after the swallowing of the food 
bolus), salivary ɑ-amylase would be of much greater benefit to resident oral microbes if starches were 
consumed in an already gelatinised (i.e., cooked) form, which makes them much more susceptible to 
rapid hydrolysis by ɑ-amylase (479). Thus, selection for amylase-binding proteins, and the selective 
advantage of microbial clades containing these genes within the oral biofilm, likely intensified after 
cooking became habitual in Homo.  
 
Considering each amylase-binding protein separately provides further evolutionary insights. Of the two 
best studied amylase-binding proteins, AbpA and AbpB, it is interesting to note that AbpB shares 
sequence similarity with other oral Streptococcus dipeptidases (including from S. gordonii) (420) and thus 
likely evolved from pre-existing genes in this genus, whereas AbpA bears no homology to other known 
bacterial proteins (392, 419), and thus likely emerged within modern human oral biofilms through 
horizontal gene transfer from an as yet unknown source (but possibly related to Gemella haemolysans 
M341 (392)). We find that abpB-like genetic sequences are present in both Neanderthal and modern 
human oral biofilms, while abpA is only detectable at appreciable levels in modern humans. The possible 
later evolution of abpA, which directly participates in AEP binding and physically docks ɑ-amylase to the 
bacterial cell surface for nutrient harvest (414, 418), may signal an even greater reliance on cooked 
dietary starches by modern humans compared to other members of Homo, a dietary change that is 
further supported by the modern human-specific copy number expansion of AMY1. Thus, evolutionary 
and ecological changes in the oral microbiome of African hominids suggest that dietary starches first 
became important during the early evolution of Homo, followed by an even greater use of cooked dietary 
starches by modern humans. To refine the chronology and tempo of this process, future focused research 
on the abpA and abpB genes in Homo using capture enrichment technologies is needed to improve gene 
coverage depth and breadth. 
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S5.9 Dating expansion of starch-associated streptococci using amylase binding proteins  
 
To further explore if commensal oral bacterial evolution mirrors human evolution, we examined the 
presence and distribution of abpA and abpB in our samples to determine if we had sufficient data to 
observe an expansion of the gene through time. We downloaded the nucleotide sequences of all protein 
sequences listed in the supplementary tables of (392) for abpA (15 sequences) and abpB (14 sequences) 
and used these as references. To capture additional sequence variation in these two genes, we 
performed a BLASTn search (https://blast.ncbi.nlm.nih.gov/Blast.cgi) of each reference gene against a 
database of all Streptococcus genomes downloaded from NCBI RefSeq in May 2018. The exceptions 
were S. pneumoniae, S. suis, S. agalactiae, S. pyogenes, and S. equi, which contained, respectively, 
8,093, 1,197, 911, 338, and 279 genomes, and each was randomly subsampled down to 50 genomes 
because amylase-binding activity has not been demonstrated in these species. All sequences that had a 
query coverage of 100% were selected and compared, and only unique sequences were selected for 
further analysis. In total, we found 41 unique abpA sequences and 47 unique abpB sequences (including 
the reference sequences). We built these into a maximum likelihood tree using Geneious v8.0.5  
(https://www.geneious.com) and selected one representative of each clade to use for our BLAST search 
and mapping (see External Data Repository Section R12.2.3 and File R36).  
 
We searched for abpA and abpB in the shallow sequencing dataset as well as a published set of historic 
calculus samples from the Radcliffe Infirmary in England (2), and the Human Microbiome Project plaque 
samples (191) , independently with a 2-step BLAST search followed by a mapping approach, and further 
by additional mapping with alternative parameters to confirm our findings, as described below. Two 
BLAST databases were built, one with each reference sequence of abpA and the other with each 
reference sequence of abpB, and we performed a nucleotide BLAST (493, 494) (v. 2.7.1+) search of all of 
our shallow sequencing data, as well as the Radcliffe dental calculus dataset, against both databases. 
Parameters are provided in the External Data Repository Section R12.2.3.  
 
Reads in each sample that hit any amylase-binding protein reference sequence were selected out of the 
original sequence file and placed into a specific fasta file, one for abpA and one for apbB. Next, each 
reference sequence was indexed with bwa (v0.7.12-r1039), and the subsetted fasta file of reads identified 
by BLAST was mapped against each reference sequence. Duplicate reads were removed with samtools, 
and alignments with greater than 10 mapped reads were visually inspected for coverage, read 
distribution, and mis-matches characteristic of aDNA damage. To confirm the specificity of the mapping, 
and to ensure that we had not missed more distantly related sequences, we performed additional 
mapping of the shallow sequencing data using much less strict mapping parameters without the 
preliminary BLAST search. Parameters are provided in the External Data Repository Section R12.2.3.  
 
For each sample mapped with the parameters above, we counted the number of reads that mapped and 
visually inspected the alignments to determine if they contained mis-matches characteristic of ancient 
DNA damage. For all calculus samples, no more than 3 additional reads mapped compared to the initial 
mapping with strict parameters. This suggests that we were not missing highly diverged sequences in our 
samples, and that the samples with no reads mapping to either gene did not have the gene, or that the 
abundance was too low to be detected from the depth of sequencing performed in this study.   
 
S5.9.1 abpA 
 
The only reference gene sequence to which ancient and historic samples mapped with greater than 10 
reads was from S. gordonii str. Challis substr. CH1, and only alignments to this reference were assessed 
going forward. Visual inspection of the mapping with IGV (495) (v. 2.4.14) showed even read distribution 
and expected mismatches at the ends of mapped reads typical of aDNA damage patterns. Consensus 
sequences were exported from IGV for samples that had at least 40% of the gene covered at least 1X, 
thirty-six in total. Of the 36 samples with evidence of abpA, 4 were pre-agricultural modern humans, 8 
were pre-antibiotic modern humans (7 from the Radcliffe data), and the remaining were present-day 
calculus (10 total) and dental plaque (14 total). An alignment of the consensus sequences as well as the 
reference sequence were used to generate an xml file in BEAUTi for Bayesian skyline analysis with 
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BEAST2 v2.5 (496, 497). All parameters were set at default with the GTR (498) substitution model, a 
strict clock, and coalescent Bayesian skyline model (499). The MCMC chain length was 800000000 with 
sampling every 80000 states. The chain converged but inspection of the tree structure in DensiTree 
showed no structure. For this reason, we did not proceed with BEAST analysis to date the expansion of 
abpA. Insufficient sample size, unequal distribution of samples (only 12 historic samples vs. 24 present-
day calculus and plaque) and a short gene length may be responsible for this. Future work will focus on 
increasing sample size and coverage, as well as inclusion of contiguous srtB sequences. 
 
S5.9.2 abpB 
 
Reads from ancient and historic samples mapped to five reference sequences of abpB, with at least 10 
sequences per sample. Four of these references were from strains of S. gordonii and the fifth an 
unnamed species isolate. The reads that mapped to each of these references were checked and found to 
be consistent (i.e., the same set of reads mapped to each abpB reference sequence). We therefore 
chose to work with only alignments to reference S. gordonii str. Challis substr. CH1 going forward, to be 
consistent with the abpA analysis. Visual inspection of the mapping with IGV showed an even read 
distribution and expected mismatches at the ends of mapped reads typical of aDNA damage patterns. 
Consensus sequences were exported from IGV for samples that had at least 40% of the gene covered at 
least 1X, fifty-three in total. Of the 53 samples with evidence of abpB, 4 were pre-agricultural modern 
humans, 14 were pre-antibiotic modern humans (12 from the Radcliffe data), and the remaining were 
present-day calculus (15 total) and dental plaque (19 total). Although Neanderthals had a relatively high 
number of abpB reads, they fell just below this coverage threshold.  
 
The alignment of the consensus sequences as well as the reference sequence were used to generate an 
xml file in BEAUTi for Bayesian skyline analysis with BEAST2 v2.5. All parameters were set at default for 
the GTR substitution model, a strict clock, and coalescent Bayesian skyline model. The MCMC chain 
length was 50000000 with sampling every 5000 states. The chain converged and inspection of the tree 
structure in DensiTree showed structure where the oldest samples were more basal than the present-day 
calculus and plaque. External Data Repository Section R12.2.3 Fig. R38 shows the Bayesian skyline plot 
of population expansion in abpB. However, we chose not to pursue dating the expansion of abpB with the 
data we have because of small sample sizes in older samples (only 4 pre-agricultural samples) and 
uneven distribution of samples (18 pre-modern calculus vs. 34 present-day calculus and plaque), as well 
as the additional peptidase activity of this gene that may have evolutionary pressures independent of 
amylase-binding activity. Therefore, we do not draw any conclusions from this plot, but suggest that future 
work with more samples and better temporal representation may be able to determine whether there has 
been a population expansion of the amylase-binding protein genes in Streptococcus, that coincides with 
periods of proposed increased starch consumption.  
 
S6. Microbial phylogenetics 
 
Given that the core microbiomes of African hominids are distinct at a compositional level, we wanted to 
test whether individual genomes of oral bacterial species reflect the evolutionary phylogeny of their hosts. 
For this we selected shared species in the core microbiomes of African hominids and the howler monkey 
outgroup (see section S5.4).  
 
A major challenge in analyzing microbial ancient DNA is identifying short reads belonging to a single 
microbial strain against a highly diverse microbial background of both other endogenous related species 
and environmental contaminants (203). Cross-mapping from these other species to the reference 
genome of interest frequently results in large numbers of multi-allelic positions (sometimes referred to as 
‘heterozygous positions’) in what should otherwise be haploid genomes. This makes SNP calling for 
phylogenetic analysis more difficult, as it is not clear which ‘true’ allele comes from which strain, and thus 
can confound calculating genetic distances and mutation rates between genomes.  

 
Recent methods developed for this problem typically perform strain separation post-SNP calling, and 
these typically require coverage depths of ~10-20X to separate strains, as well as well-characterised 
comparative databases of strain diversity within the species (500–503). In contrast, the highly fragmented 
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nature of ancient DNA and reduced proportion of the original microbiome of ancient and historic samples 
(against a larger background of environmental contamination), often requires a prohibitive sequencing 
effort to reach sufficient genomic coverage for the application of these methods. Furthermore, many of 
the commensal taxa that make up the bulk of the original microbiome do not have sufficient comparative 
genomes available in existing databases, unless they are of clinical interest. This makes frequency based 
SNP profiling very difficult due to the inability to perform probabilistic tests based on frequency and 
genotyping quality. 
 
In an attempt to mitigate the effects of cross-mapping from related taxa, we explored an approach to 
reduce multi-allelic positions prior to SNP calling. The procedure consisted of simultaneously mapping to 
a ‘super-reference’ genome that included one genome of each species of a given genus (allowing reads 
mapping to multiple places to be placed randomly), extracting mapped reads to the single genome of 
interest (typically the one with highest coverage across the super-reference), and running SNP calling on 
this. As reads from other species would map to the regions in those other species, theoretically, the 
remaining reads on the genome of interest should be most likely derived from that given species or a non-
represented close relative. In cases where a read could still map equally to two places on the reference, 
we utilised the behaviour of bwa to randomly assign to one of the sites, thereby spreading the generic 
‘baseline’ or ‘background noise’ of the shared genomic regions across all species. Explained another 
way, when using this approach, a read from a different species that could still reasonably map to the 
species of interest when mapping solely to that reference genome, would more likely be assigned to the 
correct genome or to another closely-related taxon, than be falsely assigned to the species of interest.  
 
To improve chances of obtaining reasonable genome coverages while reducing false-positive SNP calls, 
all data used for building phylogenies are from the deep sequencing data set of well-preserved calculus 
samples. These samples were selected by mapping the shallow sequencing dataset to a range of known 
oral microbes of interest that were prevalent across individuals. We then estimated for each species and 
individual the number of reads required to reach 5X coverage. Due to the low number of PCR duplicates, 
we were unable to adequately estimate the necessary sequencing using tools such as PreSeq (504). 
Therefore, we linearly extrapolated the sequencing depth by multiplying the number of mapped reads 
after deduplication by the target coverage divided by the current coverage. We then filtered out any 
sample-target pairs that would require more than 100 million reads of additional sequencing to reach 5X 
coverage, as well as samples with cluster factors (also known as duplication factor: mapped reads before 
deduplication / mapped reads after deduplication) above 1.2. After filtering, for most individuals, only one 
or two target genomes were projected to reach the desired depth. We therefore selected the samples for 
which three targets could be sequenced to the desired 5X coverage with the fewest number of 
additionally sequenced reads. We verified that the remaining samples passed the taxonomic preservation 
filtering above (section S3.4). This procedure is also described in External Data Repository Section 
R11.1. 
 
S6.1 Super-reference construction  
 
We downloaded the NCBI ‘assembly_summary_genbank.txt’ file from 
ftp.ncbi.nlm.nih.gov/genomes/ASSEMBLY_REPORTS/assembly_summary_genbank.txt on 2018-11-26 
and the Batch Genomic Meta Information file from the Human Oral Microbiome Database (HOMD) (220) 
on 2019-05-16 (for the addition of Campylobacter and Ottowia). Both files were cleaned, standardised 
and merged in R using tidyverse packages. The genomes were filtered to include only those 
corresponding to ‘core’ genera in the Alouatta:Gorilla:Pan:Homo, Gorilla:Pan:Homo, and Pan:Homo 
calculus microbiomes (excluding Mycobacterium, see section S5.4). In the case of the genus 
Pseudopropionibacterium (soon to be renamed back to Arachnia (380)), additional closely related genera 
were also included due the recent reorganization of this group to closely related skin (Cutibacterium, 
Acidipropionibacterium and Propionibacterium) and oral (Pseudopropionibacterium) taxa (505). For each 
genus, a single representative assembly per unique species name was selected. In cases of multiple 
candidates, a selection hierarchy was applied to ensure inclusion of better quality assemblies on the 
basis of various NCBI metadata criteria:  
 

1. Assembly level: Complete Genome > Chromosome > Scaffold > Contig  
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2. Refseq category: reference genome > representative genome 
3. Sequencing status: Complete > High Coverage > Survey 

 
In cases of multiple candidates, one was randomly chosen using the ‘sample_n’ function from the R 
package dplyr. Genomes labelled ‘sp. UBA’, ‘sp. HMSC’ and ‘sp. CAG’, were removed because many of 
these appear to be unvalidated ‘metagenomic-assembled-genomes’ (MAGS), and appear to be unnamed 
duplicates of already published assemblies. Next, for each assembly we used the NCBI entrez package 
to query whether an isolation source was listed and/or whether host metadata was available. Such data 
were downloaded and again loaded in R. Where possible, unique isolation source entries were then 
visually checked for obvious non-host related isolation sources such as ‘sediment’, ‘seawater’, ‘crude oil’, 
etc. If found, such genomes were removed because these assemblies would likely correspond to highly 
divergent relatives of mammalian-associated taxa. A full list of the assemblies that were selected are 
provided in External Data Repository Section R11.2 and File R26. Associated metadata tags that were 
excluded are listed in the R notebook described in the External Data Repository Section R11.2. 
 
The final list of selected genomes per genus were then downloaded in FASTA and GFF formats using the 
links supplied in the External Data Repository Section R11.2 and File R26. For downstream processing, 
FASTA headers were renamed to include the species name in addition to the NCBI accession ID. 
Additionally, all genomes for a given genus were concatenated into a single contig, and coordinates were 
recorded in a separate bed file using as described in External Data Repository Section R11.2. The 
resulting FASTA file was then indexed with bwa index, samtools faidx, and picard 
CreateSequenceDictionary using the corresponding version in the EAGER pipeline (see above, section 
S3.2). 
 
S6.2 Alignment and species selection  
 
The non-human reads available in our deep sequencing libraries (see section S3.2) were next aligned to 
each super-reference independently using the EAGER pipeline with the settings described in External 
Data Repository Section R11.3 and File R27. Once completed, bedtools coverage (v2.27.1) was run on 
each BAM file in order to generate the breadth (default) and depth (with -mean flag) coverage statistics 
for each assembly based on the corresponding BED file generated during fasta collapsing (see above). 
 
The resulting bedtools results files were loaded into R and combined together. A variety of mapping 
metrics were then calculated per genome.  
 

1. Total number of species-aligned reads (multi-contig assemblies were summed) 
2. Total number of bases covered (multi-contig assemblies were summed) 
3. Mean depth coverage (multi-contig assemblies were averaged) 
4. Percent species-aligned over all genus-aligned reads (calculated on summed data) 
5. A competitive mapping score (calculated on summed data, species-aligned reads - genus-aligned 

reads / sequencing depth; modified from Andrades Valtueña et al. (506)) 
 
The mapping results for the super-reference are provided in External Data Repository Section R11.3 and 
File R28.  
 
For phylogenetic analysis, we wished to select species that were prevalent across as many individuals as 
possible, but which also had enough data for sufficient SNP calling (i.e., depth and breadth coverage). 
This would then allow the most optimal balance on having enough comparative data across the host 
genera to explore relationships, but with a higher confidence in SNP calling. We applied two methods of 
species selection - an ‘automated’ selection procedure and a ‘visual inspection’ as a sanity check. 
 
For the ‘automated’ selection, for each genus the average and standard deviation of each metric was 
calculated. The standard deviation was used as a threshold to indicate when the metric exceeded the 
‘noise’ generated by the random assignment of reads that were able to equally map to multiple places 
(see above). Assemblies that did not reach the mean metric + standard deviation filter, were removed. 
Next, the number of times each reference had passed the filter for each metric was summed, and those 
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only passing a single metric were removed (External Data Repository Section R11.4 and Table R9). In 
most cases this led to a clear candidate - i.e., a single reference that passed most of the metrics 
(accounting for breadth and depth). In cases where there were multiple possible candidates, either a 
named species (i.e., laboratory-isolated) was selected, or the more complete assembly was selected. In 
the case of Campylobacter, C. gracilis was chosen over C. sp. AAUH-44UCsig-a, as C. gracilis is named 
and known to be isolated from the oral cavity. For Ottowia however, O. sp. oral taxon 894 was selected 
over O. sp. Marseille-P4747 because the latter was isolated from stool rather than the oral cavity. 
 
For the visual inspection, the metric results were then displayed as heatmaps and species were selected 
based on the two criteria described above. Furthermore, the consistency of the results across metrics 
were checked with comparison. We noted that in some of the microbial genera, the mean-depth metric 
was not consistent with the other methods. This often appeared to be due to the presence of 
uncharacterised species assemblies (i.e. ‘sp.’) that had very short assembly lengths compared to other 
taxa. For example, in all metrics for Pseudopropionicum except mean depth, Pseudopropionibacterium 
propionicum had the greatest prevalence and metric score. However, for mean depth, Propionibacterium 
sp. JGI 0001002-M06 had greater prevalence, but this assembly only had a length of 44,239 bp 
(https://www.ncbi.nlm.nih.gov/assembly/GCA_000463995.1/), which is unusually short compared to the 
other Propionibacterium related references in the dataset (mean: 2,466,726 ± 670,480 bp). Therefore, this 
metric was excluded from further consideration during visual inspection. In certain cases, it was not 
possible to decide between different species that had similar abundances and/or prevalences using visual 
inspection. These were instead marked as ‘unsure’. Comparison between the two methods showed a 
general concordance in the selected species (External Data Repository Section R11.4.1 and File R29), 
with 12 of 15 giving the same results. Selenomonas, Fusobacterium and Corynebacterium did not have a 
clear candidate from visual inspection, and the automated selection species was selected for downstream 
analysis and vice versa. The species selection procedure is outlined in detail in the External Data 
Repository Section R11.4.  
 
S6.3 Performance of super-reference vs. single reference mapping  
 
Once selected, the deep sequencing dataset was re-mapped with the same settings as the super-
reference mappings, but to each corresponding reference genome alone. Summary statistics for these 
mappings can be seen in External Data Repository Section R11.4.1 and R32. A summary of differences 
between the two mapping strategies in terms of depth of coverage, breadth of coverage, and number of 
mapped reads is provided in External Data Repository Section R11.4.1 and File R30. Because the 
objective was to compare the extent cross-mapping (resulting in ‘multi-allelic’ SNPs) between the two 
methods, MultiVCFAnalyzer (v0.87, https://github.com/alexherbig/MultiVCFAnalyzer) (507) was used to 
perform SNP calling and generate single-allelic position statistics. Detailed information regarding SNP 
calling using this tool is provided in the External Data Repository Section R11.5. 
 
The percentage of SNPs called as single-allelic vs. multi-allelic were then calculated and visualised in a 
modified manner following the strategy of Zolfo et al. (508) (see Fig. S10; External Data Repository 
Section R11.5, Fig. R62 and File R31). Overall, the percentage of multi-allelic sites was reduced by a 
mean of 5.19% when using the super-reference mapping strategy compared to the single genome 
mapping strategy; however, the differences ranged from an increase of 32.10% (in Capnocytophaga 
gingivalis) to a reduction of 43.55% (in Prevotella), highlighting a large amount of variability across both 
samples and reference species. In most cases, the two mapping strategies resulted in either few 
differences in the number of multi-allelic sites, or a reduction in multi-allelic sites but with a large 
corresponding reduction in the number of overall usable SNPs called for downstream analysis (likely due 
to a reduction in coverage, for example in Selenomonas). Note that Fretibacterium is not included in this 
assessment because it has only a single representative genome in the super-reference, so any difference 
is simply an artefact of the alignment method. In some cases, such as in Capnocytophaga gingivalis in 
individual DJA002, using the super-reference mapping strategy increases the number of multi-allelic 
SNPs. This is likely due to a reduction in coverage at sites in conserved regions (which are randomly 
distributed elsewhere when using the super-reference), thus reducing the ‘denominator’ of number of 
reads (or possible nucleotides) covering the site when calculating the proportions of alternate nucleotides.  
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The very modest outcome of our attempts to reduce cross-mapping using a super-reference strategy 
highlights the difficulties of strain separation from low-coverage ancient DNA data. We conclude that 
upstream methods of microbial species enrichment (e.g., much deeper sequencing) are required to 
generate sufficient genome depth coverage for adequate strain-separation. In the context of ancient 
pathogen research, recent in-solution capture techniques have been successfully applied for this purpose 
(207, 506, 509). Given that super-reference mapping did not markedly improve the quality of our data, we 
decided to focus on single reference genome mapping for downstream analyses.  
 
S6.4 Single reference genome mapping statistics  
 
Across individuals, single reference genome mapping of the selected core microbiome taxa resulted in a 
mean depth coverage (after duplicate removal) ranging from 39.0x for Actinomyces dentalis, to 0.6x for 
Selenomonas sp. F0473. The distribution of mean fold coverage in deeply sequenced calculus samples is 
provided in External Data Repository Section R11.4.1 and Fig. R29A. The highest coverage observed 
was for Ottowia sp. oral taxon 894 in present-day modern human JAE008, with a mean depth of coverage 
of 219x and 91% of bases covered at ≥1x. Of the non-present day individuals, the highest coverage was 
observed for Actinomyces dentalis DSM 19115 in chimpanzee  KNP004, which had a mean depth 
coverage of 177x and 86% of bases covered at ≥1x. The highest covered genome for a Neanderthal was 
Pseudopropionibacterium propionicum F0230a in GOY005, which had a mean depth coverage of 55.5x 
and 95.7% of bases covered at ≥1x. While the deep sequencing data resulted in some high coverage 
ancient genomes, of the 285 mappings from ancient and historic samples to the 15 reference genomes, 
only a third exceeded a depth of coverage of 3x, 17% exceeded 10x, and 8% exceeded 20x. However, 
the average cluster factor (or PCR duplicate rate) remained low at 1.2, with a maximum of 3.4, and 89% 
of all mappings had a cluster factor less than 1.5 (External Data Repository Section R11.4.1 and Fig. 
R29b), which indicates that complexity in these libraries is sufficient for even deeper sequencing and thus 
higher genome coverage could be achieved with greater sequencing effort. 
 
The low cluster factors generally observed in our samples highlight the genetic richness of the dental 
calculus in this study, whereby even after deep sequencing, further sequencing is still possible without a 
reduction in the number of unique reads being gained. For example, in the individual with the highest 
number of non-human reads in this study, Neanderthal GOY005 (non-human reads: 326,113,634), the 
highest coverage genome (see above), still had a cluster factor of only 1.4. The extremely high 
complexity of this sample draws attention to the need for developing enrichment techniques for 
sequencing target species of interest in ancient dental calculus, that go beyond the simple brute force 
method of deeper sequencing. Final mapping statistics and visualization for those used for downstream 
variant calling are provided in External Data Repository Section R11.4.1 and File R32. 
 
S6.5 Variant calling and single-allelic position assessment  
 
Due to the generally low genome coverage and high levels of cross-mapping, we opted to take a ‘low-
resolution’ approach to understanding the phylogenetic relationships between individuals based on 
mappings to single microbial genomes. SNP calling at low coverage is made complicated by the 
presence of cross-mapping from other taxa; estimating the ‘true’ SNP at each position carries a high false 
positive risk - e.g. two reads out of three containing the alternative allele does not provide high confidence 
in establishing the genotype. Furthermore, imputation of very low to no coverage regions of the genome 
through haplotype calling (phasing) is not possible due to the very short and fragmented nature of aDNA. 
Typically, few aDNA reads will span two or more potential SNP sites, which is necessary to confirm a 
relationship between the two sites.  
 
In light of these challenges, we reasoned that we could instead assume that each mapping represents a 
sampling of a ‘population’ of related taxa (rather than a single strain), with the given reference as a 
representative for that population. Genetic distances between these populations could still be informative 
when looking at evolutionary distances between the host genera, with the caveat that mutation rates for 
dating estimation would not be possible as the assumption of relationships between all SNPs undergoing 
a similar evolutionary processes would not be met. For this analysis, we did not consider indels due to 
large variation in the breadth of coverage across the mappings. 
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To account for the low coverage, we again used MultiVCFAnalyzer as above, but changed the minimum 
coverage to 2X, and the ‘homozygous’ and ‘heterozygous’ minimum frequency both to 0.7. The selection 
of the minimum frequency parameter was performed by finding the largest majority peak (i.e., >50%) in 
the distribution of multi-allelic SNP frequencies (see External Data Repository Section R11.5), and was 
generally consistent across most of the mappings and core microbial species used as references 
(External Data Repository Section R11.5 and Fig. R30). The only exception was Actinomyces, which did 
not have a clear peak, and therefore 0.7 was applied here for consistency with the rest of the dataset. 
This meant that at the minimum accepted coverage (2x), SNPs were only called when they had a 
minimum of 2 independent reads supporting the call, and at 4x if three independent reads supported this 
call. These parameters therefore provide a reasonable level of confidence that the SNP is ‘abundant’ in 
some form within the microbial population represented by the mapping. The resulting SNP alignment from 
MultiVCFAnalyzer was then used for phylogenetic analysis. The resulting FASTA files are provided in 
External Data Repository Section R11.6.  
 
S6.6 Phylogenetic trees  
 
We loaded the SNP alignment files into R using the ‘fasta2DNAbin’ function in the adegenet package 
(v2.1.1) (510, 511). In order to retain sufficient information and overlap with other mappings in the 
alignment, we removed from the alignment any mapping that had less than 1000 called positions for each 
microbial genus. To maximise the number of positions used to calculate distances between each pair of 
the generally low-coverage mappings, we then calculated genetic distances through pairwise-deletion of 
the alignments, using the Jukes-Cantor 69 nucleotide evolutionary model (512) in the ‘dist.dna’ function 
from the R package ape (v5.3) (241). Across all SNP alignments for the fifteen representative taxa, the 
number of pairwise overlapping SNPs that informed the genetic distances between individuals ranged 
from a low of 29 (Tannerella: PES001 & OME002) to 246,305 (Pseudopropionibacterium: VLC004 & 
VLC009). As expected, higher numbers of pairwise overlapping bases were observed for genera with 
higher median depths of coverage (External Data Repository Section R11.7 and Fig. R32). However, 
Capnocytophaga also showed a large number of overlapping positions despite having a low median 
average fold depth across these mappings. We believe this may be due to the use of a suboptimal 
representative genome (due to the unavailability of more suitable genomes), and that these overlapping 
positions largely derive from highly conserved region(s) shared across taxa and individuals. Neighbour 
joining clustering of genetic distances was carried out with the ‘nj’ function from ape. The resulting tree 
was then bootstrapped with 100 resamples via ape’s ‘boot.phylo’ function to estimate the confidence in 
the calculated bipartitions. Detailed information for the phylogeny creation procedure is provided in the 
External Data Repository Section R11.7.  
 
In the case of Porphyromonas, trees failed to be generated or bootstrapped due to problems with 
distance calculations. This was caused by highly divergent strains in one or more samples, which violated 
the JC69 model assumption of equal base composition across samples during bootstrapping. Inspection 
of the pairwise mismatch versus match position counts revealed that the Porphyromonas reference 
genome mapping for OME003 had a very high number of mismatches. During bootstrapping, this sample 
would lead to a base composition difference with the remaining samples, and cause the distance 
calculation to fail. This individual was subsequently excluded, and Porphyromonas trees were generated 
without the individual. Furthermore, for Porphyromonas we increased the minimum required number of 
called positions to 2000 (rather than 1000) because for this taxon we found that a higher number of 
pairwise combinations of lower-coverage individuals contained no overlapping regions, which caused the 
‘dist.dna’ function to fail as no distance could be calculated.  
 
Trees (Figs. S11, S12 and External Data Repository Section R11.7 and Fig. R31) were rooted where 
possible on the Alouatta branch (when Alouatta individuals were monophyletic). As a New World monkey 
species that had diverged from apes 31-56 Ma, we assumed that Alouatta would be an appropriate 
outgroup for oral microbial strains/species. In cases where Alouatta did not have enough positions in the 
alignment to pass the minimum threshold, we performed a midpoint rooting of the tree. Due to varying 
robusticity in tree quality, possibly due to variability in the SNPs sampled from the microbial population (as 
seen by the high rates of multi-allelic SNPs in some microbial species and hosts), we then filtered for 
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trees where two deepest branches had bootstrap values of ≥70%. Details regarding the generation of and 
visualisation of trees is provided in External Data Repository Section R11.7.  
 
Of the 8 phylogenetic trees with well-supported deep internal branching, Homo (n = 6) and Alouatta (n = 
7) formed monophyletic clades in most of them. Pan also formed monophyletic clades for all but the 
Pseudopropionibacterium tree, and internal topologies were generally well-supported (≥ 75% other than in 
Ottowia). Gorilla microbial topology was more variable. Tannerella and Fretibacterium in Gorilla, for 
example, formed monophyletic clades falling sister to Pan, but for other microbial species one individual 
fell in an ‘ancestral’ position to the remaining Pan and Gorilla sister clades: MTM009 (4 trees) and 
EBO003 (1 tree) - both Western Lowland gorillas (G. gorilla gorilla). The difference in the level of 
monophyly between Pan and Gorilla microbes may be due to the Pan clade consisting of only individuals 
from the same forest region. In the Streptococcus tree, Pan and Gorilla each only yielded one individual 
with a sufficient number of positions to be considered. In most microbial trees, Homo tended to form two 
clades - one containing modern humans and another containing Neanderthals, with the latter also often 
including one or two ancient/historic modern humans in different combinations. The internal topology of 
the Neanderthal clade was generally well-supported in most trees (≥ 90% bootstrap support, other than 
with Fretibacterium). However, for Ottowia and Pseudopropionibacterium, the two Homo clades did not 
form sister monophyletic taxa, but rather fell basal to mixed-host species clades containing Pan and 
Gorilla. Within modern humans, high strain diversity (i.e., cross-mapping) observed for these two poorly 
studied microbial genera may be responsible for this pattern (see Fig. S10 or External Data Repository 
Section R11.5 and Fig. R62). 
 
In analyzing the tree topologies, we noticed an interesting pattern relating to an Upper Palaeolithic 
individual from El Mirón from Spain directly dated to ~18.6 ka (513) (EMN001; also known as the ‘Red 
Lady’). In every tree, she fell either immediately ancestral to or within the Neanderthal Homo clade. This 
individual was the only deeply sequenced Upper Palaeolithic European included in the phylogenetic 
analysis, and we found it noteworthy that all Upper Paleolithic Homo individuals consistently clustered 
together, while the majority of Holocene and later individuals tended to cluster with present-day modern 
humans (with some variation). Although EMN001 is substantially younger than the Neanderthals demise, 
it is known that modern humans and Neanderthals interbred (71, 128, 514), providing opportunities for 
Neanderthal oral bacterial strains to cross over to Upper Palaeolithic modern humans in Europe. 
Subsequent Upper Palaeolithic European groups underwent population turnover events (130, 131), and 
were ultimately largely replaced by the spread of Near Eastern hunter-gatherers during post-glacial 
warming (130, 131), Anatolian farmers during the Neolithic (142, 515), and Western steppe herders 
during the Bronze Age (516). During the Upper Palaeolithic, the Red Lady (EMN001) gives the type-name 
to the ‘El Mirón cluster’ of Magdalenian-related individuals who spread across large parts of Europe after 
the Last Glacial Maximum (ca. 25-19 ka). Prior to the arrival of farming, the El Mirón cluster was found to 
be largely (517) replaced at least from 14 ka by other hunter-gatherer individuals related to the so-called 
Villabruna cluster, who show a higher affinity to Near Eastern populations (130).  
 
We hypothesise that the clustering patterns of EMN001 oral microbial strains may be a reflection of 
ancestral European Upper Palaeolithic oral microbial diversity, which may have included Neanderthal 
strains. This would explain the consistent clustering of EMN001 with Neanderthals, compared to 
contemporary non-European (TAF, Taforalt (518)) and later Mesolithic European individuals (ECO, El 
Collado (135)), who typically cluster with calculus samples from present-day individuals. At present, we 
do not have sufficient evidence to suggest that there is a host genetic relationship between European 
Neanderthals and EMN001; however, the pattern nevertheless raises interesting questions with respect 
to whether commensal microbial genomes may be useful for inferring past modern human population 
dynamics and migration events (see, for example, (519)). Additional data from well-preserved and deeply 
sequenced Upper Palaeolithic European modern humans are required to confirm the broader microbial 
relationships suggested by the individual from El Mirón. 
 
Because large amounts of missing data and/or reference bias may result in tree artefacts such as ‘long 
branch attraction’ (an error that causes two highly diverged taxa to appear closely related), we checked 
that the clustering of EMN001 with Neanderthals was not due to an artefact of low coverage or reference 
bias. First, for each host genus, we compared the median number of positions that EMN001 shared with 
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each of the Neanderthals to the shared position distribution of all pairwise combinations of modern 
humans (External Data Repository Section R11.8.1 and Fig. R33). We find that the median number of 
shared bases between EMN001 and Neanderthals (dashed red line) does not fall outside the range of 
shared positions between EMN001 and other modern humans, but rather that it in fact generally falls near 
the EMN001-modern human median (solid orange line). Therefore, there does not appear to be a bias 
due to missing data; rather, the phylogenetic clustering of EMN001 with Neanderthals appears to be 
related to the sequence similarity of the microbes themselves.  
 
We next considered the possibility of reference bias - i.e., that the microbial strains present in EMN001 
and the Neanderthals could be different from those in the other modern humans in a way that makes 
them not directly comparable. However, the consistency of the pattern across all the trees makes this 
scenario unlikely, especially given that other ancient and historic individuals from both pre-agricultural and 
post-agricultural groups also sometimes cluster with this clade. Further information regarding data 
analysis is provided in the External Data Repository Section R11.8.1. Alternative approaches, such as 
possibly examining the presence/absence of marker genes, could potentially help evaluate the similarity 
of the strains within each microbial genus and to give stronger indicators as to the cause of the clustering.  
 
To lend further support to the tentative pattern observed of pre-14 ka European individuals clustering 
separately from post-14 ka European individuals, we attempted to recreate the eight ‘well-supported’ 
microbial phylogenies generated above, but using the larger shallow sequencing dataset (Fig. S12). 
Although more shallowly sequenced, this dataset adds two additional pre-14 ka European individuals 
(PLV001, from Czech Republic and a member of the older Gravettian-associated ‘Věstonice’ cluster that 
predates El Mirón; and RIG001, from France and a younger member of the ‘El Mirón’ cluster (130)), and 
an additional post-14 ka individual (OFN001, from Mesolithic Germany belonging to the ‘Villabruna’ 
cluster (130) that succeeds El Mirón). We re-generated the phylogenies using the same references and 
mapping settings as for the deeply sequenced dataset above. We expected the phylogenies from this 
dataset to be of lower-quality due to the presence of aDNA damage in this dataset (which artificially 
increases variation; however, this was mitigated by requiring a minimum of 2x coverage) and because of 
this dataset’s lower overall coverage, which leads to fewer positions being available for calculating 
genetic distance. However, we aimed to see if the clustering pattern of the European individuals remained 
consistent when adding additional individuals. Further details about this analysis and tree generation are 
provided in External Data Repository Section R11.8.2. 
  
The results of the replicated phylogenies from the shallow sequencing data are shown in Fig. S12, 
External Data Repository Section R11.8.2. and Fig. R34. As expected, bootstrap support was generally 
lower, and clade relationships were often not as clear and sometimes followed different patterns than in 
the original phylogenies. However, despite the presence of DNA damage and fewer shared positions, we 
again observed the same consistent pattern of EMN001 falling with Neanderthals in all trees (when 
Neanderthals are also present in the trees). Furthermore, the two additional pre-14 ka individuals - 
RIG001 and PLV001 - also both fall within the group containing EMN001 in every case. In contrast, 
OFN001 fell in groups containing other European Mesolithic individuals from El Collado (ECO) and with 
non-European individuals, similar to the patterns seen in Fig. S11 and External Data Repository Section 
R11.7 and Fig. R31. 
 
We note that in some trees the African pre-pastoralist individual OAK002 and the ‘Epipalaeolithic’ 
individual TAF008 also sometimes fall within the ‘pre-14 ka’ European groups. We cannot at present 
explain this pattern. However, OAK002 often has very long branches suggesting that there may be a 
potential problem or bias with this sample. Despite this, the consistency of the pattern within Europeans in 
both the deep and shallow sequencing datasets is striking. These findings provide additional microbial 
support for the population turnover in Europe at around 14 ka as originally described by Posth et al. (131). 
 
Overall, the microbial genomic sequences we obtained from African hominid dental calculus generally 
formed clades corresponding to the host genus; however, the overall tree topologies do not closely reflect 
host genus phylogenetic relationships. Rather, Pan and Gorilla tended to form a monophyletic clade that 
was either sister to Homo (Actinomyces, Fretibacterium, Fusobacterium, Tannerella) or nested within 
Homo (Ottowia, Pseudopropionibacterium), rather than the expected pattern of Pan falling as a sister 
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clade to Homo, and Gorilla falling more basal. In fact, this expected pattern was only observed once in 
the Streptococcus tree, but this tree contained very few Pan (n=1) and Gorilla (n=1) individuals. Within 
Homo, Neanderthals consistently clustered together and they showed an affinity for Upper Palaeolithic 
Europeans, who either fell within the Neanderthal clade or immediately outside it.  
 
We wish to acknowledge several caveats in this analysis that may have blurred or reduced our ability to 
identify additional evolutionary signals. First, it is possible that the reference genomes we selected were 
not the most suitable for assessing phylogenetic differences between highly divergent strains across 
distant host genera, and a bias may have been introduced by using reference genomes obtained from 
modern human isolates. Second, accurate calculation of genetic distance for tree building requires highly 
confident SNP calling; however, in this study the genomic coverage was low, and evidence of cross-
mapping was observed for most species; thus, these SNP calls carry a certain amount of noise. Finally, 
the prohibitive cost of deep sequencing meant that we were unable to generate sufficient data to analyse 
all individuals, but rather we relied on a smaller subset of deeply sequenced individuals for the majority of 
our phylogenetic inference.  
 
Despite these caveats, however, the shared sequence variation within each host genus and even host 
groups (i.e., Neanderthals) suggests that primate oral microbes do carry an evolutionary signal, which 
warrants further investigation. Further research in this direction will require technical developments in 
improving the methods for genetic enrichment of particular species in order to obtain sufficiently high 
genomic coverage for more robust strain separation and SNP calling, which may also allow phylogenetic 
dating.  
 
S7. Functional and metabolic pathway analysis 
 
The metabolic pathways present in a microbial community represent the range of molecules that can be 
processed and/or produced by the members of that community. This tells us how microbes interact with 
their environment, and can be used to predict how a microbial community contributes to host biochemistry 
(520). Much of the metabolic activity of bacteria remains unknown, with large numbers of genes encoding 
hypothetical proteins of unknown function in most genomes. Even for Streptococcus mutans UA159 
(NC_004350.2), a heavily studied oral species involved in dental caries, approximately one third of its 
genes remain uncharacterised, with the open reading frames are annotated simply as “hypothetical 
protein” in the genome assembly. However, the potential metabolic repertoire of a community, which is 
inferred from the total gene content of a metagenomic sample, can offer insights into biofilm ecology and 
function that cannot be understood by focusing on taxonomy alone. Differences in gut microbiome 
metabolic functions have been shown among modern human groups with different dietary practices (452, 
521). Because modern human diets are known to have changed over the course of hominin evolution, 
there is the potential for the metabolic functions present in the oral microbiome to have changed as well. 
We examined the potential metabolic functional profile of our genetic data using two approaches: 
classification of reads by HUMAnN2 (520) to MetaCyc pathways and KEGG orthologs (using legacy 
KEGG database v. 56), and classification of reads to SEED categories (522) by MALT using the 
AADDER tool packaged with MEGAN 6 CE (v6.12.6) (209). Using Principal Component Analysis (PCA), 
we found that each method consistently separated Homo-derived samples from Pan-derived samples 
along PC1, and Gorilla-, and Alouatta-derived samples along PC2, while Gorilla- and Alouatta-derived 
samples consistently clustered together in function, and Pan-derived samples clustered separately. This 
pattern follows the distinctions we saw with taxonomic classifications (see section S4). However, the 
enzymes with top loadings in these PCAs were different when analysed using KEGG or SEED orthologs.  
 
S7.1 HUMAnN2  
 
Downstream functional analysis with HUMANn2 (520) required input from the taxonomic classifier 
MetaPhlAn2 (523). We used MetaPhlAn2 (v2.7.1) with default parameters because it has been previously 
shown that DNA damage does not lead to major biases in taxonomic assignment (204). We generated 
two versions of the OTU table: one with the estimated relative abundances and one with the number of 
reads. Detailed information about the analysis is provided in External Data Repository Section R12.3.1, 
as well as summarised readcount and read_mapped profiles in External Data Repository File R15. 
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The number of reads assigned by MetaPhlAn2 ranged from 32 to 1,518,861 with a mean of 83,154 
across the entire dataset. The plaque group had the greatest mean percentage of reads assigned at 2.8% 
± 0.3. This is not unexpected, as MetaPhlAn2 uses a marker gene-based approach that is only expected 
to assign a small number of reads within the total dataset (203). The mean percentage of reads assigned 
for each calculus group was: Alouatta 0.57% ± 0.16; Gorilla 0.73% ± 0.27; Pan 0.74% ± 0.24; Homo 
(Neanderthal) 0.85% ± 0.53; Homo (Modern Human) 1.2% ± 0.73 (External Data Repository Section 
R12.3.1 and Fig. R39). Among the African hominid and howler monkey groups, we observe a positive 
relationship between the average percentage of reads assigned and the evolutionary closeness of the 
group to modern humans. Across all samples, the two non-host comparative sources had the smallest 
fraction of reads assigned, with bone environmental proxy controls at 0.02 ± 0.004 and sediment at 0.16% 
± 0.11. These observations together suggest a bias in the MetaPhlAn2 database towards modern human-
associated bacteria, and that it may under-report or under-represent taxonomic diversity in more diverged 
host species. 
 
The number of genera identified by MetaPhlAn2 ranged from 1 to 407 with a mean of 49, and for species 
the range was from 1 to 770 with a mean of 80 (External Data Repository Section R12.3.1 and Fig. R40). 
Among groups, skin had the highest mean genus-level OTU count at 125 ± 29, while library controls had 
the lowest with 5 ± 6. The mean number of genera identified for each group was: Alouatta 39 ± 10; Gorilla 
56 ± 19; Pan ± 46 ± 16; Homo (Neanderthal) 39 ± 21; Homo (Modern Human) 54 ± 16. The mean number 
of species identified for each group was: Alouatta 45 ± 16; Gorilla 78 ± 29; Pan 55 ± 20; Homo 
(Neanderthal) 54 ± 31; Homo (Modern Human) 97 ± 36.  
 
The low number of taxa and bias towards modern human-based microbial genomes did not provide 
sufficient resolution for taxonomic compositional analysis using MetaPhlAn2 compared to the MALT-
based analysis, and thus the MetaPhlAn results were not used for taxonomic analyses. We ran 
HUMAnN2 (v0.11.1) (520) with default parameters but using the MetaPhlAn2 profiles generated above. 
This used the default UniRef90 protein database (524) bundled with HUMANn2, and the ChocoPhlAn 
database (2018-07-30). See the External Data Repository Section R12.3, for more details about the 
MetaPhlAn and HUMAnN2 analyses.  
 
S7.1.1 Pathway abundance 
 
We initially looked at the pathway abundances to determine if the presence or abundance of pre-identified 
pathways were distinct between host genera. All analyses for HUMAnN2 are reported in detail in the 
External Data Repository Section R12.3.2. We performed a PCA to look for sample clustering by host 
genus (External Data Repository Section R12.3.2 and Fig. R41A). The initial PCA including controls 
demonstrated that the calculus samples clustered predominantly with each other and plaque, but a few 
samples plotted with extraction and library blanks or bone environmental proxy controls. The samples that 
plotted with controls except plaque were removed as outliers with poor preservation (External Data 
Repository Section R12.3.2 and File R37, and the PCA performed again (External Data Repository 
Section R12.3.2 and Fig. R41B). To see if oral samples clustered by host genus, the control samples 
were removed and the PCA performed again, which showed a separation of Plaque-Homo-Pan across 
PC1 and Homo-Gorilla/Alouatta across PC2 (External Data Repository Section R12.3.2 and Fig. R41C). 
Finally, we removed plaque and performed a PCA to see if the calculus samples clustered any more 
distinctly (External Data Repository Section R12.3.2 and Fig. R41D), but the pattern was highly similar to 
the plot including plaque. The host genera do separate from each other, but there is overlap between 
samples at the edges of the clusters, demonstrating that some samples share substantially overlapping 
metabolic pathway profiles.  
 
S7.1.2 KEGG ortholog distribution 
 
Since the differences in metabolic pathway profiles distinguish host genera by PCA, we asked if the 
species that contributed the pathways differed by host genus. However, many of the pathways identified 
by HUMAnN2 were not attributed to a specific species. We were therefore unable to determine how 
taxonomy related to function at the pathway-level with HUMAnN2 data, and chose instead to look at the 
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individual gene families, which are reported in reads per kilobase. The percentage of reads assigned to a 
UniRef90 gene family in Homo samples ranged from <5% to >60%, with plaque samples having the 
highest average of over 60%, while the average for Alouatta, Gorilla, and Pan was <20% (External Data 
Repository Section R12.3.2 and Fig. R42A). This suggests a substantial proportion of reads in the non-
human samples are from genes with unknown functions. To assess the differences in enzyme 
distributions in our samples, we grouped the HUMAnN2 UniRef90 gene families into KEGG orthologs, 
and >90% of the UniRef gene families could be grouped into KEGG orthologs for nearly all samples from 
all host genera (External Data Repository Section R12.3.2 and Fig. R42B). This indicates that even 
though there is a large amount of unknown potential functional variation represented in our samples, 
especially from Pan, Gorilla, and Alouatta, the identifiable gene families are represented in curated 
databases such as KEGG.  
 
The carbohydrate composition of modern human diets is believed to have changed substantially during 
human evolution, first with the utilization of carbohydrate-rich underground storage organs and the 
invention of cooking early in human evolution (46, 525) (and see above section S5.8), followed by the 
invention of agriculture ca. 10 ka, which provided a much greater proportion of dietary starches (resulting 
in greater incidence of caries) (526), and then finally with the onset of the industrial revolution, which 
introduced a large amount of refined simple sugars into modern human diets (527). We therefore chose 
to look at the distribution of KEGG orthologs found in the 15 carbohydrate pathways listed under KEGG 
PATHWAY Metabolism (00010, 00020, 00030, 00040, 00051, 00052, 00053, 00500, 00520, 00620, 
00630, 00640, 00650, 00660, 00562) in our samples to see if there are different distributions of 
carbohydrate-processing enzymes in the oral microbiomes of hosts with different inferred carbohydrate 
intake. We found that the total number of KEGG carbohydrate pathway orthologs slightly differ between 
the host genera (External Data Repository Section R12.3.2 and Fig. R42C), but are significantly different, 
e.g., comparing Homo to Pan and Homo to Gorilla (p < 0.05 by pairwise Wilcox test; For individual 
comparison values see External Data Repository Section R12.3.2 and Fig. R42C). The abundance of 
KEGG carbohydrate pathway orthologs (External Data Repository Section R12.3.2 and Fig. R42D) was 
much more variable between groups, and there are significant differences comparing Homo to Pan, 
Homo to Gorilla, Homo to Alouatta, Homo to Plaque, Pan to Gorilla, and Pan to Alouatta (p < 0.05 by 
pairwise Wilcox test; for individual comparison values see External Data Repository Section R12.3.2 and 
Fig. R42d). Pan has the lowest number of KEGG carbohydrate orthologs of the four host genera, and 
KEGG carbohydrate orthologs are least abundant in Pan, which suggests that there are uncharacterised 
carbohydrate-processing enzymes in the oral microbiome of Pan that are not represented in the 
databases used by HUMAnN2. Comparisons to Alouatta may be underpowered, as we have only five 
Alouatta samples.  
 
We next asked if the presence and abundance of KEGG orthologs in calculus are sufficiently different 
between host genera to separate the samples by host genus in PCA. We followed the same steps for 
PCA as we used with the pathway abundance data, where we plotted all samples and controls (External 
Data Repository Section R12.3.2 and Fig. R43A), then removed outliers (External Data Repository 
Section R12.3.2 and File R40) to ensure we did not include samples with signatures of poor preservation 
(External Data Repository Section R12.3.2 and Fig. R43B). We then removed the controls except plaque 
and saw that the host genera separate in a pattern similar to that seen in the pathway abundance PCA 
(External Data Repository Section R12.3.2 and Fig. R43C), where Pan and Gorilla/Alouatta separate 
along PC1 and Homo separates from Pan/Gorilla/Alouatta along PC2. Finally we removed the plaque 
samples and removed all KEGG orthologs present at <0.01% abundance (External Data Repository 
Section R12.3.2 and Fig. R43D). Permanova with adonis2 produced an R2 value of 0.303. Removing 
plaque samples did not alter the spatial arrangement of samples from different host genera. We filtered 
out the KEGG orthologs present at <0.01% abundance to ensure that the data that went into the PCA 
was not a long tail of low-abundance orthologs possibly deriving from spurious alignments, in the same 
manner that we filter low-abundance taxa. The sample clustering by host genus we observed in the 
KEGG ortholog PCA suggested that there are host genus-specific differences in the abundance and 
distribution of KEGG orthologs. The two Gorilla samples that overlap with Pan do so in all functional 
analysis PCAs, with HUMAnN2 and AADDER data, as well as with the taxonomic profiles as seen in 
External Data Repository Section R9.1 and Figures R20 and R21. 
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We investigated the most influential KEGG orthologs in the PCA of calculus samples, visualizing them as 
bi-plots showing the ten orthologs with the strongest positive and negative loadings in PC1 (External Data 
Repository Section R12.3.2 and Fig. R44A) and PC2 (External Data Repository Section R12.3.2 and Fig. 
R44C; External Data Repository Section R12.7 and Table R9). The first PC primarily separates Pan 
(negative loadings) from Gorilla/Alouatta (positive loadings). The KEGG orthologs with strongest negative 
loading in PC1 are primarily involved in membrane transport, while those with strongest positive loading 
in PC1 are primarily involved in carbohydrate/energy metabolism and amino acid metabolism (External 
Data Repository Section R12.3.2 and Fig. R44a). To ensure that the results we observed were not an 
artefact of including present-day modern human calculus in our analyses, we repeated the PCA and 
biplots excluding all present-day modern human samples. We saw the same pattern of host genus 
separation whether or not present-day modern human samples were included (External Data Repository 
Section R12.3.2 and Fig. R44B,D), although PC2 had flipped to have Homo falling in positive coordinates 
instead of negative coordinates. Nine of the 10 KEGG orthologs with strongest positive PC1 loadings, and 
9 of the 10 KEGG orthologs with strongest negative PC1 loadings, were shared both with and without 
present-day modern human samples. This demonstrates that the present-day modern human samples 
were not substantially skewing the separation of samples in PC1. 
 
The second PC primarily separates Homo (negative loadings) from Pan/Gorilla/Alouatta (positive 
loadings). The KEGG orthologs with strongest negative loading in PC2 are primarily involved in 
membrane transport and DNA replication/repair, while those with strongest positive loading in PC2 are 
primarily involved in carbohydrate/energy metabolism and membrane transport (External Data Repository 
Section R12.7 and Table R9; External Data Repository Section R12.3.2 and Fig. R44a,c). To aid visual 
comparisons of the PCAs including and excluding present-day modern human samples, we reversed the 
y-axis (PC2) in the PCA that lack present-day modern human samples. This leads to some confusion 
when comparing the KEGG orthologs with the strongest loadings in PC2, which we hope to clarify as 
follows. In the PCA including present-day modern human samples, Homo plots predominantly in negative 
coordinates, but in the PCA excluding present-day modern human samples, Homo plots predominantly in 
positive coordinates. Therefore, we compare the strongest negative PC2 loadings of the PCA with 
present-day modern human samples to the strongest positive PC2 loadings of the PCA without present-
day modern human samples. And the reverse, we compare the strongest positive PC2 loadings of the 
PCA with present-day modern human samples to the strongest negative PC2 loadings of the PCA without 
present-day modern human samples. Keeping this in mind, 8 of the 10 KEGG orthologs with strongest 
PC2 loadings in the direction characterizing Homo were shared both with and without present-day 
modern human samples, while 7 of the 10 KEGG orthologs with strongest PC2 loadings in the direction 
characterizing Pan/Gorilla/Alouatta were shared both with and without present-day modern human 
samples. This suggests there was more bias of present-day modern  human samples separating the 
genus Homo from the other genera in PC2 than in PC1; however the orthologs that characterise Homo 
are largely conserved throughout the evolution of modern humans. 
 
We wanted to visualise the distribution of the 10 KEGG orthologs with the strongest loadings in PC1 and 
PC2 in the host genera to see how they differ between hosts. We generated heat maps with the CLR-
transformed read copies per million assigned to each ortholog in each sample, for both the PCA including 
modern Homo (External Data Repository Section R12.3.2 and Fig. R45) and for the PCA excluding 
modern Homo (External Data Repository Section R12.3.2 and Fig. R46. The orthologs with strongest 
loadings in PC1 positive values are more abundant in Gorilla/Alouatta and modern Homo compared to 
Pan (where they are almost absent), historic Homo, and Neanderthals (External Data Repository Section 
R12.3.2 and Fig. R45A). Gorilla/Alouatta have the lowest abundance of orthologs with the strongest PC1 
negative loadings (External Data Repository Section R12.3.2 and Fig. R45B), which is expected since the 
Gorilla/Alouatta samples plot in positive PC1 values (External Data Repository Section R12.3.2 and Fig. 
R44A). Neanderthal samples have the lowest abundance of orthologs with strongest PC2 positive 
loadings (External Data Repository Section R12.3.2 and Fig. R45C). Homo samples have the highest 
abundance of orthologs with strongest loadings in PC2 negative values while Pan have the lowest 
abundance (External Data Repository Section R12.3.2 and Fig. R45D), which is concordant with most 
Homo samples plotting in negative PC2 values and Pan samples plotting in positive values (Fig. S13A,C; 
External Data Repository Section R12.3.2 and Fig. R44).  
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We next generated heatmaps to visualise the distribution of KEGG orthologs with strongest loadings in 
PC1 and PC2 from the PCAs excluding present-day modern human samples. The orthologs with 
strongest positive PC1 loadings are more abundant in Alouatta/Gorilla than Homo and least abundant in 
Pan (External Data Repository Section R12.3.2 and Fig. R46A), while those with strongest negative PC1 
loadings are slightly more abundant in Homo than Gorilla/Pan and are least abundant in Alouatta 
(External Data Repository Section R12.3.2 and Fig. R46B). Homo samples have the highest abundance 
of orthologs with strongest PC2 positive loadings, which separate Homo from Alouatta/Gorilla and Pan 
(External Data Repository Section R12.3.2 and Fig. R46C), while the orthologs with strongest PC2 
negative loadings are slightly more abundant in Alouatta/Gorilla than Homo, especially Neanderthals 
(External Data Repository Section R12.3.2 and Fig. R46D). There is a clear opposing pattern of ortholog 
abundance in External Data Repository Section R12.3.2 and Fig. R46C (low Alouatta/Gorilla/Pan, high 
Homo) and External Data Repository Section R12.3.2 and Fig. R46D (high Alouatta/Gorilla/Pan, low 
Homo) that is in line with the sample separation on the PCA (Fig. S13A,C; External Data Repository 
Section R12.3.2 and Fig. R44C,D). 
 
S7.1.3 Species contributions to KEGG orthologs 
 
To determine which microbial species were most responsible for driving functional differences among 
African hominids, we extracted from each calculus sample the relative abundance of each microbial 
species contributing to each KEGG ortholog with the top 10 strongest positive and negative loadings on 
PC1 and PC2, both with and without present-day modern human samples, from the HUMAnN2 gene 
families table. This allowed us to see if certain species were responsible for the distribution of KEGG 
orthologs in each host genus. We summed the abundance of KEGG orthologs from each species of each 
microbial genus to get a genus average. We plotted the average contribution of each genus that 
contributed a relative abundance of more than 12% to each ortholog, with any that had <12% grouped 
together as Other (Fig. S13B,D; External Data Repository Section R12.3.2 and Fig. R47-50). In External 
Data Repository Section R12.3.2 and Fig. R47-50, the results from PCAs including present-day modern 
human samples are shown in panels A and B, while results from PCAs excluding present-day modern 
human samples are panels C and D. We plotted the microbial genus distribution from each host genus 
grouped by ortholog (panels A,C) to look for microbial genus biases within orthologs, and the microbial 
genus distribution of each ortholog grouped by host genus (panels B,D) to look for microbial genus biases 
within host genera.  
 
In the KEGG orthologs with strongest positive loadings in PC1 (External Data Repository Section R12.3.2 
and Fig. R47), a large proportion of the orthologs are not attributable to specific species, as often >25% is 
unclassified. There are no clear biases in microbial genera that contribute to the orthologs, as we do not 
see specific species shared across host genera for each ortholog (External External Data Repository 
Section R12.3.2 and Fig. R47A,C). However, different species characterise each host genus, and many 
of the same microbial genera contribute to multiple orthologs in each host (External Data Repository 
Section R12.3.2 and Fig. R47B,D). For example, in Homo, the microbial genera Streptococcus, Rothia, 
and Neisseria are the most prevalent and abundant genera contributing to the orthologs, and 
Streptococcus contributes >25% to 6 orthologs (External Data Repository Section R12.3.2 and Fig. 
R47B,D). Propionibacterium contributes to 4 orthologs in both Homo and Pan including present-day 
modern human samples, but to 7 and 5, respectively, when excluding present-day modern human 
samples. In Gorilla, Neisseria contributes to all of the orthologs, and Rothia contributes to 3 of the 10. 
Alouatta has the highest proportion of KEGG orthologs from unidentified species, while Aggrebatibacter 
contributes to 4 and Streptococcus to 3 orthologs in Alouatta.  
 
For the KEGG orthologs with strongest negative loadings in PC1 (External Data Repository Section 
R12.3.2 and Fig. R48), most of the orthologs are contributed to by identified genera, in contrast to the 
orthologs with positive loadings, which had a higher proportion of reads that were not assigned to a 
species and are listed as unclassified. There are no clear biases in microbial genera that contribute to the 
orthologs, as we do not see specific species shared across host genera for each individual ortholog 
(External Data Repository Section R12.3.2 and Fig. R48A,C). Each host genus has a wider variety of 
species contributing to the orthologs than for the PC1-positive orthologs (External Data Repository 
Section R12.3.2 and Fig. R48B,D), and some possible biases can be seen when grouping the orthologs 
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by host genus. Here Fretibacterium is represented in K01999, K02005, and K02034 in Homo, Pan, and 
Gorilla, both with and without present-day modern human samples (panels B,D). Streptococcus 
contributions were prevalent and abundant in Homo both with and without present-day samples, while 
Propionibacterium contributes to multiple orthologs in all four host genera. Some of the reads assigned to 
Propionibacterium may come from Pseudopropionibacterium in Homo, as this genus is highly abundant in 
modern human dental calculus but the MetaPhlAn2 database we used includes the reference genome for 
Pseudopropionibacterium propionicum under the its old name of Propionibacterium propionicum.  
 
For the KEGG orthologs with strongest loadings in PC2 characterizing Pan/Gorilla/Alouatta (External 
Data Repository Section R12.3.2 and Fig. R49), (positive including present-day modern human samples, 
negative excluding present-day modern human samples) there is high variability in whether the ortholog 
is contributed by known or unclassified species. Orthologs K00794, K01759 (External Data Repository 
Section R12.3.2 and Fig. R49A), K01955, K03046 (External Data Repository Section R12.3.2 and Fig. 
R49c), and K00027, K03043 (External Data Repository Section R12.3.2 and Fig. R49A,C) have high 
proportions represented by unclassified species, but these are conserved enzymes and it may not be 
possible to identify the species of origin from short DNA fragments. Homo and Pan have a wider variety 
of species contributing to the orthologs than Gorilla and Alouatta (External Data Repository Section 
R12.3.2 and Fig. R49B,D). Some possible biases can be seen when grouping the orthologs by host 
genus. Fretibacterium contributes to 7 of the 10 KEGG orthologs in Pan (panels B,D), and to 7 of the 10 
orthologs in Homo without present-day samples (External Data Repository Section R12.3.2 and Fig. 
R49D). Aggregatibacter contributes to 6 orthologs in Gorilla both when including (External Data 
Repository Section R12.3.2 and Fig. R49B) and excluding present-day modern humans (External Data 
Repository Section R12.3.2 and Fig. R49D), and in Alouatta, Aggregatibacter contributes to 7 orthologs 
when including present-day modern human samples and 6 orthologs when excluding present-day modern 
human samples.  
 
For the KEGG orthologs with strongest loadings in PC2 characterizing Homo (Fig. S13B,D; External Data 
Repository Section R12.3.2 and Fig. R50), (negative including present-day modern human samples, 
positive excluding present-day modern human samples) there are biases in the microbial species that 
contribute to specific KEGG orthologs (External Data Repository Section R12.3.2 and Fig. R50A,C), and 
to the orthologs in a single host genus (Fig. S13B,D; External Data Repository Section R12.3.2 and Fig. 
R50B,D). Propionibacterium is the primary contributor in all 4 host genera of orthologs K02026 (Fig. 
S13D; External Data Repository Section R12.3.2 and Fig. R50D) and K02027 (Fig. S13B,D; External 
Data Repository Section R12.3.2 and Fig. R50B,D), both multiple sugar transport system permease 
proteins, and contributes nearly 50% of K01990, an ABC-2 type transport system ATP-binding protein, in 
all 4 host genera. In Homo, Streptococcus and Propionibacterium together contribute over 75% of all 10 
orthologs, with Streptococcus contributing >50% in 8 orthologs. Propionibacterium contributes to 9, 8, and 
4 orthologs in Pan, Gorilla, and Alouatta, respectively, when including present-day modern human 
samples, and to 10, 10, and 4 orthologs in Pan, Gorilla, and Alouatta, respectively, when excluding 
present-day modern human samples. In Pan, Olsenella contributes to 5 and 4 of the orthologs when 
including and excluding present-day modern human samples, respectively, and Fretibacterium to 4 
orthologs both including and excluding present-day modern human samples. In Gorilla, Rothia contributes 
to 4 of the orthologs, and in Alouatta, Aggregatibacter contributes to 5 of the orthologs, both including and 
excluding present-day modern human samples (Fig. S13B,D; External Data Repository Section R12.3.2 
and Fig. R50B,D).  
 
S7.1.4 Metabolic category PCAs 
 
Finally, we wanted to know if the orthologs in specific metabolic pathways involved in processing major 
biomolecule classes (carbohydrates, amino acids, and lipids) were individually distinctive between the 
host genera. The orthologs in all pathways of the KEGG metabolism categories carbohydrates (297 
orthologs), amino acids (262 orthologs), and lipids (94 orthologs) were subsetted from all of the orthologs 
identified in the samples, and used to run PCAs (Fig. S10, External Data Repository Section R12.3.2 and 
Fig. R51). Samples clustered by host genus similar to other functional classification PCAs presented 
above. This suggests that there are host genus-specific differences in the functional profiles of multiple 
major biomolecule processing pathways. Carbohydrate processing orthologs (External Data Repository 
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Section R12.3.2 and Fig. R51A) did not cluster the host genera more tightly or distinctly than amino acids 
processing orthologs (External Data Repository Section R12.3.2 and Fig. R51B) or lipid processing 
orthologs (External Data Repository Section R12.3.2 and Fig. R51C). Permanova with adonis2 produced 
R2 values of 0.285 for amino acid pathway orthologs, 0.291 for carbohydrate pathway orthologs, both 
slightly lower than 0.303 for all orthologs, and 0.319 for lipid pathway orthologs.  
 
Taken together, the results of HUMAnN2-identified potential metabolic functional analyses demonstrate 
that there are characteristic differences between calculus samples from Homo, Pan, Gorilla, and Alouatta. 
Two different approaches to analyzing the potential metabolic functional profiles - pathway analysis and 
KEGG ortholog analysis - both cluster the samples by host genus in PCA. Exploration of the signals that 
drive host genus separation revealed that clustering is not strongly biased by the presence of present-day 
modern human samples, and that in certain cases, the orthologs that most strongly drive separation are 
derived from specific microbial species. In particular, Streptococcus contributes to many of the orthologs 
in Homo but not the remaining host genera, even when excluding present-day modern human samples, 
and suggests that Streptococcus characterises and fulfils a distinct role in Homo.  
 
S7.2 AADDER  
 
We additionally investigated functional assignments of our metagenomes using SEED categories (522), 
to test for consistency between the different methods of functional profiling. This was performed using the 
AADDER program, as bundled with MEGAN6 CE (v6.12.6 (209)), which infers functional information from 
reads aligning within gene regions of annotated reference genomes. This is beneficial for aDNA as 
fragmented reads are typically too short to translate into informative protein sequences, which are often 
used in modern contexts. First, we used the custom RefSeq database that we had created for our MALT 
analyses (External Data Repository Section R12.5), and re-ran malt-run but with the additional flags of --
samSoftClip --format SAM, to create SAM files for the taxonomic alignments. Using the corresponding 
GFF files associated with the FASTA files downloaded from RefSeq, an AADDER annotation index was 
constructed and annotation information added to the taxonomic assignments using aadder-run on default 
settings. The resulting SAM files were then converted to RMA6 files using the blast2rma tool also bundled 
with MEGAN6 CE, and in addition to NCBI taxonomy information, SEED categories were also added to 
alignments using the corresponding acc2seed file. 
 
S7.2.1 SEED profile 

 
The SEED classifications consist of 3 levels, starting with broad categories (such as Carbohydrates and 
Amino Acids), then individual pathways within these broad categories, and finally proteins within each 
pathway. Assignments at each level are summed from the levels below, and assignments may be made 
at the pathway or broad category level that are not present at lower levels. All analyses for this section 
are provided in the External Data Repository Section R12.6.  
 
To look at the efficiency of assigning functions to reads with SEED we calculated the percent of reads 
assigned in each sample type. Pan had the lowest percentage of reads assigned, consistent with the 
HUMAnN2 results, while Alouatta samples had the highest percentage reads assigned (External Data 
Repository Section R12.6 and Fig. R52A). Control samples had high read assignments, but also the 
fewest reads per sample. The percentage of reads assigned to Neanderthal and modern human samples 
overlapped. We looked at the percentage of assigned reads that were in the Carbohydrates category to 
see if changes in dietary carbohydrate consumption throughout human evolution was reflected in the 
amount of carbohydrate-processing proteins by this classification method, although this was not the case 
in HUMAnN2. A higher percentage of reads were assigned to Carbohydrates for all host genus calculus 
samples than for plaque (External Data Repository Section R12.6 and Fig. R52B), but the average for 
Homo was only slightly higher than Pan, Gorilla and Alouatta. The percentage of reads assigned to 
specific proteins in the Carbohydrates category was highest in Alouatta and lowest in Pan, but all groups 
had a wide spread (External Data Repository Section R12.6 and Fig. R52C). The number of 
Carbohydrate-category proteins identified in each sample is shown in External Data Repository Section 
R12.6 and Fig. R52D. Alouatta and Gorilla had more Carbohydrate-category proteins than Pan or Homo, 
which was in cases significant (External Data Repository Section R12.6 and Fig. R52D). The abundance 
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(number of assigned reads) of Carbohydrate-category proteins was higher in Homo than in Pan, Gorilla, 
and Alouatta, which was in cases significant (External Data Repository Section R12.6 and Fig. R52E), 
while Pan had the lowest abundance. Plaque had the lowest number of Carbohydrate-category proteins 
identified, but had the highest average abundance of Carbohydrate-category proteins. These trends are 
similar to those of HUMAnN2 (External Data Repository Section R12.3.2 and Fig. R42), where Pan has 
the lowest prevalence and abundance of identified enzymes and Homo has a wide spread, although the 
number of proteins identified involved in carbohydrate processing is much higher using AADDER (range 
200-800) than HUMAnN2 (range 100-500).  
 
We assessed differences in the SEED-identified protein composition of our samples by PCA to see if the 
presence and abundance of proteins across all SEED categories are sufficiently different between host 
genera to separate the samples by host genus. This analysis used only the assignments at the protein 
level. We followed similar steps for PCA (External Data Repository Section R12.6 and Fig. R53) as we 
used with the HUMAnN2 pathway (External Data Repository Section R12.3.2 and Fig. R41) and KEGG 
ortholog (External Data Repository Section R12.3.2 and Fig. R43) data. First we plotted all samples and 
controls (External Data Repository Section R12.6 and Fig. R53A), then removed outlier samples to 
ensure we did not include samples with signatures of poor preservation, and removed proteins that had 
been identified as possible contaminants by decontam (235) , which may derive from contamination 
(External Data Repository Section R12.6 and Fig. R53B). Outliers were those samples that overlapped in 
PC1 and PC2 with controls (excluding plaque) (External Data Repository Section R12.6 and File R37). 
Decontam was run on a table of only the protein-level assignments from all SEED categories, using the 
combined method with a threshold of 0.6, which identified 116 proteins as possible contaminants. Our 
controls included extraction blanks and library build blanks to identify putative laboratory contamination, 
as well as archaeological bone samples to identify possible contamination from burial soil, excavation, 
and handling. Testing the threshold showed that increasing it identified more potential protein 
contaminants, which were often low abundance. As we also included a filtering step later to remove all 
proteins present at less than 0.05% abundance, and this filter removed many of the same proteins 
identified by decontam at higher threshold, we selected a threshold of 0.6 as our cut-off.  
 
We then removed the controls except plaque and filtered out all proteins present at <0.05% abundance 
and saw that the host genera form clusters with a little overlap (External Data Repository Section R12.6 
and Fig. R53C). We filtered the proteins based on abundance to ensure that the data that went into the 
PCA was not a long tail of low-abundance proteins, in the same manner that we filtered low-abundance 
taxa. Finally we removed the plaque samples from the filtered data (External Data Repository Section 
R12.6 and Fig. R53D), which increased separation of samples by host genus. Permanova with adonis2 
for this PCA gave an R2 value of 0.345. The sample cluster pattern is similar to the clustering in PCAs of 
HUMAnN2-identified pathway abundance and KEGG ortholog profiles, where Pan and Gorilla/Alouatta 
separate along PC1 and Homo separates from Pan/Gorilla/Alouatta along PC2.  
 
We next wanted to know which proteins drive separation of the samples for each host genus, and created 
biplots on the final filtered enzyme PCA with the top 10 enzymes with strongest positive and negative 
loadings in PC1 and PC2. We did this for a PCA that included all Homo samples (Fig. S13E; External 
Data Repository Section R12.6 and Fig. R54A,C), and again for a PCA that excluded the present-day 
modern human samples (Fig. S13G; External Data Repository Section R12.6 and Fig. R54B,D), to 
ensure that the signals we saw were not driven predominantly by present-day modern human samples. 
There was no overlap between the top SEED-identified proteins that drive sample separation and the top 
KEGG orthologs that drive sample separation, and even the higher levels of classification for the proteins 
or orthologs (SEED pathways or categories and KEGG pathways, respectively) were not concordant 
(External Data Repository Section R12.7 and Table R9). This stark difference in the proteins/pathways 
that separate host genera between SEED and KEGG orthologs suggests that the results are highly 
program-specific, and conclusions regarding functional differences should be drawn with caution.  
 
The top 10 proteins with strongest negative loadings in PC1, predominantly separating Gorilla/Alouatta 
from Pan, belong to 8 categories, with 2 proteins from Amino Acids and Derivatives, and the remaining 8 
from individual categories (External Data Repository Section R12.6 and Fig. R54A). When present-day 
modern human samples were removed, only 2 of the proteins with strongest loading were different from 
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those in the PCA including present-day modern human samples, and were part of the Carbohydrates 
category and the DNA Metabolism category, so that there were 2 proteins each in the categories Amino 
Acids and Derivatives, Carbohydrates, and DNA Metabolism. The 8 proteins that overlapped are 
indicated in bold in the tables of External Data Repository Section R12.6 and Fig. R54A,B. The top 10 
proteins with the strongest positive loadings in PC1 (predominantly separating Pan from Gorilla/Alouatta) 
belong to a variety of categories, with 2 from Amino Acids and Derivatives and 2 from Phages, 
Prophages, Transposable elements, Plasmids, and the remaining 6 from individual categories (External 
Data Repository Section R12.6 and Fig. R54A). When present-day modern human samples were 
removed, only 2 of the proteins with strongest loadings were different from those in the PCA including 
present-day modern human samples, and they were part of the Respiration category. The 8 that 
overlapped are indicated in bold in the tables of External Data Repository Section R12.6 and Fig. 
R54A,B.  
 
The PCA of proteins excluding the present-day modern human samples reversed the coordinates of 
samples along PC2 relative to the PCAs that include present-day modern human samples. To aid visual 
comparisons of the PCAs including and excluding present-day modern human samples, we reversed the 
y-axis (PC2) in the PCA that lack present-day modern human samples (Fig. S13G; External Data 
Repository Section R12.6 and Fig. R54B,D), just as we did for the PCAs with KEGG orthologs (Fig. 
S13C; External Data Repository Section R12.3.2, Fig. R42C,D). This also leads to some confusion when 
comparing the proteins with strongest loadings in PC2. In the PCA including present-day modern human 
samples, Homo plots predominantly in negative coordinates, but in the PCA excluding present-day 
modern human samples, Homo plots predominantly in positive coordinates. Therefore, we compare the 
strongest negative PC2 loadings of the PCA with present-day modern human samples to the strongest 
positive PC2 loadings of the PCA without present-day modern human samples. And the reverse, we 
compare the strongest positive PC2 loadings of the PCA with present-day modern human samples to the 
strongest negative PC2 loadings of the PCA without present-day modern human samples.  
 
Keeping this in mind, 8 of the 10 proteins with strongest PC2 loadings in the direction characterizing 
Homo samples were shared both with and without present-day modern human samples (Fig. S13E,G; 
External Data Repository Section R12.6 and Fig. R54C,D, andTable R9). Five of the 10 proteins in the 
PCA including present-day modern human samples are in the Carbohydrates category, while a 6th 
protein categorised in Cell Wall and Capsule, is a sialidase that also processes carbohydrates, 
suggesting a strong representation of carbohydrate processing in calculus communities from Homo. The 
remaining 4 proteins that strongly characterise Homo are in individual categories, and two of these, 
choline-binding protein A and serine endopeptidase ScpC are Streptococcus-specific proteins. Four of the 
10 proteins in the PCA excluding present-day modern human samples are in the Carbohydrates category, 
and only one is different from the Carbohydrate proteins in the PCA including present-day modern human 
samples. The strong signal of Carbohydrate proteins characterizing Homo samples remains after 
removing the present-day modern human samples, and is not an artefact of modern carbohydrate-rich 
diets.  
 
The top 10 proteins with the strongest PC2 loadings in the direction characterizing Pan/Gorilla/Alouatta 
fall in a variety of categories, and this is true both when present-day modern humans are included and 
excluded in the PCA (Fig. S13G; External Data Repository Section R12.6 and Fig. R54B,D, and Table 
R9). Five of the 10 proteins with the strongest PC2 loadings in the direction characterizing 
Pan/Gorilla/Alouatta were shared in the PCAs both with and without present-day modern human samples 
(External Data Repository Section R12.6 and Fig. R54C,D, and Table R9). Only 1 protein falls in the 
Carbohydrates category when including or excluding present-day modern human samples, but it is a 
different protein in each PCA (External Data Repository Section R12.7 and Table R9). The four proteins 
that are unique to each PCA are in different categories, including DNA Metabolism, Nucleosides and 
Nucleotides, and Potassium Metabolism when including present-day modern human samples, and Cell 
Wall and Capsule, Iron Acquisition and Metabolism, and Phages, Prophages, Transposable elements, 
Plasmids when excluding present-day modern human samples.  
 
We wanted to visualise the distribution of the 10 proteins with the strongest loadings in PC1 and PC2 
across host genera to see how they differ between hosts. We generated heat maps with the CLR-
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transformed total number of reads assigned to each protein in each sample for the PCA including 
present-day modern humans (External Data Repository Section R12.6 and Fig. R55) and for the PCA 
excluding present-day modern humans (External Data Repository Section R12.6 and Fig. R56). There 
are many more reads assigned to present-day modern human samples than to the historic modern 
humans, Neanderthals, Pan, Gorilla, or Alouatta in PC1 negative (External Data Repository Section 
R12.6 and Fig. R55A), PC1 positive (External Data Repository Section R12.6 and Fig. R55B), PC2 
negative (External Data Repository Section R12.6 and Fig. R55C) and PC2 positive (External Data 
Repository Section R12.6 and Fig. R55D) space; however, there are nevertheless host genus-specific 
patterns. For example, the top 10 negative PC1 protein loadings in Pan were all present at very low 
abundance (External Data Repository Section R12.6 and Fig. R55A); by contrast the top 10 negative PC1 
protein loadings in Gorilla and Alouatta were similar in abundance, which is expected given that Gorilla 
and Alouatta plot together in negative PC1 space, separate from Pan (External Data Repository Section 
R12.6 and Fig. R55). In contrast, the positive PC1 protein loadings are more abundant in Pan than 
Gorilla/Alouatta, while abundance in Homo is variable (External Data Repository Section R12.6 and Fig. 
R55B). The PC2 negative proteins are more abundant in Homo than Pan/Gorilla/Alouatta (Fig. S13E; 
External Data Repository Section R12.6 and Fig. R55C), which is expected since Homo separates from 
the other host genera in negative PC2 space (External Data Repository Section R12.6 and Fig. R54). The 
PC2 positive proteins are least abundant in Pan, which makes sense since all 10 proteins have negative 
PC1 values and therefore also drive the plotting of Gorilla/Alouatta (Fig. S13G; External Data Repository 
Section R12.6 and Figures R55D, R54).  
 
The host genus-based patterns of the abundance of proteins with the strongest loadings from the PCA 
excluding present-day modern humans are similar to those including present-day modern humans 
(External Data Repository Section R12.6 and Fig. R56). Pan has a very low abundance of proteins in the 
top 10 PC1 negative loadings, while Gorilla/Alouatta are similar to each other and Homo is variable 
(External Data Repository Section R12.6 and Fig. R56A). In contrast, the proteins that have the top 10 
loadings in PC1 positive values are more abundant in Pan than in Gorilla/Alouatta or Homo (External 
Data Repository Section R12.6 and Fig. R56B). Two proteins in the top 10 PC2 negative loadings (pc2n2 
- conjugative transposon TraG; pc2n3 - Na(+)-translocating NADH quinone reductase subunit F [E.C. 
1.6.5.-]) are much more abundant in Pan than the other proteins, and are much lower in several 
Gorilla/Alouatta/Homo samples than the other proteins (External Data Repository Section R12.6 and Fig. 
R56C). Generally, however, the PC2 negative top 10 proteins are slightly more abundant in 
Gorilla/Alouatta than in Pan/Homo (External Data Repository Section R12.6 and Fig. R56C). The proteins 
with the top loading scores in PC2 positive, which drive separation of Homo from Pan/Gorilla/Alouatta, 
are generally more abundant in Homo than in the other host genera, with the exception of several modern 
human samples in which the proteins are very low abundance.  
 
S7.2.2 Species contributions to SEED proteins 
 
To understand if there were specific species contributing to the proteins in the top 10 loadings for PC1 
and PC2 in negative and positive directions, we examined the species assignments of the reads assigned 
to each of these proteins. Using MEGAN6, we created a comparison of the AADDER output .rma6 files 
for each host genus that included all samples in the final PCA (outliers excluded). Within the SEED 
viewer in MEGAN6, the node for each protein of interest was selected and individually exported to a new 
document. This document contains the species assignments for each read, but for the entire host genus 
comparison, not separated by individual. The LCA parameters were changed to Top Percent 0.001, and 
then all nodes at the species level were selected. The summed assignments of each species were 
exported as a .tsv file for import into R for data processing and visualization. In R, the species that 
contributed to less than 15% of the reads of each protein were grouped together as “Other”, and then 
those species that individually contributed >15% of the reads were plotted by protein and by host genus. 
 
Three genera appear to be the main contributors to the proteins with the top negative loadings in PC1, 
irrespective of whether present-day modern human samples are included (External Data Repository 
Section R12.6 and Fig. R57). These are Aggregatibacter, Neisseria, and Streptococcus. There is a wide 
range in the number of reads assigned to each bacterial genus among host genera, so although it may 
appear from Fig. R57 that one bacterial genus is the dominant contributor to a protein across all host 
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genera, the number of reads of that protein may be orders of magnitude different between hosts. For 
example, for pc1n4 (glutathione biosynthesis bifunctional protein GshF), Aggregatibacter and 
Streptococcus are the two highest contributors across all host genera, but the read count break down for 
Aggregatibacter is Homo: 24,119 Pan: 2, Gorilla: 1,981, Alouatta: 2,069, and for Streptococcus is Homo: 
51,257, Pan: 62, Gorilla: 449, Alouatta: 5,468 (External Data Repository Section R12.6 and Fig. R57A,B). 
The difference is even more stark for pc1n8 (serine endopeptidase ScpC), which is contributed entirely by 
Streptococcus across all host genera, but with a read break-down of Homo: 110,423, Pan: 12, Gorilla: 
436, Alouatta: 1 (External Data Repository Section R12.6 and Fig. R57A,B). We see a similar trend when 
excluding present-day modern humans (External Data Repository Section R12.6 and Fig. R57C,D), 
although then the number of reads assigned to Homo is much lower; for example the number of GshF 
read counts drops for Aggregatibacter to 236 and for Streptococcus to 462. Pan has many more species 
that individually contribute less than 15% of the reads assigned to each protein, seen with the much 
larger “Other” bar across all proteins than in the other host genera, which is likely related to a database 
bias, where we lack species representative of the chimpanzee oral cavity.  
 
There are many more species that contribute to the 10 proteins with top positive loadings in PC1 than to 
the top negative loadings. This is seen in the higher percent of “Other” genera contributing to positive 
loadings (External Data Repository Section R12.6 and Fig. R58). A variety of bacterial genera contribute 
at least 15% of the reads in each host genus, with none of the bacterial genera appearing to be 
characteristic of any protein (External Data Repository Section R12.6 and Fig. R58A) or host genus 
(External Data Repository Section R12.6 and Fig. R58B). When removing present-day modern human 
samples from the analysis, there are changes in the species that contribute proteins in the host genera 
(External Data Repository Section R12.6 and Fig. R58C,D), but still no species predominate.  
 
The proteins with strongest PC2 loadings in the direction that characterised Alouatta/Gorilla/Pan are 
shown in External Data Repository Section R12.6 and Fig. R59. There are several species that contribute 
to the SEED proteins with the strongest PC2 loadings in the direction characterizing Pan/Gorilla/Alouatta 
that are shared across multiple host genera. These include Aggregatibacter in Homo, Gorilla, and 
Alouatta, Neisseria in Homo and Gorilla, and Capnocytophaga in Homo, and this pattern holds both with 
(External Data Repository Section R12.6 and Fig. R5A,B) and without (External Data Repository Section 
R12.6 and Fig. R59C,D) present-day modern human samples. For the proteins that remain in the top 10 
strongest loadings when excluding present-day modern human samples, the microbial species that 
contribute reads to these proteins remain the same irrespective of whether present-day modern humans 
are included. 
 
The proteins with the strongest PC2 loadings in the direction that characterises Homo in the PCAs (both 
with and without present-day modern humans) are shown in External Data Repository Section R12.6 and 
Fig. R60. There is clearly a strong bias of Streptococcus contributing a high percentage of the reads to 
several proteins across multiple host genera (External Data Repository Section R12.6 and Fig. R60A-D). 
There are stark differences in the number of reads assigned to each protein for each host genus and this 
demonstrates that Streptococcus is dominant only in Homo samples. For example, pc2n2 (serine 
endopeptidase ScpC, External Data Repository Section R12.6 and Fig. R54C,D) comes from only 
Streptococcus reads across all host genera, but the read breakdown when including present-day Homo is 
Homo: 110,423 (including present-day Homo)/7,930 (excluding present-day Homo), Pan: 12, Gorilla: 436, 
Alouatta: 1. Similarly, pc2n3 (Pullulanase, External Data Repository Section R12.6 and Fig. R54C,D) 
comes from mostly Streptococcus reads, with a breakdown of Homo: 196,683 (including present-day 
Homo)/15,104 (excluding present-day Homo), Pan: 92, Gorilla: 993, Alouatta: 58. Although removing the 
present-day modern human samples substantially reduces the number of reads assigned to 
Streptococcus for each protein, the pattern remains similar to when including present-day samples, 
suggesting that the present-day modern human samples are not biasing species profiles of Homo 
samples.  
 
S7.2.3 Metabolic category PCAs 
 
Finally, we wanted to know if the proteins in specific metabolic pathways involved in processing major 
biomolecule classes (carbohydrates, amino acids, and lipids) were distinctive among the host genera, as 
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was found for HUMAnN2-identified KEGG orthologs (Fig. S10, External Data Repository Section R12.6 
and Fig. R61). The proteins in all pathways of the SEED categories carbohydrates, amino acids, and fatty 
acids, lipids, and isoprenoids were subsetted from all of the proteins identified in the samples, and used 
to run PCAs (External Data Repository Section R12.6 and Fig. R61). Carbohydrate processing proteins 
(External Data Repository Section R12.6 and Fig. R61A) clustered the host genera in a pattern similar to 
that of all proteins (External Data Repository Section R12.6 and Fig. R53D) yet with a slightly higher R2 
value (0.423 for carbohydrate pathway proteins vs 0.345 for all proteins), demonstrating distinctly different 
host profiles of carbohydrate processing proteins. Higher levels of sample overlap in PCA and lower 
permanova R2 values were observed for amino acid processing proteins (R2 = 0.289, External Data 
Repository Section R12.6 and Fig. R61B) and fatty acid processing proteins (R2 = 0.258, External Data 
Repository Section R12.6 and Fig. R61C).  
 
This is different from the results from HUMAnN2, in which the KEGG orthologs that process each of these 
major biomolecule classes separate the samples by host genus (External Data Repository Section R12.3, 
Fig. R51). To investigate the degree of overlap between the proteins/orthologs identified by HUMAnN2 
and AADDER, we compared the KEGG orthologs and SEED-identified proteins in each of the three 
categories (carbohydrates, amino acids, and fatty acids/lipids) using their EC numbers. Details of this 
analysis are provided in External Data Repository Section R12.7. Only a small number of SEED-identified 
proteins did not have EC numbers, and we manually checked for these in the KEGG ortholog lists; 
however, only a single additional overlap in lipids was found. More KEGG orthologs were identified in the 
samples compared to SEED proteins for each metabolic category: amino acids, 262 orthologs vs 107 
proteins; carbohydrates, 297 orthologs vs 79 proteins; and lipids, 94 orthologs vs 11 proteins. There was 
considerable overlap in the EC numbers of the orthologs/proteins identified in each category, with 87 
shared in amino acids, 52 shared in carbohydrates, and 7 shared in lipids/fatty acids. The differences in 
PCA sample clustering between KEGG orthologs and SEED proteins may be due to the fact that the 
different classification systems do not include the same proteins/orthologs. This observation further 
supports our finding that differences in the observed functional profile are partly database-dependent, and 
therefore interpretation should be made with care. 
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Supplementary Figures and Tables 
 

 
 
Fig. S1. Primate species analysed in this study and their dental calculus. (A), Cladogram of 
evolutionary relationships among host species analysed in this study. Estimated clade divergence times 
are reported from (3, 4, 12, 14, 37, 50). The catarrhine-platyrrhine split that separates New World 
monkeys from Old World monkeys and apes is indicated at ca. 40 million years ago, and within the 
human lineage, the taxonomic ranks of family (Hominidae), sub-family (Homininae), and genus (Homo) 
are indicated, together with their common names: hominid, hominine, and human respectively (528). We 
do not report a species designation for Neanderthals because it is disputed (49). (B-G), Representative 
images of dental calculus. (B-C), Mantled howler monkey dental calculus; buccal deposits of 
supragingival calculus show particular buildup on the premolars and molars. (D-E), Gorilla dental 
calculus. (D), ‘Black’ plaque and calculus deposits typically present on gorilla dentitions (ABM006). (E), 
Large dental calculus deposits on the premolars and molars of EBO001. Note the presence of a synthetic 
adhesive used by museum staff to stabilise the dentition. (F-G), Chimpanzee dental calculus. f, Minor 
calculus deposits typically form along the gingival margin (KNP005). (G), Heavier calculus deposits and 
antemortem tooth loss observed in KNP009. (H), Dental calculus deposit buildup on the deciduous first 
molar of a 70 ka Neanderthal (GDN001); photo courtesy of Julie Arnaud, University of Ferrara. (I), Dental 
calculus deposit along the gingival margin of the first molar of the Upper Palaeolithic individual EMN001. 
(J), Dental calculus deposits on the molars of a Magdalenian individual (RIG001); photo courtesy of 
Wolfgang Gerber, University of Tübingen. Scale bars represent 1 mm in (H) and 1 cm in (I) and (J). 
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Fig. S3. Data quality and authentication filters applied to dental calculus samples in this study. (A), 
Cumulative percent decay plots showing the fraction of oral taxa relative to all taxa, as ordered by 
abundance rank (most to least number of alignments). X-axis restricted to 250 positions for visualization 
purposes. Modern reference datasets are shown in the first row for comparison. See methods for filter 
description. Species designations for each host group can be seen in Data S1. (B), Estimated proportions 
of a sample resembling a given source, as estimated by SourceTracker (223) from 16S reads taxon 
identification across all calculus samples. Sample labels signify whether the sample passed (grey) or 
failed (black) in (A).  
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Fig. S4. Representative ancient authenticity metrics for Neanderthals from Pesturina (PES001) and 
de Nadale (GDN001) caves. Damage mismatch profiles, read length, edit distance, and sequence 
identity are shown for four selected oral bacterial species: Fretibacterium fastidiosum, Fusobacterium 
nucleatum, Tannerella forsythia, Treponema denticola. Total mapping reads are shown in green (default), 
and mapping reads with damage are shown in purple. Plots were produced using the reporting function of 
the MaltExtract Interactive Plotting Application (MEx-IPA) from the MaltExtract tool of the HOPS pipeline 
(205). See SI Appendix section S5.3  for location of HOPS output of the entire dataset.  
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Fig. S5. Principal Coordinates Analysis (PCoA) of microbial communities in dental calculus and 
sources. (A-B), PCA of microbial communities within dental calculus and sources for (A), all dental 
calculus samples and (B), with poorly preserved samples removed. (C-D), PCA of microbial communities 
without sources and including only well-preserved dental calculus; species designations for each group 
can be seen in Data S1. Abbreviations for Pan and Gorilla groups refer to sub-species common names. 
(E-F), PCA of Homo dental calculus, categorised by (E), time period and region (F), of origin. There is a 
high degree of overlap among dental calculus microbial communities of all Homo groups. See SI 
Appendix section S4.1 for data input and transformation details. 
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Fig. S6. Hierarchical clustering of different Homo calculus microbiomes, comparing different 
lifestyles and regions. We do not observe clustering of calculus microbiomes of individuals from Homo 
by broad dietary differences. Input is a genus level PhILR transformed OTU table without sources and 
controls, and low preservation samples removed. Clustering was performed with the average-linkage 
algorithm. Low abundant taxa are removed if under 0.01% of overall alignments ('min. support'), and 
putative laboratory contaminants removed as per the decontam R package.  
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Fig S7. Alluvial diagram showing effects of increasing the minimum abundance threshold to the 
MALT OTU table-based core microbiome calculations. Increasing from 0.04% to 0.07% shows 
minimal changes in combination assignment. Comparisons are between the nt (top) and RefSeq (bottom) 
databases, and at genus (left) and species (right) taxonomic levels. Stacked bars represent the number of 
taxa to each combination, and alluviums represent the assignment of a given taxon between each 
minimum support threshold. Plots created using the ggalluvial R package 273, with input data as MALT 
aligned and MEGAN exported OTU tables excluding putative laboratory contaminants, badly preserved 
samples, and taxa with minimum support values < 0.07% (genus level) and < 0.04% (species level).  
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Fig S8. Alluvial diagram showing effects of dropping and retaining a single-individual Gorilla 
population in core microbiome calculations at genus and species taxonomic levels. Dropping the 
single-individual population results in minor combination assignments, mostly taxa being assigned to 
being core to the compositionally similar Alouatta combinations. Stacked bars represent the number of 
taxa to each combination, and alluviums represent the assignment of a given taxon between dataset. 
Plots created using the ggalluvial R package, with input as MALT NCBI nt aligned and MEGAN exported 
OTU tables with putative laboratory contaminants, badly preserved samples, and taxa with minimum 
support values < 0.07% (genus level) and < 0.04% (species level) removed.  
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Fig. S9. Core microbiome strategy and virulence genes. (A), Selection criteria for core microbiome 
taxa. The outgroup howler monkeys (Alouatta) was exempted from the population level parameter 
because only one population was sampled. (B-C), Heatmaps of virulence gene coverage and 
completeness for two ‘red complex’ bacteria reference genomes: (B), P. gingivalis and (C), T. 
forsythia.Label colours correspond to host genus as in previous figures - Blue: Alouatta, Purple: Gorilla, 
Green: Pan, Orange: Homo. All virulence genes for both P. gingivalis and T. forsythia were observed in 
members of all great ape species, indicating a deep evolutionary history of these genes.   



 
 

81 
 

 
Fig. S10. Comparison of the number of multi-allelic single nucleotide polymorphisms (SNPs) 
identified when using a single representative genome mapping strategy versus a multi-reference 
genome (super-reference) mapping approach. Arrows indicate direction of change in the percentage of 
multi-allelic sites between single genome (grey circle outline) and super-reference (black circle outline) 
mapping strategies, where the expected direction is from right to left, indicating a reduction in multi-allelic 
sites. Colours refer to the host genus. The expected reduction in the percentage of multi-allelic SNPs 
(from right to left on the x-axis) between the two strategies is not consistently observed. 
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Fig. S11. Neighbour joining trees of eight well-supported core calculus taxa from single 
representative mappings of the deep sequenced dataset. Microbial genomic diversity generally 
clusters individuals with those of the same host genus. Pre-14 ka European individuals consistently group 
together to the exclusion of most post-14 ka European individuals. Grey boxes highlight European pre-14 
ka BP individuals, as represented by El Mirón and Neanderthals. Titles refer to the representative 
genome of the selected species used for the reference genome, and the alignments are mixtures of 
strains/species as indicated by high levels of multi-allelic sites.  
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Fig. S12. Replication of production dataset phylogenies with low-coverage and damage-
containing screening dataset with additional European individuals. The observed pattern of pre-14k 
BP Europeans and post-14k BP humans clustering separately in the production dataset phylogenies is 
replicated when including additional pre- and post-14k BP individuals when using screening dataset 
equivalents. Grey boxes indicate European 'pre-14k BP' of the Red Lady of El Mirón and Neanderthals. 
Representative genomes were selected based on abundance and prevalence across all individuals in the 
production dataset. SNPs were called using MultiVCFAnalyzer with a minimum coverage threshold of 2, 
and the majority allele threshold of 0.7. Alignments with <1000 called SNPs were removed. Genetic 
distance calculated using the ape R package, with the Jukes-Cantor 69 model and pairwise deletion 
strategy for missing data. Bootstraps are out of 100 bootstraps. 
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Fig. S13. Principal Components Analysis (PCA) biplots of functional annotations with the top 10 
positive and negative loadings separating Homo from the other hosts. Samples were screened to 
gain a gene content profile by both HUMAnN2, which annotated genes using the KEGG ortholog 
database, and by AADDER, which annotated the genes using the SEED database. PCA biplot showing 
top-loading KEGG orthologs (A,C),  or SEED-identified proteins (E,G) in PC2 including (A,E), or excluding 
(C,G) present-day modern humans. Bar graphs of the genera, summed from species, (B,D), that 
contribute to the KEGG orthologs or (F,H) the SEED-identified proteins, with strongest negative loadings 
in PC2, including present-day modern humans (B,F), or excluding present-day modern humans (D,H). All 
genera that individually contributed <12% of KEGG orthologs or <15% of SEED-identified proteins are 
grouped together as ‘Other’. Protein names correspond to the numbers in the section S7, where for 
SEED proteins ‘pc1/pc2’ indicate the component, ‘p/n’ indicate positive/negative direction, and the final 
number indicates the protein indicated on the biplot. SEED-identified proteins that are the same between 
the PCAs including and excluding present-day modern humans are indicated with symbols (i.e., the ‘&’ in 
panel (F) pc2n7 and panel (H) pc2p8 indicates these are the same protein). 
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Fig. S14. Principal Components Analysis (PCA) using KEGG orthologs or SEED-classified 
proteins belonging to specific metabolic pathway categories. KEGG orthologs (A-C), and SEED-
classified proteins (D-F), in pathways that process major biomolecules. KEGG orthologs in only the (A) 
Carbohydrate metabolism pathways, (B) Amino acid metabolism pathways, and the (C) Lipid metabolism 
pathways (permanova R2 = 0.291, 0.285, 0.319, respectively). Only SEED proteins in the (D) 
Carbohydrates category separate the samples by host genera in a pattern similar to that seen for 
taxonomy and all proteins (carbohydrate pathway proteins permanova R2 = 0.423 vs all proteins 
permanova R2 = 0.345. SEED proteins in the (E) Amino acid and (F) Fatty acids, Lipids, and Isoprenoids 
categories do not separate samples by host genera as distinctly (permanova R2 = 0.289 and R2 = 0.258, 
respectively).   
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