

**Supplementary Information for** 

# AP-3-dependent targeting of flippase ATP8A1 to lamellar bodies suppresses activation of YAP in alveolar epithelial type 2 cells.

Seunghyi Kook<sup>1</sup>, Ping Wang<sup>1</sup>, Shufang Meng<sup>1</sup>, Christopher S. Jetter<sup>1</sup>, Jennifer M.S. Sucre<sup>1</sup>, John T. Benjamin<sup>1</sup>, Jason J. Gokey<sup>2</sup>, Hayley A. Hanby<sup>3,4</sup>, Alexa Jaume<sup>3</sup>, Laura Goetzl<sup>5</sup>, Michael S. Marks<sup>3,6</sup>, Susan H. Guttentag<sup>1,\*</sup>

\*Corresponding author: Susan Guttentag, MD, 11111 Doctor's Office Tower, 2200 Children's Way, Nashville, TN 37232 Email: <u>susan.guttentag@vumc.org</u> ORCID identifier: <u>https://orcid.org/0000-0003-4420-5879</u>

This PDF file includes:

Figures S1 to S8 Tables S1 to S2 Legends for Movies SV1 to SV8 SI References

Other supplementary materials for this manuscript include the following:

Movies SV1 to SV8





A. Pearson's correlation coefficient acquired from images of transfected primary human AT2 cells in Figure 1B, comparing GFP-ATP8A1 with endogenous DC-LAMP and with exogenous Myc-tagged CDC50A (n=3 experiments; mean ± standard error).

B. Pearson's correlation coefficient acquired from images of primary mouse AT2 cells in Figure 1C, comparing endogenous ABCA3 and ATP8A1 (n=3 experiments; mean ± standard error).

C. RNA expression of *Atp8a1* in primary mouse AT2 cells. Quantitative RT-PCR for *Atp8a1* RNA from primary AT2 cells from WT and *pearl* mice (n=4; NS, not significant; mean ± standard error).



Figure S2: GFP-ATP8A1 localization to more proximal subcellular compartments in MLE15/WT and MLE15/ $\Delta$ AP3 cells.

Representative confocal images of MLE15/WT and MLE15/ $\Delta$ AP3 cells expressing exogenous GFP-ATP8A1 and mCherry-ABCA3, and immunostained for endogenous RAB5, STX13, GM130, and GOLGIN97 (scale bar = 10 microns).



# Figure S3: GFP-ATP8A1-AA2 localization to more proximal subcellular compartments in MLE15/WT cells.

A. Protein expression and coimmunoprecipitation of mutagenized GFP-ATP8A1 in HEK cells. Immunoblotting of HEK lysates (35  $\mu$ g per lane) is shown using anti-GFP antibody or anti-Myc antibody in the upper panel. Co-immunoprecipitation utilizing anti-GFP (middle panel) or anti-Myc (bottom panel) was done using 500  $\mu$ g of input lysate (representative of 2 experiments).

B. Representative confocal images of MLE15/WT cells expressing mCherry-ABCA3 and GFP-ATP8A1-AA2, with immunostaining for RAB5, STX13, GM130, and GOLGIN97 (scale bars = 10 microns).



### Figure S4. GFP-ATP8A1-E1105D and GFP-ATP8A1-Q1108A bind myc-CDC50A.

Protein expression and co-immunoprecipitation of mutagenized GFP-ATP8A1 in HEK cells. Immunoblotting of HEK lysates (35  $\mu$ g per lane) is shown using anti-GFP antibody or anti-Myc antibody in the upper panel. Co-immunoprecipitation utilizing anti-GFP antibodies (middle panel) or anti-Myc antibodies (bottom panel) used 500  $\mu$ g of input lysate (representative of 2 experiments).



### Figure S5: Yeast 3-hybrid assay to assess binding between the <sup>1105</sup>ERAQLL and AP-3.

To test whether the <sup>1105</sup>ERAQLL motif of ATP8A1 binds to AP-3, we employed a previously described, highly sensitive yeast 3-hybrid assay (1) in which the GAL4 transcription factor activation domain was fused to the  $\gamma$ ,  $\alpha$  or  $\delta$  subunit of AP-1, -2, or -3 respectively and co-expressed in *cerevisiae* H57c cells with the corresponding s subunit ( $\sigma$ 1 for AP-1,  $\sigma$ 2 for AP-2 and  $\sigma$ 3A for AP-3) and the GAL4 DNA binding domain (DBD) fused to the C-terminal cytoplasmic domain (residues 1071 to 1164) of human ATP8A1. Whereas the positive control – the Gal4 DBD fused to the cytoplasmic domain of mouse tyrosinase (mTyr) (2, 3) yielded a robust interaction as detected by growth of yeast on plates lacking histidine, neither the negative control (OCA2-AA123N;(3)) nor WT or dileucine mutant variants of the ATP8A1 cytoplasmic domain yielded a positive interaction.





# Figure S6: Endogenous ATP8A1 function in MLE15 cells enhances cytosolically exposed PtdSer at subcellular membranes.

A. CRISPR strategy for generating MLE15/WT-∆ATP8A1 and MLE15/∆AP3-∆ATP8A1.
 (A) Genomic PCR products and sequencing demonstrating the deletions induced by the double CRISPR-mediated Cas9 cleavages. Gel electrophoresis of genomic PCR products from MLE15/WT and MLE15/∆AP3 starting cells, and two clones demonstrating successful deletions of 29 bp in exon 1 of *Atp8a1*.

B. RT-PCR products and sequencing demonstrating induced by the double CRISPR-mediated Cas9 cleavages expressed in *Atp8a1* RNA. Gel electrophoresis of genomic PCR products from MLE15/WT

and MLE15/ $\Delta$ AP3 starting cells, and two clones demonstrating successful deletions of 29 bp in exon 1 of *Atp8a1*.

C. Live cell imaging of MLE15/WT, MLE15/ $\Delta$ AP3, MLE15/ $\Delta$ ATP8A1, and MLE15/ $\Delta$ AP3- $\Delta$ ATP8A1 cells. Representative pseudocolor images captured from live cell imaging of MLE15/WT, MLE15/ $\Delta$ AP3, MLE15/ $\Delta$ ATP8A1, and MLE15/ $\Delta$ AP3- $\Delta$ ATP8A1 cells expressing the biosensor mCherry-LactC2 (pseudocolor Green) and GFP-Rab11A (pseudocolor Magenta; scale bars = 10 microns). Live cell imaging was obtained using identical microscope settings, and still images were derived from the first frame to avoid photobleaching.

D. Colocalization correlation between GFP-RAB11A (pseudocolor Magenta) and mCherry-LactC2 (pseudocolor Green) acquired from images described in S6C (n=5-8 cells per group, mean ± standard error). The method used for colocalization was adapted from Dennis et al (4) (see Methods).



#### Figure S7: Activation of YAP in MLE15/∆AP3 cells hastens scratch wound healing in an ATP8A1dependent manner.

A. Composite of phase contrast images depicting scratch wound of confluent monolayer of MLE15/ $\Delta$ ATP8A1, MLE15/WT, MLE15/ $\Delta$ AP3, and MLE15/ $\Delta$ AP3- $\Delta$ ATP8A1 cells immediately post-wounding and 12 h after wounding.

B. Time course of wound closure after scratch wounding (see Methods). MLE15/WT cells ± ATP8A1 and MLE15/ $\Delta$ AP3 cells ± ATP8A1 were monitored over 24h as they closed the wound depicted in panel A. MLE15/ $\Delta$ AP3 cells closed a scratch wound faster than MLE15/WT cells (1h p<.05, 2-4h p<.001, and 7-24h p<.0001; asterisks not provided on graph). Loss of ATP8A1 slowed closure in both MLE15/WT and MLE15/ $\Delta$ AP3 cells (n= 3 experiments with triplicate samples at each timepoint; \*p<.05, \*\*p<.01, \*\*\*p<.001 with the asterisks placed between the MLE15/WT and MLE15/ $\Delta$ AP3- $\Delta$ ATP8A1 cells, respectively).

C. Proliferation of MLE15/WT, MLE15/ $\Delta$ AP3, MLE15/ $\Delta$ ATP8A1, and MLE15/ $\Delta$ AP3- $\Delta$ ATP8A1 cells as measured by BrdU incorporation (see Methods) over 8 h. No significant differences were detected (n = 2 experiments performed with quadruplicate samples).



**Figure S8:** Rescue of YAP activation by restoring AP-3 in MLE15/ $\triangle$ AP3 cells.

Left panel: Composite representative immunoblot from MLE15/WT and MLE15/ $\Delta$ AP3 cells expressing from empty vector, and MLE15/ $\Delta$ AP3 cells expressing *Ap3b1*-HA, as described in Figure 2 (representative of 3 biologic comparisons).

Right panel: RT-qPCR for *Ajuba, Ankrd1, Axl, Birc5* RNA (n= triplicate samples of 3 biologic replicates; n=3; box and whiskers plot as described in Figure 7A; \*p < .05, \*\*p < .01, \*\*\*p < .001, \*\*\*\*p < .0001).

# Supplemental Tables

# Table S1: gRNA sequences used for inactivating *Ap1g1* and *Atp8a1*.

| Target<br>Gene | gRNA name      | gRNA Sequence (5'→3')     | Genomic PCR primers $(5' \rightarrow 3')$ |                        |  |
|----------------|----------------|---------------------------|-------------------------------------------|------------------------|--|
| Αρ1γ1          | Ap1γ1-gRNA#3   | CACCGATCACTGTAAGAGAAAAAG  | Forward                                   | GAAACTTTGTTAGGCTGCTTCG |  |
|                | Ap1 γ 1-gRNA#5 | CACCGTGCAGAGATCTTGCGGGAG  | Reverse                                   | CTTTCAAAAATAAGTGCCCTGG |  |
| ATP8a1         | ATP8a1-gRNA#5  | CACCGACTCACCTTCCGCGCGCGAG | Forward                                   | GTGACAGGTGCAGGGTCC     |  |
|                | ATP8a1-gRNA#14 | CACCGCTGTCGAGATGCCGACCATG | Reverse                                   | GGTGTAGATGGGATGAGGTGTC |  |

# Table S2: Primers used to construct *Atp8a1* mutations of dileucine motifs.

| Mutant | 1 <sup>st</sup> PCR |                                            |             |                                             |   | 2 <sup>nd</sup> PCR      |  |
|--------|---------------------|--------------------------------------------|-------------|---------------------------------------------|---|--------------------------|--|
|        | 5' fragment         |                                            | 3' fragment |                                             |   |                          |  |
| AA1    | F                   | TACACTGGACATGACACCAAG                      | F           | CAGGAAGAAAGATATGAAGCGGCCAATGTCTTGGAGTTTACC  | F | TACACTGGACATGACACCAAG    |  |
|        | R                   | GGTAAACTCCAAGACATTGGCCGCTTCATATCTTTCTTCCTG | R           | ATTAGCTGCCTGCAGGCCTTCATT                    | R | ATTAGCTGCCTGCAGGCCTTCATT |  |
| AA2    | F                   | AATGAAGGCCTGCAGGCAGCTAAT                   | F           | CTGACCGAGAGGGGCGCAAGCGGCCAAGAACGTCTTTAAGAAG | F | AATGAAGGCCTGCAGGCAGCTAAT |  |
|        | R                   | CTTCTTAAAGACGTTCTTGGCCGCTTGCGCCCTCTCGGACAG | R           | GCGGATCCCGGGTCACCATTC                       | R | GCGGATCCCGGGTCACCATTC    |  |
| E1105D | F                   | AATGAAGGCCTGCAGGCAGCTAAT                   | F           | GGAAAAAGCCTGACCGACAGGGCGCAACTGCTCAAG        | F | AATGAAGGCCTGCAGGCAGCTAAT |  |
|        | R                   | CTTGAGCAGTTGCGCCCTGTCGGTCAGGCTTTTTCC       | R           | GCGGATCCCGGGTCACCATTC                       | R | GCGGATCCCGGGTCACCATTC    |  |
| Q1108A | F                   | AATGAAGGCCTGCAGGCAGCTAAT                   | F           | CTGACCGAGAGGGGGGGCACTGCTCAAGAACGTCTTT       | F | AATGAAGGCCTGCAGGCAGCTAAT |  |
|        | R                   | AAAGACGTTCTTGAGCAGTGCCGCCCTCTCGGTCAG       | R           | GCGGATCCCGGGTCACCATTC                       | R | GCGGATCCCGGGTCACCATTC    |  |

#### **Supplemental Videos**

**Supplemental Videos SV1-SV4:** Live cell imaging MLE15/WT (SV1), MLE15/ $\Delta$ AP3 (SV2), MLE15/ $\Delta$ ATP8A1 (SV3), and MLE15/ $\Delta$ AP3- $\Delta$ ATP8A1 (SV4) cells expressing mCherry-ABCA3 and the biosensor GFP-LactC2 used to generate still images in Figure 7.

**Supplemental Videos SV5-SV8:** Live cell imaging MLE15/WT (SV5), MLE15/ $\Delta$ AP3 (SV6), MLE15/ $\Delta$ ATP8A1 (SV7), and MLE15/ $\Delta$ AP3- $\Delta$ ATP8A1 (SV8) cells expressing GFP-RAB11 (pseudocolored Magenta) and the biosensor mCherry-LactC2 (pseudocolored Green) used to generate still images in Supplemental Figure 6.

#### **SI References**

1. K. Janvier, *et al.*, Recognition of dileucine-based sorting signals from HIV-1 Nef and LIMP-II by the AP-1  $\gamma$ – $\sigma$ 1 and AP-3  $\delta$ – $\sigma$ 3 hemicomplexes. *J Cell Biology* **163**, 1281–1290 (2003).

2. A. C. Theos, *et al.*, Functions of Adaptor Protein (AP)-3 and AP-1 in Tyrosinase Sorting from Endosomes to Melanosomes. *Mol Biol Cell* **16**, 5356–5372 (2005).

3. A. Sitaram, *et al.*, Differential recognition of a dileucine-based sorting signal by AP-1 and AP-3 reveals a requirement for both BLOC-1 and AP-3 in delivery of OCA2 to melanosomes. *Mol Biol Cell* **23**, 3178–3192 (2012).

4. M. K. Dennis, *et al.*, BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery. *J Cell Biology* **209**, 563 577 (2015).