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Figure S1:     
 
A. Pearson’s correlation coefficient acquired from images of transfected primary human AT2 cells in 
Figure 1B, comparing GFP-ATP8A1 with endogenous DC-LAMP and with exogenous Myc-tagged 
CDC50A (n=3 experiments; mean ± standard error).   
 
B.  Pearson’s correlation coefficient acquired from images of primary mouse AT2 cells in Figure 1C, 
comparing endogenous ABCA3 and ATP8A1 (n=3 experiments; mean ± standard error).   
 
C.  RNA expression of Atp8a1 in primary mouse AT2 cells.  Quantitative RT-PCR for Atp8a1 RNA from 
primary AT2 cells from WT and pearl mice (n=4; NS, not significant; mean ± standard error). 
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Figure S2:  GFP-ATP8A1 localization to more proximal subcellular compartments in MLE15/WT 
and MLE15/DAP3 cells.   

Representative confocal images of MLE15/WT and MLE15/DAP3 cells expressing exogenous GFP-
ATP8A1 and mCherry-ABCA3, and immunostained for endogenous RAB5, STX13, GM130, and 
GOLGIN97 (scale bar = 10 microns). 
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Figure S3:  GFP-ATP8A1-AA2 localization to more proximal subcellular  
compartments in MLE15/WT cells.   

A.  Protein expression and coimmunoprecipitation of mutagenized GFP-ATP8A1 in HEK cells. 
Immunoblotting of HEK lysates (35 µg per lane) is shown using anti-GFP antibody or anti-Myc antibody in 
the upper panel.  Co-immunoprecipitation utilizing anti-GFP (middle panel) or anti-Myc (bottom panel) 
was done using 500 µg of input lysate (representative of 2 experiments).   

B.  Representative confocal images of MLE15/WT cells expressing mCherry-ABCA3 and GFP-ATP8A1-
AA2, with immunostaining for RAB5, STX13, GM130, and GOLGIN97 (scale bars = 10 microns). 
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Figure S4. GFP-ATP8A1-E1105D and GFP-ATP8A1-Q1108A bind myc-CDC50A.   

Protein expression and co-immunoprecipitation of mutagenized GFP-ATP8A1 in HEK cells.  
Immunoblotting of HEK lysates (35 µg per lane) is shown using anti-GFP antibody or anti-Myc antibody in 
the upper panel.  Co-immunoprecipitation utilizing anti-GFP antibodies (middle panel) or anti-Myc 
antibodies (bottom panel) used 500 µg of input lysate (representative of 2 experiments). 
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Figure S5:  Yeast 3-hybrid assay to assess binding between the 1105ERAQLL and AP-3. 

To test whether the 1105ERAQLL motif of ATP8A1 binds to AP-3, we employed a previously described, 
highly sensitive yeast 3-hybrid assay (1) in which the GAL4 transcription factor activation domain was 
fused to the g, a or d subunit of AP-1, -2, or -3 respectively and co-expressed in cerevisiae H57c cells with 
the corresponding s subunit (s1 for AP-1, s2 for AP-2 and s3A for AP-3) and the GAL4 DNA binding 
domain (DBD) fused to the C-terminal cytoplasmic domain (residues 1071 to 1164) of human ATP8A1. 
Whereas the positive control – the Gal4 DBD fused to the cytoplasmic domain of mouse tyrosinase 
(mTyr) (2, 3) yielded a robust interaction as detected by growth of yeast on plates lacking histidine, 
neither the negative control (OCA2-AA123N;(3)) nor WT or dileucine mutant variants of the ATP8A1 
cytoplasmic domain yielded a positive interaction.  
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Figure S6:  Endogenous ATP8A1 function in MLE15 cells enhances cytosolically exposed PtdSer 
at subcellular membranes.   

A.  CRISPR strategy for generating MLE15/WT-DATP8A1 and MLE15/DAP3-DATP8A1.  
(A) Genomic PCR products and sequencing demonstrating the deletions induced by the double CRISPR-
mediated Cas9 cleavages.  Gel electrophoresis of genomic PCR products from MLE15/WT and 
MLE15/DAP3 starting cells, and two clones demonstrating successful deletions of 29 bp in exon 1 of 
Atp8a1.  

B. RT-PCR products and sequencing demonstrating induced by the double CRISPR-mediated Cas9 
cleavages expressed in Atp8a1 RNA.  Gel electrophoresis of genomic PCR products from MLE15/WT 
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and MLE15/DAP3 starting cells, and two clones demonstrating successful deletions of 29 bp in exon 1 of 
Atp8a1. 

C.  Live cell imaging of MLE15/WT, MLE15/DAP3, MLE15/DATP8A1, and MLE15/DAP3-DATP8A1 cells.  
Representative pseudocolor images captured from live cell imaging of MLE15/WT, MLE15/DAP3, 
MLE15/DATP8A1, and MLE15/DAP3-DATP8A1 cells expressing the biosensor mCherry-LactC2 
(pseudocolor Green) and GFP-Rab11A (pseudocolor Magenta; scale bars = 10 microns).  Live cell 
imaging was obtained using identical microscope settings, and still images were derived from the first 
frame to avoid photobleaching. 

D. Colocalization correlation between GFP-RAB11A (pseudocolor Magenta) and mCherry-LactC2 
(pseudocolor Green) acquired from images described in S6C (n=5-8 cells per group, mean ± standard 
error).  The method used for colocalization was adapted from Dennis et al (4) (see Methods). 
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Figure S7:  Activation of YAP in MLE15/DAP3 cells hastens scratch wound healing in an ATP8A1-
dependent manner. 
 
A. Composite of phase contrast images depicting scratch wound of confluent monolayer of 
MLE15/DATP8A1, MLE15/WT, MLE15/DAP3, and MLE15/DAP3-DATP8A1 cells immediately post-
wounding and 12 h after wounding. 
 
B. Time course of wound closure after scratch wounding (see Methods).  MLE15/WT cells ± ATP8A1 and 
MLE15/DAP3 cells ± ATP8A1 were monitored over 24h as they closed the wound depicted in panel A.  
MLE15/DAP3 cells closed a scratch wound faster than MLE15/WT cells (1h p<.05, 2-4h p<.001, and 7-
24h p<.0001; asterisks not provided on graph).  Loss of ATP8A1 slowed closure in both MLE15/WT and 
MLE15/DAP3 cells (n= 3 experiments with triplicate samples at each timepoint; *p<.05, **p<.01, ***p<.001 
with the asterisks placed between the MLE15/WT and MLE15/DATP8A1, or MLE15/DAP3 and 
MLE15/DAP3-DATP8A1 cells, respectively). 

 
C. Proliferation of MLE15/WT, MLE15/DAP3, MLE15/DATP8A1, and MLE15/DAP3-DATP8A1 cells as 
measured by BrdU incorporation (see Methods) over 8 h.  No significant differences were detected (n = 2 
experiments performed with quadruplicate samples).   
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Figure S8:  Rescue of YAP activation by restoring AP-3 in MLE15/DAP3 cells.   

Left panel:  Composite representative immunoblot from MLE15/WT and MLE15/DAP3 cells expressing 
from empty vector, and MLE15/DAP3 cells expressing Ap3b1-HA, as described in Figure 2 
(representative of 3 biologic comparisons).   

Right panel:  RT-qPCR for Ajuba, Ankrd1, Axl, Birc5 RNA (n= triplicate samples of 3 biologic replicates; 
n=3; box and whiskers plot as described in Figure 7A; *p < .05, **p < .01, ***p < .001, ****p < .0001). 
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Supplemental Tables 
 
Table S1:  gRNA sequences used for inactivating Ap1g1 and Atp8a1. 
 

 
 
 
 
Table S2:  Primers used to construct Atp8a1 mutations of dileucine motifs. 
 

 
  

 Supplemental Table 1:  gRNA sequences for inactivating AP1g1 and ATP8A1 

Target	
Gene	

gRNA	name	 gRNA	Sequence	(5’®3’)	 Genomic	PCR	primers	(5’®3’)	

Ap1g1	 Ap1g1-gRNA#3	 CACCGATCACTGTAAGAGAAAAAG Forward	 GAAACTTTGTTAGGCTGCTTCG 

Ap1 g	1-gRNA#5	 CACCGTGCAGAGATCTTGCGGGAG Reverse	 CTTTCAAAAATAAGTGCCCTGG 
ATP8a1	 ATP8a1-gRNA#5	 CACCGACTCACCTTCCGCGCGCGAG Forward	 GTGACAGGTGCAGGGTCC 

ATP8a1-gRNA#14	 CACCGCTGTCGAGATGCCGACCATG Reverse GGTGTAGATGGGATGAGGTGTC 

 
 
Supplemental Table 2. Primers used to make ATP8a1 mutants in dileucine motifs. 
 

Mutant  1st PCR 2nd PCR 
5’ fragment 3’ fragment 

AA1 F TACACTGGACATGACACCAAG F CAGGAAGAAAGATATGAAGCGGCCAATGTCTTGGAGTTTACC F TACACTGGACATGACACCAAG 
R GGTAAACTCCAAGACATTGGCCGCTTCATATCTTTCTTCCTG R ATTAGCTGCCTGCAGGCCTTCATT R ATTAGCTGCCTGCAGGCCTTCATT 

AA2 F AATGAAGGCCTGCAGGCAGCTAAT F CTGACCGAGAGGGCGCAAGCGGCCAAGAACGTCTTTAAGAAG F AATGAAGGCCTGCAGGCAGCTAAT 
R CTTCTTAAAGACGTTCTTGGCCGCTTGCGCCCTCTCGGACAG R GCGGATCCCGGGTCACCATTC R GCGGATCCCGGGTCACCATTC 

E1105D F AATGAAGGCCTGCAGGCAGCTAAT F GGAAAAAGCCTGACCGACAGGGCGCAACTGCTCAAG F AATGAAGGCCTGCAGGCAGCTAAT 
R CTTGAGCAGTTGCGCCCTGTCGGTCAGGCTTTTTCC R GCGGATCCCGGGTCACCATTC R GCGGATCCCGGGTCACCATTC 

Q1108A F AATGAAGGCCTGCAGGCAGCTAAT F CTGACCGAGAGGGCGGCACTGCTCAAGAACGTCTTT F AATGAAGGCCTGCAGGCAGCTAAT 
R AAAGACGTTCTTGAGCAGTGCCGCCCTCTCGGTCAG R GCGGATCCCGGGTCACCATTC R GCGGATCCCGGGTCACCATTC 
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Supplemental Videos 
 
Supplemental Videos SV1-SV4:  Live cell imaging MLE15/WT (SV1), MLE15/DAP3 (SV2), 
MLE15/DATP8A1 (SV3), and MLE15/DAP3-DATP8A1 (SV4) cells expressing mCherry-ABCA3 and the 
biosensor GFP-LactC2 used to generate still images in Figure 7.  
 
Supplemental Videos SV5-SV8:  Live cell imaging MLE15/WT (SV5), MLE15/DAP3 (SV6), 
MLE15/DATP8A1 (SV7), and MLE15/DAP3-DATP8A1 (SV8) cells expressing GFP-RAB11 
(pseudocolored Magenta) and the biosensor mCherry-LactC2 (pseudocolored Green) used to generate 
still images in Supplemental Figure 6.  
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