Supporting Information

Synthesis of chitosan/diatomite composite as an advanced delivery system for ibuprofen

drug; equilibrium studies and the release profile

Sherouk M. Ibrahim *†, ‡, May N. Bin Jumah ***, Sarah I. Othman *, Reem Saleh Alruhaimi*, Nora Al-Khalawi *, Yasser F. Salama ⁵, Ahmed A. Allam [&], Mostafa R.

Abukhadra*†.§

[†] Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
[‡] Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef city
^{*}Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
[§] Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef city, Egypt
[§] Department of Zoology, Faculty of Science, Beni-suef University, Beni-Suef, 65211, Egypt

Content

1. Table S1. the representative equations of the studied kinetic and isotherm model and their parameters......S2

Table S1. The representative equations of the studied kinetic and isotherm models in their linear and nonlinear forms

Kinetic models		
Model	Linear equation	Parameters
Pseudo-first-order	$q_t = q_e \left(1 - e^{-k_1 \cdot t}\right)$	$q_t \ (mg/g)$ is the $\ adsorbed \ ions \ at \ time \ (t), \ and \ K_1$ is the rate constant of the first-order adsorption (min^{-1})
Pseudo-second-order	$\mathbf{q}_t = \frac{q_e^2 k_2 t}{1 + q_e k_2 t}$	qe is the quantity of adsorbed ions after equilibration (mg/g), and $K_{\rm 2}$ is the model rate constant (g/mg min).
Intra-particle diffusion	$q_t = kt^{0.5} + C$	$k_{\rm p}$ (mg g 1 min $^{-0.5}$) is the intraparticle diffusion rate constant and C is the intercept of the line
Isotherm models		
Model	Equation	Parameters
Langmuir	$q_e = \frac{q_{max} b \mathcal{C}_e}{(1 + b \mathcal{C}_e)}$	C_e is the rest ions concentrations (mg/L), q_{max} is the theoritical maximum adsorption capacity (mg/g), and <i>b</i> is the Langmuir constant (L/mg)
Freundlich	$q_e = K_f C_e^{1/n}$	$K_{\rm F}$ is the constant of Freundlich model related to the adsorption capacity and n is the constant of Freundlich model related to the adsorption intensities
Dubinin–Radushkevich	$q_e = q_m e^{-\beta \varepsilon^2}$	β (mol²/KJ²) is the $$ D-R constant, ϵ (KJ²/mol²) is the polanyil potential, and q_m is the adsorption capacity