PLOS ONE

Promiscuous specialists: Host specificity patterns among generalist louse flies --Manuscript Draft--

Unfunded studies

Enter: The author(s) received no specific funding for this work.

Funded studies

- Enter a statement with the following details: • Initials of the authors who received each
- award
- Grant numbers awarded to each author
- The full name of each funder
- URL of each funder website
- Did the sponsors or funders play any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript?
- NO Include this sentence at the end of your statement: The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
- YES Specify the role(s) played.

* typeset

Competing Interests

Use the instructions below to enter a competing interest statement for this submission. On behalf of all authors, disclose any [competing interests](http://journals.plos.org/plosone/s/competing-interests) that could be perceived to bias this work—acknowledging all financial support and any other relevant financial or nonfinancial competing interests.

This statement is required for submission and will appear in the published article if the submission is accepted. Please make sure it is accurate and that any funding sources listed in your Funding Information later in the submission form are also declared in your Financial Disclosure statement.

View published research articles from [PLOS ONE](http://journals.plos.org/plosone/) for specific examples.

The authors have declared that no competing interests exist.

Format for specific study types

Human Subject Research (involving human participants and/or tissue)

- Give the name of the institutional review board or ethics committee that approved the study
- Include the approval number and/or a statement indicating approval of this research
- Indicate the form of consent obtained (written/oral) or the reason that consent was not obtained (e.g. the data were analyzed anonymously)

Animal Research (involving vertebrate

animals, embryos or tissues)

- Provide the name of the Institutional Animal Care and Use Committee (IACUC) or other relevant ethics board that reviewed the study protocol, and indicate whether they approved this research or granted a formal waiver of ethical approval
- Include an approval number if one was obtained
- If the study involved non-human primates, add additional details about animal welfare and steps taken to ameliorate suffering
- If anesthesia, euthanasia, or any kind of animal sacrifice is part of the study, include briefly which substances and/or methods were applied

Field Research

Include the following details if this study involves the collection of plant, animal, or other materials from a natural setting: • Field permit number

• Name of the institution or relevant body that granted permission

Data Availability

Authors are required to make all data underlying the findings described fully available, without restriction, and from the time of publication. PLOS allows rare exceptions to address legal and ethical concerns. See the [PLOS Data Policy](http://journals.plos.org/plosone/s/data-availability) and [FAQ](http://journals.plos.org/plosone/s/data-availability#loc-faqs-for-data-policy) for detailed information.

Yes - all data are fully available without restriction

17

¹⁸ Ectoparasites such as louse flies (Diptera: Hippoboscidae) have tendency for host ¹⁹ specialization, which is driven by adaptation to host biology as well as competition 20 avoidance between parasites of the same host. However, some louse fly species, 21 especially in genera attacking birds, show wide range of suitable hosts. In the presented 122 study, we have surveyed the current status of bird attacking louse flies in Finland to ²³ provide comprehensive host association data to analyse the ecological requirements of ²⁴ the generalist species. A thorough sampling of 9342 birds, representing 134 species, $\overline{\underline{\bullet}}$

recovered 576 specimens of louse flies, belonging to six species: *Crataerina hirundinis*, 25 *C. pallida, Ornithomya avicularia*, *O. chloropus*, *O. fringillina* and *Ornithophila* ²⁶ ²⁷ *metallica*. Despite some overlapping hosts, the three *Ornithomya* species showed a 28 notable pattern in their host preference, which was influenced not only by the host size 29 but also by the habitat and host breeding strategy. We also provide DNA barcodes for $\frac{30}{\sqrt{1-\pi}}$ ost Finnish species of Hippoboscidae, which can be used as a resource for species 31 identification as well as metabarcoding studies in the future.

32

³³ Introduction

34

³⁵ Parasites depend on their hosts as their principal ecological niche as well as source of $10³⁶$ the essential resources (1). Due to this intimate relationship, parasites commonly tend 137 to specialize on the host, adapting to the host defences and ecology. Due to the selection ³⁸ pressures and short generation time, parasites are also prone to evolve rapidly, helping t^{39} them to circumvent potential evolutionary advantages that the host has gained (2) and 40 facilitating the specialization process. Parasitic lineages, especially endoparasites, are ⁴¹ characterized by long branches in molecular phylogenies (e.g. $(3-5)$), for which reason ⁴² they often constitute the "rogue" taxa in them. While several non-mutually exclusive 43 explanations for this pattern have been suggested, for mitochondrial COI gene, this is likely at least partly explained as being an adaptation to anoxic environment (5). 44 ⁴⁵ Additional pressure for host specialization is driven by direct or interference ⁴⁶ competition between different parasite species occupying the same host (6) . For ⁴⁷ example, spatial segregation, which can allow the parasites to coexist on the same host can ultimately lead to intrahost speciation, as seen in *Dactylogyrus* gill parasites(7) and ⁴⁸ ⁴⁹ human lice (8). Host niches can also be partitioned temporally, as is the case with a number flea (Siphonaptera) species on small mammals, such as *Peromyscopsylla* spp. ⁵⁰ living on e.g. bank voles (*Myodes glareolus* (Schreber)) during winter months and ⁵¹ ⁵² *Ctenopththalmus* spp. during spring/summer months (9). Parasites can also avoid ⁵³ competition by specializing on different aspects of the host biology. For example, the ⁵⁴ parasites can attack different developmental stages of the host, or in different biotopes or context, such as the ant decapitating scuttle flies (*Pseudacteon*, Diptera: Phoridae), ⁵⁵ where some species attack while foraging ants and some ants at the nest (10). 56

57

Louse flies (Diptera: Hippoboscidae) are obligate ectoparasites of birds and mammals, 58 belonging to the same superfamily (Hippoboscoidea) with tsetse flies (Glossinidae). 59 60 Both families are hematophagous and viviparous. As of note, bat flies (Nycteribiinae, 61 Streblinae) have been treated as independent families, but are in fact embedded within the other Hippoboscidae taxa (11). Adults of Hippoboscoidea species are long lived, 62 63 giving birth to a full-grown or pupariated larva, one at the time but few to dozen during the female's lifetime. Of the 45 European species of Hippoboscidae, only 12 have been $\frac{65}{100}$ recorded in Finland (12) and of these, seven attack birds: *Crataerina hirundinis* (Linnaeus), *C. pallida* (Olivier), *Olfersia fumipennis* (Sahlberg), *Ornithomya* ⁶⁶ *avicularia* (Linnaeus), *O. chloropus* Bergroth, *O. fringillina* Curtis and *Ornithophila* ⁶⁷ ⁶⁸ *metallica* (Schiner). Three of the species are highly specialized, *C. hirundinis* on barn swallow (*Hirundo rustica* Linnaeus), *C. pallida* on common swift (*Apus apus* ⁶⁹ ⁷⁰ (Linnaeus)) and *O. fumipennis* on osprey (*Pandion haliaetus* (Linnaeus)), while the 71 remaining four have relatively wide host range, each attacking dozens of bird species (13, 14). 72

 14 In the presented study, we sought to survey the current status of bird attacking louse $\frac{75}{10}$ flies in Finland and provide comprehensive host association data to analyse the ⁷⁶ ecological requirements of the generalist species as well as DNA barcodes for the $\frac{77}{7}$ Finnish Hippoboscidae to facilitate their identification in the future. This required the ⁷⁸ concentrated effort from 36 bird ringers, who recorded the abundance of bird louse flies $\frac{79}{10}$ from 9342 birds, representing 134 species. A total of 576 specimens, belonging to six species of bird flies were sampled. From these *Crataerina hirundinis* and *C. pallida,* 80 were found only on their known specific hosts, whereas *Ornithomya avicularia*, *O.* ⁸¹ ⁸² *chloropus* and *O. fringillina* were found on 68 different bird species. The sixth species, ⁸³ *Ornithophila metallica* was represented only by one specimen. Despite some ⁸⁴ overlapping hosts, the three *Ornithomya* species showed a notable pattern in their host preference. To explain this pattern, we were interested (i) what species' traits of hosts, 85 ⁸⁶ could explain the variation in abundance of bird flies and (ii) do species' traits of hosts 87 differ between different generalist bird fly species. We predict that body size of host, ⁸⁸ habitat preference, migration strategy, nest location and diet could explain the variation ⁸⁹ in species and abundance of bird flies in different host species of birds. The obtained 90 DNA barcodes work well for separating the species and can be used as a resource for ⁹¹ species identification as well as metabarcoding studies in the future.

92

- ⁹³ Materials and Methods
- 94

⁹⁵ Data collection and filtering

96

⁹⁷ The data consisted two types of information: i) information if a bird has had bird fly or ⁹⁸ not and ii) information what bird fly species certain bird species had been carrying.

 100 Voluntary bird ringers were collecting information on do the ringed birds have bird 101 flies when handling the bird. The ringers also identified the age of the bird if possible (young born during the same year or older). That data was collected during years 2008- 102 103 2019, but most of the data origin from 2013 onwards when new data base system was ¹⁰⁴ launched allowing an easy data entry. Altogether 36 ringers participated the data ¹⁰⁵ collection during these years and marked information from 9342 birds (134 species 72 ¹⁰⁶ of which had bird flies; **Table S1, S2,** \mathbb{S}^3 . However, only some of the ringers have also ¹⁰⁷ entered data from birds which did not show signs of bird flies and thus this data could 108 not be used to study the prevalence among hosts. In addition, some bird ringers 109 collected the bird flies from the birds in plastic vials with 90% ethanol for further μ ¹¹⁰ investigation. This included altogether samples from 520 birds covering 62 bird ¹¹¹ species. We also determined the louse flies collected from injured birds treated in ¹¹² Korkeasaari Zoo in Helsinki. As these specimens were collected unsystematically, they ¹¹³ were not included in the statistical analyses, but are presented in **Table S2** to ¹¹⁴ supplement the host records of Finnish louse fly species. All the specimen records with 115 collection, locality and host data are uploaded to the Finnish Biodiversity Info Facility database at [www.laji.fi.](http://www.laji.fi/) 116

117

 118 We calculated prevalence of bird flies in the data of each ringer and excluded those ¹¹⁹ ringers which had very high prevalence (> 0.5). The aim of this filtering was to remove 120 data from the ringers who have not actively marked zero observations, which are μ ¹²¹ important for prevalence analyses. After this filtering, the data included 8352 ¹²² observations (130 bird species 48 of which had had bird flies; **Table S1**) collected by ¹²³ 13 more dedicated ringers. Each observation was classified into three different time

- 124 periods: i) late spring and early summer: May and June, iii) late summer and early ¹²⁵ autumn: July-September and iii) late autumn – early spring: October-April.
- 126

¹²⁷ Species determination and DNA barcoding

128

¹²⁹ The louse flies included in the study were determined using the relevant literature and ¹³⁰ identification keys (13, 14). The $C(\mathcal{U})$ NA barcode region was sequenced from one to ¹³¹ three specimens of each of the six bird louse flies collected in this study, together with other louse fly specimens, representing all but two species found from Finland (**Table** ¹³² ¹³³ 1). The missing species were the sheep ked (*Melophagus ovinus* (L.)), a species that is probably close to extinction due to improved animal husbandry and veterinary ¹³⁴ practises, and the osprey specialist *Olfersia fumipennis*. DNA sequencing of the ¹³⁵ ¹³⁶ barcode fragment of mitochondrial COI gene was carried out with \overline{P} he framework of ¹³⁷ the national campaign of Finnish Barcode of Life [\(https://www.finbol.org/\)](https://www.finbol.org/). DNA ¹³⁸ sequencing was conducted in the Centre for Biodiversity Genomics (CGB) at the ¹³⁹ University of Guelph, Canada, following protocols outlined in deWaard et al. (15). All 140 collection, taxonomic and sequence data as well as specimen photographs were d^{141} deposited in the Barcode of Life Data Systems (BOLD;(16)) and are available throught ¹⁴² the public dataset of DS-FINHIPPO at [dx.doi.org/XXXX/DS-FINHIPPO,](https://doi.org/10.5883/DS-LECARY) including ¹⁴³ GenBank accession numbers. Calculation of sequence divergences were conducted under Kimura 2-parameter model for nucleotide substitution using BOLD Barcode Gap ¹⁴⁴ ¹⁴⁵ analysis. A Neighbor-Joining tree was built similarly under Kimura 2-parameter model. 146

¹⁴⁷ Statistical analyses

¹⁴⁹ To investigate which factors affect the abundance of bird flies in different species, we b build GLMM with Poisson distribution. The response variable was number of bird flies ¹⁵¹ in a given bird individual. The explanatory variables were age of bird (1 = adult, 0 = 152 unknown, -1 young), time period when the sampling was done (see the classification of ¹⁵³ the four time periods above), latitude coordinate of the record, breeding habitat class, ¹⁵⁴ migration strategy, nest site of the host and was the host predator or not (diet). Body ¹⁵⁵ size of birds was strongly correlated with the diet and was thus not included to the ¹⁵⁶ model. We used the diet as a variable because we expected that predator species would h^{157} have higher number of flies, which may have been received from the prey species. The h_{158} habitat classes were i) farmland, ii) forest, iii) mires and mountains, iv) scrubland and ¹⁵⁹ v) wetland according to Väisänen et al. (17). The reader should note that the birds were ¹⁶⁰ not necessarily sampled in their breeding habitats but also during the migration when $t¹⁶¹$ the habitat type of the sampling site can differ from the breeding class. The migration ¹⁶² strategy classes of species were i) resident, ii) short-distance migrant (wintering mainly $\frac{163}{163}$ in Europe or Mediterranean) and iii) long-distance migrant (wintering in tropical areas) $164 \text{ according to Saurola et al. (18) and Valkama et al. (19).}$ The nest site classes of species were i) on land, ii) openly on trees or iii) on cavities according to Cramp et al. (20). 165 ¹⁶⁶ Hawks and owls were classified as predators. Latitudes of the sampling sites were ¹⁶⁷ centred before analyses. The explanatory variables did not show any clear collinearity ¹⁶⁸ (pearson correlation, $|r|<0.32$). The species was added as a random factor. Because ¹⁶⁹ closely related species may have similar responses due to common ancestry, we took 170 the phylogeny of the species into account in the random structure of the model. We downloaded one phylogeny tree of the study species from www.birdtree.org (21). 171 ¹⁷² The modelling was conducted using function MCMCglmm (22) in R version 3.6.0 (23) 173 using 1,030,000 iterations, where first 30,000 were used for "burning in" and thinning

interval was 1000. We used the following priors (R-structure: $V=1$, nu=0.00, G-174 ¹⁷⁵ structure: V=1, nu=0.02). We investigated the trace plots of the model and found the ¹⁷⁶ chains randomly distributed.

177

 178 In the later analyses, we investigated did the species traits of the host species differ between the three main generalist bird fly species (*Ornithomya avicularia*, *Ornithomya* ¹⁷⁹ ¹⁸⁰ *chloropus* and *Ornithomya fringillina*). The used traits were habitat of species (see as ¹⁸¹ above), migration strategy (same as above), nest site (same as above) and body mass. ¹⁸² The habitat classes of mires and mountains (n=3 species) and scrubland (n=3) were ¹⁸³ however merged to farmland due to very small samples sizes in these groups. These 184 three habitats formed a general open habitat type category. Each of these four variables ¹⁸⁵ were tested separately. The three first categorical variables were tested using chi-square ¹⁸⁶ (chisq.test function in R) test based on the presence or absence of the fly in a given host ¹⁸⁷ species in the whole data. The body mass was tested using linear regression (lm ¹⁸⁸ function in R), where the log-transformed mass of the host was explanatory variable ¹⁸⁹ and the bird fly species was explanatory variable.

190

¹⁹¹ Results

192

¹⁹³ We obtained systematic data of presence/absence of louse flies on 134 bird species. A 194 total of 576 bird fly specimens were collected by the bird ringers, representing six louse fly species (**Table S1, S2,** $\overline{\mathbb{S}^3}$). *Crataerina hirundinis* (N=2) and *C. pallida* (N=21)*,* 195 were observed only from their known hosts, *Hirundo rustica* and *Apus apus*, 196 respectively. One *Ornithophila metallica* specimen was found on spotted flycatcher ¹⁹⁷ ¹⁹⁸ (*Muscicapa striata* (Pallas)) captured for ringing in Siikajoki, June 4, 2011. This is the

second record for the species from Finland. The remaining three generalist species, *Ornithomya avicularia* (N=105), *O. chloropus* (N=339) and *O. fringillina* (N=108), 200 201 showed considerable variation in their host preference, totalling 67 different bird 202 species, when the host records from Korkeasaari zoo bird shelter are taken into account (**Table S2, S3, Figure 1A**). 203

204

²⁰⁵ The abundance these generalist louse flies (from 0 to 5) was explained by habitat of the species, predatory class, time period (**Table 2**) and latitude. Species breeding in mires ²⁰⁶ 207 and mountains had significantly fewer bird flies than species breeding in farmlands, ²⁰⁸ and there was also similar tendency in birds breeding in wetlands. Predators had ²⁰⁹ significantly higher number of bird flies than non-predatory species. Bird flies were 210 more abundant in July-September period compared to May-June period, whereas ²¹¹ abundances were smaller during October-April (Table 2). Abundances of flies also ²¹² increased slightly with increasing latitude (**Table 2**).

213

²¹⁴ Host species of *O. fringillina* (mean 14 g) had clearly smaller body size than hosts of ²¹⁵ *O. avicularia* (mean 311 g; t = -4.00, P < 0.001), but interestingly hosts of *O. chloropus* ²¹⁶ (mean 235 g) did not differ from *O. avicularia* (t = -0.90, P = 0.368), although the latter has been generally associated with larger hosts*.* The breeding habitats of hosts also ²¹⁷ ²¹⁸ differed significantly between louse fly species ($\chi^2 = 10.99$, df = 4, P = 0.027; **Table** 3). *O. fringillina* avoided hosts that were breeding in open habitat types, but were 220 preferring hosts breeding in forest habitats, whereas opposite was the case in O . 221 *chloropus*. All three bird fly species tend to avoid hosts breeding in wetland habitats. 222 There was also a tendency that nest site of birds would explain host species selection ²²³ of different bird fly species ($\chi^2 = 8.38$, df = 4, P = 0.079; **Table 4**). *O. avicularia* tend to have more often hosts breeding openly on trees and avoidance for species breeding on the ground, whereas opposite was the case in *O. chloropus. O. fringillina* showed ²²⁶ weak preference towards host species breeding in cavities and avoidance towards species breeding openly on trees. The migratory behaviour of hosts did not differ between bird fly species (χ^2 = 5.29, df = 4, P = 0.259; **Table 5**)

 Sequecing of DNA barcode fragment of COI gene indicated all included ten louse fly? species having a highly distinct DNA barcode (**Figure 1B**). The single specimen of the sheep ked (*Melophagus ovinus*) analyzed by us failed to yield any sequence data, but 233 public BOLD records of it indicate it also having a distinct barcode as well. Therefore, of Finnish louse flies, only rarely encountered *Olfersia fumipennis* fully lacks the barcode information in the BOLD reference library. The mean of minimum genetic divergence between the species was 8.34% and at minimum, the two species differed from each other by 6.24% (*Ornithomya hirundinis* vs. *O. fringillina*). While ²³⁸ intraspecific variability could not be assessed for four species as represented by $\frac{239}{9}$ singletons only, it never exceeded 1%. Overall, this result suggest a wide barcode gap to exist between the Finnish louse flies. All species also were assigned to their own BINs (Barcode Index Number) as well.

Discussion

²⁴⁴ Host-parasite coevolution pushes parasites to specialize by adapting them to the host 245 defence mechanisms and ecological niche (2). As an additional factor, competition between parasites of the same host can further drive niche specialization within and ²⁴⁷ between hosts $(1, 6)$. Louse flies are obligate ectoparasites, many of which show considerable specialization to single or few hosts. In general, wingless or short-winged 249 (stenopterous) species of louse flies are highly specialized, including the swift and swallow parasites of the genus *Crataerina.* In contrast, the species of *Ornithomya* have ²⁵⁰ 1251 fully developed wings and many of the known species have relatively broad host range. ²⁵² Compared to the more specialized winged louse flies, such as *Lipoptena*, the ²⁵³ *Ornithomya* species are also active fliers, which could be and adaptation to short lived or otherwise risky host niche. Ability to change host individual combined with ²⁵⁴ 255 flexibility with the host species is likely to be a part of risk avoidance strategy. Unlike ²⁵⁶ with most other parasitic insects, such as fleas, whose larvae occupy completely 257 different niche as detritus-feeders (9), the survival of the female louse fly and its 258 offspring is coupled to the extreme. As the female louse fly nurtures only one larva at ²⁵⁹ the time, the number of produced offspring increases with the longevity of the female 260 and is unparallel to most insects, where the adult stage is ephemeral compared to the larval stage, and number of the offspring as well as their mortality is large. 261

262

²⁶³ The purpose of our survey of bird parasitic louse flies was twofold. The first was to ²⁶⁴ provide a systematic overview of the current status of the fauna, including the ²⁶⁵ monitoring of potential range expansion of species under the current climate change. In ²⁶⁶ comparison, in central Europe alone there are twice as many species of bird infesting ²⁶⁷ louse flies than have been recorded from Finland (12, 24). We were able to sample all ²⁶⁸ bird louse fly species previously known from Finland, except for the osprey specialist ²⁶⁹ *Olfersia fumipennis*. Disappointingly, the only louse fly collected from an osprey was *O. avicularia* (**Table S2**). The last record of *O. fumipennis* from Finland is from 1884, ²⁷⁰ 271 which would qualify it as regionally extinct. However, because ospreys are not uncommon in Finland, *O. fumipennis* might be possible to rediscover by more ²⁷²

systematic search. As no conclusions about the species current status can be drawn, *O.* ²⁷³ *fumipennis* is listed as DD in the latest Finnish Red List (25).

275

274

²⁷⁶ Interestingly, also no new species to Finland were recovered among the sampled 576 louse fly specimens. For example, we checked carefully all *Ornithomya* specimens ²⁷⁷ collected from barn swallows as *Ornithomya biloba* Dufour, a barn swallow specialist, ²⁷⁸ ²⁷⁹ is present in neighbouring Sweden (13), but these all turned out to be the common *O*. *avicularia* or *O. chloropus* (**Table S3**). Similarly, migratory birds frequently transport ²⁸⁰ ²⁸¹ louse fly species with widespread southern or cosmopolitan distribution, such as ²⁸² *Pseudolynchia canariensis* (Macquart) or *Ornithoica turdi* (Latreille). The only such example was a single *Ornithophila metallica* specimen was found on spotted flycatcher, ²⁸³ ²⁸⁴ representing the second record for this Ethiopian-Oriental species from Finland. Some 285 louse fly species would require targeted effort to discover. For example, the grey heron ²⁸⁶ (*Ardea cinerea* Linnaeus) has become relatively common in southern Finland during the past two decades and is a host for *Icosta ardeae* (Macquart). ²⁸⁷

288

²⁸⁹ The second goal of the survey was to obtain comprehensive host data for the common ²⁹⁰ generalist *Ornithomya* species and use it to dissect the ecological requirements of the different species. Despite the wide and overlapping host ranges among *Ornithomya*, a ²⁹¹ 292 general pattern of host preference has been known to exist between the different species ²⁹³ $(13, 24)$. For example, *O. fringillina* is almost unexceptionally found only on small host ²⁹⁴ birds. The question of host preference is naturally complicated by the fact that association of a mobile louse fly species on a bird species does not indicate a true host-295 ²⁹⁶ parasite relationship. Predatory birds are likely to obtain parasites from their prey and t^{297} the flies might probe several false candidates in search for their specific host. In fact, t^{298} this was the case in our study as well, where the predatory birds had significantly larger numbers of louse flies (**Table 2**). However, our analysis reveals some general patterns 299 of host bird association among the Finnish *Ornithomya* species (**Tables 2, 3** and **4,** 300 ³⁰¹ **Figure 1A**) Notably, *O. avicularia* prefers largest, tree breeding host bird species, ³⁰² whereas *O. chloropus* attacks similar sized ground breeding hosts in open habitats. In ³⁰³ contrast, *O. fringillina* tend to prefer small, cavity breeding forest birds. Overall species 304 breeding in northern open habitats had least number of flies, although the louse fly ³⁰⁵ prevalence in generally increased towards north with the peak time for the flies being late summer (**Table 2**). Apart for the *Ornithophila metallica*, all observed species can ³⁰⁶ b be considered residential in Finland, overwintering as puparia and attacking the birds during the summer season, regardless of their migratory status (**Table 5**). ³⁰⁸

309

³¹⁰ DNA barcodes work well for the louse flies and the sequence differences between the taxa are markedly big (**Figure 1B)**. No cases of barcode sharing between species were ³¹¹ 312 detected, and despite rather scarce genetic sampling, it appears very unlikely given the ³¹³ wide gap between intra- and interspecific variation. This observation suggests that ³¹⁴ DNA barcoding provides as an accurate tool to identify species of louse flies. As of note, Hippoboscidae remain scarcely sampled in the Barcode of Life Database (BOLD; ³¹⁵ [https://www.boldsystems.org/\)](https://www.boldsystems.org/), probably because they are highly specialized and ³¹⁶ 317 usually only found if specifically searched from their hosts. For example, at the writing of this manuscript there is only one *Ornithophila metallica* sample in the database from ³¹⁸ ³¹⁹ South Africa, which matches the Finnish specimen 98.9%. Reference DNA barcodes ³²⁰ not only provide a determination tool for non-specialist, but also facilitate modern 321 biodiversity surveys, such as metabarcoding studies. As an example, it was possible to ³²² detect rarely observed bat louse fly *Nycteribia kolenatii* among multiple prey species

of Daubenton's bat (*Myotis daubentonii* (Kuhl)) in a study analyzing the diet of the bats ³²³ 324 from fecal DNA (26). One aspect that we could not reliably assess is whether the ³²⁵ generalist species of *Ornithomya* could be with cryptic specialists 'hiding' among them. 326 Our sampling does not suggest this being the case, but we included only 3-6 specimens ³²⁷ of the generalist *Ornithomya*, which is too little to assess this possibility confidently. Other studies have demonstrated putative generalist parasitic insects actually ³²⁸ 329 comprising many morphologically highly similar species of generalists (27-31). Further ³³⁰ studies are likely to reveal a plenty of cases of cryptic diversity among seemingly generalist species. ³³¹

332

³³³ We conclude that although some species can be targetedly searched, considerable effort ³³⁴ is needed to survey louse fly fauna and most new species are found by accident. Despite their wide host ranges, the different *Ornithomya* species show clear pattern of ³³⁵ ³³⁶ specialization to host biology and biotope, which is likely to result from competition ³³⁷ avoidance. DNA barcodes work well for Hippoboscidae and there are considerable distances between taxa, as is typical for parasites. ³³⁸

339

Acknowledgements ³⁴⁰

341

Eero Vesterinen, Thomas Lilley for Nycteriibae. Ringers. Dr. Tomi Trilar for ³⁴² ³⁴³ *Hippobosca equina* specimens. We are grateful to the Finnish Barcode of Life ³⁴⁴ campaign and its funders since 2011, namely the Kone Foundation, the Finnish Cultural ³⁴⁵ Foundation, and the Academy of Finland (through FinBIF research infrastructure ³⁴⁶ project), for making sequencing analyses possible. We are also grateful to the staff of ³⁴⁷ Centre for Biodiversity Genomics (University of Guelph, Canada) for continuous

- support with barcoding samples of the FinBOL initiative. AL received funding from ³⁴⁸
- 349 Academy of Finland (grants 323527 and 329251).

References ³⁵⁰

- ³⁵³ 1. Poulin R, Krasnov BR, Mouillot D, Thieltges DW. The comparative ecology $\frac{354}{}$ $\frac{354}{2011 \cdot 366(1576) \cdot 2370}$ oo and biogeography of parasites. Philos Trans R Soc Lond B Biol Sci. $\frac{355}{356}$ 2011;366(1576):2379-90.
- ³⁵⁶ 2. Kochin BF, Bull JJ, Antia R. Parasite evolution and life history theory. PLoS
³⁵⁷ Biol. 2010;8(10);91000524 $Biol. 2010; 8(10):e1000524.$
358 2 Bouth M, Blaidour G, Brober
- 3.358 3. Bernt M, Bleidorn C, Braband A, Dambach J, Donath A, Fritzsch G, et al. A 3.59 comprehensive analysis of bilaterian mitochondrial genomes and phylogeny.
360 Mel Phylogenet Fyel, $2013:60(2):352,64$ 360 Mol Phylogenet Evol. 2013;69(2):352-64.
 361 4 Heiltkile M. Mutenen M. Weblberg N. Sib
- ³⁶¹ 4. Heikkila M, Mutanen M, Wahlberg N, Sihvonen P, Kaila L. Elusive ditrysian $\frac{362}{20}$ $\frac{362}{1000}$ phylogeny: an account of combining systematized morphology with molecular $\frac{363}{1000}$ ³⁶³ data (Lepidoptera). Bmc Evol Biol. 2015;15.
³⁶⁴ 5 Dentinesori M. Selmala H. Mutanen M. Beali
- 5. Pentinsaari M, Salmela H, Mutanen M, Roslin T. Molecular evolution of a widely-adopted taxonomic marker (COI) across the animal tree of life. Sci Rep-365 $Uk. 2016; 6.$
367 6 Bechav E W
- ³⁶⁷ 6. Bashey F. Within-host competitive interactions as a mechanism for the maintenance of persoite diversity. Philos T.B. See B. 2015;270(1675) ³⁶⁸ maintenance of parasite diversity. Philos T R Soc B. 2015;370(1675).
³⁶⁹ 7 Simkova A Morand S, Johat E Galnar M, Varnou O, Molocular phys
- ³⁶⁹ 7. Simkova A, Morand S, Jobet E, Gelnar M, Verneau O. Molecular phylogeny of $\frac{370}{200}$ congeneric monogenean parasites (Dactylogyrus): a case of intrahost speciation.
 371 ³⁷¹ Evolution. 2004;58(5):1001-18.
³⁷² 8 Boutellie A, Abi Beched J, Bec.
- ³⁷² 8. Boutellis A, Abi-Rached L, Raoult D. The origin and distribution of human lice $\frac{373}{2}$ in the world Infect Ganet Evel 2014;22:200, 17 $\frac{373}{374}$ in the world. Infect Genet Evol. 2014;23:209-17.
 $\frac{374}{274}$ a Brinck-Lindroth G Smit EGAM. The fless (Sinh)
- ³⁷⁴ 9. Brinck-Lindroth G, Smit FGAM. The fleas (Siphonaptera) of Fennoscandia and $\frac{375}{4}$ Denmark. Leiden, the Netherlands: Brill; 2007.
- $10.$ Orr MR, Seike SH, Gilbert LE. Foraging ecology and patterns of diversification 377 in dinterna paracitoide of fire ants in south Pregil. Each Enternal $\frac{377}{1007.22(2)}$ in dipteran parasitoids of fire ants in south Brazil. Ecol Entomol. $\frac{378}{379}$ 1997;22(3):305-14.
- $11.$ Kutty SN, Pape T, Wiegmann BM, Meier R. Molecular phylogeny of the 380
Seluritates (Dipters: Cyclorrhaphe) with an amphasis on the superfamily Calyptratae (Diptera: Cyclorrhapha) with an emphasis on the superfamily $\frac{380}{281}$ Cestroidea and the position of Mystacinobiidae and McAlpine's fly. Sust ³⁸¹ Oestroidea and the position of Mystacinobiidae and McAlpine's fly. Syst Enternal 2010:25(4):614.35 $rac{382}{383}$ Entomol. 2010;35(4):614-35.
- ³⁸³ 12. Pohjoismaki J, Kahanpaa J. Checklist of the superfamilies Oestroidea and $\frac{384}{12}$ Hinnobescoidea of Finland (Insects Dipters) Zoekays 2014(441):283.40 $\frac{384}{385}$ Hippoboscoidea of Finland (Insecta, Diptera). Zookeys. 2014(441):383-408. $\frac{385}{13}$ Andersson H, De svenska lughtgorna [The Swedish love flies (Diptera).
- ³⁸⁵ 13. Andersson H. De svenska lusflugorna [The Swedish louse-flies (Diptera: $\frac{386}{25}$ Hippoboscides)] Enterpresenting Tidekrift 1085:106:15.25 ³⁸⁶ Hippoboscidae)]. Entomologiska Tidskrift. 1985;106:15-25.
³⁸⁷ 14 Grupin K.Y. Femily Hippoboscides. Bei Bienke G.Y. editor
- 14. Grunin KY. Family Hippoboscidae. Bei-Bienko GY, editor. New Delhi: ³⁸⁸ Amerind Publishing Co. Pvt. Ltd.; 1988.
- ³⁸⁹ 15. deWaard JR, Ivanova NV, Hajibabaei M, Hebert PD. Assembling DNA
³⁹⁰ bereedes Anglyticsl gratecels Methods Mel Biol. 2008;410;275,02 $\frac{390}{16}$ barcodes. Analytical protocols. Methods Mol Biol. 2008;410:275-93.
- ³⁹¹ 16. Ratnasingham S, Hebert PDN. BOLD: The Barcode of Life Data System $\frac{392}{2007 \cdot 7(2) \cdot 355.64}$ [\(www.barcodinglife.org\)](www.barcodinglife.org). Mol Ecol Notes. $2007;7(3):355-64$.

Tables ⁴⁴³

444

Table 1. Specimens included in the DNA barcode analysis

Subfamily	Species	Country	N
Hippoboscidae	Hippobosca equina (Linnaeus)	Slovenia	1
Hippoboscidae	Lipoptena cervi (Linnaeus)	Finland	1
Hippoboscidae	Crataerina hirundinis (Olivier)	Finland	2
Hippoboscidae	Crataerina pallida (Linnaeus)	Finland	3
Hippoboscidae	Ornithomya avicularia (Linnaeus)	Finland	6
Hippoboscidae	Ornithomya chloropus Bergroth	Finland	2
Hippoboscidae	Ornithomya fringillina Curtis	Finland	3
Hippoboscidae	Ornithophila metallica Schiner	Finland	1
Nycteribiidae	Nycteribia kolenatii Theodor & Moscona	Finland	1
Nycteribiidae	Penicillidia monoceros Speiser	Finland	2

446 447

455

⁴⁵⁶ Table 3. Observed and expected (in brackets) number of host species breeding in forest,

457 open habitats and wetlands in three bird fly species.

458

⁴⁵⁹ Table 4. Observed and expected (in brackets) number of host species breeding in

cavities, on ground and openly on trees in three bird fly species. ⁴⁶⁰

461

⁴⁶² Table 5. Observed and expected (in brackets) number of host species based on

⁴⁶³ migratory strategy (in three bird fly species.

464 465

Figures ⁴⁶⁶

467

⁴⁶⁸ Figure 1. Host associations and DNA barcode divergence among Finnish louse flies.

(A) Host associations among the three *Ornithomya* species. Only one *Ornithophila* ⁴⁶⁹ ⁴⁷⁰ metallica was found in this study and *Crataerina* spp. were collected from their specific 471 hosts, as indicated in the results. (B) Neighbor-Joining tree for the species covered in 472 this study. Note that the tree demonstrates sequence differences between the taxa and does not represent actual phylogeny. The barcode index number (BIN) for each taxon ⁴⁷³ 474 on the right margin.

Supporting Information

Click here to access/download [Supporting Information](https://www.editorialmanager.com/pone/download.aspx?id=28379995&guid=42d07e3b-39c5-4edf-bf99-38faf09e88f8&scheme=1) Supplement_1.0.docx