Rapid Construction of Tetralin, Chromane, and Indane Motifs via Cyclative C-H/C-H Coupling: Four-Step Total Synthesis of (±)-Russujaponol F

Zhe Zhuang,¹ Alastair N. Herron,¹ Shuang Liu,¹ and Jin-Quan Yu¹*

¹Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La

Jolla, CA 92037, United States

Table of Contents

General Information	S2
Experimental Section	
Preparation of aliphatic acids	S 3
Preparation of mono- <i>N</i> -protected β -amino acid ligand	S5
Table S1. Oxidant investigation for the cyclative C-H/C-H coupling reaction	S 6
Table S2. Base screening for the cyclative C-H/C-H coupling reaction	S 7
Table S3. Ligand investigation for the cyclative C-H/C-H coupling reaction	S 8
Table S4. Comparison between LiOAc and NaOAc under the standard conditions	S 9
Table S5. Conditions investigation for the cyclative C-H/C-H coupling reaction	of 1v S10
Table S6. Base and Ag salt investigation for arylation	S 11
General procedure for the cyclative C-H/C-H coupling reaction	S12
Substrate scope of the cyclative C-H/C-H coupling reaction	S13
Total synthesis of (±)-russujaponol F	S24
KIE experiments	S28
References	S 30
¹ H and ¹³ C NMR Spectra	S32

General Information

 $Pd(OAc)_2$, LiOAc, Ag₂CO₃, and sodium percarbonate (Na₂CO₃·1.5H₂O₂) were purchased from Sigma-Aldrich. $Pd(CH_3CN)_4(BF_4)_2$ was purchased from Strem. 1-Fluoro-2,4,6trimethylpyridinium tetrafluoroborate was purchased from TCI. HFIP was purchased from Oakwood. Other reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254. Visualization was carried out with short-wave UV light or KMnO₄ and heat as developing agents. ¹H NMR spectra were recorded on Bruker DRX-600 instrument. Chemical shifts were quoted in parts per million (ppm) referenced to 0.00 ppm for TMS. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Coupling constants, J, were reported in Hertz unit (Hz). ¹³C NMR spectra were recorded on Bruker DRX-600 was fully decoupled by broad band proton decoupling. Chemical shifts were reported in ppm referenced to the center line of a triplet at 77.16 ppm of CDCl₃. Column chromatography was performed using E. Merck silica (60, particle size 0.043–0.063 mm), and preparative thin layer chromatography (pTLC) was performed on Merck silica plates (60F-254). High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight).

Preparation of aliphatic acids

F

Et

Me

0 II

ЮH

1s

R = Boc or Ts 1t

н

I

Aliphatic carboxylic acids were synthesized following literature procedures^{1–5} (1a-1v) or obtained from the commercial source (1w).

Preparation of mono-*N***-protected β-amino acid ligand**

L4–L10 were commercially available (L4) or synthesized following literature procedures⁶⁻⁹ (L5–L10).

H	Е ОН Н 1а	Pd(OAc) ₂ L4 (10 NaOAc (² oxidant (2 HFIP, 60	(10 mol% mol%) I.0 equiv) 2.0 equiv) °C, 12 h		
entry	oxidant	yield (%)	entry	oxidant	yield (%)
1	w/o	0	10	СМНР	22
2	AcOO ^t Bu	38	11	TBHP (70% in water)	50
3	BzOO ^t Bu	0	12	TBHP (ca. 5.5 M in decane	e) 53
4	BzOOBz	0	13	$K_2S_2O_8$	5
5	Lauroyl peroxide	0	14	$Na_2S_2O_8$	0
6	^t BuOO ^t Bu	0	15	Oxone	0
7	H ₂ O ₂ in water	0	16	Selectfluor	32
8	UHP	0	17	NFSI	0
9	Na ₂ CO ₃ ·1.5H ₂ O ₂	56	18	FTMP	0

Table S1. Oxidant investigation for the cyclative C-H/C-H coupling reaction^{*a,b*}

^{*a*}Conditions: **1a** (0.1 mmol), Pd(OAc)₂ (10 mol%), **L4** (10 mol%), NaOAc (1.0 equiv), Na₂CO₃·1.5H₂O₂ (2.0 equiv), HFIP (1.0 mL), 60 °C, 12 h. ^{*b*}The yields were determined by ¹H NMR analysis of the crude product using CH₂Br₂ as the internal standard.

H H	Et OH -	Pd(OAc) ₂ (10 mol%) L4 (10 mol%) base (1.0 equiv) Na ₂ CO ₃ ·1.5H ₂ O ₂ (2.0 equiv) HFIP, 60 °C, 12 h			он ОН 2а
entry	base	yield (%)	entry	base	yield (%)
1	w/o	50	6	Na ₃ PO ₄	49
2	NaHCO ₃	45	7	NaOAc	56
3	Na ₂ CO ₃	44	8	LiOAc	57
4	NaH ₂ PO ₄	36	9	KOAc	50
5	Na ₂ HPO ₄	45	10	CsOAc	41

Table S2. Base screening for the cyclative C-H/C-H coupling reaction^{*a,b*}

^{*a*}Conditions: **1a** (0.1 mmol), Pd(OAc)₂ (10 mol%), **L4** (10 mol%), base (1.0 equiv), Na₂CO₃·1.5H₂O₂ (2.0 equiv), HFIP (1.0 mL), 60 °C, 12 h. ^{*b*}The yields were determined by ¹H NMR analysis of the crude product using CH₂Br₂ as the internal standard. The conversions were determined by ¹H NMR analysis of the remaining **1a**.

Table S3. Ligand investigation for the cyclative C-H/C-H coupling reaction^{*a,b*}

^{*a*}Conditions: **1a** (0.1 mmol), Pd(OAc)₂ (10 mol%), ligand (**L**) (10 mol%), LiOAc (1.0 equiv), Na₂CO₃·1.5H₂O₂ (2.0 equiv), HFIP (1.0 mL), 60 °C, 12 h. ^{*b*}The yields were determined by ¹H NMR analysis of the crude product using CH₂Br₂ as the internal standard. ^{*c*}Isolated yield.

		Pd(OAc) ₂ (10 mol%) (±)-L9 (10 mol%)	к Он Ил ОН
Υ X Η X = n =	R H H = C, O = 0, 1 1	base (1.0 equiv) Na₂CO₃ [.] 1.5H₂O₂ (2.0 equiv) HFIP, 60 °C, 12 h	2 2
entry	1	yield using LiOAc (%)	yield using NaOAc (%)
entry	1	yield using LiOAc (%)	yield using NaOAc (%)
1	1a	78	61
entry	1	yield using LiOAc (%)	yield using NaOAc (%)
1	1a	78	61
2	1d	58	45
entry	1	yield using LiOAc (%)	yield using NaOAc (%)
1	1a	78	61
2	1d	58	45
3	1i	63	45
entry	1	yield using LiOAc (%)	yield using NaOAc (%)
1	1a	78	61
2	1d	58	45
3	1i	63	45
4	1n	80	77

Table S4. Comparison between LiOAc and NaOAc under the standard conditions a,b

^{*a*}Conditions: **1** (0.1 mmol), Pd(OAc)₂ (10 mol%), (±)-**L9** (10 mol%), base (1.0 equiv), Na₂CO₃·1.5H₂O₂ (2.0 equiv), HFIP (1.0 mL), 60 °C, 12 h. ^{*b*}Isolated yields.

Me	$\begin{array}{c} & \begin{array}{c} & \\ & \\ H \end{array} \\ H \end{array} \\ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	Me OH Me Zv
entry	variation from standard conditions B	yield (%)
1	none	55 (61 ^{<i>c</i>})
2	w/o Ag ₂ CO ₃	0
3	Na_2CO_3 instead of Ag_2CO_3	0
4	LiOAc instead of Ag ₂ CO ₃	0
5	$Pd(OAc)_2$ instead of $Pd(CH_3CN)_4(BF_4)_2$	23
6	w/ (±)-L9 (10 mol%)	34
7	standard conditions A	23

Table S5. Conditions investigation for the cyclative C-H/C-H coupling reaction^{*a,b*}

^{*a*}Conditions: **1v** (0.1 mmol), Pd(CH₃CN)₄(BF₄)₂ (10 mol%), Ag₂CO₃ (1.0 equiv), $[F^+] = 1$ -fluoro-2,4,6-trimethylpyridinium tetrafluoroborate (2.0 equiv), HFIP (1.0 mL), 90 °C, 12 h. ^{*b*}The yields were determined by ¹H NMR analysis of the crude product using CH₂Br₂ as the internal standard. ^{*c*}Isolated yield.

EtO ₂ C Me 4	Pd(OAc) ₂ L12 (10 pivalic acid base (1) Ag salt (2 HFIP, 80	(10 mol%) $(3.0 equiv)$ $(3.0 equi$	e 5	O OH + EtO ₂ C H Me	Me OH Me
	entry	base	Ag salt	5 + 6 yield (%)	_
	1	Na ₂ HPO ₄ ·7H ₂ O	Ag_2CO_3	52 + 4	-
	2	Na ₂ HPO ₄ 7H ₂ O	Ag ₂ O	52 + 3	
	3	Na ₂ HPO ₄ 7H ₂ O	AgOAc	44 + 0	
	4	NaHCO ₃	Ag_2CO_3	41 + 5	
	5	Na ₂ CO ₃	Ag_2CO_3	50 + 5	
	6	Na ₂ HPO ₄	Ag_2CO_3	47 + 4	
	7	Na ₃ PO ₄	Ag_2CO_3	46 + 2	
	8	NaOAc	Ag_2CO_3	65 + 5	
	9	LiOAc	Ag_2CO_3	64 + 8	
	10	KOAc	Ag_2CO_3	46 + 10	
	11	CsOAc	Ag_2CO_3	61(62 ^c) + 12(12 ^c)	
	12	CsOAc	w/o	0	
	13	w/o	Ag_2CO_3	0	

Table S6. Base and Ag salt investigation for arylation^{*a,b*}

^{*a*}Conditions: **4** (0.1 mmol), pivalic acid (3.0 equiv), Pd(OAc)₂ (10 mol%), **L12** (10 mol%), base (1.0 equiv), Ag salt (2.0 equiv), HFIP (1.0 mL), 80 °C, 12 h. ^{*b*}The yields were determined by ¹H NMR analysis of the crude product using CH₂Br₂ as the internal standard. ^cIsolated yields.

General procedure for the cyclative C-H/C-H coupling reaction

General Procedure A: In the culture tube, $Pd(OAc)_2$ (10 mol%, 2.2 mg), ligand (±)-L9 (10 mol%, 1.7 mg), LiOAc (1.0 equiv, 6.6 mg), $Na_2CO_3 \cdot 1.5H_2O_2$ (2.0 equiv, 31.4 mg), and 1 (0.1 mmol) in order were weighed in air and placed with a magnetic stir bar. Then HFIP (1.0 mL) was added. The reaction mixture was stirred at rt for 3 min, and then heated to 60 °C for 12 h (600 rpm). After being allowed to cool to room temperature, the mixture was treated with HCO₂H (0.1 mL) and concentrated *in vacuo*. The crude mixture was purified by pTLC (hexane/EA with 1% AcOH) to afford the product **2**.

General Procedure B: In the culture tube, $Pd(CH_3CN)_4(BF_4)_2$ (10 mol%, 4.4 mg), Ag_2CO_3 (1.0 equiv, 27.4 mg), 1-fluoro-2,4,6-trimethylpyridinium tetrafluoroborate (2.0 equiv, 45.4 mg), and **1** (0.1 mmol) in order were weighed in air and placed with a magnetic stir bar. Then HFIP (1.0 mL) was added. The reaction mixture was stirred at rt for 3 min, and then heated to 90 °C for 12 h (600 rpm). After being allowed to cool to room temperature, the mixture was treated with HCO₂H (0.1 mL), diluted with DCM, filtered through a Celite plug, and concentrated *in vacuo*. The crude mixture was purified by pTLC (hexane/EA with 1% AcOH) to afford the product **2**.

Substrate scope of the cyclative C-H/C-H coupling reaction

2-Ethyl-1,2,3,4-tetrahydronaphthalene-2-carboxylic acid (2a)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 16.0 mg, 78% yield).

Following **General Procedure A** on 2.0 mmol scale. Purification by column chromatography afforded the title compound (282.0 mg, 69% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.14 – 7.03 (m, 4H), 3.22 (d, *J* = 16.5 Hz, 1H), 2.92 – 2.83 (m, 1H), 2.83 – 2.75 (m, 1H), 2.67 (d, *J* = 16.5 Hz, 1H), 2.20 – 2.12 (m, 1H), 1.85 – 1.77 (m, 1H), 1.79 – 1.69 (m, 1H), 1.70 – 1.61 (m, 1H), 0.94 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 182.5, 135.5, 134.9, 129.3, 128.8, 126.0, 125.9, 46.0, 36.6, 31.1, 30.1, 26.3, 8.9.

HRMS (ESI-TOF) Calcd for $C_{13}H_{15}O_2^-$ [M-H]⁻: 203.1078; found: 203.1072.

2-Ethyl-7-methyl-1,2,3,4-tetrahydronaphthalene-2-carboxylic acid (2b)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 16.5 mg, 76% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.00 – 6.93 (m, 1H), 6.93 – 6.85 (m, 2H), 3.17 (d, *J* = 16.4 Hz, 1H), 2.87 – 2.78 (m, 1H), 2.78 – 2.70 (m, 1H), 2.63 (d, *J* = 16.4 Hz, 1H), 2.28 (s, 3H), 2.18 – 2.08 (m, 1H), 1.84 – 1.75 (m, 1H), 1.77 – 1.68 (m, 1H), 1.69 – 1.59 (m, 1H), 0.93 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) (major and minor rotamers) δ 182.8, 135.6, 135.6, 135.5, 134.8, 132.6, 132.0, 130.1, 129.6, 129.4, 128.9, 127.1, 127.0, 46.3, 46.2, 36.8, 36.5, 31.3, 31.3, 30.5, 30.3, 26.4, 26.1, 21.3, 9.1.

HRMS (ESI-TOF) Calcd for C₁₄H₁₇O₂⁻ [M-H]⁻: 217.1234; found: 217.1232.

2-Ethyl-7-fluoro-1,2,3,4-tetrahydronaphthalene-2-carboxylic acid (2c)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 13.0 mg, 59% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.06 – 6.97 (m, 1H), 6.84 – 6.73 (m, 2H), 3.24 – 3.12 (m, 1H), 2.90 – 2.71 (m, 2H), 2.68 – 2.58 (m, 1H), 2.20 – 2.11 (m, 1H), 1.83 – 1.68 (m, 2H), 1.68 – 1.60 (m, 1H), 0.98 – 0.90 (m, 3H).

¹³C NMR (150 MHz, CDCl₃) (major rotamer) δ 182.2, 161.2 (d, J = 243.4 Hz), 136.9 (d, J = 7.2 Hz), 130.9 (d, J = 2.8 Hz), 130.1 (d, J = 8.2 Hz), 115.0 (d, J = 20.4 Hz), 113.1 (d, J = 21.3 Hz), 45.8, 36.6, 31.3, 30.3, 25.7, 8.9.

¹³C NMR (150 MHz, CDCl₃) (minor rotamer) δ 182.3, 161.2 (d, *J* = 243.4 Hz), 137.4 (d, *J* = 7.2 Hz), 130.5 (d, *J* = 7.8 Hz), 130.4 (d, *J* = 2.9 Hz), 115.4 (d, *J* = 20.8 Hz), 115.2 (d, *J* = 21.0 Hz), 46.1, 36.0, 31.2, 29.8, 26.5, 8.9.

HRMS (ESI-TOF) Calcd for C₁₃H₁₄FO₂⁻ [M-H]⁻: 221.0983; found: 221.0990.

7-Chloro-2-ethyl-1,2,3,4-tetrahydronaphthalene-2-carboxylic acid (2d)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 13.8 mg, 58% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.11 – 7.03 (m, 2H), 7.03 – 6.96 (m, 1H), 3.25 – 3.13 (m, 1H), 2.91 – 2.71 (m, 2H), 2.71 – 2.58 (m, 1H), 2.21 – 2.12 (m, 1H), 1.83 – 1.70 (m, 2H), 1.69 – 1.60 (m, 1H), 0.94 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) (major and minor rotamers) δ 182.0, 182.0, 137.3, 136.8, 133.9, 133.4, 131.4, 131.4, 130.6, 130.1, 129.0, 128.6, 126.1, 126.1, 46.0, 45.8, 36.4, 36.1, 31.3, 31.3, 30.1, 29.9, 26.3, 25.8, 8.9.

HRMS (ESI-TOF) Calcd for C₁₃H₁₄ClO₂⁻ [M-H]⁻: 237.0688; found: 237.0684.

2-Ethyl-1,2,3,4-tetrahydrophenanthrene-2-carboxylic acid (2e)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 11.5 mg, 45% yield, *ortho/peri* = 10/1).

¹H NMR (600 MHz, CDCl₃) (*ortho*-product) δ 7.92 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.62 (d, J = 8.4 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.42 (t, J = 7.4 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H), 3.36 (d, J = 16.6 Hz, 1H), 3.25 – 3.13 (m, 2H), 2.84 (d, J = 16.6 Hz, 1H), 2.39 – 2.29 (m, 1H), 2.01 – 1.92 (m, 1H), 1.83 – 1.75 (m, 1H), 1.76 – 1.67 (m, 1H), 0.98 (t, J = 7.5 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) (*ortho*-product) δ 182.5, 132.3, 132.2, 132.1, 130.1, 128.6, 128.2, 126.3, 126.1, 125.0, 123.0, 45.7, 37.5, 30.9, 29.8, 23.2, 9.0.

HRMS (ESI-TOF) Calcd for $C_{17}H_{17}O_2^-$ [M-H]⁻: 253.1234; found: 253.1230.

2-Methyl-1,2,3,4-tetrahydronaphthalene-2-carboxylic acid (2f)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 12.5 mg, 66% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.17 – 7.02 (m, 4H), 3.24 (d, *J* = 16.4 Hz, 1H), 2.95 – 2.86 (m, 1H), 2.87 – 2.78 (m, 1H), 2.67 (d, *J* = 16.4 Hz, 1H), 2.21 – 2.13 (m, 1H), 1.85 – 1.75 (m, 1H), 1.32 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 182.7, 135.1, 134.7, 129.4, 128.9, 126.0, 126.0, 41.6, 38.5, 31.8, 26.2, 24.4.

HRMS (ESI-TOF) Calcd for C₁₂H₁₃O₂⁻ [M-H]⁻: 189.0921; found: 189.0919.

7-Fluoro-2-methyl-1,2,3,4-tetrahydronaphthalene-2-carboxylic acid (2g)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 11.0 mg, 53% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.06 – 6.99 (m, 1H), 6.84 – 6.74 (m, 2H), 3.26 – 3.14 (m, 1H), 2.93 – 2.74 (m, 2H), 2.67 – 2.57 (m, 1H), 2.22 – 2.12 (m, 1H), 1.81 – 1.72 (m, 1H), 1.31 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) (major rotamer) δ 183.1, 161.2 (d, J = 243.6 Hz), 136.7 (d, J = 7.3 Hz), 130.5 (d, J = 1.8 Hz), 130.2 (d, J = 7.8 Hz), 115.4 (d, J = 20.8 Hz), 113.2 (d, J = 21.1 Hz), 41.5, 38.5, 31.9, 25.6, 24.5.

¹³C NMR (150 MHz, CDCl₃) (minor rotamer) δ 183.2, 161.2 (d, J = 243.6 Hz), 137.0 (d, J = 7.2 Hz), 130. 6 (d, J = 6.2 Hz), 130.2 (d, J = 3.1 Hz), 115.0 (d, J = 20.5 Hz), 113.1 (d, J = 21.3 Hz), 41.7, 37.8, 31.5, 26.5, 24.5.

HRMS (ESI-TOF) Calcd for C₁₂H₁₂FO₂⁻ [M-H]⁻: 207.0827; found: 207.0825.

2-Butyl-1,2,3,4-tetrahydronaphthalene-2-carboxylic acid (2h)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 16.5 mg, 71% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.13 – 7.03 (m, 4H), 3.22 (d, *J* = 16.4 Hz, 1H), 2.91 – 2.82 (m, 1H), 2.82 – 2.74 (m, 1H), 2.69 (d, *J* = 16.4 Hz, 1H), 2.20 – 2.10 (m, 1H), 1.87 – 1.77 (m, 1H), 1.73 – 1.63 (m, 1H), 1.63 – 1.55 (m, 1H), 1.35 – 1.23 (m, 4H), 0.89 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 181.4, 135.3, 134.7, 129.1, 128.6, 125.7, 125.7, 45.3, 37.9, 37.0, 30.2, 26.5, 26.1, 23.0, 13.9.

HRMS (ESI-TOF) Calcd for C₁₅H₁₉O₂⁻ [M-H]⁻: 231.1391; found: 231.1390.

1,2,3,4-Tetrahydronaphthalene-2-carboxylic acid (2i)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 11.0 mg, 63% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.18 – 7.05 (m, 4H), 3.10 – 2.98 (m, 2H), 2.95 – 2.84 (m, 2H), 2.84 – 2.77 (m, 1H), 2.29 – 2.22 (m, 1H), 1.95 – 1.85 (m, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 181.7, 135.7, 134.7, 129.2, 129.0, 126.2, 126.0, 39.9, 31.5, 28.5, 25.8.

HRMS (ESI-TOF) Calcd for C₁₁H₁₁O₂⁻ [M-H]⁻: 175.0765; found: 175.0757.

The NMR data matches the reported data¹¹.

6-Methoxy-1,2,3,4-tetrahydronaphthalene-2-carboxylic acid (2j)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 10.2 mg, 50% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.02 (d, *J* = 8.4 Hz, 1H), 6.71 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.63 (s, 1H), 3.77 (s, 3H), 3.04 – 2.91 (m, 2H), 2.91 – 2.81 (m, 2H), 2.81 – 2.73 (m, 1H), 2.27 – 2.18 (m, 1H), 1.93 – 1.82 (m, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 181.2, 157.9, 136.8, 130.1, 126.8, 113.6, 112.4, 55.4, 40.1, 30.7, 28.8, 25.7.

HRMS (ESI-TOF) Calcd for C₁₂H₁₃O₃⁻ [M-H]⁻: 205.0870; found: 205.0869.

5-Methoxy-1,2,3,4-tetrahydronaphthalene-2-carboxylic acid (2k)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 7.3 mg, 35% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.10 (t, *J* = 7.9 Hz, 1H), 6.72 (d, *J* = 7.7 Hz, 1H), 6.67 (d, *J* = 8.1 Hz, 1H), 3.82 (s, 3H), 3.18 – 3.08 (m, 1H), 2.93 – 2.80 (m, 2H), 2.79 – 2.70 (m, 2H), 2.25 – 2.18 (m, 1H), 1.92 – 1.78 (m, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 179.1, 157.5, 137.1, 126.4, 123.7, 121.1, 107.2, 55.4, 39.4, 28.7, 25.6, 25.4.

HRMS (ESI-TOF) Calcd for C₁₂H₁₃O₃⁻ [M-H]⁻: 205.0870; found: 205.0869.

7-Fluoro-1,2,3,4-tetrahydronaphthalene-2-carboxylic acid (2l)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 10.1 mg, 52% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.12 – 6.99 (m, 1H), 6.90 – 6.75 (m, 2H), 3.09 – 2.93 (m, 2H), 2.93 – 2.75 (m, 3H), 2.29 – 2.19 (m, 1H), 1.96 – 1.84 (m, 1H).

¹³C NMR (150 MHz, CDCl₃) (major rotamer) δ 180.7, 161.2 (d, J = 243.7 Hz), 136.6 (d, J = 7.4 Hz), 131.2 (d, J = 2.7 Hz), 130.3 (d, J = 8.2 Hz), 115.3 (d, J = 20.6 Hz), 113.3 (d, J = 21.4 Hz), 39.5, 31.4, 27.8, 25.8.

¹³C NMR (150 MHz, CDCl₃) (minor rotamer) δ 180.8, 161.3 (d, J = 244.2 Hz), 137.6 (d, J = 7.3 Hz), 130.5 (d, J = 7.8 Hz), 130.2 (d, J = 2.8 Hz), 115.1 (d, J = 20.7 Hz), 113.2 (d, J = 21.1 Hz), 39.7, 30.8, 28.6, 25.4.

HRMS (ESI-TOF) Calcd for C₁₁H₁₀FO₂⁻ [M-H]⁻: 193.0670; found: 193.0666.

3-Methylchromane-3-carboxylic acid (2m)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 13.0 mg, 68% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.15 – 7.08 (m, 1H), 7.06 (d, *J* = 7.4 Hz, 1H), 6.91 – 6.85 (m, 1H), 6.83 (d, *J* = 8.2 Hz, 1H), 4.31 (dd, *J* = 10.8, 1.4 Hz, 1H), 3.95 (d, *J* = 10.8 Hz, 1H), 3.27 (d, *J* = 16.4 Hz, 1H), 2.70 (d, *J* = 16.4 Hz, 1H), 1.34 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 180.7, 153.5, 130.0, 127.7, 121.1, 120.1, 116.8, 71.0, 40.8, 34.5, 21.1.

HRMS (ESI-TOF) Calcd for $C_{11}H_{11}O_3^-$ [M-H]⁻: 191.0714; found: 191.0713.

The NMR data matches the reported data¹².

7-(tert-Butyl)-3-methylchromane-3-carboxylic acid (2n)

Following General Procedure A on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 20.0 mg, 80% yield, 2n/2n' = 3/1).

¹H NMR (600 MHz, CDCl₃) δ 6.99 (d, *J* = 8.0 Hz, 1H), 6.92 (dd, *J* = 8.0, 2.0 Hz, 1H), 6.86 (d, *J* = 2.0 Hz, 1H), 4.29 (dd, *J* = 10.8, 1.4 Hz, 1H), 3.93 (dd, *J* = 10.8, 1.4 Hz, 1H), 3.24 (d, *J* = 16.3 Hz, 1H), 2.66 (d, *J* = 16.3 Hz, 1H), 1.34 (s, 3H), 1.28 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 180.8, 153.0, 151.2, 129.4, 118.4, 117.0, 113.7, 71.0, 40.9, 34.6, 34.1, 31.4, 21.2.

HRMS (ESI-TOF) Calcd for C₁₅H₁₉O₃⁻ [M-H]⁻: 247.1340; found: 247.1339.

5-(tert-Butyl)-3-methylchromane-3-carboxylic acid (2n')

¹H NMR (600 MHz, CDCl₃) δ 7.05 (t, *J* = 7.8 Hz, 1H), 6.99 (d, *J* = 7.8 Hz, 1H), 6.73 (d, *J* = 7.8 Hz, 1H), 4.37 (d, *J* = 10.5 Hz, 1H), 3.91 (d, *J* = 10.5 Hz, 1H), 3.51 (d, *J* = 16.0 Hz, 1H), 2.90 (d, *J* = 16.0 Hz, 1H), 1.42 (s, 9H), 1.35 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 180.9, 154.0, 149.4, 127.1, 119.0, 118.9, 115.6, 70.4, 40.8, 36.2, 34.9, 31.2, 21.5.

HRMS (ESI-TOF) Calcd for C₁₅H₁₉O₃⁻ [M-H]⁻: 247.1340; found: 247.1337.

3-Methyl-3,4,7,8,9,10-hexahydro-2*H*-benzo[*h*]chromene-3-carboxylic acid (20)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 21.0 mg, 85% yield).

¹H NMR (600 MHz, CDCl₃) δ 6.81 (d, *J* = 7.8 Hz, 1H), 6.63 (d, *J* = 7.8 Hz, 1H), 4.29 (d, *J* = 10.8 Hz, 1H), 3.96 (d, *J* = 10.8 Hz, 1H), 3.23 (d, *J* = 16.3 Hz, 1H), 2.70 (t, *J* = 5.8 Hz, 2H), 2.65 (d, *J* = 16.3 Hz, 1H), 2.64 – 2.58 (m, 2H), 1.80 – 1.69 (m, 4H), 1.33 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 181.2, 151.1, 136.7, 126.5, 125.4, 121.6, 116.2, 70.9, 40.7, 34.5, 29.6, 23.1, 23.0, 22.9, 21.1.

HRMS (ESI-TOF) Calcd for C₁₅H₁₇O₃⁻ [M-H]⁻: 245.1183; found: 245.1183.

8-Benzyl-3-methylchromane-3-carboxylic acid (2p)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 20.0 mg, 70% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.27 – 7.20 (m, 2H), 7.19 (d, J = 7.5 Hz, 2H), 7.15 (t, J = 7.3 Hz, 1H), 6.94 (d, J = 7.5 Hz, 1H), 6.89 (d, J = 7.4 Hz, 1H), 6.80 (t, J = 7.5 Hz, 1H), 4.31 (d, J = 10.7 Hz, 1H), 4.03 – 3.88 (m, 3H), 3.28 (d, J = 16.4 Hz, 1H), 2.71 (d, J = 16.4 Hz, 1H), 1.34 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 180.5, 151.2, 141.1, 129.1, 129.0, 128.5, 128.4, 128.1, 125.9, 120.7, 119.9, 71.0, 40.7, 35.7, 34.7, 21.0.

HRMS (ESI-TOF) Calcd for C₁₈H₁₇O₃⁻ [M-H]⁻: 281.1183; found: 281.1184.

8-Bromo-3-methylchromane-3-carboxylic acid (2q)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 8.5 mg, 31% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.36 (d, *J* = 7.8 Hz, 1H), 7.02 (d, *J* = 7.8 Hz, 1H), 6.76 (t, *J* = 7.8 Hz, 1H), 4.41 (d, *J* = 10.8 Hz, 1H), 4.07 (d, *J* = 10.8 Hz, 1H), 3.29 (d, *J* = 16.4 Hz, 1H), 2.72 (d, *J* = 16.4 Hz, 1H), 1.36 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 179.8, 150.1, 131.5, 129.2, 121.9, 110.9, 71.7, 40.7, 34.6, 21.0 (1 carbon signal was not assigned due to overlaps).

HRMS (ESI-TOF) Calcd for C₁₁H₁₀BrO₃⁻ [M-H]⁻: 268.9819; found: 268.9820.

3-Methyl-8-(trifluoromethyl)chromane-3-carboxylic acid (2r)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 4.5 mg, 17% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.40 (d, *J* = 7.8 Hz, 1H), 7.24 (d, *J* = 7.8 Hz, 1H), 6.93 (t, *J* = 7.8 Hz, 1H), 4.41 (d, *J* = 10.9 Hz, 1H), 4.08 (d, *J* = 10.9 Hz, 1H), 3.31 (d, *J* = 16.4 Hz, 1H), 2.75 (d, *J* = 16.4 Hz, 1H), 1.38 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 179.5, 151.6, 133.8, 125.4 (q, *J* = 5.4 Hz), 123.7 (q, *J* = 272.3 Hz), 121.6, 120.2, 118.2 (q, *J* = 30.9 Hz), 71.2, 40.3, 34.3, 21.0.

HRMS (ESI-TOF) Calcd for C₁₂H₁₀F₃O₃⁻ [M-H]⁻: 259.0588; found: 259.0587.

(*R*)-7-Methoxychromane-3-carboxylic acid (2s)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 15.0 mg, 72% yield).

¹H NMR (600 MHz, CDCl₃) δ 6.98 (d, *J* = 8.4 Hz, 1H), 6.49 (dd, *J* = 8.4, 2.6 Hz, 1H), 6.39 (d, *J* = 2.6 Hz, 1H), 4.47 - 4.40 (m, 1H), 4.21 - 4.14 (m, 1H), 3.75 (s, 3H), 3.10 - 3.04 (m, 1H), 3.03 - 2.96 (m, 2H).

¹³C NMR (150 MHz, CDCl₃) δ 176.8, 159.4, 154.8, 130.3, 112.1, 108.1, 101.7, 66.3, 55.5, 38.4, 26.8.

HRMS (ESI-TOF) Calcd for C₁₁H₁₁O₄⁻ [M-H]⁻: 207.0663; found: 207.0660.

2-Ethyl-2,3-dihydro-1*H*-indene-2-carboxylic acid (2u)

Following **General Procedure A** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 10.0 mg, 53% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.21 – 7.16 (m, 2H), 7.16 – 7.11 (m, 2H), 3.48 (d, J = 16.2 Hz, 2H),

2.92 (d, *J* = 16.2 Hz, 2H), 1.83 (q, *J* = 7.2 Hz, 2H), 0.94 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 182.3, 141.4, 126.7, 124.6, 54.7, 41.8, 31.5, 10.0.

HRMS (ESI-TOF) Calcd for C₁₂H₁₃O₂⁻ [M-H]⁻: 189.0921; found: 189.0918.

2,4-Dimethyl-2,3-dihydro-1*H*-indene-2-carboxylic acid (2v)

Following **General Procedure B** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 11.5 mg, 61% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.08 (t, *J* = 7.4 Hz, 1H), 7.03 (d, *J* = 7.4 Hz, 1H), 6.98 (d, *J* = 7.4 Hz, 1H), 3.53 (d, *J* = 15.9 Hz, 1H), 3.43 (d, *J* = 16.0 Hz, 1H), 2.86 (d, *J* = 15.9 Hz, 1H), 2.80 (d, *J* = 16.0 Hz, 1H), 2.24 (s, 3H), 1.41 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 184.2, 141.0, 140.0, 134.2, 127.6, 127.0, 122.1, 49.0, 44.2, 42.8, 25.4, 19.2.

HRMS (ESI-TOF) Calcd for C₁₂H₁₃O₂⁻ [M-H]⁻: 189.0921; found: 189.0915.

2-Methyl-2,3-dihydro-1*H*-indene-2-carboxylic acid (2w)

Following **General Procedure B** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 8.0 mg, 48% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.23 – 7.18 (m, 2H), 7.18 – 7.14 (m, 2H), 3.52 (d, *J* = 15.8 Hz, 2H), 2.85 (d, *J* = 15.8 Hz, 2H), 1.41 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 182.5, 141.2, 126.8, 124.8, 49.5, 44.0, 25.0. HRMS (ESI-TOF) Calcd for C₁₁H₁₁O₂⁻ [M-H]⁻: 175.0765; found: 175.0762. The NMR data matches the reported data¹³. Total synthesis of (±)-russujaponol F

To the EtOH (5.0 mL) solution of **3** (1.0 mmol, 164 mg) was added SOCl₂ (2.0 equiv, 0.15 mL) at 0 °C and then the mixture was stirred under reflux overnight. After being allowed to cool to room temperature, the mixture was concentrated *in vacuo* to afford the corresponding ethyl ester. Following literature procedure¹⁰ with slight modification, to the CH₃CN solution (10.0 mL) of the ethyl ester was added I₂ (0.5 equiv, 127 mg) and Selectfluor (0.5 equiv, 177 mg) and the mixture was stirred at 60 °C for 3 h. After being allowed to cool to room temperature, the mixture was diluted with EA, washed with saturated Na₂S₂O₃, and concentrated *in vacuo*. The crude mixture was purified by column chromatography to afford the iodination product **4** (250 mg, 79% yield).

Ethyl 2-(3-iodo-2,6-dimethylphenyl)acetate (4)

¹H NMR (600 MHz, CDCl₃) δ 7.65 (d, *J* = 8.1 Hz, 1H), 6.74 (d, *J* = 8.1 Hz, 1H), 4.15 (q, *J* = 7.1 Hz, 2H), 3.75 (s, 2H), 2.48 (s, 3H), 2.29 (s, 3H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 171.0, 139.9, 138.1, 137.8, 133.0, 129.8, 99.7, 61.1, 37.1, 26.0, 20.5, 14.3.

HRMS (ESI-TOF) Calcd for C₁₂H₁₆IO₂⁺ [M+H]⁺: 319.0189; found: 319.0196.

In the culture tube, $Pd(OAc)_2$ (10 mol%, 2.2 mg), ligand L12 (10 mol%, 2.0 mg), CsOAc (1.0 equiv, 19.2 mg), Ag₂CO₃ (2.0 equiv, 55.1 mg), pivalic acid (3.0 equiv, 30.6 mg) and 4 (0.1 mmol, 31.8 mg) in order were weighed in air and placed with a magnetic stir bar. Then HFIP (1.0 mL) was added. The reaction mixture was stirred at rt for 3 min, and then heated to 80 °C for 12 h (600 rpm). After being allowed to cool to room temperature, the mixture was treated with HCO₂H (0.1 mL), diluted with DCM, filtered through a Celite plug, and concentrated *in vacuo*. The crude mixture was purified by pTLC (hexane/EA) to afford the arylation product **5** (18.0 mg, 62% yield) and the product **6** (3.5 mg, 12% yield).

3-(3-(2-Ethoxy-2-oxoethyl)-2,4-dimethylphenyl)-2,2-dimethylpropanoic acid (5)

¹H NMR (600 MHz, CDCl₃) δ 6.99 (d, *J* = 7.9 Hz, 1H), 6.96 (d, *J* = 7.9 Hz, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 3.70 (s, 2H), 2.99 (s, 2H), 2.30 (s, 3H), 2.26 (s, 3H), 1.23 (t, *J* = 7.1 Hz, 3H), 1.19 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 183.1, 171.6, 136.5, 135.7, 134.0, 132.5, 130.1, 127.5, 60.9, 44.1, 42.3, 36.2, 27.3, 24.7, 20.7, 17.0, 14.4.

HRMS (ESI-TOF) Calcd for C₁₇H₂₃O₄⁻ [M-H]⁻: 291.1602; found: 291.1605.

In the culture tube, $Pd(CH_3CN)_4(BF_4)_2$ (10 mol%, 2.2 mg), Ag_2CO_3 (1.0 equiv, 13.8 mg), 1-fluoro-2,4,6-trimethylpyridinium tetrafluoroborate (2.0 equiv, 22.7 mg), and **5** (0.05 mmol, 14.6 mg) in order were weighed in air and placed with a magnetic stir bar. Then HFIP (0.5 mL) was added. The reaction mixture was stirred at rt for 3 min, and then heated to 90 °C for 12 h (600 rpm). After being allowed to cool to room temperature, the mixture was treated with HCO₂H (0.05 mL), diluted with DCM, filtered through a Celite plug, and concentrated *in vacuo*. The crude mixture was purified by pTLC (hexane/EA) to afford the product **6** (6.0 mg, 41% yield).

5-(2-Ethoxy-2-oxoethyl)-2,4,6-trimethyl-2,3-dihydro-1*H***-indene-2-carboxylic acid (6)** ¹H NMR (600 MHz, CDCl₃) δ 6.90 (s, 1H), 4.14 (q, *J* = 7.0 Hz, 2H), 3.66 (s, 2H), 3.49 (d, *J* = 16.0 Hz, 1H), 3.44 (d, *J* = 16.0 Hz, 1H), 2.81 (d, *J* = 16.0 Hz, 1H), 2.80 (d, *J* = 16.0 Hz, 1H), 2.30 (s, 3H), 2.21 (s, 3H), 1.41 (s, 3H), 1.25 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 181.9, 171.7, 139.7, 138.3, 136.0, 133.3, 130.0, 124.1, 60.9, 48.8, 44.2, 43.5, 35.4, 25.5, 20.8, 16.5, 14.4.

HRMS (ESI-TOF) Calcd for C₁₇H₂₁O₄⁻ [M-H]⁻: 289.1445; found: 289.1447.

In the culture tube, to the THF (1.0 mL) solution of **6** (0.02 mmol, 6.0 mg) was added LAH (3.0 equiv, 1.0 M in THF, 0.06 mL) at 0 °C. The reaction mixture was warmed to rt and stirred at rt overnight. The mixture was diluted with ether, washed with saturated NH₄Cl, and concentrated *in vacuo*. The crude mixture was purified by pTLC (hexane/EA) to afford the (\pm)-russujaponol F (4.5 mg, 96% yield). The NMR data matches the reported data^{14,15}.

(±)-Russujaponol F

¹H NMR (600 MHz, CDCl₃) δ 6.87 (s, 1H), 3.74 (t, *J* = 7.4 Hz, 2H), 3.52 (s, 2H), 2.95 (t, *J* = 7.5 Hz, 2H), δ 2.88 (d, *J* = 15.9 Hz, 1H), 2.84 (d, *J* = 15.9 Hz, 1H), 2.63 (d, *J* = 15.9 Hz, 1H), 2.59 (d, *J* = 15.9 Hz, 1H), 2.32 (s, 3H), 2.22 (s, 3H), 1.18 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 140.3, 139.8, 135.4, 133.2, 132.3, 124.4, 71.1, 62.1, 44.3, 43.1, 42.4, 32.9, 24.6, 20.6, 16.3.

HRMS (ESI-TOF) Calcd for C₁₅H₂₁O₂⁻ [M-H]⁻: 233.1547; found: 233.1544.

KIE experiments

Following **General Procedure A** on 0.05 mmol scale. After being heated to 60 °C for the appropriate time, the mixture was diluted with DCM, treated with HCO₂H (0.1 mL), and concentrated *in vacuo*. The yield was determined by ¹H NMR analysis of the crude product using CH₂Br₂ as the internal standard. The obtained yields were plotted as concentration vs. time (Figure S1 and S2). Representative initial data are shown below:

entry	t(min)	2m (10 ⁻³ M)	2m -d ₄ (10 ⁻³ M)
1	0	0.0	0.0
2	20	22.5	19.3
3	40	107.7	116.2
4	60	161.0	141.3
5	80	250.2	241.4

Figure S2. Representative initial data of 2m-d₄

Reference:

- Park, H.; Chekshin, N.; Shen, P.-X.; Yu, J.-Q. Ligand-enabled, palladium-catalyzed β-C(sp³)–H arylation of weinreb amides. *ACS Catal.* 2018, *8*, 9292–9297.
- Shen, P.-X.; Hu, L.; Shao, Q.; Hong, K.; Yu, J.-Q. Pd(II)-catalyzed enantioselective C(sp³) -H arylation of free carboxylic acids. *J. Am. Chem. Soc.* 2018, *140*, 6545–6549.
- Fillion, E.; Dumas, A. M. Synthesis of fused 4,5-disubstituted indole ring systems by intramolecular Friedel–Crafts acylation of 4-substituted indoles. *J. Org. Chem.* 2008, 73, 2920–2923.
- Franchini, C.; Carocci, A.; Catalano, A.; Cavalluzzi, M. M.; Corbo, F.; Lentini, G.; Scilimati, A.; Tortorella, P.; Camerino, D. C.; De Luca, A. J. Optically active mexiletine analogues as stereoselective blockers of voltage-gated Na⁺ channels. *J. Med. Chem.* 2003, 46, 5238–5248.
- Ikeda, K.; Achiwa, K.; Sekiya, M. Trifluoromethanesulfonic acid-promoted reaction of hexahydro-1,3,5-triazines. Introduction of a secondary aminomethyl grouping into carboxylates at the α-position through ketene silyl acetals. *Chem. Pharm. Bull.* 1986, 34, 1579–1583.
- Hong, K.; Park, H.; Yu, J.-Q. Methylene C(sp³)–H arylation of aliphatic ketones using a transient directing group. ACS Catal. 2017, 7, 6938–6941.
- Naturale, G.; Lamblin, M.; Commandeur, C.; Felpin, F.-X.; Dessolin, J. Direct C–H alkylation of naphthoquinones with amino acids through a revisited Kochi–Anderson radical decarboxylation: trends in reactivity and applications. *Eur. J. Org. Chem.* 2012, 5774–5788.
- Dener, J. M.; Fantauzzi, P. P.; Kshirsagar, T. A.; Kelly, D. E.; Wolfe, A. B. Large-scale syntheses of FMOC-protected non-proteogenic amino acids: useful building blocks for combinatorial libraries. *Org. Process Res. Dev.* 2001, *54*, 445–449.
- F. Fülöp, M. Palkó, J. Kámán, L. Lázár, R. Sillanpää, Synthesis of all four enantiomers of 1-aminoindane-2-carboxylic acid, a new cispentacin benzologue. *Tetrahedron: Asymmetry* 2000, 11, 4179–4187.
- Stavber, S.; Kralj, P.; Zupan, M. Selective and effective iodination of alkyl-substituted benzenes with elemental iodine activated by SelectfluorTM F-TEDA-BF₄. *Synlett* 2002, 598–600.

- Seo, H.; Liu, A.; Jamison, T. F. Direct β-selective hydrocarboxylation of styrenes with CO₂ enabled by continuous flow photoredox catalysis. *J. Am. Chem. Soc.* 2017, *139*, 13969–13972.
- Feng, Y. et al. Benzopyrans and analogs as Rho kinase inhibitors and their preparation and use in the treatment of Rho kinase-mediated diseases. PCT Int. Appl., 2009079008, 25 Jun 2009.
- Alkayal, A.; Tabas, V.; Montanaro, S.; Wright, I. A.; Malkov, A. V.; Buckley, B. R. Harnessing applied potential: selective β-hydrocarboxylation of substituted olefins. *J. Am. Chem. Soc.* 2020, *142*, 1780–1785.
- Melot, R.; Craveiro, M.; Bürgi, T.; Baudoin, O. Divergent enantioselective synthesis of (nor)illudalane sesquiterpenes via Pd⁰-catalyzed asymmetric C(sp³)–H activation. Org. Lett. 2019, 21, 812–815.
- Melot, R.; Craveiro, M. V.; Baudoin, O. Total synthesis of (nor)illudalane sesquiterpenes based on a C(sp³)–H activation strategy. *J. Org. Chem.* 2019, 84, 12933–12945.

S36

S44

S45

S49

