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S1 Full details of the evolutionary search algorithm

A flexible evolutionary search algorithm was developed for the global optimisation of a molecule’s

chemical structure for a given calculated fitness function. The region of chemical space that will

be searched and the possible moves that can be made across chemical space by the algorithm are

defined by three input variables and four transformation operations.

The three input variables—smiles, smarts and molsize—define molecular fragments that

can be used by the algorithm to build or modify molecules. smiles contains a list of SMILES

strings[1, 2] representing molecules or fragments, acting as the primary building blocks for the

creation of larger molecules. Strings containing asterisks represent fragments while those without

represent base molecules. The asterisks in the SMILES string such as 'c1c**cc1' denote the

attachable positions of that fragment onto another molecule. smarts is a list of SMARTS strings[3]

which are used for fragment matching and mutations. molsize contains the limits on the size of

molecules that can be created where, for this work, we define molecular size by the number of rings

contained in that molecule.

The four transformation operations—Addition, Crossover, Recombination and Mutation—

act by modifying one or more molecules (Fig. S1). Addition transforms a molecule into a

larger molecule by the attachment of a fragment to a random position on that molecule. The

transformation operates by first randomly selecting a possible bonding position on the molecule and

a orientation of the fragment. The molecule and fragment are then added together to create a larger

molecule (Fig. S1a). Crossover fragments two parent molecules at a random position into two

parts giving a total of four fragments. Two child molecules are then generated by combining two

fragments (one from each parent) together (Fig. S1b). Recombination fragments a single molecule

at a random position. The fragments are combined back together after moving the fragmented

positions, generating an isomer of the initial molecule (Fig. S1c). In Mutation, a position on the

molecule that is matched by any SMARTS string from the smarts list variable is randomly selected

and replaced by a different fragment randomly selected from the same list (Fig. S1d).
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Figure S1: Examples of the four transformation operations implemented in the evolutionary
algorithm. a) The Addition operation, illustrated with three possibilities for the addition of a
pyridine fragment to a pyridine molecule, forming a naphthyridine type molecule; b) Crossover
between two aza-napthalene molecules showing one crossover possibility for the example parent
molecules. Additional possibilities can occur due to freedoms in the orientation of the fragments
when combined together and the possible pairings of each fragment. c) The Recombination
transformation of an aza-anthracene molecule, creating an isomer of the initial molecule. Additional
possibilities can occur due to freedoms in the fragmentation positions, fragmentation position moves
and the orientation of the fragments when combined together. d) The Mutation transformation on
the pyridine molecule with a nitrogen atom fragment, showing three possible mutations forming
either a pyridazine, pyrimidine or pyrazine molecule.

When starting the evolutionary search algorithm an initial population of randomly generated

molecules are created using the input variables and transformation operations. Randomised

molecules are created by randomly selecting one of the base molecules from the smiles list, to

which the addition operation is applied using a second, randomly selected fragment from the same

list. Further application of the addition operation with further fragments is carried out until a

randomly selected size within the limits given by molsize is reached. A large number (500 in this

work) of mutation operations using the smarts variable are then applied to the molecule.

New generations of molecules are created using a elitism rate of 10% so that the new population

is made from the top 10% best performing molecules from the previous population. The remaining

90% is made using child molecules created with the following procedure. Two 2-way tournament

selections are carried out where in each tournament a molecule is selected out of a set of two

randomly selected molecules from the previous population with a probability of 75% to select the

fitter molecule. The two molecules from the two 2-way tournaments are then used to create two

child molecules using the Crossover transformation. Each child molecule then has a probability of
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5% to undergo Mutation and a probability of 5% to undergo Recombination.

The search algorithm therefore runs by creating a initial population where in this report we have

used a population size of 100. The fitness of each molecule in the initial population is evaluated

and the next generation is created from this. Newer generations are created continually until a

desired number of generations or a convergence criteria is reached. In this report we have chosen to

run all searches for a total of 30 generation. Since the selection and replication for the creation

of new molecules in the next generation favour fitter molecules the search algorithm is therefore

driven to a global minimum or maximum.

S2 Full details of the chemical search space

In this report we have chosen to explore the region of chemical space of aza-pentacene type molecules.

To carried this out with algorithm described in Section S1 requires the input variables written

in Listing 1. We were able to determined the size of the chemical space that can be explored to

contain 68064 unique molecules which was obtained by running the randomised molecule creation

in a infinite loop and converting each molecule generated into its canonical InChi string[4] and was

then added into a Python set. The program was left to run until no further changes to the number

of elements in the set had occurred over a few days.

smiles = ['c1ccccc1' , 'c1c**cc1' ]
smarts = ['[#6R1&H]' , '[#7R1&H0]' ]
molsize = [5, 5]

Listing 1: Input variables used in this report which define a chemical space of aza-pentacene type
molecules to be searched.

S3 Fitness functions

In this report we have designed two different fitness functions,

FA = λ− (1)

FB = λ− + Φ Φ =


W − As As < W

0 As ≥ W

(2)

where λ− is the reorganisation energy for electron transport between two molecules approximated

using the four-point scheme using isolated molecule energies.[5]

λ− =
[
E−(R0) − E0(R0)

]
+

[
E0(R−) − E−(R−)

]
(3)
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The penalty function where Φ = W − As is the equation for the Schottky barrier from the Schottky-

Mott rule for the injection of an electron from an electrode with a work function W into the

semiconductor material with a the solid-state electron affinity As.[6, 7] Where the penalty is only

applied for cases below the target work function to favour less reactive higher work function metals.

For this report we will be using W = 4.1 eV which we have chosen to match more closely the work

function of metals such as Ag, Cu and Au which have the values 4.26, 4.65, and 5.1 eV.

The fitness function FA was used to search for molecules with the best probabilities to produce

crystal structures with high electron mobilities when using the transport hopping models. Addi-

tionally we use FA to evaluate the performance and reproducibility of the evolutionary algorithm

since the global minimum was expected to correspond to pentacene as any aza-substitution or non-

linearity is expected to disrupt delocalisation of the excess electron and increase its reorganisation

energy. The fitness function FB includes the additional penalty function to ensure larger electron

affinities and therefore a smaller Schottky barrier when using higher work function electrodes in

OFETs. Therefore FB is used to minimise both the barrier for injection of an electron into the

semiconductor and the barrier for hopping across the semiconductor in hopping transport models.

Both fitness functions were evaluated by taking each molecule generated by the evolutionary

algorithm and creating 3D molecular geometries using the RDKit inbuilt initial coordinates

generation and UFF optimisation functions.[8] The UFF geometries are then taken for a further

optimisation step carried out at the B3LYP/6–311+G** level of theory to generate the neutral

geometries and then used to determine the geometries of the charged species. Solid-state electron

affinities were approximated from gas phase adiabatic electron affinities which were calculated using

energies extracted from the the geometry optimisation calculations. Electron reorganisation energies

are obtained by carrying out two additional single point energy calculation at the same level of

theory where all DFT calculations for the fitness evaluation were carried out using GAUSSIAN09.[9]

Solid-state electron affinities were approximated from calculated gas phase adiabatic electron

affinities by taking advantage of the known correlation between the two values.[10, 11] Here we

calculated the gas phase electron affinities for 12 molecules to produced a linear regression fit

against experimental low-energy inverse photoemission spectroscopy (LEIPS) values for thin-films

organic semiconductors with constants (m = 1.00, c = 1.11) and an R2 = 0.97, see Section S4.

Therefore solid-state electron affinity can be obtained from gas phase calculations by making a very

simple correction of 1.1 eV to the gas phase adiabatic electron affinities calculations.

As ≈
[
E0(R0) − E−(R−)

]
+ 1.1 (4)

Using this simple adjustment with W = 4.1 eV will mean the fitness function FB will also be
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equivalent applying a penalty function similar to Φ against molecules with gas phase electron

affinities greater then 3.0 eV.

S4 Fitting DFT isolated molecule electron affinities to aver-

aged solid-state low-energy inverse photoemission spec-

troscopy (LEIPS) electron affinities

Initial starting geometries for the molecules 4CzIPN, Alq3, BCP, CBP, Liq and PCBM were obtained

by extracting coordinates from crystal structures KANYUU, TICBUD, TUGDOV, ADATOP,

QATMON and PESJII01 respectively to ensure the correct conformers were used during DFT

electron affinity calculations. Initial starting geometries for the remaining molecules C60, C70, PEN,

PFP, PNQ and PTCDA were obtained using inbuilt RDKit initial coordinates generation and UFF

optimisation function as these molecules are π-bonded rigid molecules that are unlikely to have

more than one conformer. Adiabatic electron affinities were calculated by carrying out an geometry

optimisations using B3LYP/6–311+G** at the neutral followed by another geometry optimisation

for the charged state. Adiabatic electron affinities are there calculated from the differences in the

SCF energies between the two states.

Experimental thin-film solid-state electron affinities can vary depending the orientation of

the molecules that are deposited on the substrate. For example pentacene takes on a standing

orientation on a SiO2 substrate with an experimental LEIPS electron affinity of 2.35 eV and a lying

orientation on the highly oriented pyrolytic graphite (HOPG) substrate with a electron affinity

of 3.14 eV.[12] Since we are optimising for only the molecular structure we average solid-states

electron affinity of all known experimental values to fit against DFT results to estimate what the

typical Schottky barrier for the crystal structures that a molecules might form. Experimental values

for the solid-state electron affinities and DFT calculated gas phase electron affinities are shown in

Table S1. The average experimental and DFT calculated values are plotted with a linear regression

model in Fig. S3.
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Figure S2: Chemical diagrams of the molecules used to fit calculated gas phase electron affinities to
experimental solid-state electron affinities.

Molecule DFT Ag LEIPS Ās LEIPS As References
4CzIPN 2.03 2.81 2.81 [11]
Alq3 1.02 2.06 2.06 [11]
BCP 0.616 1.89 1.89 [11]
C60 2.64 3.98 3.98 [13]
C70 2.69 4.00 4.00 [13]
CBP 0.786 1.75 1.75 [11]
Liq 0.749 1.85 1.85 [11]
PCBM 2.53 3.75 3.64, 3.76, 3.84 [13, 14]
PEN 1.54 2.73 2.35, 2.70, 3.14 [12, 15]
PFP 2.85 3.85 3.58, 4.12 [12]
PNQ 1.65 2.83 2.34, 2.83, 3.32 [16]
PTCDA 3.17 4.11 4.11 [17]

Table S1: A table showing the calculated B3LYP/6–311+G** gas phase adiabatic electron affinities,
averaged experimental LEIPS solid-state electron affinities and experimental LEIPS with solid-state
electron affinities with different molecular orientations of the thin film on the OFET substrate.
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Figure S3: Linear fit between the averaged experimental LEIPS solid-state electron affinities and
calculated B3LYP/6–311+G** gas phase adiabatic electron affinities.

S5 Comparison of calculated mobilties between Marcus the-

ory and non-adiabatic molecular dynamics for a set of

tetracene systems.

We carried out comparisons of calculated mobilities using Marcus theory, as outlined in our paper,

against non-adiabatic molecular dynamics simulations.[18–21] This method has been shown to

obtain excellent correlation with experimental mobilities[22] which therefore will be a good reference

to compare against. For the test set, we use a series of substituted tetracene systems whose hole

mobilities were recently evaluated.[23]

We started with the experimentally determined crystal structures of each crystal structure.

Hydrogen bond lengths are typically underestimated in experimental crystal structures, and an

equilibration step is carried out in the non-adiabatic molecular dynamics simulations. Therefore,

we give a fair comparison to our method by taking molecular geometries from the experimental

crystal structures and reoptimise them using B3LYP/6-311G** with heavy atom positions fixed

so that the correct conformations are maintained. These molecular geometries are then pasted

back into the experimental crystal structures which are then optimised using the lattice energy

minimisation method as outlined in Section S7. Mobilities for these optimised structures are then

obtained by running kinetic Monte Carlo simulations using Marcus theory rates as outlined in the

paper. Results are shown in Table S2 and Fig. S4.
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System Database
Identifier

µ / cm2(Vs)−1

(Marcus Theory)
µ / cm2(Vs)−1

(Non-adiabatic
Molecular Dynamics)

Electronic Coupling
(Non-adiabatic

Molecular Dynamics)
TET GUMZOE 0.32 0.6 18.4 ± 33.6
TiPeT DUWHOT 0.68 2.7 76.2 ± 29.4
TETCEN TETCEN 3.19 3.5 88.7 ± 32.4
TMT GUMZIY 3.54 20.8 146.1 ± 21.8
DPrT DUWPER 8.62 8.2 101.5 ± 27.3
TPeT GUNBAT 10.84 9.6 122.4 ± 25.7
TPrT GUMZUK 11.11 15.8 143.4 ± 23.3
TiBuT DUWHEJ 12.86 1.3 124.1 ± 56.3
TBuT HIGNIV 14.25 13.2 156.2 ± 25.2
THT GUNBEX 14.32 11.0 137.1 ± 28.3

Table S2: Table showing calculated mobilities calculated using kinetic Monte Carlo using Marcus
theory rates and non-adiabatic molecular dynamics simulations for 10 different tetracene type
systems and the largest electronic coupling with deviations from the non-adiabatic molecular
dynamics simulations.[23] TMT, TET, TPrT, TBuT, TPeT, and THT are tetra- methyl-, ethyl-,
propyl-, butyl-, pentyl-, and hexyl-tetracene, respectively. TiBuT and TiPeT are iso-butyl and
iso-pentyl tetracene. TPrT is 1,4-propyl tetracene. TETCEN is tetracene.
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Figure S4: Scatter plot of hole mobilities from kinetic Monte Carlo simulations using Marcus theory
rates against hole mobilities from non-adiabatic molecular dynamics simulations, y = x is indicated
by the dashed line.

In general, we see fairly good ranking for these systems with small/large mobilities predicted

by Marcus theory corresponding to small/large mobilities with non-adiabatic molecular dynamics.

There are two outliers: the systems TiBuT and TMT. For TiBuT, the hole mobility predicted

by Marcus theory is dramatically overestimated. This could be due to the large variation in its

electronic coupling ±56.3 eV through the molecular dynamics, indicating an important effect of

phonons on hole transport. The hole mobility in TMT, with a smaller deviation in its electronic

coupling of ±21.8 eV, is underestimated. The mobility in TMT from non-adiabatic molecular

dynamics relies on a complex pathway, where the mobility may depend strongly on dynamics

connecting ’columns’ of molecules.[23] These errors are probably acceptable for our use case since
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each molecule may be predicted to include up to a hundred or more crystal structures in its low

energy region and the likelihoods of a molecule to produce a high performance organic semiconductor

is assessed using a weighted average and deviation over its crystal structure landscape.

In future work it will however be favourable to replace Marcus theory with models which include

effects due to the non-local coupling, a parameter which causes the deviation in the electronic

coupling. These effects are taken into account in, for example, the transient localisation theory.[24–

26] However these methods incur an increased computational expense and future work is required

to see if they can be used as a part of a high throughput screening program. This not only requires

that these methods are computationally inexpensive but that they are easily automated and require

no human intervention at any point. There are therefore significant challenges to replacing Marcus

theory especially since it will be necessary to scale up the material discovery program we have

developed here by at least an order of magnitude.

S6 Definition of molecular non-linearity

We define the amount of non-linearity by the number of bonds that connect two rings together that

are not the intersecting bonds.

Figure S5: Example chemical structures with increasing non-linearity from TOP left to bottom
right. Where we have define the amount of non-linearity by the number of bonds (red) that connect
two rings together that are not the intersecting bonds (blue).

S7 Full details of crystal structure prediction calculations

Crystal structure prediction calculations were performed for the most promising molecules identified

from the evolutionary search, using the Global Lattice Energy Explorer (GLEE) program.[27] A

low-discrepancy, quasi-random sampling of crystal packing variables was used to uniformly sample

the lattice energy surface of each molecule. Trial crystal structures were generated and lattice

energy minimised until a total of 34,000 successfully lattice energy minimised crystal structures

were produced for each molecule in the most commonly observed space groups for organic molecules:

4000 structures in each of (P21/c, P 1̄, C2/c, P212121, P21, Pbca) and 2000 in each of (P1, C2, Cc,
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Pna21, Pca21) with one molecule in the asymmetric unit (Z ′ = 1).

Lattice energies were calculated with the W99 intermolecular atom-atom potential[28] combined

with an atomic multipole electrostatic model based on the molecular charge densities calculated

from a distributed multipole analysis[29] of the B3LYP/6–311G** density, with multipoles up to

hexadecapole on each atom. Ewald summation was used for charge-charge, charge-dipole and

dipole-dipole interactions, while all higher order electrostatics and repulsion-dispersion interactions

were calculated to a 35 Å cutoff. All lattice energy minimisations were performed using the

DMACRYS software,[30] with space group symmetry constrained throughout the optimisations.

Molecular geometries were kept rigid, constrained at their neutral isolated molecule optimised

geometries using the B3LYP/6–311G** level of theory. The removal of duplicate crystal structures

from the final structure sets was performed across all space groups by comparing predicted X-ray

diffraction patterns calculated using PLATON.[31]
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S8 Energy-Structure-Function maps of electron mobility in

the optimised molecules
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