
S1 Appendix: Materials and Methods

Experimental design 1

Mice 2

All experimental procedures were performed in accordance with directive 2010/63/EU 3

on the protection of animals used for scientific purposes and approved by the Italian 4

Minister of Health, authorization n.183/2016-PR. Mice were housed in clear plastic 5

cages under a 12 h light/dark cycle and were given ad libitum access to water and food. 6

We used a transgenic mouse line (C57BL/6J-Tg(Thy1GCaMP6f)GP5.17Dkim/J, 7

referred to as GCaMP6f mice) expressing a genetically-encoded fluorescent calcium 8

indicator under the control of the Thy-1 promoter. Mice were identified by earmarks 9

and numbered accordingly. Animals were randomly assigned to five experimental 10

groups: control, untreated, robot, toxin and combined treatment. Untreated, toxin and 11

combined treatment data were recorded for our previous work ( [1]), while control, robot 12

and additional untreated data were derived from a different set of experiments ( [2]). 13

Each group contained comparable numbers of male and female mice (weighing 14

approximately 25g). The age of mice was consistent between the groups (ranging from 3 15

to 4 months). 16

Surgical Procedures 17

All surgical procedures were performed under Isoflurane anesthesia (3% induction, 1.5% 18

maintenence, in 1.5L/min oxygen). The animals were placed into a stereotaxic 19

apparatus (Stoelting, Wheat Lane, Wood Dale, IL 60191) and, after removing the skin 20

over the skull and the periosteum, the primary motor cortex (M1) was identified 21

(stereotaxic coordinates 1,75 lateral, 0.5 anterior to bregma). Five minutes after 22

intraperitoneal injection of Rose Bengal (0.2 ml, 10 mg/ml solution in Phosphate Buffer 23

Saline (PBS); Sigma Aldrich, St. Louis, Missouri, USA), the targeted region of the 24

cortex (M1) was illuminated through intact skull for 15 minutes with a white light from 25

an LED lamp (CL 6000 LED, Carl Zeiss Microscopy, Oberkochen, Germany) linked to a 26

20X objective (EC Plan Neofluar NA 0.5, Carl Zeiss Microscopy, Oberkochen, Germany) 27

to induce unilateral stroke in the right hemisphere. Control mice were injected with 0.2 28

mL of saline and then illuminate as the others. We choose a photothrombotic stroke 29

model as a non invasive technique to induce a targeted ischemic stroke highly 30

reproducible. 30 days after photothrombosis, a subgroup of animals were perfused first 31

with 20-30 mL of 0.01 M PBS (pH 7.6) and then with 150 mL of Paraformaldehyde 4% 32

(PFA, Aldrich, St. Louis, Missouri, USA). The fixed brains were then cut using a 33

vibrating-blade microtome (Leica, Germany) to obtain 100 µm thick coronal sections 34

that were used for immunostaining of NeuN (1:200, Millipore, Germany). Lesion volume 35

located in the primary motor cortex of the right hemisphere was comparable between 36

animals (1.2± 0.1mm3, average ± SEM). Botulinum Neurotoxin E (BoNT/E) injections 37

in toxin and combined treatment mice were performed during the same surgical session 38

of the photothrombotic lesions. We used a dental drill to create a small craniotomy over 39

M1 of the healthy hemisphere (ML: -1.75; RC:+0.5). Then 500 nL of BoNT/E were 40

delivered in two separate injections. A cover glass and an aluminum headpost were 41

attached to the intact skull using transparent dental cement (Super Bond, C&S). 42

Afterwards, the animals were placed in their cages until full recovery. 43
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Motor Training Protocol on the M-Platform 44

Before the first imaging session each mouse was allowed to become accustomed to the 45

apparatus. The animals were trained by means of the M-Platform, which is a robotic 46

system that encourages mice to perform a retraction movement of their left 47

forelimb [1, 3]. The task consisted of up to 15 cycles of passive extension of the affected 48

forelimb followed by its active retraction triggered by an acoustic cue. A liquid reward 49

(milk) was delivered at the end of each complete pulling to motivate mice during the 50

training session. The time course of one individual training cycle is detailed in Table 1. 51

All groups performed at least one week (5 session) of daily training. Untreated and 52

toxin mice performed one week of daily training starting 26 days after injury. Control, 53

robot and combined treatment performed four weeks (20 sessions) of daily sessions 54

starting 5 days after surgery and/or photothrombosis; in addition, 5 out of 8 robot mice 55

were also recorded for one week before stroke (5 sessions). The M-Platform was 56

designed to allow mice in all conditions (before stroke, right after stroke, and during the 57

weeks under all treatments) to easily perform the motor task from the very first session 58

by applying similar forces. For the same reason, this robotic device is not suitable to 59

evaluate post-stroke functional impairment. 60

Status

0 linear actuator positions forelimb at 10 mm from
resting position (passive maximum extension)

1 forelimb remains in extended position (0.50s)
2 acoustic tone (1.00V, 0.50s) signals beginning of task
3 mouse is allowed to perform task of pulling handle

back to resting position
4 different acoustic tone (3.00V, 1.00s) marks end of

task
5 waiting time before reward supply (0.50s)
6 supply of liquid reward for successful execution of

task (0.30s)
7 waiting time (2.00s) to allow mouse to drink reward

before next task

Table 1. Time course of training cycle. Each line corresponds to a different value of
the status variable.

Wide-Field Fluorescence Microscopy 61

The custom-made wide-field imaging setup [4–6] was equipped with a 505 nm LED 62

(M505L3 Thorlabs, New Jersey, United States) light was deflected by a dichroic filter 63

(DC FF 495-DI02 Semrock, Rochester, New York USA) on the objective (2.5x EC Plan 64

Neofluar, NA 0.085, Carl Zeiss Microscopy, Oberkochen, Germany). Then a 20x 65

objective (LD Plan Neofluar, 20x/0.4 M27, Carl Zeiss Microscopy, Oberkochen, 66

Germany) was used to demagnify the image onto a high-speed complementary 67

metal-oxide semiconductor (CMOS) sensor (OrcaFLASH 4.0, Hamamatsu Photonics, 68

NJ, USA). The fluorescence signal was selected by a band pass filter (525/50 Semrock, 69

Rochester, New York USA) and images (100 x 100 pixels, pixel size 60 µm) were 70

acquired at 25 Hz. Accordingly, signals from every pixel reflect the activity of hundreds 71

if not thousands of neurons. 72
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Schallert cylinder test 73

For the evaluation of motor performances mice were placed in a Plexiglas cylinder (7,5
cm diameter, 16 cm height) and, after two minutes of acclimatization, recorded for five
minutes by a webcam placed below the cylinder. We analyzed mice spontaneous
forelimb use through six time points (before stroke and two days after, and once a week
during the four week rehabilitative period). Videos were monitored frame by frame and
the spontaneous use of both forelimbs was assessed during exploration of the walls, by
counting the number of contacts performed by the paws of the animal. For each wall
exploration, the last paw that left and the first paw that contacted the wall or the
ground were assessed by an experimenter who was blind to the experimental group. In
order to quantify forelimb-use asymmetry displayed by the animal, an asymmetry index
was computed, according to Lai et al. 2015 [7]:

A =
Cipsi − Ccontra
Cipsi + Ccontra

∗ 100 (1)

where Cipsi and Ccontra refer, respectively, to the number of contacts performed with 74

the limb ipsilateral and contralateral to the lesioned hemisphere. 75

Signal processing and data analysis 76

Preprocessing 77

Data acquired during each recording session (one mouse, one day, see Fig 1B) was 78

processed offline using custom routines implemented in Python (Python Software 79

Foundation) and Matlab (MathWorks). Each such dataset consisted of up to 15 cycles 80

of active retraction movements on a slide triggered by passively actuated contralesional 81

forelimb extensions. To ensure the consistency of the field of view across sessions and 82

across mice, each frame of the fluorescence data was offline registered by aligning each 83

frame to two reference points (corresponding to bregma and lambda) that were 84

previously marked on the glass window during the surgery procedure. After the image 85

registration across all days, subjects and groups, the more marginal regions were 86

excluded from the analysis and thus the final area analyzed contains at most a very 87

small portion of the lesion. For the 2D fluorescence data, masking the region of interest 88

and spatial downsampling by a factor 3 for both rows and columns resulted in calcium 89

activity matrices of 12 x 21 pixels. Spatial average over all pixels yielded the mean 90

calcium activity. In parallel, the force applied to the slide by the mouse and the discrete 91

status of the slide were recorded. Using samplings with a time step of 40 ms and 92

acquisition times of up to 400 seconds this yielded recordings with at most 10000 data 93

points. The calcium traces were transformed into z-scores, detrended via subtraction of 94

a moving average of order 75 (three seconds) and, in order to yield a better time 95

resolution, upsampled by a factor 20. This approach was also used in [8]. 96

Event detection 97

Next, within all of these traces we identified the times of the most relevant discrete 98

events. For the status (Fig 2A) we marked the transition from level 3 to level 4 which 99

corresponds to the completion of the forelimb retraction by the active movement of the 100

mouse upon which the animal received its reward (reward pulling event). For the force 101

(Fig 2B), the mean calcium (Fig 2C) and the individual calcium traces of all the pixels 102

the events are the high-amplitude peaks that can easily be recognized. As peak times 103

we used the upwards crossings of a threshold T which in each of these cases was defined 104

in a data-adaptive manner according to T = mean(x) + t ∗ std(x). The free parameter t 105
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was set to 1.5 for the force and 1.7 for all the calcium traces. In the slower calcium 106

traces, in order to avoid a double detection due to noise, we discarded all peaks that 107

succeeded the previous peak by less than a minimum inter-peak interval of 25 data 108

points (one second). 109

SPIKE-Order 110

The peaks (from now on called spikes) of all the pixels can be represented best in a 111

rasterplot like the one shown in Fig 2D. The next important step was to identify the 112

global events that correspond to the peaks of the mean calcium trace. To this aim, we 113

used the cSPIKE-implementation [9] of the SPIKE-Order approach recently proposed 114

in [10] (for detailed mathematical definitions of all the underlying quantities please refer 115

to the Appendix ”SPIKE-Order method”. The original proposal was designed for rather 116

clean data with well-defined global events. These conditions hold for most of our 117

datasets as well, however, we added a few tailor-made denoising steps that addressed 118

the rare instances of increased noisiness that we observed in some of the datasets. 119

The procedure consisted of six steps: in an initial denoising step, we filtered out all 120

spikes of individual pixels that were not within 1 second of a mean calcium peak and 121

thus were certainly not part of global events. Secondly, we applied the coincidence 122

detection first introduced for the bivariate measure event synchronization [11]. This 123

criterion paired spikes in such a way that every spike was matched with at most one 124

spike in each of the other pixels. Here we combined the original adaptive approach with 125

a maximum allowed distance between spikes of 2.5 seconds. Next, we used the 126

symmetric and multivariate measure SPIKE-Synchronization C [12] to quantify for each 127

spike the fraction of other pixels for whom a matching spike could be found. By setting 128

a threshold value Cthr = 0.75 we only took into account spikes which were coincident 129

with spikes in at least three quarters of the other pixels, all other spikes were filtered 130

out as background noise. 131

In a fourth step, we applied the SPIKE-Order D [10] which evaluates the temporal 132

order of the spikes by quantifying for each spike the net-fraction of spikes of other pixels 133

this spike is leading (positive value) or following (negative value). Based on the time 134

profile we identified start and end spikes of global events by tracking the jumps from a 135

negative local minimum (last spike of previous event) to a positive local maximum (first 136

spike of current event). In one further denoising step we discarded split events and 137

eliminated outlier spikes by using a maximum distance between consecutive spikes of 138

0.15 seconds and thereby kept only continuous global events. The final step used in the 139

visualization of the spike trains in Fig 2D involved the Synfire Indicator [10], a scalar 140

measure which quantifies to what degree the spatiotemporal propagation patterns of the 141

global events are consistent with each other. Optimization of this indicator was used to 142

sort the spike trains / pixels from overall leader to overall follower. Here, overall means 143

that we take into account all global events at the same time. The result is that the first 144

spike trains contain mostly leading spikes, whereas the last spike trains consist largely of 145

trailing spikes. 146

Note that all parameters of preprocessing, event detection and definition of global 147

events were selected prior to and independently from the subsequent categorization of 148

event and calculation of events. At no point was there an optimization of any of these 149

parameters regarding the results of the SPIKE-order algorithm and the calculation of 150

the three propagation indicators. 151

Categorization of events 152

Next, we divided the global events into several types using the following three-level 153

categorization scheme (the corresponding branching structure is shown in Section 154
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Methods): First, we separated all the global events that are not associated with a force 155

peak (non-Force, nF). For this we demanded that there is no force peak in the interval 156

[1 second before, 0.75 seconds after] the matching calcium peak. The window was 157

slightly asymmetric to account for the fact that typically force peaks were observed a 158

bit earlier than mean calcium peaks. The remaining force events (F) were further 159

subdivided into events that occur during the passive extension of the arm by the slide 160

(Passive, Pass) and events that occur outside that window (Active, Act). In the 161

passive events the mouse applied force to resist the forelimb extension movement of the 162

robot, whereas the active events were the ones where the force was applied during an 163

active retraction movement (when the status variable was set to 3, i.e. between the Go 164

cue and the completion of the task). Finally, among the active events we distinguished 165

between events which were not completed and thus not rewarded (non-Reward Pulling, 166

nRP) and events which lead to a completion of the forelimb retraction and therefore 167

were rewarded with milk (Reward Pulling, RP). The categorization criterion was the 168

occurrence of a transition from status 3 to status 4 within [0.75 seconds before, 0.75 169

seconds after] a calcium peak. This window was symmetric, since the observed temporal 170

distribution of status events was symmetric with respect to the mean calcium peaks. 171

Three propagation indicators: Duration, Angle, Smoothness 172

For all global events, the event time was defined as the average time of all the spikes 173

within the event and our first propagation indicator, the event duration, was defined as 174

time from the first to the last spike of the event. To calculate the other two propagation 175

indicators, angle and smoothness, we first generated the propagation matrix by 176

mapping the color-coded relative order of the spikes onto the pixels of the 2D-recording 177

plane (compare Fig 2F). Next, we applied singular value decomposition (SVD, [13]) 178

which searches for spatial patterns by decomposing the propagation matrix P into three 179

simple transformations: a rotation U , a scaling Σ along the rotated coordinate axes and 180

a second rotation V T . 181

The rotations U and V T are orthonormal matrices and Σ is a diagonal matrix
containing in its diagonal the singular values σi of P . By backprojecting the sorted
singular values one at a time

Σ1 =

[ σ1
0
0

. . .

]
Σ2 =

 0
σ2

0

. . .


we could obtain various projections of the original propagation matrix

P1 = UΣ1V
T P2 = UΣ2V

T .

The mean gradients with respect to column (c) and row (r) increments of the first two 182

projections were calculated as 183{
gc1 = E(−∂P1

∂c )

gr1 = E(−∂P1

∂r )

{
gc2 = E(−∂P2

∂c )

gr2 = E(−∂P2

∂r )

with E denoting the average across pixels while the sign (-) is defined by the 184

directionality in the matrix P going from leader (+1) to follower (-1). The main 185

propagation directions, along the column and row directions, 186{
vc = σ1g

c
1 + σ2g

c
2

vr = σ1g
r
1 + σ2g

r
2
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were calculated from the weighted average of the mean gradients of the first two
projections, with the singular values as weights. Our second propagation indicator, the
angle

α = arctan

(
vc

vr

)
was defined relative to the horizontal axis. 187

Finally, our third propagation indicator, the smoothness S, quantified how well the
second order approximation, the weighted sum of the projections of only the first two
singular values, captures the full spatiotemporal pattern obtained by considering all
singular values σi. Smoothness is defined as the relative weight of the first two
approximations

S =
σ2
1 + σ2

2∑
i σ

2
i

. (2)

This measure is often referred to as the cumulative explained variance or sometimes 188

explained variance ratio of the second order. 189

Note that these three indicators were developed and selected ‘a priori’ based on the 190

complementary information they provide about the propagation patterns. No other 191

indicators were tested for their discrimination performance. 192

Statistical Tests 193

To asses statistical significant differences in smoothness, duration, and the asymmetry 194

index we employed a mixed-effect model (R library lme4 [14]) for each measure with at 195

most four different factors depending on the analysis of interest: treatment, event type, 196

week, and day. In particular we ran a separate analysis when comparing events type in 197

the healthy group (Fig 4), the effect of stroke during the acute phase (Fig 5), the effect 198

of treatments (Fig 6), the pre-stroke group with the longitudinal control group(S2 Fig), 199

the acute vs the untreated stroke (S3 Fig), and the asymmetry index across treatment 200

groups (S4 Fig). In addition, for each mixed-model considered, initially we started from 201

a full factorial model that considered all possible interactions, such model was then 202

reduced to consider only relevant effects by means of a backward selection with 203

consecutive likelihood-ratio tests. This was done with the function step of the lmerTest 204

library [15] in order to select a parsimonious feasible model that could decrease the type 205

I error rate and increase the statistical power [16]. Once the model parameters were 206

selected, we tested the differences between the least-squares means with the difflsmeans 207

function of the lmerTest library and then corrected the results with the 208

Holm-Bonferroni correction. For every test we assessed both the normality of residuals 209

and the homogeneity of variance assumptions before reporting the results. We used the 210

Kolmogorov-Smirnov test to check the residual distribution and the Breusch-Pagan test 211

to check the homoscedasticity. If normality assumption did not hold, we adopted a 212

Box-Cox transform of the dependent variable [17]. In case the Breusch-Pagan test 213

revealed a departure from homogeneity of variance, we identified the comparisons that 214

had a significant difference in variance and reported the results, again correcting the 215

p-values with the Holm-Bonferroni method. 216

For the propagation angle, instead, we adopted the Von-Mises distribution to model 217

the circular characteristic of this indicator and tested the differences in circular variance 218

with multiple Bartlett tests (equal.kappa.test function in the circular library, [18]). We 219

adopted the Holm-Bonferroni correction to account for multiple comparison bias and we 220

assessed the assumption of Von-Mises distribution with the Watson test [19]. We only 221

reported results of those comparisons for which the Von-Mises distribution held. 222
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