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Abstract

Objective: To develop machine-learning models employing administrative-health data that can 
estimate risk of adverse outcomes within 30-days of an opioid dispensation for use by health 
departments or prescription monitoring programs.

Design, Setting, and Participants: This prognostic study was conducted in Alberta, Canada 
between 2017-2018.  Participants included all patients over 18 years of age who received at 
least one opioid dispensation. Pregnant and cancer patients were excluded.

Exposure:  Each opioid dispensation served as an exposure.

Main Outcomes/Measures: Opioid related adverse outcomes were identified from linked 
administrative health-data.  Machine-learning algorithms were trained using 2017 data to 
predict risk of hospitalization, emergency department visit, and mortality within 30-days of an 
opioid dispensation.  Two independent validation sets, using 2017 and 2018 data, were used to 
evaluate model performance.  Model discrimination and calibration performance were 
assessed for all patients and those at higher risk. Machine-learning discrimination was 
compared to current opioid guidelines.

Results: Participants in the 2017 training set (n=275,150) and validation set (n=117,829) had 
similar baseline characteristics.  In the 2017 validation set, c-statistics for the XGBoost, logistic 
regression, and neural network classifiers were 0.87, 0.87, and 0.80, respectively. In the 2018 
validation set (n=393,023), the corresponding c-statistics were 0.88, 0.88, and 0.82. C-statistics 
from the Canadian guidelines ranged from 0.54-0.69 while the US guidelines ranged from 0.50-
0.62.  The top 5-percentile of predicted risk for the XGBoost and logistic regression classifiers 
captured 42% of all events and translated into a post-test probability of 13%, up from the pre-
test probability of 1.6%.

Conclusion: Machine-learning classifiers, especially incorporating hospitalization/physician 
claims data, have better predictive performance compared to guideline or prescription history 
only approaches when predicting 30-day risk of adverse outcomes. Prescription monitoring 
programs and health departments with access to administrative data can use machine-learning 
classifiers to effectively identify those at higher risk compared to current guideline-based 
approaches.
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Article Summary

Strengths and Limitations:

 This study incorporated near complete capture of opioid dispensations from community 
pharmacies and used validated administrative health data.

 The study population is the entire provincial population and is generalizable to other 
populations in Canada and beyond.

 This study used commonly available algorithms to train machine-learning models using 
data which is available to government health departments in all provinces in Canada 
and other single payer jurisdictions.

 Our predictive models used dispense events and not medication utilization, which is 
difficult to capture in administrative data.

 Our training dataset does not account for non-prescription opioids, opioids 
administered in hospitals, and other risks associated with non-prescription use.
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Introduction

Canada has among the highest rates of opioid prescribing in the world, making 

prescription opioid use a key driver of the current opioid crisis1; a major part of the policy 

response to the opioid crisis focuses on endorsing safe, appropriate opioid prescribing2-4.  In 

order to minimize high risk opioid prescribing and to identify patients at high risk of opioid 

related adverse outcomes, numerous health regulatory bodies have released clinical practice 

recommendations for health providers regarding appropriate opioid prescribing3,5,6.  

Prescription monitoring programs (PMPs) have been implemented around the world, 

like Alberta’s provincial Triplicate Prescription Program (TPP)7 in Canada, and are mandated to 

monitor the utilization and appropriate use of opioids to reduce adverse outcomes.  In most 

jurisdictions, both population-level monitoring metrics and clinical decision aids are used to identify 

patients at risk of hospitalization or death and are most often based on prescribing guidelines.  

However, a comprehensive infrastructure of administrative data containing patient level ICD8 

codes and prescription drug histories exists in Alberta and other provinces in Canada which 

could be further integrated to predict opioid-related risk.  Furthermore, current guidelines’ of 

high risk prescribing and utilization of opioids were derived from studies that used traditional 

statistical methods (regression analyses) to identify population level risk factors for overdose 

rather than an individual’s absolute risk3,9,10; these population estimates may not be 

generalizable to different populations11.  Thus, a functional gap exists in many health 

jurisdictions where much of the available administrative health data is not being leveraged for 

opioid prescription monitoring.
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Supervised machine learning (ML)12,13 is an approach that uses computer algorithms to 

build predictive models in the clinical setting that can make use of the large amounts of 

available administrative data14,15, all within a well-defined process16.  Supervised ML trains on 

labelled data to develop prediction models that are specific to different populations and, in 

many cases, can provide better predictive performance than traditional, population-based 

statistical models10,15,17.  We identified one study10 that applied ML techniques to predict 

overdose risk in opioid patients pursuant to a prescription.  In their validation sample, they 

found that the DNN (deep neural network) and GBM (gradient boosting machine) algorithms 

carried the best discrimination performance based on estimated c-statistics and that the ML 

approach out-performed the guideline approach in terms of predictive performance.

The objective of our study was to develop and validate ML algorithms to predict the 30-

day risk of hospitalization, emergency visit and mortality for a patient in Alberta, Canada at the 

time of an opioid dispensation using administrative data routinely available to health 

departments and PMPs.  We hypothesized that the ML process would perform better than the 

current guideline approach for predicting risk of adverse outcomes related to opioid 

prescribing.

Methods

Study Design and Participants

This prognostic study used a supervised ML scheme. All patients in Alberta, Canada who 

received a dispensation for an opioid, were 18 years of age and older between Jan 1, 2017 and 

Dec 31, 2018 were eligible.  Patients were excluded if they had any previous diagnosis of 
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cancer, received palliative interventions or were pregnant during the study period (eTable 1 in 

Supplement) as use of opioids in these contexts is clinically different.

Government health departments and payers in many jurisdictions have systems to capture 

prescription histories and ICD diagnostic codes.  As such, we linked various administrative 

health data sets available in Alberta, Canada using unique patient identifiers in order to 

establish a complete description of patient demographics, drug exposures and health 

outcomes.  These databases include 1) Pharmaceutical Information Network (PIN): PIN data 

includes all dispensing records from community pharmacies from all prescriber types occurring 

in the province outside of the hospital setting. PIN collects all drug dispensations irrespective of 

age or insurance status in Alberta, 2) Population and Vital Statistics Data (VS, Alberta Services): 

sex, age, date of birth, death date, immigration and emigration data, and underlying cause of 

death according to the World Health Organization algorithm using ICD codes8, 3) 

Hospitalizations and Emergency Department Visits (NACRS [National Ambulatory Care 

Reporting System], DAD [Discharge Abstract Database]): all services, length of stay, diagnosis 

(up to 25 ICD-108 based diagnoses).  Data and coding accuracy are routinely validated both 

provincially and centrally via the Canadian Institute for Health Information, and 4) Physician 

Visits/Claims (Alberta Health): date of service, ICD code associated with the claim, procedure 

and billing information.

This study followed the TRIPOD and STARD reporting guidelines18-20 and received ethics 

approval from the University of Alberta ethics board (Pro00083807_AME2).  All analyses were 

done using Python, version 3.7 (Python Software Foundation).
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Outcome

The primary outcome was a composite of a drug-related hospitalization, emergency 

department (ED) visit or mortality within 30 days of an opioid dispensation based on ICD-10 

codes (T40, F55, F10-19; eTable 2 in Supplement)2,10.

Predictor Candidates for ML Models

Predictor variables in our ML models included those that were informed by the literature3,4,10 

and those directly obtained from the data sets. These included features based on demographics 

(age, sex, income using Forward Sortation index from postal codes21), co-morbidity history 

using ICD-based Elixhauser score categories22, health care utilization (number of unique opioid 

prescribers, number of hospital visits), and drug utilization (level 3 ATC codes23, oral morphine 

equivalents24, concurrent use with benzodiazepines, number of opioid and benzodiazepine 

dispensations, number of unique opioid and benzodiazepine molecules).  Depending on the 

potential predictor, we used data from 30 days to 5 years before the opioid dispensation to 

generate model features (eFigure 1 in Supplement). Experiments were performed to identify 

the features and data sets that contributed most to predicting the outcomes, with a view to 

minimizing the potential future data requirements for health departments and PMPs.

Statistical Analyses and Machine-Learning Prediction Evaluation

We randomly divided the patients in the 2017 portion of our study cohort into training (70%) 

and validation (30%) sets13. Baseline characteristics and event rates were compared in the 

training vs validation group, and between those who experienced the outcome and those who 
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did not, using chi-squared tests of independence.  As well, we used all 2018 data as another 

independent validation set.

First, we trained commonly used13 ML algorithms (eAppendix in Supplement) and tuned 

model hyperparameters using k-fold (k=5) cross validation to address model overfitting13,25.  As 

is common in ML validation studies10, we reported model discrimination performance using 

area under the receiver operating characteristic curve (AUROC; c-statistic), positive predictive 

value (PPV), positive likelihood ratios (PLR), number needed to screen (NNS) and plotted 

AUROC and precision-recall curves (PRCs).  For the more interpretable XGBoost and logistic 

regression classifiers, we reported feature importance26 and plotted PRCs that compared all 

dispenses to those within the top 10 percentiles of estimated risk.  As well, for the XGBoost 

classifier, we described feature impact on model outcome using SHAP values27,28 to add an 

additional layer of interpretability.  Calibration is crucial in the process of developing a risk 

predictor29 so we assessed calibration performance on the 2018 data by dividing the study 

cohort into percentile categories according to the predicted risk of a dispensation, as was done 

in previous studies10,30.   Using the XGBoost and logistic regression classifiers, we analyzed the 

top 0.1, 1, 5, and 10 percentiles of predicted risk by the number of true and false positives, 

positive likelihood ratios, post-test probabilities, and number needed to screen.  We also 

performed a simulation of daily data uploads for 2018 Quarter 1 to view the predictive power if 

a ML risk predictor were to be deployed into a monitoring workflow.

We then compared ML risk prediction to current guideline approaches as others have10, 

using the 2019 Centers for Medicare & Medicaid Services opioid safety measures31 and the 

2017 Canadian Opioid Prescribing Guideline3.  As well, we compared the discrimination 
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performance of different logistic regression classifier models using various combinations of 

features derived from their respective databases: 1) demographic and drug/health utilization 

features from PIN and 2) co-morbidity features derived from DAD, NACRS and Claims.

Patient and Public Involvement

This research was done without patient involvement. Patients were not invited to comment on 

the study design and were not consulted to develop patient relevant outcomes or interpret the 

results. Patients were not invited to contribute to the writing or editing of this document for 

readability or accuracy.  There are no plans to disseminate the results of the research to study 

participants.  

Results

Patient Characteristics and Predictors

We identified 392,979 patients with at least one opioid dispensation in 2017 (Figure 1).  This 

cohort was used to train (n= 275,150, 70%) and validate (n=117,829, 30%) ML models.  In 2017 

and 2018, 6,608 and 5,423 patients experienced the defined outcome, respectively.  Baseline 

characteristics were different between those who experienced the outcome and those who did 

not (eTable 3 in Supplement) while characteristics were similar between the training and 

validation sets (eTable 4 in Supplement).  There were 2,283,075 opioid dispensations in 2017 

and 1,977,389 in 2018.  Overall, in 2017, 2.03% (n= 45,757) of opioid dispensations were 

associated with the outcome; in 2018, the estimate was 1.6% (n= 31,392).

Page 12 of 45

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

12

As described above, we categorized our candidate features into four groups (eTable 5 in 

Supplement).

Machine-Learning Prediction Performance

Using the 2017 validation set, AUROCs for the XGBoost and logistic regression classifiers had 

the highest discrimination performance at 0.87, while the neural network classifier had lower 

performance at 0.80 (eTable 6 in Supplement).

Discrimination performance was similar for the 2018 validation set (n=393,023; eTable 6 

in Supplement).  XGBoost and logistic regression had the highest estimated AUROCs while the 

neural network classifier was lower (Figure 2A).  As expected, precision-recall curves indicate 

stronger predictive power in opioid dispensations at higher predicted risk percentiles (Figure 

2C, 2D).

In the 2018 validation set, although discrimination performance was similar (0.88), 

individual feature importance was different between the logistic regression and XGBoost 

classifiers, with logistic regression feature importance more reliant on co-morbidity data from 

DAD, NACRS and Claims while XGBoost relied more on drug utilization data from PIN (eFigure 

2).  In the XGBoost classifier, history of drug abuse, alcoholism, and prior hospitalization carried 

the highest impact for predicting the study outcome (eFigure 3A) where the presence of these 

features in a patient suggested a strong tendency towards having the defined outcome (eFigure 

3B and 3C).  

Calibration
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When considering dispensations predicted to be in the highest percentiles of risk, the top 5-

percentile captured 42% of all outcomes using the XGBoost and logistic regression classifiers 

(Table 1).  Also, as the predicted risk percentiles get higher (top 10 percentile to top 0.1 

percentile), so too do the corresponding PPVs with the top 0.1 percentile associated with a PPV 

of 33% for the XGBoost classifier.  As well, lower categories of risk percentiles were associated 

with lower outcomes (Figure 3A and 3B).  When we simulated a monitoring workflow scenario 

with daily data uploads, a similar pattern was illustrated where the dispensations predicted to 

be higher risk had higher event rates (Figure 3C and 3D).

After using the XGBoost and logistic regression classifiers to identify the dispensations in the 

highest predicted risk percentiles, the pre-test probability of the outcome (1.6%) was 

transformed into higher post-test probabilities, with higher probabilities in the riskier 

percentiles (Table 1).  The number needed to screen also decreased as predicted risk increased 

(Table 1).

Comparing discrimination performance, ML risk prediction outperformed the current 

guideline approaches when using various combinations of guideline recommendations (Table 

2).  In many of the guideline scenarios, the estimated AUROCs were close to the 0.5 mark.  

When we estimated the discrimination performance of the logistic regression classifier based 

on database source, using all databases produced an AUROC of 0.88.  Reducing the database 

source to only DAD, NACRS, Claims (co-morbidities only) resulted in an AUROC of 0.85, while 

PIN (prescription history) only was 0.78 (Table 3).

Discussion
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This study showed that ML techniques using available administrative data (prescription 

histories and ICD codes) may provide enough discriminatory power to predict adverse 

outcomes associated with opioid prescribing. Indeed, our ML analyses showed very high 

discrimination performance at 0.88.  The linear model (logistic regression) and XGBoosted Trees 

carried higher discrimination and calibration performance, while the neural network classifier 

did not perform as well.  By identifying the predicted top 5-10 percentile of absolute risk 

pursuant to an opioid dispensation, we were able to capture approximately half of all outcomes 

using ML methods.  All ML models we trained had higher discrimination performance using 

independent (external) validation sets than the clinical guideline approach.

Since the prevalence of our defined outcome is relatively low in the general population, 

PPVs would also be expectedly low.  However, estimated PPVs increased when we considered 

higher risk dispensations, as is expected since PPV is related to event prevalence. This is 

important because different users of a risk predictor will require different predictive 

capabilities.  Similarly, our estimates of positive likelihood ratios and associated post-test 

probabilities also increased in dispensations with higher predicted risk indicating the strong 

predictive power of the XGBoost and logistic regression classifiers; likelihood ratios >10 

generate conclusive changes from pre-test to post-test probabilities32.

The current guideline approach to assess absolute opioid prescribing risk produced c-

statistic estimates closer to 0.5 indicating that discrimination was not much better than chance 

alone.  ML models with higher predictive power can better support health departments and 

PMPs with monitoring mandates to identify and intervene on those at high risk and their 

associated prescribers.  We also found that adding co-morbidity features from administrative 

Page 15 of 45

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

15

databases increased prediction performance compared to prescription history alone, thus 

making the case for the use of this data by PMPs and health departments.  However, if only 

prescription history is available, our trained XGBoost classifier still had strong discrimination 

performance.

We found only one study that used ML approaches to quantify the absolute risk of an 

event pursuant to an opioid dispensation10.  Their methodology used rolling 3-month windows 

for estimating risk and ML model training while we used historic records to estimate 30-day 

risk.  Differences in study population and feature selection may explain why their highest 

performing ML model was deep learning (neural network classifier) and ours was not.  

Nevertheless, we were able to replicate and build upon their discrimination performance using 

our ML approach as we both were able to show that ML approaches have higher predictive 

power than guideline approaches.  Both of our studies used predicted percentile risk estimates 

to identify high risk dispensations and were able to do so with strong discrimination and 

calibration performance.  This is important because interventions can be targeted to higher risk 

instead of lower risk patients. Another study we found describes how identifying cases in higher 

predicted risk percentiles using ML methods can be deployed in hospital settings for the 

purpose of targeted interventions30 upon discharge.

The limitations of our study are similar to other ML studies10 and need to be addressed 

when considering deployment of ML risk predictors.  Our training dataset was not able to 

account for non-prescription opioid consumption and the risk associated with non-prescription 

use, both of which are substantial contributors to overall risk2.  Regarding our analysis, we 

assumed that all dispensations were independent events; future research in this area should 
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focus on employing ML methods using correlated data.  As with all ML projects, our models 

were trained using Alberta data and might not be generalizable to other populations, or to 

specific populations within Alberta.  However, our analyses were done on a large population 

and these results would be expected to be generalizable to the vast majority of patients. 

Moreover, one of the benefits of the ML process is that models can be retrained or similar 

methods could be used to develop new models to accommodate different populations.

This study suggests that ML risk prediction can support PMPs, especially if able to use 

administrative health data.  The ML process allows for model training, validation and 

deployment to specific settings. However, uptake of this technology is limited for the time 

being.  Further research can assess whether implementation of a ML-based monitoring system 

by PMPs leads to improved clinical outcomes.
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Figure Legend

Figure 1.  Patient flow diagram of study participants used for training and validating ML models.  NACRS: 
National Ambulatory Care Reporting System; DAD: Discharge Abstract Database; VS: Vital Statistics; PIN: 
Pharmaceutical Information Network; Claims: Physician Claims

Figure 2.  Area under the receiver operating characteristic curve (AUROC) (A) and precision-recall curves 
(B) for all dispensations using logistic regression, neural network, support vector machine (SVM), 
XGBoost and Naïve-Bayes; precision-recall curves for higher risk dispensations according to predicted 
risk percentile categories for logistic regression (C) and XGBoost (D) using the 2018 validation set.  

Figure 3. Calibration curves plotting: 1) observed vs. quantiles of estimated risk for XGBoost (A) and 
logistic regression (B) classifiers using the 2018 validation dataset and 2) simulation of a clinical 
workflow with daily uploads and events per 100 daily dispenses by risk percentiles using 2018 Quarter 1 
(Q1) data for logistic regression (C) and XGBoost (D) classifiers.  For both classifiers, the majority of 
counts (dispensations) were predicted to be lower risk.
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Table 1. Highest percentiles of estimated risk and predictive power using the XGBoost and logistic 
regression classifiers for the 2018 validation dataset (n=393,023).  Total number of dispenses= 
1,977,389; total number of outcomes= 31,392.

Metric Top 0.1%ile Top 1%ile Top 5%ile Top 10%ile

XGBoost
Logistic 

Regression XGBoost
Logistic 

Regression XGBoost
Logistic 

Regression XGBoost
Logistic 

Regression
 Number of 
Dispenses 1,977 1,977 19,774 19,774 98,869 98,869 197,739 197,739 

TP captured 655 472 4204 4100 13224 13293 18404 18409 
Percent of TP 2.09 1.50 13.39 13.06 42.13 42.35 58.63 58.64 
FP captured 1322 1505 15570 15674 85645 85576 179335 179330 

PPV 33.13 23.87 21.26 20.73 13.38 13.45 9.31 9.31 
PLR 30.71 19.44 16.74 16.22 9.57 9.63 6.36 6.36 

Post-test 
Probability* 33.13 23.87 21.26 20.73 13.38 13.45 9.31 9.31 

NNS 3.17 4.49 5.08 5.22 8.48 8.43 12.95 12.95 
*Pre-test probability estimated at 1.6% using prevalence.

TP: true positives; FP: false positives; PPV: positive predictive value; PLR: positive likelihood 
ratio; NNS: number needed to screen
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Table 2. Discrimination performance of guideline approach using the 2018 validation set.  Guideline 
approaches were adapted from the 2017 Canadian Opioid Prescribing Guideline and 2019 Centers for 
Medicare & Medicaid Services (CMS) opioid safety measures and compared to logistic 
regression and XGBoost classifiers (each with an estimated area under the receiver operating 
characteristic curve of 0.88).

Canadian Guidelines AUROC Sensitivity Specificity

History of mental disorder only 0.620 0.90 0.34

Substance abuse only 0.686 0.99 0.37

OME/day >90 only 0.539 0.22 0.85

(Mental disorder and substance abuse) 
OR OME/day >90 0.690 0.91 0.47

Mental disorder and substance abuse 
AND OME/day >90 0.560 0.20 0.91

Mental disorder OR substance abuse 
OR OME/day >90 0.589 0.99 0.18

CMS Guidelines

High opioid dose (>120 OME/day for 90+days) 0.507 0.081 0.933

Concurrency (Opioid & BZRA for 30+ days) 0.575 0.423 0.727

Multiple doctors (>4) 0.591 0.294 0.888

Multiple pharmacies (>4) 0.537 0.120 0.959

All conditions 0.50 0.001 0.999

Any condition 0.622 0.62 0.625

OME: daily oral morphine equivalents; BZRA: benzodiazepine receptor agonist.  Elixhauser scoring ICD 
codes were used to identify mental disorders and substance abuse. 
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Table 3. Discrimination performance based on database source using area under the receiver 
operating characteristic curve (AUROC) for the logistic regression classifier on the 2018 
validation set.

Database source Predictor Variables formed 
from database

AUROC

PIN only Drug utilization + Prescription 
history (ATC level 3)

0.78

DAD, NACRS, Claims Co-morbidities 0.85
PIN, DAD NACRS, Claims (all 

databases used in study)
Demographic + Drug Utilization 

+ Healthcare Utilization
+ Co-morbidities

0.88

Note: drug utilization includes features describing oral morphine equivalents24, concurrent use 
with benzodiazepines, number of opioid and benzodiazepine dispensations, number of unique 
opioid and benzodiazepine molecules; health care utilization includes features describing 
number of unique health providers visited, number of hospital visits.
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Figure 1.  Patient flow diagram of study participants used for training and validating ML models.  NACRS: 
National Ambulatory Care Reporting System; DAD: Discharge Abstract Database; VS: Vital Statistics; PIN: 
Pharmaceutical Information Network; Claims: Physician Claims
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Figure 2.  Area under the receiver operating characteristic curve (AUROC) (A) and precision-recall curves 
(B) for all dispensations using logistic regression, neural network, support vector machine (SVM), 
XGBoost and Naïve-Bayes; precision-recall curves for higher risk dispensations according to predicted 
risk percentile categories for logistic regression (C) and XGBoost (D) using the 2018 validation set.  

(A) 
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(C) Logistic Regression
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(D) XGBoost

Page 27 of 45

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

Page 28 of 45

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

Figure 3. Calibration curves plotting: 1) observed vs. quantiles of estimated risk for XGBoost (A) and 
logistic regression (B) classifiers using the 2018 validation dataset and 2) simulation of a clinical 
workflow with daily uploads and events per 100 daily dispenses by risk percentiles using 2018 Quarter 1 
(Q1) data for logistic regression (C) and XGBoost (D) classifiers.  For both classifiers, the majority of 
counts (dispensations) were predicted to be lower risk.

(A) XGBoost
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(B) Logistic Regression

(C) Logistic Regression

Page 30 of 45

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

(D) XGBoost
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Supplementary Content

eAppendix.  Machine learning algorithms

eTable 1.  Diagnostic codes used to exclude patients who had cancer, were pregnant, or were 
under palliative care.

eTable 2.  Diagnostic codes used to identify the defined study outcome from emergency visit, 
hospitalization and death data.

eTable 3.  Baseline characteristics of study patients (n=392,979). Co-morbidities were determined using 
Elixhauser criteria.  All p-values in the chi2 test of independence were <0.001 unless otherwise indicated.

eTable 4.  Characteristics of study participants between training and validation groups using 
2017 data.

eTable 5.  Candidate predictors used to train ML algorithms.

eTable 6.  Discrimination performance using area under the receiver operating characteristic 
curve (AUROC) of various ML algorithms.  Training and validation were done using 2017 data 
(n=393,979); another independent validation was performed using 2018 data (n=393,023).  

eFigure1.  Schematic of study design and feature generation

eFigure2.  Feature importance from logistic regression and tree-based (XGBoost) classifiers 
using the 2018 validation set.  

eFigure3.  Shapley values and feature impact in the XGBoost classifier using the 2018 validation set to 
describe “associations” between features and the outcome.

eReferences.  
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eAppendix. Machine Learning Algorithms

Introduction

While there are always updates and new methods coming up in the fields of machine learning, 
in this study, we have focused on some of the most reliable and proven approaches for predictive 
modelling which are explainable and popularly used in previous studies of similar nature.

Logistic Regression

Regression analysis models the relationship between a dependent variable and a set of 
independent variables [1]. Typically, this includes understanding how the value of the dependent 
variable changes with the changes in the values of independent variables. Logistic regression [1] 
uses the logistic function to model a binary dependent variable, where, based on the values of 
the independent variables the model can approximate one of the two classes, the instance 
belongs to. This basic binary model can be extended to deal with multiple classes (e.g. One-vs-all 
classifiers). However, logistic regression is only capable of modeling a linear relationship of 
independent variables to the dependent variable, hence limited to problems with linear decision 
boundaries. We used the sci-kit learn library in our experiments[6] and found L1 regularization 
to be more effective.

Ridge Classifier

We used the ridge classifier implemented in the Scikit learn library[5]. It implements a classifier 
using ridge regression which uses an L2 regularization on the least square objective function. The 
library converts the labels into -1 and 1 and fits a linear regression on the converted labels with 
the regularization.

Random Forest

Random forest is a tree ensemble learning algorithm that has wide applicability in many 
domains[1]. Random forest is a nonlinear learning algorithm, which arrives at nonlinear decision 
boundaries by independently combining multiple decision trees. Each individual decision tree in 
the forest can be grown independently of each other on a subset of the training data. Random 
forests are mainly sensitive to the number of trees, the depth of a tree and the number of 
covariates randomly chosen to split at each node[1]. These hyper-parameters can be tuned to 
find the best configuration of every dataset. Random Forests, in general, are less prone to overfit 
since they always grow individual trees on a subset of the training data[1]. At prediction time, 
the decision of each tree is aggregated to compute the final prediction. 

Neural Networks (NN)

Neural networks are another collection of non-linear learning algorithms with high 
representation power. They are known to be able to find mappings from an input to an output 
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from a larger non-linear function space [2]. This ability to represent a larger space of nonlinear 
functions has shown to be very effective recently in many application domains such as natural 
language processing, computer vision, genomics, computer games and health[2]. Neural 
networks come in many flavors learning nonlinear mapping of different types of data such as 
Convolutional NNs being most effective with images and Recurrent NNs for time series and 
language data. Identifying the most effective neural network structure is one of the difficult and 
the most time-consuming aspect of applying neural networks to new application domains and 
data. Generally, neural networks try to exploit the relationships in the raw unstructured data (eg: 
image and text) presented to the network but with more structured data such as health records 
and ICD codes learning relationships is much complex. Our neural network models are mainly 
based on densely connected hidden layers with ReLu[6] activation function. We used the cross-
entropy loss for the binary classification Adam optimizer. 

Boosted Learning Algorithms

Boosting is a process to ensemble multiple base learning algorithms to arrive at better overall 
performance than any individual base learner[1]. In contrast to independently building multiple 
models from the subsets of the data, boosting re-weights the training data every time a model is 
learned for future models. This weighting happens to give more preference to currently 
misclassified data points in the next round compared to the correctly classified data points. 
Therefore future learners try to do better on the misclassified data points leading to a collection 
base learners having a better-combined prediction. This process is sequential so each base 
learner is dependent on the output of the previously trained model (it is worthy to note XGBoost 
provides a parallel tree boosting alternative). In our work, we have experimented with several 
boosting meta-learning algorithms such as XGBoost[7], AdaBoost[5] and GBM[5]. XGBoost uses 
a variant of trees as the base learner whereas AdaBoost (from Sci-kit learn) can use many ML 
algorithms as base learners. GBM uses logistic regression by default as the base learner. We used 
all 3 types of boosting with tuned hyperparameters for comparison.

Naive Bayes

Naive Bayes is based on the Bayes theorem with a strong independence assumption between the 
covariates[1]. This assumption helps in building a simple probabilistic model for learning and 
inference. Naive Bayes coefficients scale linearly with the number of covariates making this a 
suitable model for high-dimensional data. We used Naive Bayes as a simple baseline learning 
algorithm for comparison. 

Support Vector Machines (SVM)

SVMs[4] are maximum margin classifiers optimizing for learning a hyperplane having the 
maximum distance away from each of the class data points[1]. SVM is a linear classifier but with 
the kernel trick to map the inputs to the higher dimensional space, it can learn nonlinear decision 
boundaries in the input space. SVMs are very effective binary classifiers with the kernel trick[1]. 
With larger datasets, SVMs tend to become more computationally intensive.
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eTable 1. Diagnostic codes used to exclude patients who had cancer, were pregnant, or were 
under palliative care.

Condition ICD 9 ICD 10
Cancer 140.x - 239.x C00.x - C99.x, D00.x - D49.x
Pregnancy 630.x - 679.x O00.x - O99.x
Palliative V66 Z51.0, Z51.1, Z51.5

eTable 2. Diagnostic codes used to identify the defined study outcome from emergency visit, 
hospitalization and death data.

ICD 10 Condition
T40.x Poisoning by, adverse effect of and underdosing of narcotics and 

psychodysleptics 
F55.x Abuse of non-psychoactive substances
F11.x - F19.x Mental and behavioral disorders due to psychoactive substance use
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eTable 3. Baseline characteristics of study patients (n=392,979). Co-morbidities were determined using 
Elixhauser criteria.  All p-values in the chi2 test of independence were <0.001 unless otherwise indicated.
 

Characteristic Number without 
Event  

n=386,371 

Percent Number with Event  
n=6,608 

Percent

Age:
Mean (SD) 48.1 (16.4) -- 41.2 (12.4) --

      18-45 162057 41.9 3466 52.4
       45-65 154632 40.0 2656 40.2

     >65* 69682 18.0 486 7.4
Male 197491 50.3 3922 59.4

Female 194794 49.7 2686 40.6
Alcohol Disorder 66320 16.9 5220 79.0

Arrhythmia 90621 23.1 1959 29.6
Blood Loss Anemia 1164 0.3 82 1.2
Congestive Heart 

Failure 
18954 4.8 565 8.6

Coagulopathy 8053 2.1 356 5.4
Deficiency Anemia 34188 8.7 971 14.7

Depression 159140 40.6 5518 83.5
Diabetes 64132 16.3 1408 21.3

Substance Abuse 
Disorder 

74678 19.0 5485 83.0

Fluid Disorder 42690 10.9 3012 45.6
Hypertension 140171 35.7 2624 39.7

Hypothyroidism 45519 11.6 601 9.1
Injury^ 195688 49.9 5541 83.9

Liver Disorder 21656 5.5 1588 24.0
Neurologic Disorder 230490 58.8 5387 81.5

Obesity 63393 16.2 970 14.7
Poisoning^ 17434 4.4 2775 42.0
Psychoses 35870 9.1 3162 47.9

Renal Disorder 16166 4.1 499 7.6
Rheumatoid Conditions 111458 28.4 3157 47.8

HIV Infection 1098 0.3 141 2.1
Paralysis 3874 1.0 187 2.8

Peptic Ulcer Disease 11728 3.0 509 7.7
Pulmonary Circulation 

Disorder 
9611 2.4 430 6.5

Chronic Pulmonary 
Disease 

102990 26.3 2913 44.1

Peripheral Vascular 
Disease 

14467 3.7 389 5.9

Valvular Disease 7308 1.9 226 3.4
Weight Loss 16207 4.1 747 11.3

*p-value for age >65 is an estimated 0.037 
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^ Injury: ICD10: S00-T98; Poisoning: ICD10: T36-T50
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eTable 4.  Characteristics of study participants between training and validation groups using 
2017 data.

Characteristic Number in 
training group 

N=275,150~

Percent Number in 
validation group 

N=117,829~ 

Percent

Age:  
               Mean (SD) 48.3 (16) -- 48.2 (16) --

          18-45 114356 41.5 49909 42.3
            45-65 111859 40.7 47132 40.0

         >65 48935 17.8 20788 17.6
Male 138603 48.5 59339 48.4

Female 136545 47.8 58490 47.7
Alcohol Disorder 46792 16.4 20199 16.5

Arrhythmia 63637 22.3 27201 22.2
Blood Loss Anemia 839 0.3 336 0.3
Congestive Heart 

Failure 
13320 4.7 5694 4.6

Coagulopathy 5697 2.0 2393 2.0
Deficiency Anemia 24096 8.4 10179 8.3

Depression 112080 39.2 47628 38.9
Diabetes 45131 15.8 19144 15.6

Substance Abuse 
Disorder 

52609 18.4 22713 18.5

Fluid Disorder 30272 10.6 12780 10.4
Hypertension 98546 34.5 41840 34.1

Hypothyroidism 31908 11.2 13666 11.2
Injury* 137423 48.1 58865 48.0

Liver Disorder 15252 5.3 6567 5.4
Neurologic 

Disorder 
161706 56.5 69341 56.6

Obesity 44607 15.6 18882 15.4
Poisoning* 12503 4.4 5293 4.3
Psychoses 25422 8.9 10860 8.9

Renal Disorder 11403 4.0 4817 3.9
Rheumatoid 
Conditions 

78268 27.4 33420 27.3

HIV Infection 774 0.3 336 0.3
Paralysis 2717 1.0 1176 1.0

Peptic Ulcer 
Disease 

8239 2.9 3533 2.9

Pulmonary 
Circulation 

Disorder 

6771 2.4 2877 2.3

Chronic Pulmonary 
Disease 

72265 25.3 30949 25.3
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Peripheral Vascular 
Disease 

10228 3.6 4278 3.5

Valvular Disease 5111 1.8 2215 1.8
Weight Loss 11477 4.0 4790 3.9

~p-values for chi2 test of independence were all >0.06 when comparing training and validation 
sets.

*Injury: ICD10: S00-T98; Poisoning: ICD10: T36-T50 

eTable 5.  Candidate predictors used to train ML algorithms.

Category (data source) Description
Demographic information (PIN) age, sex, postal codes, mean income
Drug utilization history (PIN) drug dispenses in past 30 days using on ATC codes, oral 

morphine equivalents, concurrent use with benzodiazepines, 
number of dispensations and unique molecules of opioids 
and benzodiazepines

Health care utilization (PIN 
DAD)

flags for previous hospitalizations, number of unique 
providers

ICD based co-morbidities (DAD, 
NACRS, Claims)

Elixhauser condition flags based on the past 5 years of claims, 
hospitalizations, and emergency visits.

Note: ICD: International Statistical Classification of Diseases and Related Health Problems, 
World Health Organization.
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eTable 6.  Discrimination performance using area under the receiver operating characteristic 
curve (AUROC) of various ML algorithms using all features (demographics, health utilization, 
prescription history, co-morbidities).  Training and validation were done using 2017 data 
(n=393,979); another independent validation was performed using 2018 data (n=393,023).  

Algorithm Train  Validation 2017 Validation 2018
XGBoost Classifier 0.897 0.870 0.884
Logistic Regression 0.887 0.869 0.884
Gradient Boosting Classifier 0.898 0.868 0.883
AdaBoost Classifier 0.884 0.868 0.882
Random Forest Classifier 0.909 0.863 0.881
Ridge Classifier 0.895 0.863 0.879
SVM 0.896 0.860 0.878
Gaussian Naive Bayes 0.846 0.826 0.847
Decision Tree Classifier 0.919 0.791 0.822
Neural Networks 0.827 0.804 0.821
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eFigure 1.  Schematic of study design and feature generation
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eFigure2.  Feature importance from logistic regression and tree-based (XGBoost) classifiers using the 
2018 validation set.  The logistic regression classifier relied more on co-morbidity data from DAD, 
NACRS, and Claims databases; XGBoost classifier relied more on data from the PIN database.  AUROCs 
for both classifiers were similar at 0.88.
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eFigure 3.  Shapley values and feature impact in the XGBoost classifier using the 2018 validation set to 
describe “associations” between features and the outcome.  Features with the most impact on the 
model with drug abuse with drug abuse ranked highest (A); tornado plot illustrating feature impact.  
Red indicates higher impact and plots to the right of 0.0 indicate the tendency to be associated with 
the study outcome while blue indicates lower impact and plots to the left of 0.0 indicate the tendency 
to be associated with no outcome (B); explaining the prediction of study outcomes based on predictor 
values for 4 patients (C).

(A)
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(B)

Note: RCPT_AGE- age at opioid dispensation; Fluiddo- fluid disorder according to Elixhauser co-
morbidity; Gender_M-male sex’ NO5B-ANXIOLYTICS- prescribed ATC code benzodiazepine derivatives; 
Pharmacy_Risk_30- derived feature using proportion of opioid/benzodiazepine patients that 
experienced the study outcome in the previous 30 days prior to opioid dispensation for each pharmacy; 
N03A-ANTIEPILEPTICS- ATC code for anti-epileptics dispensed to patient; Doctor_Risk_30- derived 
feature using proportion of opioid/benzodiazepine patients that experienced the study outcome in the 
previous 30 days prior to opioid dispensation for each physician; Num_Opi_Fills_30- number of opioid 
dispensations in the previous 30 days prior to opioid dispensation; PriorHospRelevant- flag for history of 
any opioid related hospitalization in the previous 180 days prior to opioid dispensation; N07B-DRUGS 
USED IN ADDICTIVE DISORDERS- ATC code for drugs dispensed to patient for treating substance abuse 
disorders; A11D-VITAMIN B1, PLAIN AND IN COMBINATION WITH VITAMIN B6 AND B12- ATC code for 
patients dispensed Vitamins B1, B6, or B12; CODEIN: history of codeine use
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(C) 

Note: The “reference point” is called the “base value” at -3.902.  Values in bold to the left of the base 
value indicate a lower predicted probability of the study outcome and values in bold to the right indicate 
a higher predicted probability of the study outcome.  The top plot describes a patient at “low risk” for 
the study outcome.  As can be seen from the feature values, this patient has a negative history for the 
specified features.  The middle 2 plots describe a patient at “medium risk” while the bottom plot shows 
a patient at “high risk” for the study outcome.
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Abstract

Objective: To develop machine-learning models employing administrative-health data that can 
estimate risk of adverse outcomes within 30-days of an opioid dispensation for use by health-
departments or prescription monitoring programs.

Design, Setting, and Participants: This prognostic study was conducted in Alberta, Canada 
between 2017-2018.  Participants included all patients over 18 years of age who received at 
least one opioid dispensation. Pregnant and cancer patients were excluded.

Exposure:  Each opioid dispensation served as an exposure.

Main Outcomes/Measures: Opioid related adverse outcomes were identified from linked 
administrative health-data.  Machine-learning algorithms were trained using 2017 data to 
predict risk of hospitalization, emergency department visit, and mortality within 30-days of an 
opioid dispensation.  Two validation sets, using 2017 and 2018 data, were used to evaluate 
model performance.  Model discrimination and calibration performance were assessed for all 
patients and those at higher risk. Machine-learning discrimination was compared to current 
opioid guidelines.

Results: Participants in the 2017 training set (n=275,150) and validation set (n=117,829) had 
similar baseline characteristics.  In the 2017 validation set, c-statistics for the XGBoost, logistic 
regression, and neural network classifiers were 0.87, 0.87, and 0.80, respectively. In the 2018 
validation set (n=393,023), the corresponding c-statistics were 0.88, 0.88, and 0.82. C-statistics 
from the Canadian guidelines ranged from 0.54-0.69 while the US guidelines ranged from 0.50-
0.62.  The top 5-percentile of predicted risk for the XGBoost and logistic regression classifiers 
captured 42% of all events and translated into post-test probabilities of 13.38 and 13.45%, 
respectively, up from the pre-test probability of 1.6%.

Conclusion: Machine-learning classifiers, especially incorporating hospitalization/physician 
claims data, have better predictive performance compared to guideline or prescription history 
only approaches when predicting 30-day risk of adverse outcomes. Prescription monitoring 
programs and health departments with access to administrative data can use machine-learning 
classifiers to effectively identify those at higher risk compared to current guideline-based 
approaches.
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Article Summary

Strengths and Limitations:

 This study incorporated near complete capture of opioid dispensations from community 
pharmacies and used validated administrative health data.

 The study population is the entire provincial population and is generalizable to other 
populations in Canada and beyond.

 This study used commonly available algorithms to train machine-learning models using 
data which is available to government health departments in all provinces in Canada 
and other single payer jurisdictions; ML classifiers were evaluated with informative 
prognostic metrics not usually seen in other studies like ours.

 Our predictive models used dispense events and not medication utilization, which is 
difficult to capture in administrative data.

 Our training dataset does not account for non-prescription opioids, opioids 
administered in hospitals, and other risks associated with non-prescription use.
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Introduction

Canada is among the countries with the highest rates of opioid prescribing in the world, 

making prescription opioid use a key driver of the current opioid crisis1; a major part of the 

policy response to the opioid crisis focuses on endorsing safe, appropriate opioid prescribing2-4.  

In order to minimize high risk opioid prescribing and to identify patients at high risk of opioid 

related adverse outcomes, numerous health regulatory bodies have released clinical practice 

recommendations for health providers regarding appropriate opioid prescribing3,5,6.  

Prescription monitoring programs (PMPs) have been implemented around the world, 

like Alberta’s provincial Triplicate Prescription Program (TPP)7 in Canada, and are mandated to 

monitor the utilization and appropriate use of opioids to reduce adverse outcomes.  In most 

jurisdictions, both population-level monitoring metrics and clinical decision aids are used to 

identify patients at risk of hospitalization or death and are most often based on prescribing 

guidelines.  However, a comprehensive infrastructure of administrative data containing patient 

level ICD8 codes and prescription drug histories exists in Alberta and other provinces in Canada 

which could be further integrated to predict opioid-related risk.  Furthermore, current 

guidelines’ of high risk prescribing and utilization of opioids were derived from studies that 

used traditional statistical methods (regression analyses) to identify population level risk factors 

for overdose rather than an individual’s absolute risk3,9,10; these population estimates may not 

be generalizable to different populations11.  Thus, a functional gap exists in many health 

jurisdictions where much of the available administrative health data is not being leveraged for 

opioid prescription monitoring.
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Supervised machine learning (ML)12,13 is an approach that uses computer algorithms to 

build predictive models in the clinical setting that can make use of the large amounts of 

available administrative data14,15, all within a well-defined process16.  Supervised ML trains on 

labelled data to develop prediction models that are specific to different populations and, in 

many cases, can provide better predictive performance than traditional, population-based 

statistical models10,15,17.  We identified one study10 that applied ML techniques to predict 

overdose risk in opioid patients pursuant to a prescription.  In their validation sample, they 

found that the DNN (deep neural network) and GBM (gradient boosting machine) algorithms 

carried the best discrimination performance based on estimated c-statistics and that the ML 

approach out-performed the guideline approach in terms of risk prediction; neural networks 

have little interpretability and are not necessarily better at predicting outcomes when trained 

on structured data18.  This study relied on c-statistics to evaluate their ML models and did not 

emphasize other performance metrics required to assess clinical utility that are recommended 

by medical reporting guidelines11,13,19,20.  It also did not address the important issue of ML 

model interpretability21.  Reporting informative prognostic metrics is needed to better 

understand the capabilities of ML classifiers if health departments and PMPs are to incorporate 

them into their decision-making processes. 

The objective of our study was to further develop and validate ML algorithms (beyond 

just DNN) to predict the 30-day risk of hospitalization, emergency visit and mortality for a 

patient in Alberta, Canada at the time of an opioid dispensation using administrative data 

routinely available to health departments and PMPs and evaluate them using the above 

referenced reporting guidelines.  We also analyzed feature importance to provide meaningful 
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interpretations of the ML models.  Comparing discrimination performance (area under the 

receiver operating characteristics curves), we hypothesized that the ML process would perform 

better than the current guideline approach for predicting risk of adverse outcomes related to 

opioid prescribing.

Methods

Study Design and Participants

This prognostic study used a supervised ML scheme. All patients in Alberta, Canada who 

received a dispensation for an opioid, were 18 years of age and older between Jan 1, 2017 and 

Dec 31, 2018 were eligible.  Patients were excluded from all analyses if they had any previous 

diagnosis of cancer, received palliative interventions or were pregnant during the study period 

(eTable 1 in Supplement) as use of opioids in these contexts is clinically different.

Government health departments and payers in many jurisdictions have systems to capture 

prescription histories and ICD diagnostic codes.  As such, we linked various administrative 

health data sets available in Alberta, Canada using unique patient identifiers in order to 

establish a complete description of patient demographics, drug exposures and health 

outcomes.  These databases include 1) Pharmaceutical Information Network (PIN): PIN data 

includes all dispensing records from community pharmacies from all prescriber types occurring 

in the province outside of the hospital setting. PIN collects all drug dispensations irrespective of 

age or insurance status in Alberta, 2) Population and Vital Statistics Data (VS, Alberta Services): 

sex, age, date of birth, death date, immigration and emigration data, and underlying cause of 

death according to the World Health Organization algorithm using ICD codes8, 3) 
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Hospitalizations and Emergency Department Visits (NACRS [National Ambulatory Care 

Reporting System], DAD [Discharge Abstract Database]): all services, length of stay, diagnosis 

(up to 25 ICD-108 based diagnoses).  Data and coding accuracy are routinely validated both 

provincially and centrally via the Canadian Institute for Health Information, and 4) Physician 

Visits/Claims (Alberta Health): all claims from all settings (e.g., outpatient, office visits, 

emergency departments, inpatient) with associated date of service, ICD code, procedure and 

billing information.

This study followed the TRIPOD and STARD reporting guidelines22-24 and received ethics 

approval from the University of Alberta ethics board (Pro00083807_AME2).  All analyses were 

done using Python (v. 3.6.8,), SciKit Learn25 (v. 0.23.2) SHAP26 (v. 0.35), XGBoost (v. 0.90)27, 

Pandas (v. 1.0.5)28 and H20 Driverless AI (version 1.9).  

Measures and Outcome

ML models were trained on a labelled dataset in which the observation/analysis unit was an 

opioid dispensation.  The primary outcome was a composite of a drug-related hospitalization, 

emergency department (ED) visit or mortality within 30 days of an opioid dispensation based on 

ICD-10 codes (T40, F55, F10-19; eTable 2 in Supplement)2,10,29.

We anticipated that our defined outcome would be a rare event, leading to a class 

imbalanced dataset30.  To address this, we relied on specifying balanced class weightage for 

supporting algorithms; other approaches were not deemed suitable (e.g., randomly repeating 

minority class) and under sampling (sub-sampling within the majority class) resulted in changes 

in outcome prevalence.
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Predictor Candidates for ML Models

Predictor variables in our ML models included those that were informed by the literature3,4,10 

and those directly obtained from the data sets. These included features based on demographics 

(age, sex, income using Forward Sortation index from postal codes31), co-morbidity history 

using ICD-based Elixhauser score categories32, health care utilization (number of unique opioid 

prescribers, number of hospital visits), and drug utilization (level 3 ATC codes33, oral morphine 

equivalents34, concurrent use with benzodiazepines, number of opioid and benzodiazepine 

dispensations, number of unique opioid and benzodiazepine molecules).  Depending on the 

potential predictor and data availability, we used data from 30 days to 5 years before the opioid 

dispensation to generate model features (eFigure 1 in Supplement); 30 days was used to reflect 

the immediate nature of the risk and 5 years to fully capture co-morbidities.  This approach 

aligns with how health providers would assess patients using the entire history of co-

morbidities and then the more immediate factors in deciding on the need for a therapeutic as 

well as risk in patients.  Experiments were performed to identify the features and data sets that 

contributed most to predicting the outcomes, with a view to minimizing the potential future 

data requirements for health departments and PMPs.

Statistical Analyses and Machine-Learning Prediction Evaluation

We randomly divided the patients in the 2017 portion of our study cohort into training (70%) 

and validation (30%) sets13 by patients and opioid dispensations such that no patients in the 

training set were in the validation set.  Baseline characteristics and event rates were compared 

in the training vs validation group, and between those who experienced the outcome and those 
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who did not, using chi-squared tests of independence.  As well, we used all 2018 data as 

another independent validation set.

First, we trained commonly used13,35 ML algorithms (eAppendix in Supplement) and out 

of box models were further tuned when training on the dataset using 5-fold cross validation on 

the training data.  to address model overfitting13,36.  As is common in ML validation studies10,13, 

we reported model discrimination performance (i.e. how well a model differentiates those at 

higher risk from those at lower risk)11  using area under the receiver operating characteristic 

curve (AUROC; c-statistic). We then stratified the two ML models with the highest c-statistics 

into percentile categories according to absolute risk of our outcome, as was done in previous 

studies10,37.  We also plotted AUROC11 and precision-recall curves (PRCs)38.  

Because discrimination alone is insufficient to assess ML model prediction capability, we 

assessed a second necessary property, namely, calibration (i.e., how similar the predicted 

absolute risk is to the observed risk across different risk strata)11,39.  Using the two ML models 

with the highest discrimination performance discussed above, we assessed calibration 

performance on the 2018 data by plotting observed (fraction of positives) vs predicted risk 

(mean predicted value).  Using these two ML classifiers, we analyzed the top 0.1, 1, 5, and 10 

percentiles of predicted risk by the number of true and false positives, positive likelihood ratios 

(PLR)20, post-test probabilities, and number needed to screen.  We also performed a simulation 

of daily data uploads for 2018 Quarter 1 to view the predictive capabilities if a ML risk predictor 

were to be deployed into a monitoring workflow.
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For the XGBoost and logistic regression classifiers, we reported feature importance35 

and plotted PRCs that compared all dispenses to those within the top 10 percentiles of 

estimated risk.  As well, for the XGBoost classifier, we described feature importance  on model 

outcome using SHAP values26,40 to add an additional layer of interpretability.

Finally, we compared ML risk prediction (the two ML models with highest discrimination 

performance) to current guideline approaches as others have10, using the 2019 Centers for 

Medicare & Medicaid Services (CMS) opioid safety measures41 and the 2017 Canadian Opioid 

Prescribing Guideline3.  We also compared the discrimination performance of different logistic 

regression classifier models using various combinations of features derived from their 

respective databases: 1) demographic and drug/health utilization features from PIN and 2) co-

morbidity features derived from DAD, NACRS and Claims.

Patient and Public Involvement

This research was done without patient involvement. Patients were not invited to comment on 

the study design and were not consulted to develop patient relevant outcomes or interpret the 

results. Patients were not invited to contribute to the writing or editing of this document for 

readability or accuracy.  There are no plans to disseminate the results of the research to study 

participants.  

Results

Patient Characteristics and Predictors
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We identified 392,979 patients with at least one opioid dispensation in 2017 (Figure 1).  This 

cohort was used to train (n= 275,150, 70%) and validate (n=117,829, 30%) ML models.  In 2017 

and 2018, 6,608 and 5,423 patients experienced the defined outcome, respectively.  Baseline 

characteristics were different between those who experienced the outcome and those who did 

not (eTable 3 in Supplement) while characteristics were similar between the training and 

validation sets (eTable 4 in Supplement).  There were 2,283,075 opioid dispensations in 2017 

and 1,977,389 in 2018.  Overall, in 2017, 2.03% (n= 45,757) of opioid dispensations were 

associated with the outcome; in 2018, the estimate was 1.6% (n= 31,392).

As described above, we categorized our candidate features into four groups (eTable 5 in 

Supplement).

Machine-Learning Prediction Performance

Using the 2017 validation set, AUROCs for the XGBoost and logistic regression classifiers had 

the highest discrimination performance at 0.87, while the neural network classifier had lower 

performance at 0.80 (eTable 6 in Supplement).

Discrimination performance was similar for the 2018 validation set (n=393,023; eTable 6 

in Supplement).  XGBoost and logistic regression had the highest estimated AUROCs and area 

under PRCs while the neural network classifier was lower (Figure 2A, 2B).  As expected, 

precision-recall curves indicate stronger predictive performance in opioid dispensations at 

higher predicted risk percentiles (Figure 2C, 2D).

In the 2018 validation set, although discrimination performance was similar (0.88), 

individual feature importance was different between the logistic regression and XGBoost 
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classifiers, with logistic regression feature importance more reliant on co-morbidity data from 

DAD, NACRS and Claims while XGBoost relied more on drug utilization data from PIN (eFigure 

2).  In the XGBoost classifier, history of drug abuse, alcoholism, and prior hospitalization carried 

the highest importance for predicting the study outcome (eFigure 3A) where the presence of 

these features in a patient suggested a strong prediction towards having the defined outcome 

(eFigure 3B and 3C).  

Calibration

When considering dispensations predicted to be in the highest percentiles of risk, the top 5-

percentile captured 42% of all outcomes using the XGBoost and logistic regression classifiers 

(Table 1).  Also, as the predicted risk percentiles get higher (top 10 percentile to top 0.1 

percentile), so too do the corresponding PPVs with the top 0.1 percentile associated with a PPV 

of 33% for the XGBoost classifier.  As well, lower categories of risk percentiles were associated 

with lower outcomes (Figure 3, eFigure 4).  When we simulated a monitoring workflow scenario 

with daily data uploads, a similar pattern was illustrated where the dispensations predicted to 

be higher risk had higher event rates (Figure 4).

After using the XGBoost and logistic regression classifiers to identify the dispensations in the 

highest predicted risk percentiles, the pre-test probability of the outcome (1.6%) was 

transformed into higher post-test probabilities, with higher probabilities in the riskier 

percentiles (Table 1).  The number needed to screen also decreased as predicted risk increased 

(Table 1).
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Comparing discrimination performance, ML risk prediction outperformed the current 

guideline approaches when using various combinations of guideline recommendations (Table 

2).  In many of the guideline scenarios, the estimated AUROCs were close to the 0.5 mark.  

When we estimated the discrimination performance of the logistic regression classifier based 

on database source, using all databases produced an AUROC of 0.88.  Reducing the database 

source to only DAD, NACRS, Claims (co-morbidities only) resulted in an AUROC of 0.85, while 

PIN (prescription history) only was 0.78 (Table 3).

Discussion

This study showed that ML techniques using available administrative data (prescription 

histories and ICD codes) may provide enough discriminatory performance to predict adverse 

outcomes associated with opioid prescribing. Indeed, our ML analyses showed very high 

discrimination performance at 0.88.  The linear model (logistic regression) and XGBoosted Trees 

carried higher discrimination and calibration performance, while the neural network classifier 

did not perform as well.  By identifying the predicted top 5-10 percentile of absolute risk 

pursuant to an opioid dispensation, we were able to capture approximately half of all outcomes 

using ML methods.  All ML models we trained had higher discrimination performance using 

independent (external) validation sets than the clinical guideline approach.

Since the prevalence of our defined outcome is relatively low in the general population, 

PPVs would also be expectedly low.  However, estimated PPVs increased when we considered 

higher risk dispensations, as is expected since PPV is related to event prevalence. This is 

important because different users of a risk predictor will require different predictive 
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capabilities.  Similarly, our estimates of positive likelihood ratios and associated post-test 

probabilities also increased in dispensations with higher predicted risk indicating the strong 

predictive capabilities of the XGBoost and logistic regression classifiers; likelihood ratios >10 

generate conclusive changes from pre-test to post-test probabilities20.

The current guideline approach to assess absolute opioid prescribing risk produced c-

statistic estimates closer to 0.5 indicating that discrimination was not much better than chance 

alone.  ML models with higher predictive performance can better support health departments 

and PMPs with monitoring mandates to identify and intervene on those at high risk and their 

associated prescribers.  We also found that adding co-morbidity features from administrative 

databases increased prediction performance compared to prescription history alone, thus 

making the case for the use of this data by PMPs and health departments.  However, if only 

prescription history is available, our trained XGBoost classifier still had strong discrimination 

performance.

We found only one study that used ML approaches to quantify the absolute risk of an 

event pursuant to an opioid dispensation10.  Their methodology used rolling 3-month windows 

for estimating risk and ML model training while we used historic records to estimate 30-day 

risk.  Differences in study population and feature selection may explain why their highest 

performing ML model was deep learning (neural network classifier) and ours was not.  

Nevertheless, we were able to replicate their predictive performance using our ML approach as 

we both showed that ML approaches have higher predictive capabilities than guideline 

approaches.  Both of our studies used predicted percentile risk estimates to identify high risk 

dispensations and were able to do so with strong discrimination and calibration performance.  

Page 17 of 45

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

17

Furthermore, we emphasized prognostic metrics which are more informative to assess the 

clinical utility of ML classifiers using pre- and post-test probabilities, something not done in 

other studies and recommended in medical guidelines20.  This major aspect of our study, not 

done previously, is important because any ML classifier that does not increase prognostic 

information compared to baseline cannot be incorporated into decision making for the purpose 

of intervening on higher risk instead of lower risk patients. Indeed, another study we found 

describes how identifying cases in higher predicted risk percentiles using ML methods can be 

deployed in hospital settings for the purpose of targeted interventions37 upon discharge, 

however the effect on outcomes is still to be determined.

The limitations of our study are similar to other ML studies10 and need to be addressed 

when considering deployment of ML risk predictors.  Our training dataset was not able to 

account for non-prescription opioid consumption and the risk associated with non-prescription 

use, both of which are substantial contributors to overall risk2.  Regarding our analysis, we 

assumed that all dispensations were independent events; future research in this area should 

focus on employing ML methods using correlated data.  As with all ML projects, our models 

were trained using Alberta data and might not be generalizable to other populations, or to 

specific populations within Alberta.  However, our analyses were done on a large population 

and these results would be expected to be generalizable to the vast majority of patients. 

Moreover, one of the benefits of the ML process is that models can be retrained or similar 

methods could be used to develop new models to accommodate different populations.

This study suggests that ML risk prediction can support PMPs, especially if readily 

available administrative health data is used.  PMPs currently use population-based guidelines 
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which we, and others, have shown cannot predict absolute individual risk.  The ML process 

allows for model training, validation and deployment to specific settings in which, for the case 

of PMPs, high risk patients can be identified and targeted for intervention either at the patient 

or provider level.   Moreover, ML classifiers can be retrained over time as changes in 

populations and trends in prescribing occur and are therefore specific to the population unlike 

broadly based guidelines.  Further research can assess whether implementation of a ML-based 

monitoring system by PMPs leads to improved clinical outcomes.
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Figure Legend

Figure 1.  Patient flow diagram of study participants used for training and validating ML models.  NACRS: 
National Ambulatory Care Reporting System; DAD: Discharge Abstract Database; VS: Vital Statistics; PIN: 
Pharmaceutical Information Network; Claims: Physician Claims

Figure 2.  Area under the receiver operating characteristic curve (AUROC) (A) and precision-recall curves 
(B) for all dispensations using logistic regression (L1), neural network, support vector machine (SVM), 
XGBoost and Naïve-Bayes; precision-recall curves for higher risk dispensations according to predicted 
risk percentile categories for logistic regression (C) and XGBoost (D) using the 2018 validation set.  

Figure 3. Calibration curves plotting observed vs. quantiles of estimated risk for XGBoost (A) and logistic 
regression (B) classifiers using the 2018 validation dataset.  For both classifiers, the majority of counts 
(dispensations) were predicted to be lower risk.

Figure 4.  Simulation of a clinical workflow with daily uploads and events per 100 daily dispenses by risk 
percentiles using 2018 Quarter 1 (Q1) data for logistic regression (A) and XGBoost (B) classifiers.  For 
both classifiers, the majority of counts (dispensations) were predicted to be lower risk.
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Table 1. Highest percentiles of estimated risk and predictive performance using the XGBoost and logistic 
regression classifiers for the 2018 validation dataset (n=393,023).  Total number of dispenses= 
1,977,389; total number of outcomes= 31,392.

Metric Top 0.1%ile Top 1%ile Top 5%ile Top 10%ile

XGBoost
Logistic 

Regression XGBoost
Logistic 

Regression XGBoost
Logistic 

Regression XGBoost
Logistic 

Regression
 Number of 
Dispenses 1,977 1,977 19,774 19,774 98,869 98,869 197,739 197,739 

TP captured 655 472 4204 4100 13224 13293 18404 18409 
Percent of TP 2.09 1.50 13.39 13.06 42.13 42.35 58.63 58.64 
FP captured 1322 1505 15570 15674 85645 85576 179335 179330 

PPV 33.13 23.87 21.26 20.73 13.38 13.45 9.31 9.31 
PLR 30.71 19.44 16.74 16.22 9.57 9.63 6.36 6.36 

Post-test 
Probability* 33.13 23.87 21.26 20.73 13.38 13.45 9.31 9.31 

NNS 3.17 4.49 5.08 5.22 8.48 8.43 12.95 12.95 
*Pre-test probability estimated at 1.6% using prevalence.

TP: true positives; FP: false positives; PPV: positive predictive value; PLR: positive likelihood 
ratio; NNS: number needed to screen

Note: Logistic regression used L1 (lasso) parameter regularization
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Table 2. Discrimination performance of guideline approach using the 2018 validation set.  Guideline 
approaches were adapted from the 2017 Canadian Opioid Prescribing Guideline and 2019 Centers for 
Medicare & Medicaid Services (CMS) opioid safety measures and compared to logistic 
regression and XGBoost classifiers (each with an estimated area under the receiver operating 
characteristic curve of 0.88).

Canadian Guidelines * AUROC Sensitivity Specificity

History of mental disorder only 0.620 0.90 0.34

Substance abuse only 0.686 0.99 0.37

OME/day >90 only 0.539 0.22 0.85

(Mental disorder and substance abuse) 
OR OME/day >90 0.690 0.91 0.47

Mental disorder and substance abuse 
AND OME/day >90 0.560 0.20 0.91

Mental disorder OR substance abuse 
OR OME/day >90 0.589 0.99 0.18

CMS Guidelines**

High opioid dose (>120 OME/day for 90+days) 0.507 0.081 0.933

Concurrency (Opioid & BZRA for 30+ days) 0.575 0.423 0.727

Multiple doctors (>4) 0.591 0.294 0.888

Multiple pharmacies (>4) 0.537 0.120 0.959

All conditions 0.50 0.001 0.999

Any condition 0.622 0.62 0.625

OME: daily oral morphine equivalents; BZRA: benzodiazepine receptor agonist.  Elixhauser scoring ICD 
codes were used to identify mental disorders and substance abuse. 
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*The Canadian guidelines do not specify timelines.  >90 OME was determined by taking the average 
daily OME over the 30 days prior to dispensation

**The CMS guidelines specify a timeline of 90 or more days at >120 OME and concurrent use of 
opioids and benzodiazepines for 30 days or more
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Table 3. Discrimination performance based on database source using area under the receiver 
operating characteristic curve (AUROC) for the logistic regression classifier on the 2018 
validation set.

Database source Predictor Variables formed 
from database

AUROC

PIN only Drug utilization + Prescription 
history (ATC level 3)

0.78

DAD, NACRS, Claims Co-morbidities 0.85
PIN, DAD NACRS, Claims (all 

databases used in study)
Demographic + Drug Utilization 

+ Healthcare Utilization
+ Co-morbidities

0.88

Note: drug utilization includes features describing oral morphine equivalents34, concurrent use 
with benzodiazepines, number of opioid and benzodiazepine dispensations, number of unique 
opioid and benzodiazepine molecules; health care utilization includes features describing 
number of unique health providers visited, number of hospital visits; logistic regression used L1 
(lasso) parameter regularization
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Figure 1.  Patient flow diagram of study participants used for training and validating ML models.  NACRS: 

National Ambulatory Care Reporting System; DAD: Discharge Abstract Database; VS: Vital Statistics; PIN: 

Pharmaceutical Information Network; Claims: Physician Claims 
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Figure 2.  Area under the receiver operating characteristic curve (A) and precision-recall curves (B) for all dispensations 

using logistic regression (L1), neural network, support vector machine (SVM), XGBoost and Naïve-Bayes; precision-recall 

curves for higher risk dispensations according to predicted risk percentile categories for logistic regression (C) and 

XGBoost (D) using the 2018 validation set.   

 

        (A)               (B) 

                           

 

 

 

        (C) Logistic Regression     (D) XGBoost 

       

 

AUC: area under the curve 
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Figure 3. Calibration curve plotting observed vs. quantiles of estimated risk for the XGBoost classifier 

using the 2018 validation dataset.  The majority of counts (dispensations) were predicted to be lower 

risk. 

(A) XGBoost 
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Figure 4.  Simulation of a clinical workflow with daily uploads and events per 100 daily dispenses by risk 

percentiles using 2018 Quarter 1 (Q1) data for logistic regression (A) and XGBoost (B) classifiers.  For 

both classifiers, the majority of counts (dispensations) were predicted to be lower risk. 

 

(A) Logistic Regression (L1) 

 

 

(B) XGBoost 
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Supplementary Content 

eAppendix.  Machine learning algorithms 

eTable 1.  Diagnostic codes used to exclude patients who had cancer, were pregnant, or were 

under palliative care. 

eTable 2.  Diagnostic codes used to identify the defined study outcome from emergency visit, 

hospitalization and death data. 

eTable 3.  Baseline characteristics of study patients (n=392,979). Co-morbidities were determined using 

Elixhauser criteria.  All p-values in the chi2 test of independence were <0.001 unless otherwise indicated. 

eTable 4.  Characteristics of study participants between training and validation groups using 

2017 data. 

eTable 5.  Candidate predictors used to train ML algorithms. 

eTable 6.  Discrimination performance using area under the receiver operating characteristic 

curve (AUROC) of various ML algorithms.  Training and validation were done using 2017 data 

(n=393,979); another independent validation was performed using 2018 data (n=393,023).   

eFigure1.  Schematic of study design and feature generation 

eFigure2.  Feature importance from logistic regression and tree-based (XGBoost) classifiers 

using the 2018 validation set.   

eFigure3.  Shapley values and feature impact in the XGBoost classifier using the 2018 validation set to 

describe “associations” between features and the outcome. 

eFigure 4.  Calibration curve plotting observed vs. quantiles of estimated risk for the logistic 

regression (L1) classifier using the 2018 validation dataset.  The majority of counts 

(dispensations) were predicted to be lower risk. 

eReferences. 
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eAppendix. Machine Learning Algorithms 
 

Introduction 

While there are always updates and new methods coming up in the fields of machine learning, 

in this study, we have focused on some of the most reliable and proven approaches for predictive 

modelling which are explainable and popularly used in previous studies of similar nature. 

Logistic Regression 

Regression analysis models the relationship between a dependent variable and a set of 

independent variables [1]. Typically, this includes understanding how the value of the dependent 

variable changes with the changes in the values of independent variables. Logistic regression [1] 

uses the logistic function to model a binary dependent variable, where, based on the values of 

the independent variables the model can approximate one of the two classes, the instance 

belongs to. This basic binary model can be extended to deal with multiple classes (e.g. One-vs-all 

classifiers). However, logistic regression is only capable of modeling a linear relationship of 

independent variables to the dependent variable, hence limited to problems with linear decision 

boundaries. We used the sci-kit learn library in our experiments[6] and found L1 regularization 

to be more effective. 

Ridge Classifier 

We used the ridge classifier implemented in the Scikit learn library[5]. It implements a classifier 

using ridge regression which uses an L2 regularization on the least square objective function. The 

library converts the labels into -1 and 1 and fits a linear regression on the converted labels with 

the regularization. 

Random Forest 

Random forest is a tree ensemble learning algorithm that has wide applicability in many 

domains[1]. Random forest is a nonlinear learning algorithm, which arrives at nonlinear decision 

boundaries by independently combining multiple decision trees. Each individual decision tree in 

the forest can be grown independently of each other on a subset of the training data. Random 

forests are mainly sensitive to the number of trees, the depth of a tree and the number of 

covariates randomly chosen to split at each node[1]. These hyper-parameters can be tuned to 

find the best configuration of every dataset. Random Forests, in general, are less prone to overfit 

since they always grow individual trees on a subset of the training data[1]. At prediction time, 

the decision of each tree is aggregated to compute the final prediction.  

Neural Networks (NN) 

Neural networks are another collection of non-linear learning algorithms with high 

representation power. They are known to be able to find mappings from an input to an output 

from a larger non-linear function space [2]. This ability to represent a larger space of nonlinear 
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functions has shown to be very effective recently in many application domains such as natural 

language processing, computer vision, genomics, computer games and health[2]. Neural 

networks come in many flavors learning nonlinear mapping of different types of data such as 

Convolutional NNs being most effective with images and Recurrent NNs for time series and 

language data. Identifying the most effective neural network structure is one of the difficult and 

the most time-consuming aspect of applying neural networks to new application domains and 

data. Generally, neural networks try to exploit the relationships in the raw unstructured data (eg: 

image and text) presented to the network but with more structured data such as health records 

and ICD codes learning relationships is much complex. Our neural network models are mainly 

based on densely connected hidden layers with ReLu[6] activation function. We used the cross-

entropy loss for the binary classification Adam optimizer. We used a simple feed forward 

network using  Sklearn  MLP classifier with hyperparameter tuning  for the NN. 

Boosted Learning Algorithms 

Boosting is a process to ensemble multiple base learning algorithms to arrive at better overall 

performance than any individual base learner[1]. In contrast to independently building multiple 

models from the subsets of the data, boosting re-weights the training data every time a model is 

learned for future models. This weighting happens to give more preference to currently 

misclassified data points in the next round compared to the correctly classified data points. 

Therefore future learners try to do better on the misclassified data points leading to a collection 

base learners having a better-combined prediction. This process is sequential so each base 

learner is dependent on the output of the previously trained model (it is worthy to note XGBoost 

provides a parallel tree boosting alternative). In our work, we have experimented with several 

boosting meta-learning algorithms such as XGBoost[7], AdaBoost[5] and GBM[5]. XGBoost uses 

a variant of trees as the base learner whereas AdaBoost (from Sci-kit learn) can use many ML 

algorithms as base learners. GBM uses logistic regression by default as the base learner. We used 

all 3 types of boosting with tuned hyperparameters for comparison. 

Naive Bayes 

Naive Bayes is based on the Bayes theorem with a strong independence assumption between the 

covariates[1]. This assumption helps in building a simple probabilistic model for learning and 

inference. Naive Bayes coefficients scale linearly with the number of covariates making this a 

suitable model for high-dimensional data. We used Naive Bayes as a simple baseline learning 

algorithm for comparison.  

Support Vector Machines (SVM) 

SVMs[4] are maximum margin classifiers optimizing for learning a hyperplane having the 

maximum distance away from each of the class data points[1]. SVM is a linear classifier but with 

the kernel trick to map the inputs to the higher dimensional space, it can learn nonlinear decision 

boundaries in the input space. SVMs are very effective binary classifiers with the kernel trick[1]. 

With larger datasets, SVMs tend to become more computationally intensive. 
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eTable 1. Diagnostic codes used to exclude patients who had cancer, were pregnant, or were 

under palliative care. 

Condition ICD 9 ICD 10 

Cancer 140.x - 239.x C00.x - C99.x, D00.x - D49.x 

Pregnancy 630.x - 679.x O00.x - O99.x 

Palliative V66 Z51.0, Z51.1, Z51.5 

 

eTable 2. Diagnostic codes used to identify the defined study outcome from emergency visit, 

hospitalization and death data. 

ICD 10 Condition 

T40.x Poisoning by, adverse effect of and underdosing of narcotics and 

psychodysleptics  

F55.x Abuse of non-psychoactive substances 

F11.x - F19.x Mental and behavioral disorders due to psychoactive substance use 
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eTable 3. Baseline characteristics of study patients (n=392,979). Co-morbidities were determined using 
Elixhauser criteria.  All p-values in the chi2 test of independence were <0.001 unless otherwise indicated. 
  

Characteristic Number without 
Event   

n=386,371  

Percent Number with Event   
n=6,608  

Percent 

Age:     

Mean (SD) 48.1 (16.4) -- 41.2 (12.4) -- 
      18-45  162057 41.9 3466 52.4 

       45-65  154632 40.0 2656 40.2 
     >65*  69682 18.0 486 7.4 

Male  197491 50.3 3922 59.4 
Female  194794 49.7 2686 40.6 

Alcohol Disorder 66320 16.9 5220 79.0 
Arrhythmia  90621 23.1 1959 29.6 

Blood Loss Anemia  1164 0.3 82 1.2 
Congestive Heart 

Failure  
18954 4.8 565 8.6 

Coagulopathy  8053 2.1 356 5.4 
Deficiency Anemia  34188 8.7 971 14.7 

Depression  159140 40.6 5518 83.5 
Diabetes** 64132 16.3 1408 21.3 

Substance Abuse 
Disorder  

74678 19.0 5485 83.0 

Fluid Disorder  42690 10.9 3012 45.6 
Hypertension** 140171 35.7 2624 39.7 
Hypothyroidism  45519 11.6 601 9.1 

Injury^  195688 49.9 5541 83.9 
Liver Disorder  21656 5.5 1588 24.0 

Neurologic Disorder  230490 58.8 5387 81.5 
Obesity  63393 16.2 970 14.7 

Poisoning^  17434 4.4 2775 42.0 
Psychoses  35870 9.1 3162 47.9 

Renal Disorder  16166 4.1 499 7.6 
Rheumatoid Conditions  111458 28.4 3157 47.8 

HIV Infection  1098 0.3 141 2.1 
Paralysis  3874 1.0 187 2.8 

Peptic Ulcer Disease  11728 3.0 509 7.7 
Pulmonary Circulation 

Disorder  
9611 2.4 430 6.5 

Chronic Pulmonary 
Disease  

102990 26.3 2913 44.1 

Peripheral Vascular 
Disease  

14467 3.7 389 5.9 

Valvular Disease  7308 1.9 226 3.4 
Weight Loss  16207 4.1 747 11.3 

*p-value for age >65 is an estimated 0.037  
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^ Injury: ICD10: S00-T98; Poisoning: ICD10: T36-T50 

** Complicated, uncomplicated diabetes and hypertension were collapsed into one category each 
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eTable 4.  Characteristics of study participants between training and validation groups using 

2017 data. 

Characteristic Number in 
training group 

N=275,150~ 

Percent Number in 
validation group 

N=117,829~  

Percent 

Age:       
               Mean (SD) 48.3 (16) -- 48.2 (16) -- 

          18-45  114356 41.5 49909 42.3 
            45-65  111859 40.7 47132 40.0 

         >65  48935 17.8 20788 17.6 
Male  138603 48.5 59339 48.4 

Female  136545 47.8 58490 47.7 
Alcohol Disorder 46792 16.4 20199 16.5 

Arrhythmia  63637 22.3 27201 22.2 
Blood Loss Anemia  839 0.3 336 0.3 
Congestive Heart 

Failure  
13320 4.7 5694 4.6 

Coagulopathy  5697 2.0 2393 2.0 
Deficiency Anemia  24096 8.4 10179 8.3 

Depression  112080 39.2 47628 38.9 
Diabetes** 45131 15.8 19144 15.6 

Substance Abuse 
Disorder  

52609 18.4 22713 18.5 

Fluid Disorder  30272 10.6 12780 10.4 
Hypertension** 98546 34.5 41840 34.1 
Hypothyroidism  31908 11.2 13666 11.2 

Injury*  137423 48.1 58865 48.0 
Liver Disorder  15252 5.3 6567 5.4 

Neurologic 
Disorder  

161706 56.5 69341 56.6 

Obesity  44607 15.6 18882 15.4 
Poisoning*  12503 4.4 5293 4.3 
Psychoses  25422 8.9 10860 8.9 

Renal Disorder  11403 4.0 4817 3.9 
Rheumatoid 
Conditions  

78268 27.4 33420 27.3 

HIV Infection  774 0.3 336 0.3 
Paralysis  2717 1.0 1176 1.0 

Peptic Ulcer 
Disease  

8239 2.9 3533 2.9 

Pulmonary 
Circulation 

Disorder  

6771 2.4 2877 2.3 

Chronic Pulmonary 
Disease  

72265 25.3 30949 25.3 
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Peripheral Vascular 
Disease  

10228 3.6 4278 3.5 

Valvular Disease  5111 1.8 2215 1.8 
Weight Loss  11477 4.0 4790 3.9 

~p-values for chi2 test of independence were all >0.06 when comparing training and validation sets. 

*Injury: ICD10: S00-T98; Poisoning: ICD10: T36-T50  
** Complicated, uncomplicated diabetes and hypertension were collapsed into one category each 

 
 
 
 
eTable 5.  Candidate predictors used to train ML algorithms. 

Category (data source) Description 

Demographic information (PIN) age, sex, postal codes, mean income 

Drug utilization history (PIN) drug dispenses in past 30 days using on ATC codes, oral 
morphine equivalents, concurrent use with benzodiazepines 
defined as at least 7 days of cumulative concurrent use in the 
30 days prior to dispensation, number of dispensations and 
unique molecules of opioids and benzodiazepines 

Health care utilization (PIN 
DAD) 

flags for previous hospitalizations, number of unique 
providers 

ICD based co-morbidities (DAD, 
NACRS, Claims) 

Elixhauser condition flags based on the past 5 years of claims, 
hospitalizations, and emergency visits. 

Note: ICD: International Statistical Classification of Diseases and Related Health Problems, World Health 

Organization. 
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eTable 6.  Discrimination performance using area under the receiver operating characteristic 

curve (AUROC) of various ML algorithms using all features (demographics, health utilization, 

prescription history, co-morbidities).  Training and validation were done using 2017 data 

(n=393,979); another independent validation was performed using 2018 data (n=393,023).   

Algorithm Train  Validation 2017 Validation 2018 

XGBoost Classifier 0.897 0.870 0.884 

Logistic Regression 0.887 0.869 0.884 

Gradient Boosting Classifier 0.898 0.868 0.883 

AdaBoost Classifier 0.884 0.868 0.882 

Random Forest Classifier 0.909 0.863 0.881 

Ridge Classifier 0.895 0.863 0.879 

SVM 0.896 0.860 0.878 

Gaussian Naive Bayes 0.846 0.826 0.847 

Decision Tree Classifier 0.919 0.791 0.822 

Neural Networks 0.827 0.804 0.821 

Note: Logistic regression used L1 (lasso) parameter regularization 
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eFigure 1.  Schematic of study design and feature generation 
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eFigure2.  Feature importance from logistic regression and tree-based (XGBoost) classifiers using the 

2018 validation set.  The logistic regression classifier relied more on co-morbidity data from DAD, 

NACRS, and Claims databases; XGBoost classifier relied more on data from the PIN database.  AUROCs 

for both classifiers were similar at 0.88. 

 

Note: Logistic regression used L1 (lasso) parameter regularization 

 

 

  

Page 41 of 45

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

12 
 

eFigure 3.  Shapley values and feature impact in the XGBoost classifier using the 2018 validation set to 

describe “associations” between features and the outcome.  Features with the most impact on the 

model with drug abuse with drug abuse ranked highest (A); tornado plot illustrating feature impact.  

Red indicates higher impact and plots to the right of 0.0 indicate the tendency to be associated with 

the study outcome while blue indicates lower impact and plots to the left of 0.0 indicate the tendency 

to be associated with no outcome (B); explaining the prediction of study outcomes based on predictor 

values for 4 patients (C). 

(A) 
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(B) 

 

Note: RCPT_AGE- age at opioid dispensation; Fluiddo- fluid disorder according to Elixhauser co-

morbidity; Gender_M-male sex’ NO5B-ANXIOLYTICS- prescribed ATC code benzodiazepine derivatives; 

Pharmacy_Risk_30- derived feature using proportion of opioid/benzodiazepine patients that 

experienced the study outcome in the previous 30 days prior to opioid dispensation for each pharmacy; 

N03A-ANTIEPILEPTICS- ATC code for anti-epileptics dispensed to patient; Doctor_Risk_30- derived 

feature using proportion of opioid/benzodiazepine patients that experienced the study outcome in the 

previous 30 days prior to opioid dispensation for each physician; Num_Opi_Fills_30- number of opioid 

dispensations in the previous 30 days prior to opioid dispensation; PriorHospRelevant- flag for history of 

any opioid related hospitalization in the previous 180 days prior to opioid dispensation; N07B-DRUGS 

USED IN ADDICTIVE DISORDERS- ATC code for drugs dispensed to patient for treating substance abuse 

disorders; A11D-VITAMIN B1, PLAIN AND IN COMBINATION WITH VITAMIN B6 AND B12- ATC code for 

patients dispensed Vitamins B1, B6, or B12; CODEIN: history of codeine use 
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(C)  

 

Note: The “reference point” is called the “base value” at -3.902.  Values in bold to the left of the base 

value indicate a lower predicted probability of the study outcome and values in bold to the right indicate 

a higher predicted probability of the study outcome.  The top plot describes a patient at “low risk” for 

the study outcome.  As can be seen from the feature values, this patient has a negative history for the 

specified features.  The middle 2 plots describe a patient at “medium risk” while the bottom plot shows 

a patient at “high risk” for the study outcome. 
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eFigure 4.  Calibration curve plotting observed vs. quantiles of estimated risk for the logistic regression 

(L1) classifier using the 2018 validation dataset.  The majority of counts (dispensations) were predicted 

to be lower risk. 
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Abstract

Objective: To develop machine-learning models employing administrative-health data that can 
estimate risk of adverse outcomes within 30-days of an opioid dispensation for use by health-
departments or prescription monitoring programs.

Design, Setting, and Participants: This prognostic study was conducted in Alberta, Canada 
between 2017-2018.  Participants included all patients over 18 years of age who received at 
least one opioid dispensation. Pregnant and cancer patients were excluded.

Exposure:  Each opioid dispensation served as an exposure.

Main Outcomes/Measures: Opioid related adverse outcomes were identified from linked 
administrative health-data.  Machine-learning algorithms were trained using 2017 data to 
predict risk of hospitalization, emergency department visit, and mortality within 30-days of an 
opioid dispensation.  Two validation sets, using 2017 and 2018 data, were used to evaluate 
model performance.  Model discrimination and calibration performance were assessed for all 
patients and those at higher risk. Machine-learning discrimination was compared to current 
opioid guidelines.

Results: Participants in the 2017 training set (n=275,150) and validation set (n=117,829) had 
similar baseline characteristics.  In the 2017 validation set, c-statistics for the XGBoost, logistic 
regression, and neural network classifiers were 0.87, 0.87, and 0.80, respectively. In the 2018 
validation set (n=393,023), the corresponding c-statistics were 0.88, 0.88, and 0.82. C-statistics 
from the Canadian guidelines ranged from 0.54-0.69 while the US guidelines ranged from 0.50-
0.62.  The top 5-percentile of predicted risk for the XGBoost and logistic regression classifiers 
captured 42% of all events and translated into post-test probabilities of 13.38% and 13.45%, 
respectively, up from the pre-test probability of 1.6%.

Conclusion: Machine-learning classifiers, especially incorporating hospitalization/physician 
claims data, have better predictive performance compared to guideline or prescription history 
only approaches when predicting 30-day risk of adverse outcomes. Prescription monitoring 
programs and health departments with access to administrative data can use machine-learning 
classifiers to effectively identify those at higher risk compared to current guideline-based 
approaches.
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Article Summary

Strengths and Limitations:

 This study incorporated near complete capture of opioid dispensations from community 
pharmacies and used validated administrative health data.

 This study used commonly available algorithms to train machine-learning models using 
data which is available to government health departments in all provinces in Canada 
and other single payer jurisdictions; ML classifiers were evaluated with informative 
prognostic metrics not usually seen in other studies.

 Our predictive models used dispense events and not medication utilization, which is 
difficult to capture in administrative data.

 Our training dataset does not account for non-prescription opioids, opioids 
administered in hospitals, and other risks associated with non-prescription use.
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Introduction

Canada is among the countries with the highest rates of opioid prescribing in the world, 

making prescription opioid use a key driver of the current opioid crisis1; a major part of the 

policy response to the opioid crisis focuses on endorsing safe, appropriate opioid prescribing2-4.  

In order to minimize high risk opioid prescribing and to identify patients at high risk of opioid 

related adverse outcomes, numerous health regulatory bodies have released clinical practice 

recommendations for health providers regarding appropriate opioid prescribing3,5,6.  

Prescription monitoring programs (PMPs) have been implemented around the world, 

like Alberta’s provincial Triplicate Prescription Program (TPP)7 in Canada, and are mandated to 

monitor the utilization and appropriate use of opioids to reduce adverse outcomes.  In most 

jurisdictions, both population-level monitoring metrics and clinical decision aids are used to 

identify patients at risk of hospitalization or death and are most often based on prescribing 

guidelines.  However, a comprehensive infrastructure of administrative data containing patient 

level International Statistical Classification of Diseases and Related Health Problems (ICD)8 

codes and prescription drug histories exists in Alberta and other provinces in Canada which 

could be further integrated to predict opioid-related risk.  Furthermore, current guidelines 

addressing high risk prescribing and utilization of opioids were derived from studies that used 

traditional statistical methods to identify population level risk factors for overdose rather than 

an individual’s absolute risk3,9,10; these population estimates may not be generalizable to 

different populations11.  Thus, a functional gap exists in many health jurisdictions where much 

of the available administrative health data is not being leveraged for opioid prescription 

monitoring.
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Supervised machine learning (ML)12,13 is an approach that uses computer algorithms to 

build predictive models in the clinical setting that can make use of the large amounts of 

available administrative data14,15, all within a well-defined process16.  Supervised ML trains on 

labelled data to develop prediction models that are specific to different populations and, in 

many cases, can provide better predictive performance than traditional, population-based 

statistical models10,15,17.  We identified one study10 that applied ML techniques to predict 

overdose risk in opioid patients pursuant to a prescription.  In their validation sample, they 

found that the deep neural network (DNN) and gradient boosting machines (GBM) algorithms 

carried the best discrimination performance based on estimated c-statistics and that the ML 

approach out-performed the guideline approach in terms of risk prediction; neural networks 

have little interpretability and are not necessarily better at predicting outcomes when trained 

on structured data18.  This study relied on c-statistics to evaluate their ML models and did not 

emphasize other performance metrics required to assess clinical utility that are recommended 

by medical reporting guidelines11,13,19,20.  It also did not address the important issue of ML 

model interpretability21.  Reporting informative prognostic metrics is needed to better 

understand the capabilities of ML classifiers if health departments and PMPs are to incorporate 

them into their decision-making processes. 

The objective of our study was to further develop and validate ML algorithms (beyond 

just DNN) to predict the 30-day risk of hospitalization, emergency visit and mortality for a 

patient in Alberta, Canada at the time of an opioid dispensation using administrative data 

routinely available to health departments and PMPs and evaluate them using the above 

referenced reporting guidelines.  We also analyzed feature importance to provide meaningful 

Page 8 of 45

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

8

interpretations of the ML models.  Comparing discrimination performance (area under the 

receiver operating characteristics curves), we hypothesized that the ML process would perform 

better than the current guideline approach for predicting risk of adverse outcomes related to 

opioid prescribing.

Methods

Study Design and Participants

This prognostic study used a supervised ML scheme. All patients in Alberta, Canada who 

received a dispensation for an opioid, were 18 years of age and older between Jan 1, 2017 and 

Dec 31, 2018 were eligible.  Patients were excluded from all analyses if they had any previous 

diagnosis of cancer, received palliative interventions or were pregnant during the study period 

(eTable 1 in Supplement) as use of opioids in these contexts is clinically different.

Government health departments and payers in many jurisdictions have systems to 

capture prescription histories and ICD diagnostic codes.  As such, we linked various 

administrative health data sets available in Alberta, Canada using unique patient identifiers in 

order to establish a complete description of patient demographics, drug exposures and health 

outcomes.  These databases include 1) Pharmaceutical Information Network (PIN): PIN data 

includes all dispensing records from community pharmacies from all prescriber types occurring 

in the province outside of the hospital setting. PIN collects all drug dispensations irrespective of 

age or insurance status in Alberta; Anatomical Therapeutic Chemical classification (ATC) codes22 

were used to identify opioid dispensations (eSupplement), 2) Population and Vital Statistics 

Data (VS, Alberta Services): sex, age, date of birth, death date, immigration and emigration 
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data, and underlying cause of death according to the World Health Organization algorithm 

using ICD codes8, 3) Hospitalizations and Emergency Department Visits (National Ambulatory 

Care Reporting System [NACRS], Discharge Abstract Database [DAD]): all services, length of 

stay, diagnosis (up to 25 ICD-108 based diagnoses).  Data and coding accuracy are routinely 

validated both provincially and centrally via the Canadian Institute for Health Information, and 

4) Physician Visits/Claims (Alberta Health): all claims from all settings (e.g., outpatient, office 

visits, emergency departments, inpatient) with associated date of service, ICD code, procedure 

and billing information.

This study followed the TRIPOD and STARD reporting guidelines23-25 and received ethics 

approval from the University of Alberta ethics board (Pro00083807_AME1).  All analyses were 

done using Python (v. 3.6.8,), SciKit Learn26 (v. 0.23.2) SHAP27 (v. 0.35), XGBoost (v. 0.90)28, 

Pandas (v. 1.0.5)29 and H20 Driverless AI (version 1.9).  

Measures and Outcome

ML models were trained on a labelled dataset in which the observation/analysis unit 

was an opioid dispensation.  Every opioid dispensation, not just the incident one, was used as a 

potential instance to predict the risk of our outcome.  The primary outcome was a composite of 

a drug-related hospitalization, emergency department (ED) visit or mortality within 30 days of 

an opioid dispensation based on ICD-10 codes identified from DAD, NACRS and Vital Statistics 

(T40, F55, F10-19; eTable 2 in Supplement)2,10,30.

We anticipated that our defined outcome would be a rare event, leading to a class 

imbalanced dataset31.  To address this, we relied on specifying balanced class weightage for 
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supporting algorithms; other approaches were deemed not suitable (e.g., oversampling using 

randomly repeating minority class); under sampling (sub-sampling within the majority class) 

resulted in changes in outcome prevalence.  Class weightage is a commonly used method32 to 

address class imbalance along with over and under-sampling approaches.  However, 

oversampling, which involves generating new opioid dispensations from the original data 

distribution and is prone to introducing bias, is difficult due to the categorical nature of the data 

and beyond the scope of this study.  With under-sampling, which takes samples from the 

majority class (in this case, no 30-day event after dispensation), we would not be able to use all 

of the information provided by the data in instances with no outcome.  Hence, we decided to 

use the class weightage method which does not alter the data distribution.  Instead, the 

learning process is adjusted in a way that increases the importance of the positive class 

(instances that led to a 30-day event)33.

Predictor Candidates for ML Models

Predictor variables in our ML models included those that were informed by the 

literature3,4,10 and those directly obtained from the data sets. These included features based on 

demographics (age, sex, income using Forward Sortation index from postal codes34), co-

morbidity history using ICD-based Elixhauser score categories35, health care utilization (number 

of unique providers, number of hospital and emergency department visits), and drug utilization 

(level 3 ATC codes22, oral morphine equivalents36, concurrent use with benzodiazepines, 

number of opioid and benzodiazepine dispensations, number of unique opioid and 

benzodiazepine molecules).  Depending on the potential predictor and data availability, we 

used data from 30 days to 5 years before the opioid dispensation to generate model features 
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(eFigure 1 in Supplement); 30 days was used to reflect the immediate nature of the risk and 5 

years to fully capture co-morbidities.  This approach aligns with how health providers would 

assess patients using the entire history of co-morbidities and then the more immediate factors 

in deciding on the need for a therapeutic as well as risk in patients.  We performed experiments 

to identify the features and data sets that contributed most to predicting the outcomes with a 

view to minimizing the potential future data requirements for health departments and PMPs.

Statistical Analyses and Machine-Learning Prediction Evaluation

We randomly divided the patients in the 2017 portion of our study cohort into training 

(70%) and validation (30%) sets13 by patients and opioid dispensations such that no patients in 

the training set were in the validation set.  Baseline characteristics and event rates were 

compared in the training vs validation group, and between those who experienced the outcome 

and those who did not using chi-squared tests of independence.  As well, we used all the 2018 

data as another independent validation set.

We trained commonly used13,37 ML algorithms (eAppendix in Supplement) and further 

tuned out-of-box models using 5-fold cross validation on the training data to address model 

overfitting13,38.  As is common in ML validation studies10,13, we reported model discrimination 

performance (i.e. how well a model differentiates those at higher risk from those at lower 

risk)11  using area under the receiver operating characteristic curve (AUROC; c-statistic). We 

then stratified the two ML models with the highest c-statistics into percentile categories 

(deciles) according to absolute risk of our outcome, as was done in previous studies10,39.  We 

also plotted AUROC11 and precision-recall curves (PRCs)40.  
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Because discrimination alone is insufficient to assess ML model prediction capability, we 

assessed a second necessary property, namely, calibration (i.e., how similar the predicted 

absolute risk is to the observed risk across different risk strata)11,41.  Using the two ML models 

with the highest discrimination performance, we assessed calibration performance on the 2018 

data by plotting observed (fraction of positives) vs predicted risk (mean predicted value).  Using 

these same two ML classifiers, we analyzed the top 0.1, 1, 5, and 10 percentiles of predicted 

risk by the number of true and false positives, positive likelihood ratios (PLR)20, positive 

predictive values (PPV), post-test probabilities, and number needed to screen.  We also 

performed a simulation of daily data uploads for 2018 Quarter 1 to view the predictive 

capabilities if a ML risk predictor were to be deployed into a monitoring workflow.

For the XGBoost and logistic regression classifiers, we reported feature importance37 

and plotted PRCs that compared all dispenses to those within the top 10 percentiles of 

estimated risk.  As well, for the XGBoost classifier, we described feature importance  on model 

outcome using SHAP values27,42 to add an additional layer of interpretability.

Finally, we compared ML risk prediction (the two ML models with highest discrimination 

performance) to current guideline approaches as others have10, using the 2019 Centers for 

Medicare & Medicaid Services (CMS) opioid safety measures43 and the 2017 Canadian Opioid 

Prescribing Guideline3.  We also compared the discrimination performance of different logistic 

regression classifier models using various combinations of features derived from their 

respective databases: 1) demographic and drug/health utilization features from PIN and 2) co-

morbidity features derived from DAD, NACRS and Claims.
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Patient and Public Involvement

This research was done without patient involvement. Patients were not invited to 

comment on the study design and were not consulted to develop patient relevant outcomes or 

interpret the results. Patients were not invited to contribute to the writing or editing of this 

document for readability or accuracy.  There are no plans to disseminate the results of the 

research to study participants.  

Results

Patient Characteristics and Predictors

We identified 392,979 patients with at least one opioid dispensation in 2017 (Figure 1).  

This cohort was used to train (n= 275,150, 70%) and validate (n=117,829, 30%) ML models.  In 

2017 and 2018, 6,608 and 5,423 patients experienced the defined outcome, respectively.  

Baseline characteristics were different between those who experienced the outcome and those 

who did not (eTable 3 in Supplement) while characteristics were similar between the training 

and validation sets (eTable 4 in Supplement).  There were 2,283,075 opioid dispensations in 

2017 and 1,977,389 in 2018.  Overall, in 2017, 2.03% (n= 45,757) of opioid dispensations were 

associated with the outcome; in 2018, the estimate was 1.6% (n= 31,392).

As described above, we categorized our candidate features into four groups (eTable 5 in 

Supplement). When using all of the databases, the total number of features was 283 and 34 

when considering only co-morbidities.

Machine-Learning Prediction Performance
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Using the 2017 validation set, AUROCs for the XGBoost and logistic regression classifiers 

had the highest discrimination performance at 0.87, while the neural network classifier had 

lower performance at 0.80 (eTable 6 in Supplement).

Discrimination performance was similar for the 2018 validation set (n=393,023; eTable 6 

in Supplement).  XGBoost and logistic regression had the highest estimated AUROCs and area 

under PRCs while the neural network classifier was lower (Figure 2A, 2B).  As expected, 

precision-recall curves indicate stronger predictive performance in opioid dispensations at 

higher predicted risk percentiles (Figure 2C, 2D).

In the 2018 validation set, although discrimination performance was similar (0.88), 

individual feature importance was different between the logistic regression and XGBoost 

classifiers, with logistic regression feature importance more reliant on co-morbidity data from 

DAD, NACRS and Claims while XGBoost relied more on drug utilization data from PIN (eFigure 

2).  With the XGBoost classifier, history of drug abuse, alcoholism, and prior 

hospitalization/emergency visit carried the highest importance for predicting the study 

outcome (eFigure 3A) where the presence of these features in a patient suggested a strong 

prediction towards having the defined outcome (eFigure 3B and 3C).  

Calibration

When considering dispensations predicted to be in the highest percentiles of risk, the 

top 5-percentile captured 42% of all outcomes using the XGBoost and logistic regression 

classifiers (Table 1).  Also, as the predicted risk percentiles get higher (top 10 percentile to top 

0.1 percentile), so too do the corresponding PPVs with the top 0.1 percentile associated with a 
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PPV of 33% for the XGBoost classifier.  As well, lower categories of risk percentiles were 

associated with lower outcomes (Figure 3, eFigure 4).  When we simulated a monitoring 

workflow scenario with daily data uploads, a similar pattern was illustrated where the 

dispensations predicted to be higher risk had higher event rates (Figure 4).

After using the XGBoost and logistic regression classifiers to identify the dispensations in 

the highest predicted risk percentiles, the pre-test probability of the outcome (1.6%) was 

transformed into higher post-test probabilities, with higher probabilities in the riskier 

percentiles (Table 1).  The number needed to screen also decreased as predicted risk increased 

(Table 1).

Comparing discrimination performance, ML risk prediction outperformed the current 

guideline approaches when using various combinations of guideline recommendations (Table 

2).  In many of the guideline scenarios, the estimated AUROCs were close to the 0.5 mark.  

When we estimated the discrimination performance of the logistic regression classifier based 

on database source, using all databases produced an AUROC of 0.88.  Reducing the database 

source to only DAD, NACRS, Claims (co-morbidities only) resulted in an AUROC of 0.85, while 

PIN (prescription history) only was 0.78 (Table 3).

Discussion

This study showed that ML techniques using available administrative data (prescription 

histories and ICD codes) may provide enough discriminatory performance to predict adverse 

outcomes associated with opioid prescribing. Indeed, our ML analyses showed very high 

discrimination performance at 0.88.  The linear model (logistic regression) and XGBoost carried 
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higher discrimination and calibration performance, while the neural network classifier did not 

perform as well.  By identifying the predicted top 5-10 percentile of absolute risk pursuant to an 

opioid dispensation, we were able to capture approximately half of all outcomes using ML 

methods.  All ML models we trained had higher discrimination performance using the validation 

sets compared to the clinical guideline approach.

Since the prevalence of our defined outcome is relatively low in the general population, 

PPVs would also be expectedly low.  However, estimated PPVs increased when we considered 

higher risk dispensations, as is expected since PPV is related to event prevalence. This is 

important because different users of a risk predictor will require different predictive 

capabilities.  Similarly, our estimates of positive likelihood ratios and associated post-test 

probabilities also increased in dispensations with higher predicted risk indicating the strong 

predictive capabilities of the XGBoost and logistic regression classifiers; likelihood ratios >10 

generate conclusive changes from pre-test to post-test probabilities20.

The current guideline approach to assess absolute opioid prescribing risk produced c-

statistic estimates closer to 0.5 indicating that discrimination was not much better than chance 

alone.  ML models with higher predictive performance can better support health departments 

and PMPs with monitoring mandates to identify and intervene on those at high risk and their 

associated prescribers.  We also found that adding co-morbidity features from administrative 

databases increased prediction performance compared to prescription history alone, thus 

making the case for the use of this data by PMPs and health departments.  However, if only 

prescription history is available, our trained XGBoost classifier still had strong discrimination 

performance.
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We found only one study that used ML approaches to quantify the absolute risk of an 

event pursuant to an opioid dispensation10.  Their methodology used rolling 3-month windows 

for estimating risk and ML model training while we used historic records to estimate 30-day 

risk.  Differences in study population and feature selection may explain why their highest 

performing ML model was deep learning (neural network classifier) and ours was not.  

Nevertheless, we were able to replicate their predictive performance using our ML approach as 

we both showed that ML approaches have higher predictive capabilities than guideline 

approaches.  Both of our studies used predicted percentile risk estimates to identify high risk 

dispensations and were able to do so with strong discrimination and calibration performance.  

Furthermore, we emphasized prognostic metrics which are more informative to assess the 

clinical utility of ML classifiers using pre- and post-test probabilities, something not done in 

other studies and recommended in medical guidelines20.  This major aspect of our study, not 

done previously, is important because any ML classifier that does not increase prognostic 

information compared to baseline cannot be incorporated into decision making for the purpose 

of intervening on higher risk instead of lower risk patients. Indeed, another study we found 

describes how identifying cases in higher predicted risk percentiles using ML methods can be 

deployed in hospital settings for the purpose of targeted interventions39 upon discharge, 

however the effect on outcomes is still to be determined.

The limitations of our study are similar to other ML studies10 and need to be addressed 

when considering deployment of ML risk predictors.  Our training dataset was not able to 

account for non-prescription opioid consumption and the risk associated with non-prescription 

use, both of which are substantial contributors to overall risk2.  Regarding our analysis, we 
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assumed that all dispensations were independent events; future research in this area should 

focus on employing ML methods using correlated data.  As with all ML projects, our models 

were trained using Alberta data and might not be generalizable to other populations, or to 

specific populations within Alberta.  However, one of the benefits of the ML process is that 

models can be retrained or similar methods could be used to develop new models to 

accommodate different populations.

This study suggests that ML risk prediction can support PMPs, especially if readily 

available administrative health data is used.  PMPs currently use population-based guidelines 

which we, and others, have shown cannot predict absolute individual risk.  The ML process 

allows for flexibility in model training, validation and deployment to specific settings in which, 

for the case of PMPs, high risk patients can be identified and targeted for intervention either at 

the patient or provider level.  For example, a ML classifier can be trained on accessible data to 

create an aggregated list of “high risk” patients at regular time intervals to identify points of 

intervention.  Moreover, ML classifiers can be retrained over time as changes in populations 

and trends in prescribing occur and are therefore specific to the population unlike broadly 

based guidelines.  Further research can assess whether implementation of a ML-based 

monitoring system by PMPs leads to improved clinical outcomes within their own jurisdictions 

and whether other available features or feature reduction can yield sufficiently valid results for 

their own intended purposes.
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Figure Legend

Figure 1.  Patient flow diagram of study participants used for training and validating ML models.  
NACRS: National Ambulatory Care Reporting System; DAD: Discharge Abstract Database; VS: 
Vital Statistics; PIN: Pharmaceutical Information Network; Claims: Physician Claims

Figure 2.  Area under the receiver operating characteristic curve (AUROC) (A) and precision-
recall curves (B) for all dispensations using logistic regression (L1), neural network, support 
vector machine (SVM), XGBoost and Naïve-Bayes; precision-recall curves for higher risk 
dispensations according to predicted risk percentile categories for logistic regression (C) and 
XGBoost (D) using the 2018 validation set.  

Figure 3. Calibration curve plotting observed vs. quantiles (deciles) of estimated risk for the 
XGBoost classifier using the 2018 validation dataset.  The majority of counts (dispensations) 
were predicted to be lower risk.

Figure 4.  Simulation of a clinical workflow with daily uploads and events per 100 daily 
dispenses by risk percentiles using 2018 Quarter 1 (Q1) data for logistic regression (A) and 
XGBoost (B) classifiers.
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Table 1. Highest percentiles of estimated risk and predictive performance using the XGBoost 
and logistic regression classifiers for the 2018 validation dataset (n=393,023).  Total number of 
dispenses= 1,977,389; total number of outcomes= 31,392.

Metric Top 0.1%ile Top 1%ile Top 5%ile Top 10%ile

XGBoost
Logistic 

Regression XGBoost
Logistic 

Regression XGBoost
Logistic 

Regression XGBoost
Logistic 

Regression
Number of 
Dispenses 1,977 1,977 19,774 19,774 98,869 98,869 197,739 197,739 
TP captured 655 472 4204 4100 13224 13293 18404 18409 
Percent of TP 2.09 1.50 13.39 13.06 42.13 42.35 58.63 58.64 
FP captured 1322 1505 15570 15674 85645 85576 179335 179330 
PPV 33.13 23.87 21.26 20.73 13.38 13.45 9.31 9.31 
PLR 30.71 19.44 16.74 16.22 9.57 9.63 6.36 6.36 
Post-test 
Probability* 33.13 23.87 21.26 20.73 13.38 13.45 9.31 9.31 
NNS 3.17 4.49 5.08 5.22 8.48 8.43 12.95 12.95 

*Pre-test probability estimated at 1.6% using prevalence.
TP: true positives; FP: false positives; PPV: positive predictive value; PLR: positive likelihood ratio; NNS: 
number needed to screen
Note: Logistic regression used L1 (lasso) parameter regularization
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Table 2. Discrimination performance of guideline approach using the 2018 validation set.  
Guideline approaches were adapted from the 2017 Canadian Opioid Prescribing Guideline and 
2019 Centers for Medicare & Medicaid Services (CMS) opioid safety measures and compared to 
logistic regression and XGBoost classifiers (each with an estimated area under the receiver 
operating characteristic curve of 0.88).

Canadian Guidelines * AUROC Sensitivity Specificity

History of mental disorder only 0.620 0.90 0.34

Substance abuse only 0.686 0.99 0.37

OME/day >90 only 0.539 0.22 0.85

(Mental disorder and substance abuse) 
OR OME/day >90 0.690 0.91 0.47

Mental disorder and substance abuse 
AND OME/day >90 0.560 0.20 0.91

Mental disorder OR substance abuse 
OR OME/day >90 0.589 0.99 0.18

CMS Guidelines**

High opioid dose (>120 OME/day for 90+days) 0.507 0.081 0.933

Concurrency (Opioid & BZRA for 30+ days) 0.575 0.423 0.727

Multiple doctors (>4) 0.591 0.294 0.888

Multiple pharmacies (>4) 0.537 0.120 0.959

All conditions 0.50 0.001 0.999

Any condition 0.622 0.62 0.625

OME: daily oral morphine equivalents; BZRA: benzodiazepine receptor agonist.  Elixhauser scoring ICD 
codes were used to identify mental disorders and substance abuse. 
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*The Canadian guidelines do not specify timelines.  >90 OME was determined by taking the average 
daily OME over the 30 days prior to dispensation
**The CMS guidelines specify a timeline of 90 or more days at >120 OME and concurrent use of 
opioids and benzodiazepines for 30 days or more
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Table 3. Discrimination performance based on database source using area under the receiver 
operating characteristic curve (AUROC) for the logistic regression classifier on the 2018 
validation set.

Database source Predictor Variables formed 
from database

AUROC Number of 
features

PIN only Drug utilization + Prescription 
history 

0.78 248*

DAD, NACRS, Claims Co-morbidities 0.85 34
PIN, DAD NACRS, Claims 
(all databases used in 
study)

Demographic + Drug Utilization 
+ Healthcare Utilization

+ Co-morbidities

0.88 283

Note: drug utilization includes features describing oral morphine equivalents36, concurrent use 
with benzodiazepines, number of opioid and benzodiazepine dispensations, number of unique 
opioid and benzodiazepine molecules; health care utilization includes features describing 
number of unique health providers visited, number of hospital/emergency department visits; 
logistic regression used L1 (lasso) parameter regularization
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Figure 1.  Patient flow diagram of study participants used for training and validating ML models.  NACRS: 

National Ambulatory Care Reporting System; DAD: Discharge Abstract Database; VS: Vital Statistics; PIN: 

Pharmaceutical Information Network; Claims: Physician Claims 
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Figure 2.  Area under the receiver operating characteristic curves (A) and precision-recall curves (B) for all dispensations 

using logistic regression (L1), neural network, support vector machine (SVM), XGBoost and Naïve-Bayes; precision-recall 

curves for higher risk dispensations according to predicted risk percentile categories for logistic regression (C) and 

XGBoost (D) using the 2018 validation set.   
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          (C) Logistic Regression               (D) XGBoost 

        

 

AUC: area under the curve 
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Figure 3. Calibration curve plotting observed vs. quantiles (deciles) of estimated risk for the XGBoost 

classifier using the 2018 validation dataset.  The majority of counts (dispensations) were predicted to be 

lower risk. 
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Figure 4.  Simulation of a clinical workflow with daily uploads and events per 100 daily dispenses by risk 

percentiles using 2018 Quarter 1 (Q1) data for logistic regression (A) and XGBoost (B) classifiers.   

 

(A) Logistic Regression (L1) 

 

 

(B) XGBoost 
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eFigure3.  Shapley values and feature impact in the XGBoost classifier using the 2018 validation set to 
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eFigure 4.  Calibration curve plotting observed vs. quantiles of estimated risk for the logistic 
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eAppendix. Machine Learning Algorithms 
 

Introduction 

While there are always updates and new methods coming up in the fields of machine learning, 

in this study, we have focused on some of the most reliable and proven approaches for predictive 

modelling which are explainable and popularly used in previous studies of similar nature. 

Logistic Regression 

Regression analysis models the relationship between a dependent variable and a set of 

independent variables [1]. Typically, this includes understanding how the value of the dependent 

variable changes with the changes in the values of independent variables. Logistic regression [1] 

uses the logistic function to model a binary dependent variable, where, based on the values of 

the independent variables the model can approximate one of the two classes, the instance 

belongs to. This basic binary model can be extended to deal with multiple classes (e.g. One-vs-all 

classifiers). However, logistic regression is only capable of modeling a linear relationship of 

independent variables to the dependent variable, hence limited to problems with linear decision 

boundaries. We used the sci-kit learn library in our experiments[6] and found L1 regularization 

to be more effective. 

Ridge Classifier 

We used the ridge classifier implemented in the Scikit learn library[5]. It implements a classifier 

using ridge regression which uses an L2 regularization on the least square objective function. The 

library converts the labels into -1 and 1 and fits a linear regression on the converted labels with 

the regularization. 

Random Forest 

Random forest is a tree ensemble learning algorithm that has wide applicability in many 

domains[1]. Random forest is a nonlinear learning algorithm, which arrives at nonlinear decision 

boundaries by independently combining multiple decision trees. Each individual decision tree in 

the forest can be grown independently of each other on a subset of the training data. Random 

forests are mainly sensitive to the number of trees, the depth of a tree and the number of 

covariates randomly chosen to split at each node[1]. These hyper-parameters can be tuned to 

find the best configuration of every dataset. Random Forests, in general, are less prone to overfit 

since they always grow individual trees on a subset of the training data[1]. At prediction time, 

the decision of each tree is aggregated to compute the final prediction.  

Neural Networks (NN) 

Neural networks are another collection of non-linear learning algorithms with high 

representation power. They are known to be able to find mappings from an input to an output 

from a larger non-linear function space [2]. This ability to represent a larger space of nonlinear 
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functions has shown to be very effective recently in many application domains such as natural 

language processing, computer vision, genomics, computer games and health[2]. Neural 

networks come in many flavors learning nonlinear mapping of different types of data such as 

Convolutional NNs being most effective with images and Recurrent NNs for time series and 

language data. Identifying the most effective neural network structure is one of the difficult and 

the most time-consuming aspect of applying neural networks to new application domains and 

data. Generally, neural networks try to exploit the relationships in the raw unstructured data (eg: 

image and text) presented to the network but with more structured data such as health records 

and ICD codes learning relationships is much complex. Our neural network models are mainly 

based on densely connected hidden layers with ReLu[6] activation function. We used the cross-

entropy loss for the binary classification Adam optimizer. We used a simple feed forward 

network using  Sklearn  MLP classifier with hyperparameter tuning  for the NN. 

Boosted Learning Algorithms 

Boosting is a process to ensemble multiple base learning algorithms to arrive at better overall 

performance than any individual base learner[1]. In contrast to independently building multiple 

models from the subsets of the data, boosting re-weights the training data every time a model is 

learned for future models. This weighting happens to give more preference to currently 

misclassified data points in the next round compared to the correctly classified data points. 

Therefore future learners try to do better on the misclassified data points leading to a collection 

base learners having a better-combined prediction. This process is sequential so each base 

learner is dependent on the output of the previously trained model (it is worthy to note XGBoost 

provides a parallel tree boosting alternative). In our work, we have experimented with several 

boosting meta-learning algorithms such as XGBoost[7], AdaBoost[5] and GBM[5]. XGBoost uses 

a variant of trees as the base learner whereas AdaBoost (from Sci-kit learn) can use many ML 

algorithms as base learners. GBM uses logistic regression by default as the base learner. We used 

all 3 types of boosting with tuned hyperparameters for comparison. 

Naive Bayes 

Naive Bayes is based on the Bayes theorem with a strong independence assumption between the 

covariates[1]. This assumption helps in building a simple probabilistic model for learning and 

inference. Naive Bayes coefficients scale linearly with the number of covariates making this a 

suitable model for high-dimensional data. We used Naive Bayes as a simple baseline learning 

algorithm for comparison.  

Support Vector Machines (SVM) 

SVMs[4] are maximum margin classifiers optimizing for learning a hyperplane having the 

maximum distance away from each of the class data points[1]. SVM is a linear classifier but with 

the kernel trick to map the inputs to the higher dimensional space, it can learn nonlinear decision 

boundaries in the input space. SVMs are very effective binary classifiers with the kernel trick[1]. 

With larger datasets, SVMs tend to become more computationally intensive. 
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eTable 1. Diagnostic codes used to exclude patients who had cancer, were pregnant, or were 

under palliative care. 

Condition ICD 9 ICD 10 

Cancer 140.x - 239.x C00.x - C99.x, D00.x - D49.x 

Pregnancy 630.x - 679.x O00.x - O99.x 

Palliative V66 Z51.0, Z51.1, Z51.5 

 

eTable 2. Diagnostic codes used to identify the defined study outcome from emergency visit, 

hospitalization and death data. 

ICD 10 Condition 

T40.x Poisoning by, adverse effect of and underdosing of narcotics and 

psychodysleptics  

F55.x Abuse of non-psychoactive substances 

F11.x - F19.x Mental and behavioral disorders due to psychoactive substance use 
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eTable 3. Baseline characteristics of study patients (n=392,979). Co-morbidities were determined using 
Elixhauser criteria.  All p-values in the chi2 test of independence were <0.001 unless otherwise indicated. 
  

Characteristic Number without 
Event   

n=386,371  

Percent Number with Event   
n=6,608  

Percent 

Age:     

Mean (SD) 48.1 (16.4) -- 41.2 (12.4) -- 
      18-45  162057 41.9 3466 52.4 
       45-65  154632 40.0 2656 40.2 
     >65*  69682 18.0 486 7.4 
Male  197491 50.3 3922 59.4 
Female  194794 49.7 2686 40.6 
Alcohol Disorder 66320 16.9 5220 79.0 
Arrhythmia  90621 23.1 1959 29.6 
Blood Loss Anemia  1164 0.3 82 1.2 
Congestive Heart 
Failure  

18954 4.8 565 8.6 

Coagulopathy  8053 2.1 356 5.4 
Deficiency Anemia  34188 8.7 971 14.7 
Depression  159140 40.6 5518 83.5 
Diabetes** 64132 16.3 1408 21.3 
Substance Abuse 
Disorder  

74678 19.0 5485 83.0 

Fluid Disorder  42690 10.9 3012 45.6 
Hypertension** 140171 35.7 2624 39.7 
Hypothyroidism  45519 11.6 601 9.1 
Injury^  195688 49.9 5541 83.9 
Liver Disorder  21656 5.5 1588 24.0 
Neurologic Disorder  230490 58.8 5387 81.5 
Obesity  63393 16.2 970 14.7 
Poisoning^  17434 4.4 2775 42.0 
Psychoses  35870 9.1 3162 47.9 
Renal Disorder  16166 4.1 499 7.6 
Rheumatoid Conditions  111458 28.4 3157 47.8 
HIV Infection  1098 0.3 141 2.1 
Paralysis  3874 1.0 187 2.8 
Peptic Ulcer Disease  11728 3.0 509 7.7 
Pulmonary Circulation 
Disorder  

9611 2.4 430 6.5 

Chronic Pulmonary 
Disease  

102990 26.3 2913 44.1 

Peripheral Vascular 
Disease  

14467 3.7 389 5.9 

Valvular Disease  7308 1.9 226 3.4 
Weight Loss  16207 4.1 747 11.3 

*p-value for age >65 is an estimated 0.037  
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^ Injury: ICD10: S00-T98; Poisoning: ICD10: T36-T50 

** Complicated, uncomplicated diabetes and hypertension were collapsed into one category each 
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eTable 4.  Characteristics of study participants between training and validation groups using 

2017 data. 

Characteristic Number in 
training group 

N=275,150~ 

Percent Number in 
validation group 

N=117,829~  

Percent 

Age:       
               Mean (SD) 48.3 (16) -- 48.2 (16) -- 
          18-45  114356 41.5 49909 42.3 
            45-65  111859 40.7 47132 40.0 
         >65  48935 17.8 20788 17.6 
Male  138603 48.5 59339 48.4 
Female  136545 47.8 58490 47.7 
Alcohol Disorder 46792 16.4 20199 16.5 
Arrhythmia  63637 22.3 27201 22.2 
Blood Loss Anemia  839 0.3 336 0.3 
Congestive Heart 
Failure  

13320 4.7 5694 4.6 

Coagulopathy  5697 2.0 2393 2.0 
Deficiency Anemia  24096 8.4 10179 8.3 
Depression  112080 39.2 47628 38.9 
Diabetes** 45131 15.8 19144 15.6 
Substance Abuse 
Disorder  

52609 18.4 22713 18.5 

Fluid Disorder  30272 10.6 12780 10.4 
Hypertension** 98546 34.5 41840 34.1 
Hypothyroidism  31908 11.2 13666 11.2 
Injury*  137423 48.1 58865 48.0 
Liver Disorder  15252 5.3 6567 5.4 
Neurologic 
Disorder  

161706 56.5 69341 56.6 

Obesity  44607 15.6 18882 15.4 
Poisoning*  12503 4.4 5293 4.3 
Psychoses  25422 8.9 10860 8.9 
Renal Disorder  11403 4.0 4817 3.9 
Rheumatoid 
Conditions  

78268 27.4 33420 27.3 

HIV Infection  774 0.3 336 0.3 
Paralysis  2717 1.0 1176 1.0 
Peptic Ulcer 
Disease  

8239 2.9 3533 2.9 

Pulmonary 
Circulation 
Disorder  

6771 2.4 2877 2.3 

Chronic Pulmonary 
Disease  

72265 25.3 30949 25.3 
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Peripheral Vascular 
Disease  

10228 3.6 4278 3.5 

Valvular Disease  5111 1.8 2215 1.8 
Weight Loss  11477 4.0 4790 3.9 

Note: p-values for chi2 test of independence were all >0.06 when comparing training and validation sets. 

*Injury: ICD10: S00-T98; Poisoning: ICD10: T36-T50  
** Complicated, uncomplicated diabetes and hypertension were collapsed into one category each 

 
 
 
 
eTable 5.  Anatomical Therapeutic Chemical classification of opioid molecules used for this 

study and candidate predictors used to train ML algorithms. 

Category (data source) Description 

ATC codes used to identify 
opioids from PIN data 

N01AH01, N01AH03, N01AH06, N07BC01, N07BC02, 
N07BC51, R05DA03, R05DA04, R05DA09, R05DA20, N02A 

Demographic information (PIN) age, sex, postal codes, mean income 

Drug utilization history (PIN) drug dispenses in past 30 days using on ATC codes, oral 
morphine equivalents, concurrent use with benzodiazepines 
defined as at least 7 days of cumulative concurrent use in the 
30 days prior to dispensation, number of dispensations and 
unique molecules of opioids and benzodiazepines 

Health care utilization (PIN 
DAD) 

flags for previous hospitalizations and emergency 
department visits, number of unique providers 

ICD based co-morbidities (DAD, 
NACRS, Claims) 

Elixhauser condition flags based on the past 5 years of claims, 
hospitalizations, and emergency visits. 

Note: ATC- Anatomical Therapeutic Chemical classification (https://www.whocc.no/atc_ddd_index); 

PIN- Pharmaceutical Information Network; ICD- International Statistical Classification of Diseases and 

Related Health Problems, World Health Organization; total number of features 283 
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eTable 6.  Discrimination performance using area under the receiver operating characteristic 

curve (AUROC) of various ML algorithms using all features (demographics, health utilization, 

prescription history, co-morbidities).  Training and validation were done using 2017 data 

(n=393,979); another independent validation was performed using 2018 data (n=393,023).   

Algorithm Train  Validation 2017 Validation 2018 

XGBoost Classifier 0.897 0.870 0.884 

Logistic Regression 0.887 0.869 0.884 

Gradient Boosting Classifier 0.898 0.868 0.883 

AdaBoost Classifier 0.884 0.868 0.882 

Random Forest Classifier 0.909 0.863 0.881 

Ridge Classifier 0.895 0.863 0.879 

SVM 0.896 0.860 0.878 

Gaussian Naive Bayes 0.846 0.826 0.847 

Decision Tree Classifier 0.919 0.791 0.822 

Neural Networks 0.827 0.804 0.821 

Note: Logistic regression used L1 (lasso) parameter regularization 
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eFigure 1.  Schematic of study design and feature generation 
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eFigure2.  Feature importance from logistic regression and tree-based XGBoost classifiers using the 

2018 validation set.  The logistic regression classifier relied more on co-morbidity data from DAD, 

NACRS, and Claims databases; XGBoost classifier relied more on data from the PIN database.  AUROCs 

for both classifiers were similar at 0.88. 

 

Logistic Regression XGBoost 

history of drug abuse 1.00 age at dispensation 1.00 

age at dispensation 0.65 
number of prescriptions 
dispensed in previous 30 days 1.00 

history of prior hospitalization/ED 
visit 0.62 

number of opioid dispensations in 
previous 30 days 0.86 

history of alcohol use disorder 0.62 
number of BZD dispensations in 
previous 30 days 0.46 

history of fluid and electrolyte 
disorder 0.32 Doctor risk score* 0.45 

history of poisoning 0.31 
total OME consumed in previous 
30 days 0.43 

history of psychoses 0.31 history of poisoning 0.37 

number of unique BZD dispensed 
in previous 30 days 0.26 pharmacy risk score** 0.35 

history of depression 0.19 
number of unique providers that 
prescribed an opioid or BZD 0.34 

concurrent use of opioid and BZD 
in previous 30 days 0.19 income 0.34 

history of injury 0.17 
history of prior hospitalization/ED 
visit 0.26 

Note: Logistic regression used L1 (lasso) parameter regularization; BZD- benzodiazepine; OME- 
oral morphine equivalents; ED: emergency department 
*derived feature using proportion of opioid/benzodiazepine patients that experienced the study 

outcome in the previous 30 days prior to opioid dispensation for each physician; 

**derived feature using proportion of opioid/benzodiazepine patients that experienced the study 

outcome in the previous 30 days prior to opioid dispensation for each pharmacy 
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eFigure 3.  SHAP values and feature impact of the XGBoost classifier using the 2018 validation set to 

describe “associations” between features and the outcome.  Features with the most impact on the 

model with drug abuse ranked highest (A); tornado plot illustrating feature impact (B); explaining the 

prediction of study outcome based on predictor values for 4 patients using SHAP values(C). 

(A) 

 

Note: Pharmacy risk score- derived feature using proportion of opioid patients that experienced the 

study outcome in the previous 30 days prior to opioid dispensation for each pharmacy; training and 

validating the XGBoost classifier with these features alone resulted in an AUC of 0.877 in the 2018 

validation set 
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(B) 

 

Note: Pharmacy risk score- derived feature using proportion of opioid/benzodiazepine patients that 

experienced the study outcome in the previous 30 days prior to opioid dispensation for each pharmacy; 

red indicates higher values of categorical variables and plots to the right of 0.0 indicate the tendency to 

be associated with the study outcome while blue indicates lower values of categorical variables and 

plots to the left of 0.0 indicate the tendency to be associated with no outcome 
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(C) 

 

How to read this figure: Using hospitalization within 30-days of an opioid dispensation as the outcome of interest, 
there are 4 scenarios to consider: the XGBoost classifier has low or high confidence in predicting a hospitalization 
and low or high confidence in predicting NO hospitalization.  Start at the base SHAP value of near 0.0 (“base 
value”) in which the classifier is not confident in the prediction.  SHAP values (in bold) that are above 0.0 indicate a 
tendency towards a hospitalization while those that are below 0.0 indicate a tendency for NO hospitalization.  As 
the SHAP value moves above 0.0, for example 3.11 in the top panel, the classifier’s confidence in predicting a 
hospitalization is higher.  As the SHAP value approaches closer to the base value, for example 0.16 in the second 
panel, the classifier has relatively lower confidence in predicting a hospitalization.  When the SHAP value is below 
0.0, for example -5.4 in the third panel, the classifier’s confidence in predicting NO hospitalization is higher and 
when the SHAP value is closer to 0.0, for example -0.44 in the bottom panel, the classifier has lower confidence in 
predicting NO hospitalization. 
The top panel (SHAP value 3.11) depicts an instance predicted to be high risk for our outcome.  This individual has 

a positive history of drug abuse disorder, liver disorder, diabetes, fluid/electrolyte disorder, alcohol use disorder, 

poisoning and B vitamin use in the prior 30 days.  The third panel (SHAP value -5.40) depicts an instance predicted 

to be low risk (i.e., no hospitalization) and has a negative history for poisoning, drug and alcohol use disorder.  

Note- drug abuse: drug abuse disorder; poisoning: history of poisoning; vitamin B1: vitamin B1 in prior 30 days; 

anti-glycemics: anti-glycemic agents in prior 30 days; age: age at opioid dispensation; # opioid dispenses: number 

of opioid dispensations in prior 30 days; Hosp/ED visit: history of prior hospitalizations and/or emergency visits in 

past 6 months; Total OME: total oral morphine equivalents in prior 30 days; DIAZEPAM: history of diazepam use in 

prior 30 days 
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eFigure 4.  Calibration curve plotting observed vs. quantiles of estimated risk for the logistic regression 

(L1) classifier using the 2018 validation dataset.  The majority of counts (dispensations) were predicted 

to be lower risk. 
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Abstract

Objective: To develop machine-learning models employing administrative-health data that can 
estimate risk of adverse outcomes within 30-days of an opioid dispensation for use by health-
departments or prescription monitoring programs.

Design, Setting, and Participants: This prognostic study was conducted in Alberta, Canada 
between 2017-2018.  Participants included all patients 18 years of age and older who received 
at least one opioid dispensation. Pregnant and cancer patients were excluded.

Exposure:  Each opioid dispensation served as an exposure.

Main Outcomes/Measures: Opioid related adverse outcomes were identified from linked 
administrative health-data.  Machine-learning algorithms were trained using 2017 data to 
predict risk of hospitalization, emergency department visit, and mortality within 30-days of an 
opioid dispensation.  Two validation sets, using 2017 and 2018 data, were used to evaluate 
model performance.  Model discrimination and calibration performance were assessed for all 
patients and those at higher risk. Machine-learning discrimination was compared to current 
opioid guidelines.

Results: Participants in the 2017 training set (n=275,150) and validation set (n=117,829) had 
similar baseline characteristics.  In the 2017 validation set, c-statistics for the XGBoost, logistic 
regression, and neural-network classifiers were 0.87, 0.87, and 0.80, respectively. In the 2018 
validation set (n=393,023), the corresponding c-statistics were 0.88, 0.88, and 0.82. C-statistics 
from the Canadian guidelines ranged from 0.54-0.69 while the US guidelines ranged from 0.50-
0.62.  The top 5-percentile of predicted risk for the XGBoost and logistic regression classifiers 
captured 42% of all events and translated into post-test probabilities of 13.38% and 13.45%, 
respectively, up from the pre-test probability of 1.6%.

Conclusion: Machine-learning classifiers, especially incorporating hospitalization/physician 
claims data, have better predictive performance compared to guideline or prescription history 
only approaches when predicting 30-day risk of adverse outcomes. Prescription monitoring 
programs and health departments with access to administrative data can use machine-learning 
classifiers to effectively identify those at higher risk compared to current guideline-based 
approaches.
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Article Summary

Strengths and Limitations:

 This study incorporated near complete capture of opioid dispensations from community 
pharmacies and used validated administrative health data.

 This study used commonly available algorithms to train machine-learning models using 
data which is available to government health departments in all provinces in Canada 
and other single payer jurisdictions; ML classifiers were evaluated with informative 
prognostic metrics not usually seen in other studies.

 Our predictive models used dispense events and not medication utilization, which is 
difficult to capture in administrative data.

 Our training dataset does not account for non-prescription opioids, opioids 
administered in hospitals, and other risks associated with non-prescription use.
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Introduction

Canada is among the countries with the highest rates of opioid prescribing in the world, 

making prescription opioid use a key driver of the current opioid crisis1; a major part of the 

policy response to the opioid crisis focuses on endorsing safe, appropriate opioid prescribing2-4.  

In order to minimize high risk opioid prescribing and to identify patients at high risk of opioid 

related adverse outcomes, numerous health regulatory bodies have released clinical practice 

recommendations for health providers regarding appropriate opioid prescribing3,5,6.  

Prescription monitoring programs (PMPs) have been implemented around the world, 

like Alberta’s provincial Triplicate Prescription Program (TPP)7 in Canada, and are mandated to 

monitor the utilization and appropriate use of opioids to reduce adverse outcomes.  In most 

jurisdictions, both population-level monitoring metrics and clinical decision aids are used to 

identify patients at risk of hospitalization or death and are most often based on prescribing 

guidelines.  However, a comprehensive infrastructure of administrative data containing patient 

level International Statistical Classification of Diseases and Related Health Problems (ICD)8 

codes and prescription drug histories exists in Alberta and other provinces in Canada which 

could be further integrated to predict opioid-related risk.  Furthermore, current guidelines 

addressing high risk prescribing and utilization of opioids were derived from studies that used 

traditional statistical methods to identify population level risk factors for overdose rather than 

an individual’s absolute risk3,9,10; these population estimates may not be generalizable to 

different populations11.  Thus, a functional gap exists in many health jurisdictions where much 

of the available administrative health data is not being leveraged for opioid prescription 

monitoring.
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Supervised machine learning (ML)12,13 is an approach that uses computer algorithms to 

build predictive models in the clinical setting that can make use of the large amounts of 

available administrative data14,15, all within a well-defined process16.  Supervised ML trains on 

labelled data to develop prediction models that are specific to different populations and, in 

many cases, can provide better predictive performance than traditional, population-based 

statistical models10,15,17.  We identified one study10 that applied ML techniques to predict 

overdose risk in opioid patients pursuant to a prescription.  In their validation sample, they 

found that the deep neural network (DNN) and gradient boosting machines (GBM) algorithms 

carried the best discrimination performance based on estimated c-statistics and that the ML 

approach out-performed the guideline approach in terms of risk prediction; neural networks 

have little interpretability and are not necessarily better at predicting outcomes when trained 

on structured data18.  This study relied on c-statistics to evaluate their ML models and did not 

emphasize other performance metrics (e.g., positive likelihood ratios, pre and post-test 

probabilities) required to assess clinical utility that are recommended by medical reporting 

guidelines11,13,19,20.  It also did not address the important issue of ML model interpretability21.  

Reporting informative prognostic metrics is needed to better understand the capabilities of ML 

classifiers if health departments and PMPs are to incorporate them into their decision-making 

processes. 

The objective of our study was to further develop and validate ML algorithms (beyond 

just DNN) to predict the 30-day risk of hospitalization, emergency visit and mortality for a 

patient in Alberta, Canada at the time of an opioid dispensation using administrative data 

routinely available to health departments and PMPs and evaluate them using the above 
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referenced reporting guidelines.  We also analyzed feature importance to provide meaningful 

interpretations of the ML models.  Comparing discrimination performance (area under the 

receiver operating characteristics curves), we hypothesized that the ML process would perform 

better than the current guideline approach for predicting risk of adverse outcomes related to 

opioid prescribing.

Methods

Study Design and Participants

This prognostic study used a supervised ML scheme. All patients in Alberta, Canada who 

received a dispensation for an opioid, were 18 years of age and older between Jan 1, 2017 and 

Dec 31, 2018 were eligible.  Patients were excluded from all analyses if they had any previous 

diagnosis of cancer, received palliative interventions or were pregnant during the study period 

(eTable 1 in Supplement) as use of opioids in these contexts is clinically different.

Government health departments and payers in many jurisdictions have systems to 

capture prescription histories and ICD diagnostic codes.  As such, we linked various 

administrative health data sets available in Alberta, Canada using unique patient identifiers in 

order to establish a complete description of patient demographics, drug exposures and health 

outcomes.  These databases include 1) Pharmaceutical Information Network (PIN): PIN data 

includes all dispensing records from community pharmacies from all prescriber types occurring 

in the province outside of the hospital setting. PIN collects all drug dispensations irrespective of 

age or insurance status in Alberta; Anatomical Therapeutic Chemical classification (ATC) codes22 

were used to identify opioid dispensations and their respective opioid molecules (eTable 5), 2) 
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Population and Vital Statistics Data (VS, Alberta Services): sex, age, date of birth, death date, 

immigration and emigration data, and underlying cause of death according to the World Health 

Organization algorithm using ICD codes8, 3) Hospitalizations and Emergency Department Visits 

(National Ambulatory Care Reporting System [NACRS], Discharge Abstract Database [DAD]): all 

services, length of stay, diagnosis (up to 25 ICD-108 based diagnoses).  Data and coding accuracy 

are routinely validated both provincially and centrally via the Canadian Institute for Health 

Information, and 4) Physician Visits/Claims (Alberta Health): all claims from all settings (e.g., 

outpatient, office visits, emergency departments, inpatient) with associated date of service, ICD 

code, procedure and billing information.

This study followed the TRIPOD and STARD reporting guidelines23-25 and received ethics 

approval from the University of Alberta ethics board (Pro00083807_AME1).  

Measures and Outcome

ML models were trained on a labelled dataset in which the observation/analysis unit 

was an opioid dispensation.  Every opioid dispensation, not just the incident one, was used as a 

potential instance to predict the risk of our outcome.  The primary outcome was a composite of 

a drug-related hospitalization, emergency department (ED) visit or mortality within 30 days of 

an opioid dispensation based on ICD-10 codes used by others and identified from DAD, NACRS 

and Vital Statistics (T40, F55, F10-19; eTable 2 in Supplement)2,10,26.

We anticipated that our defined outcome would be a rare event, leading to a class 

imbalanced dataset27.  To address this, we relied on specifying balanced class weightage for 

supporting algorithms; other approaches were deemed not suitable (e.g., oversampling using 
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randomly repeating minority class); under sampling (sub-sampling within the majority class) 

resulted in changes in outcome prevalence.  Class weightage is a commonly used method28 to 

address class imbalance along with over and under-sampling approaches.  However, 

oversampling, which involves generating new opioid dispensations from the original data 

distribution and is prone to introducing bias, is difficult due to the categorical nature of the data 

and beyond the scope of this study.  With under-sampling, which takes samples from the 

majority class (in this case, no 30-day event after dispensation), we would not be able to use all 

of the information provided by the data in instances with no outcome.  Hence, we decided to 

use the class weightage method which does not alter the data distribution.  Instead, the 

learning process is adjusted in a way that increases the importance of the positive class 

(instances that led to a 30-day event)29.

Predictor Candidates for ML Models

Predictor variables in our ML models included those that were informed by the 

literature3,4,10 and those directly obtained from the data sets. These included features based on 

demographics (age, sex, income using Forward Sortation index from postal codes30), co-

morbidity history using ICD-based Elixhauser score categories31, health care utilization (number 

of unique providers, number of hospital and emergency department visits), and drug utilization 

(level 3 ATC codes22, oral morphine equivalents32, concurrent use with benzodiazepines, 

number of opioid and benzodiazepine dispensations, number of unique opioid and 

benzodiazepine molecules).  Depending on the potential predictor and data availability, we 

used data from 30 days to 5 years before the opioid dispensation to generate model features 

(eFigure 1 in Supplement); 30 days was used to reflect the immediate nature of the risk and 5 
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years to fully capture co-morbidities.  This approach aligns with how health providers would 

assess patients using the entire history of co-morbidities and then the more immediate factors 

in deciding on the need for a therapeutic as well as risk in patients.  We performed experiments 

to identify the features and data sets that contributed most to predicting the outcomes with a 

view to minimizing the potential future data requirements for health departments and PMPs.

Statistical Analyses and Machine-Learning Prediction Evaluation

We randomly divided the patients in the 2017 portion of our study cohort into training 

(70%) and validation (30%) sets13 by patients and opioid dispensations such that no patients in 

the training set were in the validation set.  Baseline characteristics and event rates were 

compared in the training vs validation group, and between those who experienced the outcome 

and those who did not using chi-squared tests of independence.  As well, we used all the 2018 

data as another independent validation set.

We trained commonly used13,33 ML algorithms (eAppendix in Supplement) and further 

tuned out-of-box models using 5-fold cross validation on the training data to address model 

overfitting13,34.  As is common in ML validation studies10,13, we reported model discrimination 

performance (i.e. how well a model differentiates those at higher risk from those at lower 

risk)11  using area under the receiver operating characteristic curve (AUROC; c-statistic). We 

then stratified the two ML models with the highest c-statistics into percentile categories 

(deciles) according to absolute risk of our outcome, as was done in previous studies10,35.  We 

also plotted AUROC11 and precision-recall curves (PRCs)36.  
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Because discrimination alone is insufficient to assess ML model prediction capability, we 

assessed a second necessary property, namely, calibration (i.e., how similar the predicted 

absolute risk is to the observed risk across different risk strata)11,37.  Using the two ML models 

with the highest discrimination performance, we assessed calibration performance on the 2018 

data by plotting observed (fraction of positives) vs predicted risk (mean predicted value).  Using 

these same two ML classifiers, we analyzed the top 0.1, 1, 5, and 10 percentiles of predicted 

risk by the number of true and false positives, positive likelihood ratios (PLR)20, positive 

predictive values (PPV), post-test probabilities, and number needed to screen.  We also 

performed a simulation of daily data uploads for 2018 Quarter 1 to view the predictive 

capabilities if a ML risk predictor were to be deployed into a monitoring workflow.

For the XGBoost and logistic regression classifiers, we reported feature importance33 

and plotted PRCs that compared all dispenses to those within the top 10 percentiles of 

estimated risk.  As well, for the XGBoost classifier, we described feature importance  on model 

outcome using SHAP values38,39 to add an additional layer of interpretability.

Finally, we compared ML risk prediction (the two ML models with highest discrimination 

performance) to current guideline approaches as others have10, using the 2019 Centers for 

Medicare & Medicaid Services (CMS) opioid safety measures40 and the 2017 Canadian Opioid 

Prescribing Guideline3.  This was done by using the guidelines as “rules” when coding for the 

30-day risk of event at the time of each opioid dispensation on the entire 2018 validation set.  

We also compared the discrimination performance of different logistic regression classifier 

models using various combinations of features derived from their respective databases: 1) 
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demographic and drug/health utilization features from PIN and 2) co-morbidity features 

derived from DAD, NACRS and Claims.

All analyses were done using Python (v. 3.6.8,), SciKit Learn41 (v. 0.23.2) SHAP39 (v. 0.35), 

XGBoost (v. 0.90)42, Pandas (v. 1.0.5)43 and H20 Driverless AI (version 1.9).  

Patient and Public Involvement

This research was done without patient involvement. Patients were not invited to 

comment on the study design and were not consulted to develop patient relevant outcomes or 

interpret the results. Patients were not invited to contribute to the writing or editing of this 

document for readability or accuracy.  There are no plans to disseminate the results of the 

research to study participants.  

Results

Patient Characteristics and Predictors

We identified 392,979 patients with at least one opioid dispensation in 2017 (Figure 1).  

This cohort was used to train (n= 275,150, 70%) and validate (n=117,829, 30%) ML models.  In 

2017 and 2018, 6,608 and 5,423 patients experienced the defined outcome, respectively.  

Baseline characteristics were different between those who experienced the outcome and those 

who did not (eTable 3 in Supplement) while characteristics were similar between the training 

and validation sets (eTable 4 in Supplement).  There were 2,283,075 opioid dispensations in 

2017 and 1,977,389 in 2018.  Overall, in 2017, 2.03% (n= 45,757) of opioid dispensations were 

associated with the outcome; in 2018, the estimate was 1.6% (n= 31,392).
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As described above, we categorized our candidate features into four groups (eTable 5 in 

Supplement). When using all of the databases, the total number of features was 283 and 34 

when considering only co-morbidities.

Machine-Learning Prediction Performance

Using the 2017 validation set, AUROCs for the XGBoost and logistic regression classifiers 

had the highest discrimination performance at 0.87, while the neural network classifier had 

lower performance at 0.80 (eTable 6 in Supplement).

Discrimination performance was similar for the 2018 validation set (n=393,023; eTable 6 

in Supplement).  XGBoost and logistic regression had the highest estimated AUROCs and area 

under PRCs while the neural network classifier was lower (Figure 2A, 2B).  As expected, 

precision-recall curves indicate stronger predictive performance in opioid dispensations at 

higher predicted risk percentiles (Figure 2C, 2D).

In the 2018 validation set, although discrimination performance was similar (0.88), 

individual feature importance was different between the logistic regression and XGBoost 

classifiers, with logistic regression feature importance more reliant on co-morbidity data from 

DAD, NACRS and Claims while XGBoost relied more on drug utilization data from PIN (eFigure 

2).  With the XGBoost classifier, history of drug abuse, alcoholism, and prior 

hospitalization/emergency visit carried the highest importance for predicting the study 

outcome (eFigure 3A) where the presence of these features in a patient suggested a strong 

prediction towards having the defined outcome (eFigure 3B and 3C).  

Calibration
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When considering dispensations predicted to be in the highest percentiles of risk, the 

top 5-percentile captured 42% of all outcomes using the XGBoost and logistic regression 

classifiers (Table 1).  Also, as the predicted risk percentiles get higher (top 10 percentile to top 

0.1 percentile), so too do the corresponding PPVs with the top 0.1 percentile associated with a 

PPV of 33% for the XGBoost classifier.  As well, lower categories of risk percentiles were 

associated with lower outcomes (Figure 3, eFigure 4).  When we simulated a monitoring 

workflow scenario with daily data uploads, a similar pattern was illustrated where the 

dispensations predicted to be higher risk had higher event rates (Figure 4).

After using the XGBoost and logistic regression classifiers to identify the dispensations in 

the highest predicted risk percentiles, the pre-test probability of the outcome (1.6%) was 

transformed into higher post-test probabilities, with higher probabilities in the riskier 

percentiles (Table 1).  The number needed to screen also decreased as predicted risk increased 

(Table 1).

Comparing discrimination performance, ML risk prediction outperformed the current 

guideline approaches when using various combinations of guideline recommendations (Table 

2).  In many of the guideline scenarios, the estimated AUROCs were close to the 0.5 mark.  

When we estimated the discrimination performance of the logistic regression classifier based 

on database source, using all databases produced an AUROC of 0.88.  Reducing the database 

source to only DAD, NACRS, Claims (co-morbidities only) resulted in an AUROC of 0.85, while 

PIN (prescription history) only was 0.78 (Table 3).

Discussion
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This study showed that ML techniques using available administrative data (prescription 

histories and ICD codes) may provide enough discriminatory performance to predict adverse 

outcomes associated with opioid prescribing. Indeed, our ML analyses showed very high 

discrimination performance at 0.88.  The linear model (logistic regression) and XGBoost carried 

higher discrimination and calibration performance, while the neural network classifier did not 

perform as well.  By identifying the predicted top 5-10 percentile of absolute risk pursuant to an 

opioid dispensation, we were able to capture approximately half of all outcomes using ML 

methods.  All ML models we trained had higher discrimination performance using the validation 

sets compared to the clinical guideline approach.

Since the prevalence of our defined outcome is relatively low in the general population, 

PPVs would also be expectedly low.  However, estimated PPVs increased when we considered 

higher risk dispensations, as is expected since PPV is related to event prevalence. This is 

important because different users of a risk predictor will require different predictive 

capabilities.  Similarly, our estimates of positive likelihood ratios and associated post-test 

probabilities also increased in dispensations with higher predicted risk indicating the strong 

predictive capabilities of the XGBoost and logistic regression classifiers; likelihood ratios >10 

generate conclusive changes from pre-test to post-test probabilities20.

The current guideline approach to assess absolute opioid prescribing risk produced c-

statistic estimates closer to 0.5 indicating that discrimination was not much better than chance 

alone.  ML models with higher predictive performance can better support health departments 

and PMPs with monitoring mandates to identify and intervene on those at high risk and their 

associated prescribers.  We also found that adding co-morbidity features from administrative 
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databases increased prediction performance compared to prescription history alone, thus 

making the case for the use of this data by PMPs and health departments.  However, if only 

prescription history is available, our trained XGBoost classifier still had strong discrimination 

performance.

We found only one study that used ML approaches to quantify the absolute risk of an 

event pursuant to an opioid dispensation10.  Their methodology used rolling 3-month windows 

for estimating risk and ML model training while we used historic records to estimate 30-day 

risk.  Differences in study population and feature selection may explain why their highest 

performing ML model was deep learning (neural network classifier) and ours was not.  

Nevertheless, we were able to replicate their predictive performance using our ML approach as 

we both showed that ML approaches have higher predictive capabilities than guideline 

approaches.  Both of our studies used predicted percentile risk estimates to identify high risk 

dispensations and were able to do so with strong discrimination and calibration performance.  

Furthermore, we emphasized prognostic metrics which are more informative to assess the 

clinical utility of ML classifiers using pre- and post-test probabilities, something not done in 

other studies and recommended in medical guidelines20.  This major aspect of our study, not 

done previously, is important because any ML classifier that does not increase prognostic 

information compared to baseline cannot be incorporated into decision making for the purpose 

of intervening on higher risk instead of lower risk patients. Indeed, another study we found 

describes how identifying cases in higher predicted risk percentiles using ML methods can be 

deployed in hospital settings for the purpose of targeted interventions35 upon discharge, 

however the effect on outcomes is still to be determined.
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The limitations of our study are similar to other ML studies10 and need to be addressed 

when considering deployment of ML risk predictors.  Our training dataset was not able to 

account for non-prescription opioid consumption and the risk associated with non-prescription 

use, both of which are substantial contributors to overall risk2.  Regarding our analysis, we 

assumed that all dispensations were independent events; future research in this area should 

focus on employing ML methods using correlated data.  As with all ML projects, our models 

were trained using Alberta data and might not be generalizable to other populations, or to 

specific populations within Alberta.  However, one of the benefits of the ML process is that 

models can be retrained or similar methods could be used to develop new models to 

accommodate different populations.

This study suggests that ML risk prediction can support PMPs, especially if readily 

available administrative health data is used.  PMPs currently use population-based guidelines 

which we, and others, have shown cannot predict absolute individual risk.  The ML process 

allows for flexibility in model training, validation and deployment to specific settings in which, 

for the case of PMPs, high risk patients can be identified and targeted for intervention either at 

the patient or provider level.  For example, a ML classifier can be trained on accessible data to 

create an aggregated list of “high risk” patients at regular time intervals to identify points of 

intervention.  Moreover, ML classifiers can be retrained over time as changes in populations 

and trends in prescribing occur and are therefore specific to the population unlike broadly 

based guidelines.  Further research can assess whether implementation of a ML-based 

monitoring system by PMPs leads to improved clinical outcomes within their own jurisdictions 
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and whether other available features or feature reduction can yield sufficiently valid results for 

their own intended purposes.
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Figure Legend

Figure 1.  Patient flow diagram of study participants used for training and validating ML models.  
NACRS: National Ambulatory Care Reporting System; DAD: Discharge Abstract Database; VS: 
Vital Statistics; PIN: Pharmaceutical Information Network; Claims: Physician Claims

Figure 2.  Area under the receiver operating characteristic curve (AUROC) (A) and precision-
recall curves (B) for all dispensations using logistic regression (L1), neural network, support 
vector machine (SVM), XGBoost and Naïve-Bayes; precision-recall curves for higher risk 
dispensations according to predicted risk percentile categories for logistic regression (C) and 
XGBoost (D) using the 2018 validation set.  

Figure 3. Calibration curve plotting observed vs. quantiles (deciles) of estimated risk for the 
XGBoost classifier using the 2018 validation dataset.  The majority of counts (dispensations) 
were predicted to be lower risk.

Figure 4.  Simulation of a clinical workflow with daily uploads and events per 100 daily 
dispenses by risk percentiles using 2018 Quarter 1 (Q1) data for logistic regression (A) and 
XGBoost (B) classifiers.
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Table 1. Highest percentiles of estimated risk and predictive performance using the XGBoost 
and logistic regression classifiers for the 2018 validation dataset (n=393,023).  Total number of 
dispenses= 1,977,389; total number of outcomes= 31,392.

Metric Top 0.1%ile Top 1%ile Top 5%ile Top 10%ile

XGBoost
Logistic 

Regression XGBoost
Logistic 

Regression XGBoost
Logistic 

Regression XGBoost
Logistic 

Regression
Number of 
Dispenses 1,977 1,977 19,774 19,774 98,869 98,869 197,739 197,739 
TP captured 655 472 4204 4100 13224 13293 18404 18409 
Percent of TP 2.09 1.50 13.39 13.06 42.13 42.35 58.63 58.64 
FP captured 1322 1505 15570 15674 85645 85576 179335 179330 
PPV 33.13 23.87 21.26 20.73 13.38 13.45 9.31 9.31 
PLR 30.71 19.44 16.74 16.22 9.57 9.63 6.36 6.36 
Post-test 
Probability* 33.13 23.87 21.26 20.73 13.38 13.45 9.31 9.31 
NNS 3.17 4.49 5.08 5.22 8.48 8.43 12.95 12.95 

*Pre-test probability estimated at 1.6% using prevalence.
TP: true positives; FP: false positives; PPV: positive predictive value; PLR: positive likelihood ratio; NNS: 
number needed to screen
Note: Logistic regression used L1 (lasso) parameter regularization
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Table 2. Discrimination performance of guideline approach using the 2018 validation set.  
Guideline approaches were adapted from the 2017 Canadian Opioid Prescribing Guideline and 
2019 Centers for Medicare & Medicaid Services (CMS) opioid safety measures and compared to 
logistic regression and XGBoost classifiers (each with an estimated area under the receiver 
operating characteristic curve of 0.88).  These guidelines were used as rules to predict the 30-
day risk of event at the time of opioid dispensation.

Canadian Guidelines * AUROC Sensitivity Specificity

History of mental disorder only 0.620 0.90 0.34

Substance abuse only 0.686 0.99 0.37

OME/day >90 only 0.539 0.22 0.85

(Mental disorder and substance abuse) 
OR OME/day >90 0.690 0.91 0.47

Mental disorder and substance abuse 
AND OME/day >90 0.560 0.20 0.91

Mental disorder OR substance abuse 
OR OME/day >90 0.589 0.99 0.18

CMS Guidelines**

High opioid dose (>120 OME/day for 90+days) 0.507 0.081 0.933

Concurrency (Opioid & BZRA for 30+ days) 0.575 0.423 0.727

Multiple doctors (>4) 0.591 0.294 0.888

Multiple pharmacies (>4) 0.537 0.120 0.959

All conditions 0.50 0.001 0.999

Any condition 0.622 0.62 0.625
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OME: daily oral morphine equivalents; BZRA: benzodiazepine receptor agonist.  Elixhauser scoring ICD 
codes were used to identify mental disorders and substance abuse. 
*The Canadian guidelines do not specify timelines.  >90 OME was determined by taking the average 
daily OME over the 30 days prior to dispensation
**The CMS guidelines specify 90 or more days at >120 OME and concurrent use of opioids and 
benzodiazepines for 30 days or more within an assessment period of 180 days.

Page 26 of 47

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

26

Table 3. Discrimination performance based on database source using area under the receiver 
operating characteristic curve (AUROC) for the logistic regression classifier on the 2018 
validation set.

Database source Predictor Variables formed 
from database

AUROC Number of 
features

PIN only Drug utilization + Prescription 
history 

0.78 248*

DAD, NACRS, Claims Co-morbidities 0.85 34
PIN, DAD NACRS, Claims 
(all databases used in 
study)

Demographic + Drug Utilization 
+ Healthcare Utilization

+ Co-morbidities

0.88 283

Note: drug utilization includes features describing oral morphine equivalents32, concurrent use 
with benzodiazepines, number of opioid and benzodiazepine dispensations, number of unique 
opioid and benzodiazepine molecules; health care utilization includes features describing 
number of unique health providers visited, number of hospital/emergency department visits; 
logistic regression used L1 (lasso) parameter regularization; PIN- Pharmaceutical Information 
Network; DAD- Discharge Abstract Database; NACRS- National Ambulatory Care Reporting 
System
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Figure 1.  Patient flow diagram of study participants used for training and validating ML models.  NACRS: 

National Ambulatory Care Reporting System; DAD: Discharge Abstract Database; VS: Vital Statistics; PIN: 

Pharmaceutical Information Network; Claims: Physician Claims 
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Figure 2.  Area under the receiver operating characteristic curves (A) and precision-recall curves (B) for all dispensations 

using logistic regression (L1), neural network, support vector machine (SVM), XGBoost and Naïve-Bayes; precision-recall 

curves for higher risk dispensations according to predicted risk percentile categories for logistic regression (C) and 

XGBoost (D) using the 2018 validation set.   

 

(A) (B) 

  
(C) Logistic Regression (D) XGBoost 

  
AUC: area under the curve 
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Figure 3. Calibration curve plotting observed vs. quantiles (deciles) of estimated risk for the XGBoost classifier using the 

2018 validation dataset.  The majority of counts (dispensations) were predicted to be lower risk. 
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Figure 4.  Simulation of a clinical workflow with daily uploads and events per 100 daily dispenses by risk percentiles using 

2018 Quarter 1 (Q1) data for logistic regression (A) and XGBoost (B) classifiers.   

(A) Logistic Regression (L1) 

 

(B) XGBoost 
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eTable 5.  Candidate predictors used to train ML algorithms. 

eTable 6.  Discrimination performance using area under the receiver operating characteristic 

curve (AUROC) of various ML algorithms.  Training and validation were done using 2017 data 

(n=393,979); another independent validation was performed using 2018 data (n=393,023).   

eFigure1.  Schematic of study design and feature generation 

eFigure2.  Feature importance from logistic regression and tree-based (XGBoost) classifiers 

using the 2018 validation set.   

eFigure3.  Shapley values and feature impact in the XGBoost classifier using the 2018 validation set to 

describe “associations” between features and the outcome. 

eFigure 4.  Calibration curve plotting observed vs. quantiles of estimated risk for the logistic 

regression (L1) classifier using the 2018 validation dataset.  The majority of counts 

(dispensations) were predicted to be lower risk. 

eReferences. 
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eAppendix. Machine Learning Algorithms 
 

Introduction 

While there are always updates and new methods coming up in the fields of machine learning, 

in this study, we have focused on some of the most reliable and proven approaches for predictive 

modelling which are explainable and popularly used in previous studies of similar nature. 

Logistic Regression 

Regression analysis models the relationship between a dependent variable and a set of 

independent variables [1]. Typically, this includes understanding how the value of the dependent 

variable changes with the changes in the values of independent variables. Logistic regression [1] 

uses the logistic function to model a binary dependent variable, where, based on the values of 

the independent variables the model can approximate one of the two classes, the instance 

belongs to. This basic binary model can be extended to deal with multiple classes (e.g. One-vs-all 

classifiers). However, logistic regression is only capable of modeling a linear relationship of 

independent variables to the dependent variable, hence limited to problems with linear decision 

boundaries. We used the sci-kit learn library in our experiments[6] and found L1 regularization 

to be more effective. 

Ridge Classifier 

We used the ridge classifier implemented in the Scikit learn library[5]. It implements a classifier 

using ridge regression which uses an L2 regularization on the least square objective function. The 

library converts the labels into -1 and 1 and fits a linear regression on the converted labels with 

the regularization. 

Random Forest 

Random forest is a tree ensemble learning algorithm that has wide applicability in many 

domains[1]. Random forest is a nonlinear learning algorithm, which arrives at nonlinear decision 

boundaries by independently combining multiple decision trees. Each individual decision tree in 

the forest can be grown independently of each other on a subset of the training data. Random 

forests are mainly sensitive to the number of trees, the depth of a tree and the number of 

covariates randomly chosen to split at each node[1]. These hyper-parameters can be tuned to 

find the best configuration of every dataset. Random Forests, in general, are less prone to overfit 

since they always grow individual trees on a subset of the training data[1]. At prediction time, 

the decision of each tree is aggregated to compute the final prediction.  

Neural Networks (NN) 

Neural networks are another collection of non-linear learning algorithms with high 

representation power. They are known to be able to find mappings from an input to an output 

from a larger non-linear function space [2]. This ability to represent a larger space of nonlinear 
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functions has shown to be very effective recently in many application domains such as natural 

language processing, computer vision, genomics, computer games and health[2]. Neural 

networks come in many flavors learning nonlinear mapping of different types of data such as 

Convolutional NNs being most effective with images and Recurrent NNs for time series and 

language data. Identifying the most effective neural network structure is one of the difficult and 

the most time-consuming aspect of applying neural networks to new application domains and 

data. Generally, neural networks try to exploit the relationships in the raw unstructured data (eg: 

image and text) presented to the network but with more structured data such as health records 

and ICD codes learning relationships is much complex. Our neural network models are mainly 

based on densely connected hidden layers with ReLu[6] activation function. We used the cross-

entropy loss for the binary classification Adam optimizer. We used a simple feed forward 

network using  Sklearn  MLP classifier with hyperparameter tuning  for the NN. 

Boosted Learning Algorithms 

Boosting is a process to ensemble multiple base learning algorithms to arrive at better overall 

performance than any individual base learner[1]. In contrast to independently building multiple 

models from the subsets of the data, boosting re-weights the training data every time a model is 

learned for future models. This weighting happens to give more preference to currently 

misclassified data points in the next round compared to the correctly classified data points. 

Therefore future learners try to do better on the misclassified data points leading to a collection 

base learners having a better-combined prediction. This process is sequential so each base 

learner is dependent on the output of the previously trained model (it is worthy to note XGBoost 

provides a parallel tree boosting alternative). In our work, we have experimented with several 

boosting meta-learning algorithms such as XGBoost[7], AdaBoost[5] and GBM[5]. XGBoost uses 

a variant of trees as the base learner whereas AdaBoost (from Sci-kit learn) can use many ML 

algorithms as base learners. GBM uses logistic regression by default as the base learner. We used 

all 3 types of boosting with tuned hyperparameters for comparison. 

Naive Bayes 

Naive Bayes is based on the Bayes theorem with a strong independence assumption between the 

covariates[1]. This assumption helps in building a simple probabilistic model for learning and 

inference. Naive Bayes coefficients scale linearly with the number of covariates making this a 

suitable model for high-dimensional data. We used Naive Bayes as a simple baseline learning 

algorithm for comparison.  

Support Vector Machines (SVM) 

SVMs[4] are maximum margin classifiers optimizing for learning a hyperplane having the 

maximum distance away from each of the class data points[1]. SVM is a linear classifier but with 

the kernel trick to map the inputs to the higher dimensional space, it can learn nonlinear decision 

boundaries in the input space. SVMs are very effective binary classifiers with the kernel trick[1]. 

With larger datasets, SVMs tend to become more computationally intensive. 
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eTable 1. Diagnostic codes used to exclude patients who had cancer, were pregnant, or were 

under palliative care. 

Condition ICD 9 ICD 10 

Cancer 140.x - 239.x C00.x - C99.x, D00.x - D49.x 

Pregnancy 630.x - 679.x O00.x - O99.x 

Palliative V66 Z51.0, Z51.1, Z51.5 

 

eTable 2. Diagnostic codes used to identify the defined study outcome from emergency visit, 

hospitalization and death data. 

ICD 10 Condition 

T40.x Poisoning by, adverse effect of and underdosing of narcotics and 

psychodysleptics  

F55.x Abuse of non-psychoactive substances 

F11.x - F19.x Mental and behavioral disorders due to psychoactive substance use 
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eTable 3. Baseline characteristics of study patients (n=392,979). Co-morbidities were determined using 
Elixhauser criteria.  All p-values in the chi2 test of independence were <0.001 unless otherwise indicated. 
  

Characteristic Number without 
Event   

n=386,371  

Percent Number with Event   
n=6,608  

Percent 

Age:     

Mean (SD) 48.1 (16.4) -- 41.2 (12.4) -- 
      18-45  162057 41.9 3466 52.4 

       45-65  154632 40.0 2656 40.2 
     >65*  69682 18.0 486 7.4 

Male  197491 50.3 3922 59.4 
Female  194794 49.7 2686 40.6 
Alcohol Disorder 66320 16.9 5220 79.0 
Arrhythmia  90621 23.1 1959 29.6 
Blood Loss Anemia  1164 0.3 82 1.2 
Congestive Heart 
Failure  

18954 4.8 565 8.6 

Coagulopathy  8053 2.1 356 5.4 
Deficiency Anemia  34188 8.7 971 14.7 
Depression  159140 40.6 5518 83.5 
Diabetes** 64132 16.3 1408 21.3 
Substance Abuse 
Disorder  

74678 19.0 5485 83.0 

Fluid Disorder  42690 10.9 3012 45.6 
Hypertension** 140171 35.7 2624 39.7 
Hypothyroidism  45519 11.6 601 9.1 
Injury^  195688 49.9 5541 83.9 
Liver Disorder  21656 5.5 1588 24.0 
Neurologic Disorder  230490 58.8 5387 81.5 
Obesity  63393 16.2 970 14.7 
Poisoning^  17434 4.4 2775 42.0 
Psychoses  35870 9.1 3162 47.9 
Renal Disorder  16166 4.1 499 7.6 
Rheumatoid Conditions  111458 28.4 3157 47.8 
HIV Infection  1098 0.3 141 2.1 
Paralysis  3874 1.0 187 2.8 
Peptic Ulcer Disease  11728 3.0 509 7.7 
Pulmonary Circulation 
Disorder  

9611 2.4 430 6.5 

Chronic Pulmonary 
Disease  

102990 26.3 2913 44.1 

Peripheral Vascular 
Disease  

14467 3.7 389 5.9 

Valvular Disease  7308 1.9 226 3.4 
Weight Loss  16207 4.1 747 11.3 

*p-value for age >65 is an estimated 0.037  
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^ Injury: ICD10: S00-T98; Poisoning: ICD10: T36-T50 

** Complicated, uncomplicated diabetes and hypertension were collapsed into one category each 
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eTable 4.  Characteristics of study participants between training and validation groups using 

2017 data. 

Characteristic Number in 
training group 

N=275,150~ 

Percent Number in 
validation group 

N=117,829~  

Percent 

Age:       
Mean (SD) 48.3 (16) -- 48.2 (16) -- 

          18-45  114356 41.5 49909 42.3 
            45-65  111859 40.7 47132 40.0 

         >65  48935 17.8 20788 17.6 
Male  138603 48.5 59339 48.4 
Female  136545 47.8 58490 47.7 
Alcohol Disorder 46792 16.4 20199 16.5 
Arrhythmia  63637 22.3 27201 22.2 
Blood Loss Anemia  839 0.3 336 0.3 
Congestive Heart 
Failure  

13320 4.7 5694 4.6 

Coagulopathy  5697 2.0 2393 2.0 
Deficiency Anemia  24096 8.4 10179 8.3 
Depression  112080 39.2 47628 38.9 
Diabetes** 45131 15.8 19144 15.6 
Substance Abuse 
Disorder  

52609 18.4 22713 18.5 

Fluid Disorder  30272 10.6 12780 10.4 
Hypertension** 98546 34.5 41840 34.1 
Hypothyroidism  31908 11.2 13666 11.2 
Injury*  137423 48.1 58865 48.0 
Liver Disorder  15252 5.3 6567 5.4 
Neurologic 
Disorder  

161706 56.5 69341 56.6 

Obesity  44607 15.6 18882 15.4 
Poisoning*  12503 4.4 5293 4.3 
Psychoses  25422 8.9 10860 8.9 
Renal Disorder  11403 4.0 4817 3.9 
Rheumatoid 
Conditions  

78268 27.4 33420 27.3 

HIV Infection  774 0.3 336 0.3 
Paralysis  2717 1.0 1176 1.0 
Peptic Ulcer 
Disease  

8239 2.9 3533 2.9 

Pulmonary 
Circulation 
Disorder  

6771 2.4 2877 2.3 

Chronic Pulmonary 
Disease  

72265 25.3 30949 25.3 
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Peripheral Vascular 
Disease  

10228 3.6 4278 3.5 

Valvular Disease  5111 1.8 2215 1.8 
Weight Loss  11477 4.0 4790 3.9 

Note: p-values for chi2 test of independence were all >0.06 when comparing training and validation sets. 

*Injury: ICD10: S00-T98; Poisoning: ICD10: T36-T50  
** Complicated, uncomplicated diabetes and hypertension were collapsed into one category each 

 
 
 
 
eTable 5.  Anatomical Therapeutic Chemical classification of opioid molecules used for this 

study and candidate predictors used to train ML algorithms. 

Category (data source) Description 

ATC codes used to identify 
opioids from PIN data 

N01AH01, N01AH03, N01AH06, N07BC01, N07BC02, 
N07BC51, R05DA03, R05DA04, R05DA09, R05DA20, N02A 

Opioid molecules used in this 
study 

alfentanil, butorphanol, codeine, diamorphine, fentanyl, 
hydrocodone, hydromorphone, meperidine, morphine, 
oxycodone, oxymorphone, pentazocine, sufentanil, 
tapentadol, tramadol 

Demographic information (PIN) age, sex, postal codes, mean income 

Drug utilization history (PIN) drug dispenses in past 30 days using on ATC codes, oral 
morphine equivalents, concurrent use with benzodiazepines 
defined as at least 7 days of cumulative concurrent use in the 
30 days prior to dispensation, number of dispensations and 
unique molecules of opioids and benzodiazepines 

Health care utilization (PIN 
DAD) 

flags for previous hospitalizations and emergency 
department visits, number of unique providers 

ICD based co-morbidities (DAD, 
NACRS, Claims) 

Elixhauser condition flags based on the past 5 years of claims, 
hospitalizations, and emergency visits. 

Note: ATC- Anatomical Therapeutic Chemical classification (https://www.whocc.no/atc_ddd_index); 

PIN- Pharmaceutical Information Network; ICD- International Statistical Classification of Diseases and 

Related Health Problems, World Health Organization; total number of features 283 
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eTable 6.  Discrimination performance using area under the receiver operating characteristic 

curve (AUROC) of various ML algorithms using all features (demographics, health utilization, 

prescription history, co-morbidities).  Training and validation were done using 2017 data 

(n=393,979); another independent validation was performed using 2018 data (n=393,023).   

Algorithm Train  Validation 2017 Validation 2018 

XGBoost Classifier 0.897 0.870 0.884 

Logistic Regression 0.887 0.869 0.884 

Gradient Boosting Classifier 0.898 0.868 0.883 

AdaBoost Classifier 0.884 0.868 0.882 

Random Forest Classifier 0.909 0.863 0.881 

Ridge Classifier 0.895 0.863 0.879 

SVM 0.896 0.860 0.878 

Gaussian Naive Bayes 0.846 0.826 0.847 

Decision Tree Classifier 0.919 0.791 0.822 

Neural Networks 0.827 0.804 0.821 

Note: Logistic regression used L1 (lasso) parameter regularization 
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eFigure 1.  Schematic of study design and feature generation 
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eFigure2.  Feature importance from logistic regression and tree-based XGBoost classifiers using the 

2018 validation set.  The logistic regression classifier relied more on co-morbidity data from DAD, 

NACRS, and Claims databases; XGBoost classifier relied more on data from the PIN database.  AUROCs 

for both classifiers were similar at 0.88. 

 

Logistic Regression XGBoost 

history of drug abuse 1.00 age at dispensation 1.00 

age at dispensation 0.65 
number of prescriptions 
dispensed in previous 30 days 1.00 

history of prior hospitalization/ED 
visit 0.62 

number of opioid dispensations in 
previous 30 days 0.86 

history of alcohol use disorder 0.62 
number of BZD dispensations in 
previous 30 days 0.46 

history of fluid and electrolyte 
disorder 0.32 Doctor risk score* 0.45 

history of poisoning 0.31 
total OME consumed in previous 
30 days 0.43 

history of psychoses 0.31 history of poisoning 0.37 

number of unique BZD dispensed 
in previous 30 days 0.26 pharmacy risk score** 0.35 

history of depression 0.19 
number of unique providers that 
prescribed an opioid or BZD 0.34 

concurrent use of opioid and BZD 
in previous 30 days 0.19 income 0.34 

history of injury 0.17 
history of prior hospitalization/ED 
visit 0.26 

Note: Logistic regression used L1 (lasso) parameter regularization; BZD- benzodiazepine; OME- 
oral morphine equivalents; ED: emergency department 
*derived feature using proportion of opioid/benzodiazepine patients that experienced the study 

outcome in the previous 30 days prior to opioid dispensation for each physician; 

**derived feature using proportion of opioid/benzodiazepine patients that experienced the study 

outcome in the previous 30 days prior to opioid dispensation for each pharmacy 
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eFigure 3.  SHAP values and feature impact of the XGBoost classifier using the 2018 validation set to 

describe “associations” between features and the outcome.  Features with the most impact on the 

model with drug abuse ranked highest (A); tornado plot illustrating feature impact (B); explaining the 

prediction of study outcome based on predictor values for 4 patients using SHAP values(C). 

(A) 

 

Note: Pharmacy risk score- derived feature using proportion of opioid patients that experienced the 

study outcome in the previous 30 days prior to opioid dispensation for each pharmacy; training and 

validating the XGBoost classifier with these features alone resulted in an AUC of 0.877 in the 2018 

validation set 
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(B) 

 

Note: Pharmacy risk score- derived feature using proportion of opioid/benzodiazepine patients that experienced the study outcome 

in the previous 30 days prior to opioid dispensation for each pharmacy; red indicates higher values of categorical variables and plots 

to the right of 0.0 indicate the tendency to be associated with the study outcome while blue indicates lower values of categorical 

variables and plots to the left of 0.0 indicate the tendency to be associated with no outcome 
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(C) 

How to read the figure on the next page: Using hospitalization within 30-days of an opioid dispensation as the 
outcome of interest, there are 4 scenarios to consider: the XGBoost classifier has low or high confidence in 
predicting a hospitalization and low or high confidence in predicting NO hospitalization.  Start at the base SHAP 
value of near 0.0 (“base value”) in which the classifier is not confident in the prediction.  SHAP values (in bold) that 
are above 0.0 indicate a tendency towards a hospitalization while those that are below 0.0 indicate a tendency for 
NO hospitalization.  As the SHAP value moves above 0.0, for example 3.11 in the top panel, the classifier’s 
confidence in predicting a hospitalization is higher.  As the SHAP value approaches closer to the base value, for 
example 0.16 in the second panel, the classifier has relatively lower confidence in predicting a hospitalization.  
When the SHAP value is below 0.0, for example -5.4 in the third panel, the classifier’s confidence in predicting NO 
hospitalization is higher and when the SHAP value is closer to 0.0, for example -0.44 in the bottom panel, the 
classifier has lower confidence in predicting NO hospitalization. 
The top panel (SHAP value 3.11) depicts an instance predicted to be high risk for our outcome.  This individual has 

a positive history of drug abuse disorder, liver disorder, diabetes, fluid/electrolyte disorder, alcohol use disorder, 

poisoning and B vitamin use in the prior 30 days.  The third panel (SHAP value -5.40) depicts an instance predicted 

to be low risk (i.e., no hospitalization) and has a negative history for poisoning, drug and alcohol use disorder.  

Note- drug abuse: drug abuse disorder; poisoning: history of poisoning; vitamin B1: vitamin B1 in prior 30 days; 

anti-glycemics: anti-glycemic agents in prior 30 days; age: age at opioid dispensation; # opioid dispenses: number 

of opioid dispensations in prior 30 days; Hosp/ED visit: history of prior hospitalizations and/or emergency visits in 

past 6 months; Total OME: total oral morphine equivalents in prior 30 days; DIAZEPAM: history of diazepam use in 

prior 30 days. 
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eFigure 4.  Calibration curve plotting observed vs. quantiles of estimated risk for the logistic regression (L1) classifier 

using the 2018 validation dataset.  The majority of counts (dispensations) were predicted to be lower risk. 
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