

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Safe opioid prescribing: a machine learning approach to predicting 30-day risk after an opioid dispensation in Alberta, Canada

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-043964
Article Type:	Original research
Date Submitted by the Author:	18-Aug-2020
Complete List of Authors:	Sharma, Vishal; University of Alberta, School of Public Health Kulkarni, Vinaykumar; OKAKI Health Analytics Eurich, Dean; University of Alberta, School of Public Health Kumar, Luke; Alberta Machine Intelligence Institute Samanani, Salim; Okaki Health Intelligence,
Keywords:	PUBLIC HEALTH, EPIDEMIOLOGY, Adverse events < THERAPEUTICS, Health & safety < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Clinical governance < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

SCF	IOL	ARC	DNE™
N	/lan	uscr	ripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Safe opioid prescribing: a machine learning approach to predicting 30-day risk after an opioid dispensation in Alberta, Canada

Author list (in order):

Vishal Sharma (0000-0001-7907-1183), Vinaykumar Kulkarni, Dean T. Eurich (0000-0003-2197-0463), Luke Kumar, Salim Samanani (0000-0001-6751-4805)

Address for each author:

2-040 Li Ka Shing Center for Health Research Innovation, School of Public Health, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1 <u>Vishal Sharma BPharm PhD Candidate</u>,

OKAKI Health Intelligence, Edmonton, Alberta, Canada, Vinaykumar Kulkarni MSc

2-040 Li Ka Shing Center for Health Research Innovation, School of Public Health, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1 Dean Eurich professor

Alberta Machine Intelligence Institute, Edmonton, Alberta, Canada, T5J 3B1 Luke Kumar MSc

OKAKI Health Intelligence, Calgary, Alberta, Canada, Salim Samanani MD, Medical Director

Corresponding Author:

Dean Eurich, 2-040 Li Ka Shing Center for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1; Phone 780-492-6333; fax 780-492-7455; email: deurich@ualberta.ca

Acknowledgement

This study is based on data provided by The Alberta Strategy for Patient Orientated Research (AbSPORU) SUPPORT unit and Alberta Health. The interpretation and conclusions contained herein are those of the researchers and do not necessarily represent the views of the Government of Alberta or AbSPOR. Neither the Government of Alberta, ABSPOR nor Alberta Health expresses any opinion in relation to this study. This work was supported by Mitacs through the Mitacs Accelerate Program (VS and DTE).

Contributors: VS VK LK SS and DTE were involved in the conception and design of the study. VS VK LK SS and DTE analyzed the data. VS VK and LK drafted the article. VS VK LK DTE and SS revised the article. All authors gave final approval of the version to be published. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted. DTE is the guarantor.

Funding: This study received no funding.

Copyright/license for publication: The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, a worldwide licence to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future), to i) publish, reproduce, distribute, display and store the Contribution, ii) translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution, iii) create any other derivative work(s) based on the Contribution, iv) to exploit all subsidiary rights in the Contribution, v) the inclusion of electronic links from the Contribution to third party material where-ever it may be located; and, vi) licence any third party to do any or all of the above.

Competing Interest: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the submitted work; Salim Samanani has received grants from the College of Physicians & Surgeons of Alberta; no other relationships or activities that could appear to have influenced the submitted work.

Ethical approval: This study was approved by the Health Research Ethics board at the University of Alberta (#Pro00083807_AME2).

Data Sharing: The data used in this study is not available for external analysis. However, administrative health data can be accessed from Alberta Health by following defined research protocols and confidentiality agreements.

<text><text> Transparency: The lead author, VS, (the manuscript's guarantor, Dean Eurich) affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as originally planned (and, if relevant, registered) have been explained.

Word Count: 2659

Abstract

Objective: To develop machine-learning models employing administrative-health data that can estimate risk of adverse outcomes within 30-days of an opioid dispensation for use by health departments or prescription monitoring programs.

Design, Setting, and Participants: This prognostic study was conducted in Alberta, Canada between 2017-2018. Participants included all patients over 18 years of age who received at least one opioid dispensation. Pregnant and cancer patients were excluded.

Exposure: Each opioid dispensation served as an exposure.

Main Outcomes/Measures: Opioid related adverse outcomes were identified from linked administrative health-data. Machine-learning algorithms were trained using 2017 data to predict risk of hospitalization, emergency department visit, and mortality within 30-days of an opioid dispensation. Two independent validation sets, using 2017 and 2018 data, were used to evaluate model performance. Model discrimination and calibration performance were assessed for all patients and those at higher risk. Machine-learning discrimination was compared to current opioid guidelines.

Results: Participants in the 2017 training set (n=275,150) and validation set (n=117,829) had similar baseline characteristics. In the 2017 validation set, c-statistics for the XGBoost, logistic regression, and neural network classifiers were 0.87, 0.87, and 0.80, respectively. In the 2018 validation set (n=393,023), the corresponding c-statistics were 0.88, 0.88, and 0.82. C-statistics from the Canadian guidelines ranged from 0.54-0.69 while the US guidelines ranged from 0.50-0.62. The top 5-percentile of predicted risk for the XGBoost and logistic regression classifiers captured 42% of all events and translated into a post-test probability of 13%, up from the pretest probability of 1.6%.

Conclusion: Machine-learning classifiers, especially incorporating hospitalization/physician claims data, have better predictive performance compared to guideline or prescription history only approaches when predicting 30-day risk of adverse outcomes. Prescription monitoring programs and health departments with access to administrative data can use machine-learning classifiers to effectively identify those at higher risk compared to current guideline-based approaches.

Article Summary

Strengths and Limitations:

- This study incorporated near complete capture of opioid dispensations from community pharmacies and used validated administrative health data.
- The study population is the entire provincial population and is generalizable to other populations in Canada and beyond.
- This study used commonly available algorithms to train machine-learning models using data which is available to government health departments in all provinces in Canada and other single payer jurisdictions.
- Our predictive models used dispense events and not medication utilization, which is difficult to capture in administrative data.

• Our training dataset does not account for non-prescription opioids, opioids administered in hospitals, and other risks associated with non-prescription use.

BMJ Open

Introduction

Canada has among the highest rates of opioid prescribing in the world, making prescription opioid use a key driver of the current opioid crisis¹; a major part of the policy response to the opioid crisis focuses on endorsing safe, appropriate opioid prescribing²⁻⁴. In order to minimize high risk opioid prescribing and to identify patients at high risk of opioid related adverse outcomes, numerous health regulatory bodies have released clinical practice recommendations for health providers regarding appropriate opioid prescribing^{3,5,6}.

Prescription monitoring programs (PMPs) have been implemented around the world, like Alberta's provincial Triplicate Prescription Program (TPP)⁷ in Canada, and are mandated to monitor the utilization and appropriate use of opioids to reduce adverse outcomes. In most jurisdictions, both population-level monitoring metrics and clinical decision aids are used to identify patients at risk of hospitalization or death and are most often based on prescribing guidelines. However, a comprehensive infrastructure of administrative data containing patient level ICD⁸ codes and prescription drug histories exists in Alberta and other provinces in Canada which could be further integrated to predict opioid-related risk. Furthermore, current guidelines' of high risk prescribing and utilization of opioids were derived from studies that used traditional statistical methods (regression analyses) to identify population level risk factors for overdose rather than an individual's absolute risk^{3,9,10}; these population estimates may not be generalizable to different populations¹¹. Thus, a functional gap exists in many health jurisdictions where much of the available administrative health data is not being leveraged for opioid prescription monitoring.

BMJ Open

Supervised machine learning (ML)^{12,13} is an approach that uses computer algorithms to build predictive models in the clinical setting that can make use of the large amounts of available administrative data^{14,15}, all within a well-defined process¹⁶. Supervised ML trains on labelled data to develop prediction models that are specific to different populations and, in many cases, can provide better predictive performance than traditional, population-based statistical models^{10,15,17}. We identified one study¹⁰ that applied ML techniques to predict overdose risk in opioid patients pursuant to a prescription. In their validation sample, they found that the DNN (deep neural network) and GBM (gradient boosting machine) algorithms carried the best discrimination performance based on estimated c-statistics and that the ML approach out-performed the guideline approach in terms of predictive performance.

The objective of our study was to develop and validate ML algorithms to predict the 30day risk of hospitalization, emergency visit and mortality for a patient in Alberta, Canada at the time of an opioid dispensation using administrative data routinely available to health departments and PMPs. We hypothesized that the ML process would perform better than the current guideline approach for predicting risk of adverse outcomes related to opioid prescribing.

Methods

Study Design and Participants

This prognostic study used a supervised ML scheme. All patients in Alberta, Canada who received a dispensation for an opioid, were 18 years of age and older between Jan 1, 2017 and Dec 31, 2018 were eligible. Patients were excluded if they had any previous diagnosis of

Page 9 of 45

BMJ Open

cancer, received palliative interventions or were pregnant during the study period (eTable 1 in Supplement) as use of opioids in these contexts is clinically different.

Government health departments and payers in many jurisdictions have systems to capture prescription histories and ICD diagnostic codes. As such, we linked various administrative health data sets available in Alberta, Canada using unique patient identifiers in order to establish a complete description of patient demographics, drug exposures and health outcomes. These databases include 1) Pharmaceutical Information Network (PIN): PIN data includes all dispensing records from community pharmacies from all prescriber types occurring in the province outside of the hospital setting. PIN collects all drug dispensations irrespective of age or insurance status in Alberta, 2) Population and Vital Statistics Data (VS, Alberta Services): sex, age, date of birth, death date, immigration and emigration data, and underlying cause of death according to the World Health Organization algorithm using ICD codes⁸, 3) Hospitalizations and Emergency Department Visits (NACRS [National Ambulatory Care Reporting System], DAD [Discharge Abstract Database]): all services, length of stay, diagnosis (up to 25 ICD- 10^8 based diagnoses). Data and coding accuracy are routinely validated both provincially and centrally via the Canadian Institute for Health Information, and 4) Physician *Visits/Claims (Alberta Health):* date of service, ICD code associated with the claim, procedure and billing information.

This study followed the TRIPOD and STARD reporting guidelines¹⁸⁻²⁰ and received ethics approval from the University of Alberta ethics board (Pro00083807_AME2). All analyses were done using Python, version 3.7 (Python Software Foundation).

Outcome

The primary outcome was a composite of a drug-related hospitalization, emergency department (ED) visit or mortality within 30 days of an opioid dispensation based on ICD-10 codes (T40, F55, F10-19; eTable 2 in Supplement)^{2,10}.

Predictor Candidates for ML Models

Predictor variables in our ML models included those that were informed by the literature^{3,4,10} and those directly obtained from the data sets. These included features based on demographics (age, sex, income using Forward Sortation index from postal codes²¹), co-morbidity history using ICD-based Elixhauser score categories²², health care utilization (number of unique opioid prescribers, number of hospital visits), and drug utilization (level 3 ATC codes²³, oral morphine equivalents²⁴, concurrent use with benzodiazepines, number of opioid and benzodiazepine dispensations, number of unique opioid and benzodiazepine molecules). Depending on the potential predictor, we used data from 30 days to 5 years before the opioid dispensation to generate model features (eFigure 1 in Supplement). Experiments were performed to identify the features and data sets that contributed most to predicting the outcomes, with a view to minimizing the potential future data requirements for health departments and PMPs.

Statistical Analyses and Machine-Learning Prediction Evaluation

We randomly divided the patients in the 2017 portion of our study cohort into training (70%) and validation (30%) sets¹³. Baseline characteristics and event rates were compared in the training vs validation group, and between those who experienced the outcome and those who

BMJ Open

did not, using chi-squared tests of independence. As well, we used all 2018 data as another independent validation set.

First, we trained commonly used¹³ ML algorithms (eAppendix in Supplement) and tuned model hyperparameters using k-fold (k=5) cross validation to address model overfitting^{13,25}. As is common in ML validation studies¹⁰, we reported model discrimination performance using area under the receiver operating characteristic curve (AUROC; c-statistic), positive predictive value (PPV), positive likelihood ratios (PLR), number needed to screen (NNS) and plotted AUROC and precision-recall curves (PRCs). For the more interpretable XGBoost and logistic regression classifiers, we reported feature importance²⁶ and plotted PRCs that compared all dispenses to those within the top 10 percentiles of estimated risk. As well, for the XGBoost classifier, we described feature impact on model outcome using SHAP values^{27,28} to add an additional layer of interpretability. Calibration is crucial in the process of developing a risk predictor²⁹ so we assessed calibration performance on the 2018 data by dividing the study cohort into percentile categories according to the predicted risk of a dispensation, as was done in previous studies^{10,30}. Using the XGBoost and logistic regression classifiers, we analyzed the top 0.1, 1, 5, and 10 percentiles of predicted risk by the number of true and false positives, positive likelihood ratios, post-test probabilities, and number needed to screen. We also performed a simulation of daily data uploads for 2018 Quarter 1 to view the predictive power if a ML risk predictor were to be deployed into a monitoring workflow.

We then compared ML risk prediction to current guideline approaches as others have¹⁰, using the 2019 Centers for Medicare & Medicaid Services opioid safety measures³¹ and the 2017 Canadian Opioid Prescribing Guideline³. As well, we compared the discrimination

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

performance of different logistic regression classifier models using various combinations of features derived from their respective databases: 1) demographic and drug/health utilization features from PIN and 2) co-morbidity features derived from DAD, NACRS and Claims.

Patient and Public Involvement

This research was done without patient involvement. Patients were not invited to comment on the study design and were not consulted to develop patient relevant outcomes or interpret the results. Patients were not invited to contribute to the writing or editing of this document for readability or accuracy. There are no plans to disseminate the results of the research to study participants. 6.6

Results

Patient Characteristics and Predictors

We identified 392,979 patients with at least one opioid dispensation in 2017 (Figure 1). This cohort was used to train (n= 275,150, 70%) and validate (n=117,829, 30%) ML models. In 2017 and 2018, 6,608 and 5,423 patients experienced the defined outcome, respectively. Baseline characteristics were different between those who experienced the outcome and those who did not (eTable 3 in Supplement) while characteristics were similar between the training and validation sets (eTable 4 in Supplement). There were 2,283,075 opioid dispensations in 2017 and 1,977,389 in 2018. Overall, in 2017, 2.03% (n= 45,757) of opioid dispensations were associated with the outcome; in 2018, the estimate was 1.6% (n= 31,392).

BMJ Open

As described above, we categorized our candidate features into four groups (eTable 5 in Supplement).

Machine-Learning Prediction Performance

Using the 2017 validation set, AUROCs for the XGBoost and logistic regression classifiers had the highest discrimination performance at 0.87, while the neural network classifier had lower performance at 0.80 (eTable 6 in Supplement).

Discrimination performance was similar for the 2018 validation set (n=393,023; eTable 6 in Supplement). XGBoost and logistic regression had the highest estimated AUROCs while the neural network classifier was lower (Figure 2A). As expected, precision-recall curves indicate stronger predictive power in opioid dispensations at higher predicted risk percentiles (Figure 2C, 2D).

In the 2018 validation set, although discrimination performance was similar (0.88), individual feature importance was different between the logistic regression and XGBoost classifiers, with logistic regression feature importance more reliant on co-morbidity data from DAD, NACRS and Claims while XGBoost relied more on drug utilization data from PIN (eFigure 2). In the XGBoost classifier, history of drug abuse, alcoholism, and prior hospitalization carried the highest impact for predicting the study outcome (eFigure 3A) where the presence of these features in a patient suggested a strong tendency towards having the defined outcome (eFigure 3B and 3C).

Calibration

BMJ Open

When considering dispensations predicted to be in the highest percentiles of risk, the top 5percentile captured 42% of all outcomes using the XGBoost and logistic regression classifiers (Table 1). Also, as the predicted risk percentiles get higher (top 10 percentile to top 0.1 percentile), so too do the corresponding PPVs with the top 0.1 percentile associated with a PPV of 33% for the XGBoost classifier. As well, lower categories of risk percentiles were associated with lower outcomes (Figure 3A and 3B). When we simulated a monitoring workflow scenario with daily data uploads, a similar pattern was illustrated where the dispensations predicted to be higher risk had higher event rates (Figure 3C and 3D).

After using the XGBoost and logistic regression classifiers to identify the dispensations in the highest predicted risk percentiles, the pre-test probability of the outcome (1.6%) was transformed into higher post-test probabilities, with higher probabilities in the riskier percentiles (Table 1). The number needed to screen also decreased as predicted risk increased (Table 1).

Comparing discrimination performance, ML risk prediction outperformed the current guideline approaches when using various combinations of guideline recommendations (Table 2). In many of the guideline scenarios, the estimated AUROCs were close to the 0.5 mark. When we estimated the discrimination performance of the logistic regression classifier based on database source, using all databases produced an AUROC of 0.88. Reducing the database source to only DAD, NACRS, Claims (co-morbidities only) resulted in an AUROC of 0.85, while PIN (prescription history) only was 0.78 (Table 3).

Discussion

BMJ Open

This study showed that ML techniques using available administrative data (prescription histories and ICD codes) may provide enough discriminatory power to predict adverse outcomes associated with opioid prescribing. Indeed, our ML analyses showed very high discrimination performance at 0.88. The linear model (logistic regression) and XGBoosted Trees carried higher discrimination and calibration performance, while the neural network classifier did not perform as well. By identifying the predicted top 5-10 percentile of absolute risk pursuant to an opioid dispensation, we were able to capture approximately half of all outcomes using ML methods. All ML models we trained had higher discrimination performance using independent (external) validation sets than the clinical guideline approach.

Since the prevalence of our defined outcome is relatively low in the general population, PPVs would also be expectedly low. However, estimated PPVs increased when we considered higher risk dispensations, as is expected since PPV is related to event prevalence. This is important because different users of a risk predictor will require different predictive capabilities. Similarly, our estimates of positive likelihood ratios and associated post-test probabilities also increased in dispensations with higher predicted risk indicating the strong predictive power of the XGBoost and logistic regression classifiers; likelihood ratios >10 generate conclusive changes from pre-test to post-test probabilities³².

The current guideline approach to assess absolute opioid prescribing risk produced cstatistic estimates closer to 0.5 indicating that discrimination was not much better than chance alone. ML models with higher predictive power can better support health departments and PMPs with monitoring mandates to identify and intervene on those at high risk and their associated prescribers. We also found that adding co-morbidity features from administrative

BMJ Open

databases increased prediction performance compared to prescription history alone, thus making the case for the use of this data by PMPs and health departments. However, if only prescription history is available, our trained XGBoost classifier still had strong discrimination performance.

We found only one study that used ML approaches to quantify the absolute risk of an event pursuant to an opioid dispensation¹⁰. Their methodology used rolling 3-month windows for estimating risk and ML model training while we used historic records to estimate 30-day risk. Differences in study population and feature selection may explain why their highest performing ML model was deep learning (neural network classifier) and ours was not. Nevertheless, we were able to replicate and build upon their discrimination performance using our ML approach as we both were able to show that ML approaches have higher predictive power than guideline approaches. Both of our studies used predicted percentile risk estimates to identify high risk dispensations and were able to do so with strong discrimination and calibration performance. This is important because interventions can be targeted to higher risk instead of lower risk patients. Another study we found describes how identifying cases in higher predicted risk percentiles using ML methods can be deployed in hospital settings for the purpose of targeted interventions³⁰ upon discharge.

The limitations of our study are similar to other ML studies¹⁰ and need to be addressed when considering deployment of ML risk predictors. Our training dataset was not able to account for non-prescription opioid consumption and the risk associated with non-prescription use, both of which are substantial contributors to overall risk². Regarding our analysis, we assumed that all dispensations were independent events; future research in this area should

BMJ Open

focus on employing ML methods using correlated data. As with all ML projects, our models were trained using Alberta data and might not be generalizable to other populations, or to specific populations within Alberta. However, our analyses were done on a large population and these results would be expected to be generalizable to the vast majority of patients. Moreover, one of the benefits of the ML process is that models can be retrained or similar methods could be used to develop new models to accommodate different populations.

This study suggests that ML risk prediction can support PMPs, especially if able to use administrative health data. The ML process allows for model training, validation and deployment to specific settings. However, uptake of this technology is limited for the time being. Further research can assess whether implementation of a ML-based monitoring system by PMPs leads to improved clinical outcomes.

References

- 1.Belzak L, Halverson J. Evidence synthesis The opioid crisis in Canada: a national perspective.
Health Promotion and Chronic Disease Prevention in Canada. 2018;38(6):224-233.
- 2. Gomes T, Khuu W, Martins D, et al. Contributions of prescribed and non-prescribed opioids to opioid related deaths: population based cohort study in Ontario, Canada. *BMJ*. 2018;362:k3207.
- 3. Busse JW, Craigie S, Juurlink DN, et al. Guideline for opioid therapy and chronic noncancer pain. *Canadian Medical Association Journal*. 2017;189(18):E659-E666.
- 4. Dowell D. CDC guideline for prescribing opioids for chronic pain. 2016.
- 5. ismp Canada. Essential Clinical Skills for Opioid Prescribers. 2017; <u>https://www.ismp-</u> <u>canada.org/download/OpioidStewardship/Opioid-Prescribing-Skills.pdf</u>. Accessed Nov 2018.
- 6. Centre for Effective Practice. Management of Chronic Non Cancer Pain. 2017; thewellhealth.ca/cncp.
- College of Physicians and Surgeons of Alberta. TPP ALBERTA MEDICATIONS LIST. *Triplicate* Prescription Program 2020; <u>http://www.cpsa.ca/tpp/tpp-medication-list/</u>. Accessed Jun 2020.
- World health Organization. Classification of Diseases (ICD). 2019; <u>https://www.who.int/classifications/icd/icdonlineversions/en/</u>. Accessed Jun 2020.
- 9. Gomes T, Mamdani MM, Dhalla IA, Paterson JM, Juurlink DN. Opioid Dose and Drug-Related Mortality in Patients With Nonmalignant PainOpioid Dose and Drug-related Mortality. *JAMA Internal Medicine*. 2011;171(7):686-691.
- 10. Lo-Ciganic W-H, Huang JL, Zhang HH, et al. Evaluation of Machine-Learning Algorithms for Predicting Opioid Overdose Risk Among Medicare Beneficiaries With Opioid Prescriptions. *JAMA network open*. 2019;2(3):e190968-e190968.
- 11. Alba AC, Agoritsas T, Walsh M, et al. Discrimination and Calibration of Clinical Prediction Models: Users' Guides to the Medical Literature. *JAMA*. 2017;318(14):1377-1384.
- 12. Shah NH, Milstein A, Bagley P, Steven C. Making Machine Learning Models Clinically Useful. JAMA. 2019;322(14):1351-1352.
- 13. Liu Y, Chen P-HC, Krause J, Peng L. How to Read Articles That Use Machine Learning: Users' Guides to the Medical Literature. *JAMA*. 2019;322(18):1806-1816.
- 14. Bastanlar Y, Ozuysal M. Introduction to machine learning. *Methods in molecular biology (Clifton, NJ)*. 2014;1107:105-128.
- 15. Thottakkara P, Ozrazgat-Baslanti T, Hupf BB, et al. Application of machine learning techniques to high-dimensional clinical data to forecast postoperative complications. *PloS one.* 2016;11(5):e0155705.
- 16. Alberta Machine Intelligence Institute. Machine Learning Process Lifecycle. In:2019.
- 17. Hsich E, Gorodeski EZ, Blackstone EH, Ishwaran H, Lauer MS. Identifying important risk factors for survival in patient with systolic heart failure using random survival forests. *Circulation: Cardiovascular Quality and Outcomes.* 2011;4(1):39-45.
- Moons KGM, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): Explanation and Elaboration. *Annals of Internal Medicine*. 2015;162(1):W1-W73.
- 19. equator network. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. 2020; <u>https://www.equator-network.org/reporting-guidelines/tripod-statement/</u>. Accessed Feb 2020.
 - 20. Cohen JF, Korevaar DA, Altman DG, et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. *BMJ Open.* 2016;6(11):e012799.
- 21. Government of Canada. Forward Sortation Area—Definition. 2015; https://www.ic.gc.ca/eic/site/bsf-osb.nsf/eng/br03396.html. Accessed April 2020, 2020.

BMJ Open

1		
2		
3	22.	Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9-
4		CM and ICD-10 administrative data. <i>Medical care</i> . 2005:1130-1139.
5	23.	World Health Organization. International language for drug utilization research, ATC/DDD. 2020;
7		https://www.whocc.no/. Accessed Jun 2020, 2020.
2	24.	College of Physicians and Surgeons of Alberta. OME and DDD conversion factors.
9		http://www.cpsa.ca/wp-content/uploads/2017/06/OMF-and-DDD-Conversion-Factors.pdf.
10	25	Rose S. Machine Learning for Prediction in Electronic Health Data, IAMA Network Open
11	23.	$2018 \cdot 1/\Lambda$)· $p181\Lambda$ $\Omega\Lambda_p181\Lambda$ $\Omega\Lambda$
12	26	Coldstein BA Navar AM Carter PE Moving havond regression techniques in cardiovascular risk
13	20.	prodiction: applying machine learning to address applytic shallonges. European heart journal
14		
15	27	2017;58(25):1805-1814.
16	27.	Moinar C. Interpretable machine learning. A Guide for Making Black Box Models Explainable.
17	•••	
18	28.	Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Paper presented at:
19		Advances in neural information processing systems2017.
20	29.	Shah ND, Steyerberg EW, Kent DM. Big Data and Predictive Analytics: Recalibrating
21		Expectations. JAMA. 2018;320(1):27-28.
22	30.	Morgan DJ, Bame B, Zimand P, et al. Assessment of Machine Learning vs Standard Prediction
23		Rules for Predicting Hospital Readmissions. JAMA Network Open. 2019;2(3):e190348-e190348.
24 25	31.	Centers for Medicare & Medicaid Services (CMS). Announcement of calendar year (CY) 2019
25		Medicare Advantage capitation rates and Medicare Advantage and Part D payment policies and
20		final call letter.
27	32	Jaeschke R. Guvatt GH. Sackett DL. et al. Users' Guides to the Medical Literature: III. How to Use
20	521	an Article About a Diagnostic Test B. What Are the Results and Will They Help Me in Caring for
30		My Patients? /AMA 1004.271(0).703-707
31		Wiy Fatients: JAWA. 1994,271(9).703-707.
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44 45		
45 46		
40		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		18
59		

Figure Legend

Figure 1. Patient flow diagram of study participants used for training and validating ML models. NACRS: National Ambulatory Care Reporting System; DAD: Discharge Abstract Database; VS: Vital Statistics; PIN: Pharmaceutical Information Network; Claims: Physician Claims

Figure 2. Area under the receiver operating characteristic curve (AUROC) (A) and precision-recall curves (B) for all dispensations using logistic regression, neural network, support vector machine (SVM), XGBoost and Naïve-Bayes; precision-recall curves for higher risk dispensations according to predicted risk percentile categories for logistic regression (C) and XGBoost (D) using the 2018 validation set.

Figure 3. Calibration curves plotting: 1) observed vs. quantiles of estimated risk for XGBoost (A) and logistic regression (B) classifiers using the 2018 validation dataset and 2) simulation of a clinical workflow with daily uploads and events per 100 daily dispenses by risk percentiles using 2018 Quarter 1 (Q1) data for logistic regression (C) and XGBoost (D) classifiers. For both classifiers, the majority of counts (dispensations) were predicted to be lower risk.

Table 1. Highest percentiles of estimated risk and predictive power using the XGBoost and logistic regression classifiers for the 2018 validation dataset (n=393,023). Total number of dispenses= 1,977,389; total number of outcomes= 31,392.

Metric	Top 0.1%ile		Top 1%ile		Top 5%ile		Top 10%ile	
	XGBoost	Logistic Regression	XGBoost	Logistic Regression	XGBoost	Logistic Regression	XGBoost	Logistic Regression
Number of								
Dispenses	1,977	1,977	19,774	19,774	98,869	98,869	197,739	197,739
TP captured	655	472	4204	4100	13224	13293	18404	18409
Percent of TP	2.09	1.50	13.39	13.06	42.13	42.35	58.63	58.64
FP captured	1322	1505	15570	15674	85645	85576	179335	179330
PPV	33.13	23.87	21.26	20.73	13.38	13.45	9.31	9.31
PLR	30.71	19.44	16.74	16.22	9.57	9.63	6.36	6.36
Post-test								
Probability*	33.13	23.87	21.26	20.73	13.38	13.45	9.31	9.31
NNS	3.17	4.49	5.08	5.22	8.48	8.43	12.95	12.95

*Pre-test probability estimated at 1.6% using prevalence.

TP: true positives; FP: false positives; PPV: positive predictive value; PLR: positive likelihood ratio; NNS: number needed to screen

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 2. Discrimination performance of guideline approach using the 2018 validation set. Guideline approaches were adapted from the 2017 Canadian Opioid Prescribing Guideline and 2019 Centers for Medicare & Medicaid Services (CMS) opioid safety measures and compared to logistic regression and XGBoost classifiers (each with an estimated area under the receiver operating characteristic curve of 0.88).

Canadian Guidelines	AUROC	Sensitivity	Specificity
History of mental disorder only	0.620	0.90	0.34
Substance abuse only	0.686	0.99	0.37
OME/day >90 only	0.539	0.22	0.85
(Mental disorder and substance abuse) OR OME/day >90	0.690	0.91	0.47
Mental disorder and substance abuse AND OME/day >90	0.560	0.20	0.91
Mental disorder OR substance abuse OR OME/day >90	0.589	0.99	0.18
CMS Guidelines	4.		
High opioid dose (>120 OME/day for 90+days)	0.507	0.081	0.933
Concurrency (Opioid & BZRA for 30+ days)	0.575	0.423	0.727
Multiple doctors (>4)	0.591	0.294	0.888
Multiple pharmacies (>4)	0.537	0.120	0.959
All conditions	0.50	0.001	0.999
Any condition	0.622	0.62	0.625

OME: daily oral morphine equivalents; BZRA: benzodiazepine receptor agonist. Elixhauser scoring ICD codes were used to identify mental disorders and substance abuse.

Table 3. Discrimination performance based on database source using area under the receiver operating characteristic curve (AUROC) for the logistic regression classifier on the 2018 validation set.

Database source	Predictor Variables formed	AUROC
	from database	
PIN only	Drug utilization + Prescription	0.78
	history (ATC level 3)	
DAD, NACRS, Claims	Co-morbidities	0.85
PIN, DAD NACRS, Claims (all	Demographic + Drug Utilization	0.88
databases used in study)	+ Healthcare Utilization	
	+ Co-morbidities	

Note: drug utilization includes features describing oral morphine equivalents²⁴, concurrent use with benzodiazepines, number of opioid and benzodiazepine dispensations, number of unique opioid and benzodiazepine molecules; health care utilization includes features describing number of unique health providers visited, number of hospital visits.

Figure 1. Patient flow diagram of study participants used for training and validating ML models. NACRS: National Ambulatory Care Reporting System; DAD: Discharge Abstract Database; VS: Vital Statistics; PIN: Pharmaceutical Information Network; Claims: Physician Claims

BMJ Open

Figure 2. Area under the receiver operating characteristic curve (AUROC) (A) and precision-recall curves (B) for all dispensations using logistic regression, neural network, support vector machine (SVM), XGBoost and Naïve-Bayes; precision-recall curves for higher risk dispensations according to predicted risk percentile categories for logistic regression (C) and XGBoost (D) using the 2018 validation set.

(A)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
7	
8	
g	
1	ი
1	1
1	י ר
1	2
1	3
1	4
1	5
1	6
1	7
1	8
1	9
2	0
2	1
2	2
2	3
2	4
2	5
2	6
- 2	7
2	Ŕ
2	a
2 2	ر م
2 2	1
נ כ	י ר
כ ר	2
3	ک
3	4
3	5
-	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

to beet terren only

Figure 3. Calibration curves plotting: **1)** observed vs. quantiles of estimated risk for XGBoost (A) and logistic regression (B) classifiers using the 2018 validation dataset and **2)** simulation of a clinical workflow with daily uploads and events per 100 daily dispenses by risk percentiles using 2018 Quarter 1 (Q1) data for logistic regression (C) and XGBoost (D) classifiers. For both classifiers, the majority of counts (dispensations) were predicted to be lower risk.

BMJ Open

(B) Logistic Regression

Supplementary Content

eAppendix. Machine learning algorithms

eTable 1. Diagnostic codes used to exclude patients who had cancer, were pregnant, or were under palliative care.

eTable 2. Diagnostic codes used to identify the defined study outcome from emergency visit, hospitalization and death data.

eTable 3. Baseline characteristics of study patients (n=392,979). Co-morbidities were determined using Elixhauser criteria. All p-values in the chi² test of independence were <0.001 unless otherwise indicated.

eTable 4. Characteristics of study participants between training and validation groups using 2017 data.

eTable 5. Candidate predictors used to train ML algorithms.

eTable 6. Discrimination performance using area under the receiver operating characteristic curve (AUROC) of various ML algorithms. Training and validation were done using 2017 data (n=393,979); another independent validation was performed using 2018 data (n=393,023).

eFigure1. Schematic of study design and feature generation

eFigure2. Feature importance from logistic regression and tree-based (XGBoost) classifiers using the 2018 validation set.

eFigure3. Shapley values and feature impact in the XGBoost classifier using the 2018 validation set to describe "associations" between features and the outcome.

eReferences.

eAppendix. Machine Learning Algorithms

Introduction

While there are always updates and new methods coming up in the fields of machine learning, in this study, we have focused on some of the most reliable and proven approaches for predictive modelling which are explainable and popularly used in previous studies of similar nature.

Logistic Regression

Regression analysis models the relationship between a dependent variable and a set of independent variables [1]. Typically, this includes understanding how the value of the dependent variable changes with the changes in the values of independent variables. Logistic regression [1] uses the logistic function to model a binary dependent variable, where, based on the values of the independent variables the model can approximate one of the two classes, the instance belongs to. This basic binary model can be extended to deal with multiple classes (e.g. One-vs-all classifiers). However, logistic regression is only capable of modeling a linear relationship of independent variables to the dependent variable, hence limited to problems with linear decision boundaries. We used the sci-kit learn library in our experiments[6] and found L1 regularization to be more effective.

Ridge Classifier

We used the ridge classifier implemented in the Scikit learn library[5]. It implements a classifier using ridge regression which uses an L2 regularization on the least square objective function. The library converts the labels into -1 and 1 and fits a linear regression on the converted labels with the regularization.

Random Forest

Random forest is a tree ensemble learning algorithm that has wide applicability in many domains[1]. Random forest is a nonlinear learning algorithm, which arrives at nonlinear decision boundaries by independently combining multiple decision trees. Each individual decision tree in the forest can be grown independently of each other on a subset of the training data. Random forests are mainly sensitive to the number of trees, the depth of a tree and the number of covariates randomly chosen to split at each node[1]. These hyper-parameters can be tuned to find the best configuration of every dataset. Random Forests, in general, are less prone to overfit since they always grow individual trees on a subset of the training data[1]. At prediction time, the decision of each tree is aggregated to compute the final prediction.

Neural Networks (NN)

Neural networks are another collection of non-linear learning algorithms with high representation power. They are known to be able to find mappings from an input to an output

from a larger non-linear function space [2]. This ability to represent a larger space of nonlinear functions has shown to be very effective recently in many application domains such as natural language processing, computer vision, genomics, computer games and health[2]. Neural networks come in many flavors learning nonlinear mapping of different types of data such as Convolutional NNs being most effective with images and Recurrent NNs for time series and language data. Identifying the most effective neural network structure is one of the difficult and the most time-consuming aspect of applying neural networks to new application domains and data. Generally, neural networks try to exploit the relationships in the raw unstructured data (eg: image and text) presented to the network but with more structured data such as health records and ICD codes learning relationships is much complex. Our neural network models are mainly based on densely connected hidden layers with ReLu[6] activation function. We used the cross-entropy loss for the binary classification Adam optimizer.

Boosted Learning Algorithms

Boosting is a process to ensemble multiple base learning algorithms to arrive at better overall performance than any individual base learner[1]. In contrast to independently building multiple models from the subsets of the data, boosting re-weights the training data every time a model is learned for future models. This weighting happens to give more preference to currently misclassified data points in the next round compared to the correctly classified data points. Therefore future learners try to do better on the misclassified data points leading to a collection base learner having a better-combined prediction. This process is sequential so each base learner is dependent on the output of the previously trained model (it is worthy to note XGBoost provides a parallel tree boosting alternative). In our work, we have experimented with several boosting meta-learning algorithms such as XGBoost[7], AdaBoost[5] and GBM[5]. XGBoost uses a variant of trees as the base learner whereas AdaBoost (from Sci-kit learn) can use many ML algorithms as base learners. GBM uses logistic regression by default as the base learner. We used all 3 types of boosting with tuned hyperparameters for comparison.

Naive Bayes

Naive Bayes is based on the Bayes theorem with a strong independence assumption between the covariates[1]. This assumption helps in building a simple probabilistic model for learning and inference. Naive Bayes coefficients scale linearly with the number of covariates making this a suitable model for high-dimensional data. We used Naive Bayes as a simple baseline learning algorithm for comparison.

Support Vector Machines (SVM)

SVMs[4] are maximum margin classifiers optimizing for learning a hyperplane having the maximum distance away from each of the class data points[1]. SVM is a linear classifier but with the kernel trick to map the inputs to the higher dimensional space, it can learn nonlinear decision boundaries in the input space. SVMs are very effective binary classifiers with the kernel trick[1]. With larger datasets, SVMs tend to become more computationally intensive.
eTable 1. Diagnostic codes used to exclude patients who had cancer, were pregnant, or were under palliative care.

Condition	ICD 9	ICD 10
Cancer	140.x - 239.x	C00.x - C99.x, D00.x - D49.x
Pregnancy	630.x - 679.x	O00.x - O99.x
Palliative	V66	Z51.0, Z51.1, Z51.5
Pregnancy Palliative	630.x - 679.x V66	O00.x - O99.x Z51.0, Z51.1, Z51.5

eTable 2. Diagnostic codes used to identify the defined study outcome from emergency visit, hospitalization and death data.

ICD 10	Condition
T40.x	Poisoning by, adverse effect of and underdosing of narcotics and psychodysleptics
F55.x	Abuse of non-psychoactive substances
F11.x - F19.x	Mental and behavioral disorders due to psychoactive substance use

3
4
5
6
7
2 2
0
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
20
28
20
29
50 21
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
17
47 10
40
49 50
50
51
52
53
54
55
56
57
58
59

1 2

eTable 3. Baseline characteristics of study patients (n=392,979). Co-morbidities were determined using Elixhauser criteria. All p-values in the chi² test of independence were <0.001 unless otherwise indicated.

Characteristic	Number without	Percent	Number with Event	Percent
	Event		n=6,608	
	n=386,371			
Age:				
Mean (SD)	48.1 (16.4)		41.2 (12.4)	
18-45	162057	41.9	3466	52.4
45-65	154632	40.0	2656	40.2
>65*	69682	18.0	486	7.4
Male	197491	50.3	3922	59.4
Female	194794	49.7	2686	40.6
Alcohol Disorder	66320	16.9	5220	79.0
Arrhythmia	90621	23.1	1959	29.6
Blood Loss Anemia	1164	0.3	82	1.2
Congestive Heart	18954	4.8	565	8.6
Failure			• = -	
Coagulopathy	8053	2.1	356	5.4
Deficiency Anemia	34188	8.7	971	14.7
Depression	159140	40.6	5518	83.5
Diabetes	64132	16.3	1408	21.3
Substance Abuse	74678	19.0	5485	83.0
Disorder				
Fluid Disorder	42690	10.9	3012	45.6
Hypertension	140171	35.7	2624	39.7
Hypothyroidism	45519	11.6	601	9.1
Injury^	195688	49.9	5541	83.9
Liver Disorder	21656	5.5	1588	24.0
Neurologic Disorder	230490	58.8	5387	81.5
Obesity	63393	16.2	970	14.7
Poisoning [^]	17434	4.4	2775	42.0
Psychoses	35870	9.1	3162	47.9
Renal Disorder	16166	4.1	499	7.6
Rheumatoid Conditions	111458	28.4	3157	47.8
HIV Infection	1098	0.3	141	2.1
Paralysis	3874	1.0	187	2.8
Peptic Ulcer Disease	11728	3.0	509	7.7
Pulmonary Circulation	9611	2.4	430	6.5
Disorder				
Chronic Pulmonary	102990	26.3	2913	44.1
Disease				
Peripheral Vascular	14467	3.7	389	5.9
Disease	7200	1.0	220	2.4
Valvular Disease	/308	1.9	226	3.4
weight Loss	16207	4.1	/4/	11.3

*p-value for age >65 is an estimated 0.037

3	
4	
5	
6	
7	
γ Ω	
0	
9	~
1	1
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	8
1	9
2	0
2	1
2	י כ
2	2 2
2	כ ⊿
2	4
2	5
2	6
2	7
2	8
2	9
3	0
3	1
3	2
3	3
3	Δ
2	5
נ ר	د د
כ ר	0
3	/
3	8
3	9
4	0
4	1
4	2
4	3
4	4
4	5
4	6
4	7
⊿	, 8
1	a
-+	0
Э г	1
5	ן ר
5	2
5	3
5	4
5	5
5	6
5	7
5	8

60

1 2

eTable 4. Characteristics of study participants between training and validation groups using 2017 data.

Characteristic	Number in	Percent	Number in	Percent
	training group		validation group	
	N=275,150~		N=117,829~	
Age:				
Mean (SD)	48.3 (16)		48.2 (16)	
18-45	114356	41.5	49909	42.3
45-65	111859	40.7	47132	40.0
>65	48935	17.8	20788	17.6
Male	138603	48.5	59339	48.4
Female	136545	47.8	58490	47.7
Alcohol Disorder	46792	16.4	20199	16.5
Arrhythmia	63637	22.3	27201	22.2
Blood Loss Anemia	839	0.3	336	0.3
Congestive Heart	13320	4.7	5694	4.6
Failure				
Coagulopathy	5697	2.0	2393	2.0
Deficiency Anemia	24096	8.4	10179	8.3
Depression	112080	39.2	47628	38.9
Diabetes	45131	15.8	19144	15.6
Substance Abuse	52609	18.4	22713	18.5
Disorder				
Fluid Disorder	30272	10.6	12780	10.4
Hypertension	98546	34.5	41840	34.1
Hypothyroidism	31908	11.2	13666	11.2
Injury*	137423	48.1	58865	48.0
Liver Disorder	15252	5.3	6567	5.4
Neurologic	161706	56.5	69341	56.6
Disorder	44607	45.0	10000	
Obesity	44607	15.6	18882	15.4
Poisoning*	12503	4.4	5293	4.3
Psychoses Denel Disender	25422	8.9	10860	8.9
Renai Disorder	11403	4.0	4817	3.9
Conditions	/8268	27.4	33420	27.3
HIV Infection	77/	0.3	336	0.3
Paralysis	2717	1.0	1176	1.0
Pentic Illcor	8720	2.0	3533	2.0
Disease	0235	2.5		2.3
Pulmonary	6771	2.4	2877	2.3
Circulation				-
Disorder				
Chronic Pulmonary	72265	25.3	30949	25.3
Disease				

Peripheral Vascular Disease	10228	3.6	4278	3.5
Valvular Disease	5111	1.8	2215	1.8
Weight Loss	11477	4.0	4790	3.9

 \sim p-values for chi² test of independence were all >0.06 when comparing training and validation sets.

*Injury: ICD10: S00-T98; Poisoning: ICD10: T36-T50

eTable 5. Candidate predictors used to train ML algorithms.

Category (data source)	Description	
Demographic information (PIN)	age, sex, postal codes, mean income	
Drug utilization history (PIN)	drug dispenses in past 30 days using on ATC codes, oral	
	morphine equivalents, concurrent use with benzodiazepines,	
	number of dispensations and unique molecules of opioids	
	and benzodiazepines	
Health care utilization (PIN	flags for previous hospitalizations, number of unique	
DAD)	providers	
ICD based co-morbidities (DAD,	Elixhauser condition flags based on the past 5 years of claims,	
NACRS, Claims)	hospitalizations, and emergency visits.	

Note: ICD: International Statistical Classification of Diseases and Related Health Problems, World Health Organization. eTable 6. Discrimination performance using area under the receiver operating characteristic curve (AUROC) of various ML algorithms using all features (demographics, health utilization, prescription history, co-morbidities). Training and validation were done using 2017 data (n=393,979); another independent validation was performed using 2018 data (n=393,023).

Algorithm	Train	Validation 2017	Validation 2018	
XGBoost Classifier	0.897	0.870	0.884	
Logistic Regression	0.887	0.869	0.884	
Gradient Boosting Classifier	0.898	0.868	0.883	
AdaBoost Classifier	0.884	0.868	0.882	
Random Forest Classifier	0.909	0.863	0.881	
Ridge Classifier	0.895	0.863	0.879	
SVM	0.896	0.860	0.878	
Gaussian Naive Bayes	0.846	0.826	0.847	
Decision Tree Classifier	0.919	0.791	0.822	
Neural Networks	0.827	0.804	0.821	

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
57
58
59
60
50

eFigure2. Feature importance from logistic regression and tree-based (XGBoost) classifiers using the 2018 validation set. The logistic regression classifier relied more on co-morbidity data from DAD, NACRS, and Claims databases; XGBoost classifier relied more on data from the PIN database. AUROCs for both classifiers were similar at 0.88.

LOGISTIC REGRESSION	
Drug Abuse	1.00
Age	0.65
Prior Hospitalization	0.62
Alcohol Abuse	0.62
Fluid Disorder	0.32
Substance Poison	0.31
Psychoses	0.31
Num_Benzo_Ingred_30	0.26
Depression	0.19
Concurrent_Opioid_Benzo_30	0.19
Injury	0.17

		TREE-BASED MODEL	
1.00		Age	1.00
0.65		Num_Fills_30	1.00
0.62		Num_Opioid_Fills_30	0.86
0.62		Num_Benzo_Fills_30	0.46
0.32		Doctor_Risk_30	0.45
0.31		Total_OME_30_Days_Supply	0.43
0.31		Substance poison	0.37
0.26		Pharmacy_Risk_30	0.35
0.19		Num_Doctors_30	0.34
0.19		Income	0.34
0.17		Prior hospitalization	0.26
	1.00 0.65 0.62 0.32 0.31 0.31 0.26 0.19 0.17	1.00 0.65 0.62 0.32 0.31 0.31 0.26 0.19 0.19	TREE-BASED MODEL1.00Age0.65Num_Fills_300.62Num_Opioid_Fills_300.62Num_Benzo_Fills_300.31Doctor_Risk_300.31Substance poison0.26Pharmacy_Risk_300.19Income0.17Prior hospitalization

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

eFigure 3. Shapley values and feature impact in the XGBoost classifier using the 2018 validation set to describe "associations" between features and the outcome. Features with the most impact on the model with drug abuse with drug abuse ranked highest (A); tornado plot illustrating feature impact. Red indicates higher impact and plots to the right of 0.0 indicate the tendency to be associated with the study outcome while blue indicates lower impact and plots to the left of 0.0 indicate the tendency to be associated with no outcome (B); explaining the prediction of study outcomes based on predictor values for 4 patients (C).

Note: RCPT_AGE- age at opioid dispensation; Fluiddo- fluid disorder according to Elixhauser comorbidity; Gender_M-male sex' NO5B-ANXIOLYTICS- prescribed ATC code benzodiazepine derivatives; Pharmacy_Risk_30- derived feature using proportion of opioid/benzodiazepine patients that experienced the study outcome in the previous 30 days prior to opioid dispensation for each pharmacy; NO3A-ANTIEPILEPTICS- ATC code for anti-epileptics dispensed to patient; Doctor_Risk_30- derived feature using proportion of opioid/benzodiazepine patients that experienced the study outcome in the previous 30 days prior to opioid dispensation for each physician; Num_Opi_Fills_30- number of opioid dispensations in the previous 30 days prior to opioid dispensation; PriorHospRelevant- flag for history of any opioid related hospitalization in the previous 180 days prior to opioid dispensation; N07B-DRUGS USED IN ADDICTIVE DISORDERS- ATC code for drugs dispensed to patient for treating substance abuse disorders; A11D-VITAMIN B1, PLAIN AND IN COMBINATION WITH VITAMIN B6 AND B12- ATC code for patients dispensed Vitamins B1, B6, or B12; CODEIN: history of codeine use

Note: The "reference point" is called the "base value" at -3.902. Values in bold to the left of the base value indicate a lower predicted probability of the study outcome and values in bold to the right indicate a higher predicted probability of the study outcome. The top plot describes a patient at "low risk" for the study outcome. As can be seen from the feature values, this patient has a negative history for the specified features. The middle 2 plots describe a patient at "medium risk" while the bottom plot shows a patient at "high risk" for the study outcome.

eReferences

- 1. Friedman, J., Hastie, T., Tibshirani, R.: The elements of statistical learning, vol. 1. Springer series in statistics New York (2001)
- 2. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)
- 3. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009.
- 4. Chang CC, Lin CJ. LIBSVM: A library for support vector machines. ACM transactions on intelligent systems and technology (TIST). 2011 May 6;2(3):1-27.
- 5. <u>Scikit-learn: Machine Learning in Python</u>, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.
- Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. InProceedings of the 27th international conference on machine learning (ICML-10) 2010 (pp. 807-814).
- 7. Chen T, Guestrin C. Xgboost: A scalable tree boosting system. InProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining 2016 Aug 13 (pp. 785-794).

BMJ Open

Safe opioid prescribing: a prognostic machine learning approach to predicting 30-day risk after an opioid dispensation in Alberta, Canada

Journal:	BMJ Open		
Manuscript ID	bmjopen-2020-043964.R1		
Article Type:	Original research		
Date Submitted by the Author:	26-Jan-2021		
Complete List of Authors:	Sharma, Vishal; University of Alberta, School of Public Health Kulkarni, Vinaykumar; OKAKI Health Analytics Eurich, Dean; University of Alberta, School of Public Health Kumar, Luke; Alberta Machine Intelligence Institute Samanani, Salim; Okaki Health Intelligence,		
Primary Subject Heading :	Epidemiology		
Secondary Subject Heading:	Health informatics, Public health		
Keywords:	PUBLIC HEALTH, EPIDEMIOLOGY, Adverse events < THERAPEUTICS, Health & safety < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Clinical governance < HEALTH SERVICES ADMINISTRATION & MANAGEMENT		

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Safe opioid prescribing: a prognostic machine learning approach to predicting 30-day risk after an opioid dispensation in Alberta, Canada

Author list (in order):

Vishal Sharma (0000-0001-7907-1183), Vinaykumar Kulkarni, Dean T. Eurich (0000-0003-2197-0463), Luke Kumar, Salim Samanani (0000-0001-6751-4805)

Address for each author:

2-040 Li Ka Shing Center for Health Research Innovation, School of Public Health, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1 Vishal Sharma BPharm PhD Candidate,

OKAKI Health Intelligence, Edmonton, Alberta, Canada, Vinaykumar Kulkarni MSc

2-040 Li Ka Shing Center for Health Research Innovation, School of Public Health, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1 Dean Eurich professor

Alberta Machine Intelligence Institute, Edmonton, Alberta, Canada, T5J 3B1 Luke Kumar MSc

OKAKI Health Intelligence, Calgary, Alberta, Canada, Salim Samanani MD, Medical Director

Corresponding Author:

Dean Eurich, 2-040 Li Ka Shing Center for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1; Phone 780-492-6333; fax 780-492-7455; email: deurich@ualberta.ca

Acknowledgement

This study is based on data provided by The Alberta Strategy for Patient Orientated Research (AbSPORU) SUPPORT unit and Alberta Health. The interpretation and conclusions contained herein are those of the researchers and do not necessarily represent the views of the Government of Alberta or AbSPOR. Neither the Government of Alberta, ABSPOR nor Alberta Health expresses any opinion in relation to this study. This work was supported by Mitacs through the Mitacs Accelerate Program (VS and DTE).

Contributors: VS VK LK SS and DTE were involved in the conception and design of the study. VS VK LK SS and DTE analyzed the data. VS VK and LK drafted the article. VS VK LK DTE and SS revised the article. All authors gave final approval of the version to be published. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted. DTE is the guarantor.

Funding: This study received no funding.

Copyright/license for publication: The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all **authors**, a worldwide licence to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future), to i) publish, reproduce, distribute, display and store the Contribution, ii) translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution, iii) create any other derivative work(s) based on the Contribution, iv) to exploit all subsidiary rights in the Contribution, v) the inclusion of electronic links from the Contribution to third party material where-ever it may be located; and, vi) licence any third party to do any or all of the above.

Competing Interest: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the submitted work; Salim Samanani has received grants from the College of Physicians & Surgeons of Alberta; no other relationships or activities that could appear to have influenced the submitted work.

Ethical approval: This study was approved by the Health Research Ethics board at the University of Alberta (#Pro00083807_AME2).

Data Sharing: The data used in this study is not available for external analysis. However, administrative health data can be accessed from Alberta Health by following defined research protocols and confidentiality agreements.

<text> Transparency: The lead author, VS, (the manuscript's guarantor, Dean Eurich) affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as originally planned (and, if relevant, registered) have been explained.

Word Count: 3120

Abstract

Objective: To develop machine-learning models employing administrative-health data that can estimate risk of adverse outcomes within 30-days of an opioid dispensation for use by health-departments or prescription monitoring programs.

Design, Setting, and Participants: This prognostic study was conducted in Alberta, Canada between 2017-2018. Participants included all patients over 18 years of age who received at least one opioid dispensation. Pregnant and cancer patients were excluded.

Exposure: Each opioid dispensation served as an exposure.

Main Outcomes/Measures: Opioid related adverse outcomes were identified from linked administrative health-data. Machine-learning algorithms were trained using 2017 data to predict risk of hospitalization, emergency department visit, and mortality within 30-days of an opioid dispensation. Two validation sets, using 2017 and 2018 data, were used to evaluate model performance. Model discrimination and calibration performance were assessed for all patients and those at higher risk. Machine-learning discrimination was compared to current opioid guidelines.

Results: Participants in the 2017 training set (n=275,150) and validation set (n=117,829) had similar baseline characteristics. In the 2017 validation set, c-statistics for the XGBoost, logistic regression, and neural network classifiers were 0.87, 0.87, and 0.80, respectively. In the 2018 validation set (n=393,023), the corresponding c-statistics were 0.88, 0.88, and 0.82. C-statistics from the Canadian guidelines ranged from 0.54-0.69 while the US guidelines ranged from 0.50-0.62. The top 5-percentile of predicted risk for the XGBoost and logistic regression classifiers captured 42% of all events and translated into post-test probabilities of 13.38 and 13.45%, respectively, up from the pre-test probability of 1.6%.

Conclusion: Machine-learning classifiers, especially incorporating hospitalization/physician claims data, have better predictive performance compared to guideline or prescription history only approaches when predicting 30-day risk of adverse outcomes. Prescription monitoring programs and health departments with access to administrative data can use machine-learning classifiers to effectively identify those at higher risk compared to current guideline-based approaches.

Article Summary

Strengths and Limitations:

- This study incorporated near complete capture of opioid dispensations from community pharmacies and used validated administrative health data.
- The study population is the entire provincial population and is generalizable to other populations in Canada and beyond.
- This study used commonly available algorithms to train machine-learning models using data which is available to government health departments in all provinces in Canada and other single payer jurisdictions; ML classifiers were evaluated with informative prognostic metrics not usually seen in other studies like ours.
- Our predictive models used dispense events and not medication utilization, which is difficult to capture in administrative data.

• Our training dataset does not account for non-prescription opioids, opioids administered in hospitals, and other risks associated with non-prescription use.

BMJ Open

Introduction

Canada is among the countries with the highest rates of opioid prescribing in the world, making prescription opioid use a key driver of the current opioid crisis¹; a major part of the policy response to the opioid crisis focuses on endorsing safe, appropriate opioid prescribing²⁻⁴. In order to minimize high risk opioid prescribing and to identify patients at high risk of opioid related adverse outcomes, numerous health regulatory bodies have released clinical practice recommendations for health providers regarding appropriate opioid prescribing^{3,5,6}.

Prescription monitoring programs (PMPs) have been implemented around the world, like Alberta's provincial Triplicate Prescription Program (TPP)⁷ in Canada, and are mandated to monitor the utilization and appropriate use of opioids to reduce adverse outcomes. In most jurisdictions, both population-level monitoring metrics and clinical decision aids are used to identify patients at risk of hospitalization or death and are most often based on prescribing guidelines. However, a comprehensive infrastructure of administrative data containing patient level ICD⁸ codes and prescription drug histories exists in Alberta and other provinces in Canada which could be further integrated to predict opioid-related risk. Furthermore, current guidelines' of high risk prescribing and utilization of opioids were derived from studies that used traditional statistical methods (regression analyses) to identify population level risk factors for overdose rather than an individual's absolute risk^{3,9,10}; these population estimates may not be generalizable to different populations¹¹. Thus, a functional gap exists in many health jurisdictions where much of the available administrative health data is not being leveraged for opioid prescription monitoring.

Supervised machine learning (ML)^{12,13} is an approach that uses computer algorithms to build predictive models in the clinical setting that can make use of the large amounts of available administrative data^{14,15}, all within a well-defined process¹⁶. Supervised ML trains on labelled data to develop prediction models that are specific to different populations and, in many cases, can provide better predictive performance than traditional, population-based statistical models^{10,15,17}. We identified one study¹⁰ that applied ML techniques to predict overdose risk in opioid patients pursuant to a prescription. In their validation sample, they found that the DNN (deep neural network) and GBM (gradient boosting machine) algorithms carried the best discrimination performance based on estimated c-statistics and that the ML approach out-performed the guideline approach in terms of risk prediction; neural networks have little interpretability and are not necessarily better at predicting outcomes when trained on structured data¹⁸. This study relied on c-statistics to evaluate their ML models and did not emphasize other performance metrics required to assess clinical utility that are recommended by medical reporting guidelines^{11,13,19,20}. It also did not address the important issue of ML model interpretability²¹. Reporting informative prognostic metrics is needed to better understand the capabilities of ML classifiers if health departments and PMPs are to incorporate them into their decision-making processes.

The objective of our study was to further develop and validate ML algorithms (beyond just DNN) to predict the 30-day risk of hospitalization, emergency visit and mortality for a patient in Alberta, Canada at the time of an opioid dispensation using administrative data routinely available to health departments and PMPs and evaluate them using the above referenced reporting guidelines. We also analyzed feature importance to provide meaningful

BMJ Open

interpretations of the ML models. Comparing discrimination performance (area under the receiver operating characteristics curves), we hypothesized that the ML process would perform better than the current guideline approach for predicting risk of adverse outcomes related to opioid prescribing.

Methods

Study Design and Participants

This prognostic study used a supervised ML scheme. All patients in Alberta, Canada who received a dispensation for an opioid, were 18 years of age and older between Jan 1, 2017 and Dec 31, 2018 were eligible. Patients were excluded from all analyses if they had any previous diagnosis of cancer, received palliative interventions or were pregnant during the study period (eTable 1 in Supplement) as use of opioids in these contexts is clinically different.

Government health departments and payers in many jurisdictions have systems to capture prescription histories and ICD diagnostic codes. As such, we linked various administrative health data sets available in Alberta, Canada using unique patient identifiers in order to establish a complete description of patient demographics, drug exposures and health outcomes. These databases include *1*) *Pharmaceutical Information Network (PIN):* PIN data includes all dispensing records from community pharmacies from all prescriber types occurring in the province outside of the hospital setting. PIN collects all drug dispensations irrespective of age or insurance status in Alberta, *2*) *Population and Vital Statistics Data (VS, Alberta Services)*: sex, age, date of birth, death date, immigration and emigration data, and underlying cause of death according to the World Health Organization algorithm using ICD codes⁸, *3*)

Hospitalizations and Emergency Department Visits (NACRS [National Ambulatory Care Reporting System], DAD [Discharge Abstract Database]): all services, length of stay, diagnosis (up to 25 ICD-10⁸ based diagnoses). Data and coding accuracy are routinely validated both provincially and centrally via the Canadian Institute for Health Information, and 4) Physician Visits/Claims (Alberta Health): all claims from all settings (e.g., outpatient, office visits, emergency departments, inpatient) with associated date of service, ICD code, procedure and billing information.

This study followed the TRIPOD and STARD reporting guidelines²²⁻²⁴ and received ethics approval from the University of Alberta ethics board (Pro00083807_AME2). All analyses were done using Python (v. 3.6.8,), SciKit Learn²⁵ (v. 0.23.2) SHAP²⁶ (v. 0.35), XGBoost (v. 0.90)²⁷, Pandas (v. 1.0.5)²⁸ and H20 Driverless AI (version 1.9).

Measures and Outcome

ML models were trained on a labelled dataset in which the observation/analysis unit was an opioid dispensation. The primary outcome was a composite of a drug-related hospitalization, emergency department (ED) visit or mortality within 30 days of an opioid dispensation based on ICD-10 codes (T40, F55, F10-19; eTable 2 in Supplement)^{2,10,29}.

We anticipated that our defined outcome would be a rare event, leading to a class imbalanced dataset³⁰. To address this, we relied on specifying balanced class weightage for supporting algorithms; other approaches were not deemed suitable (e.g., randomly repeating minority class) and under sampling (sub-sampling within the majority class) resulted in changes in outcome prevalence.

BMJ Open

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
10
20
20 21
∠ ו 22
∠∠)?
∠⊃ 24
∠4 2⊑
25
20
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Predictor Candidates for ML Models	Predictor	Candidates	for ML Mod	els
------------------------------------	-----------	------------	------------	-----

Predictor variables in our ML models included those that were informed by the literature^{3,4,10} and those directly obtained from the data sets. These included features based on demographics (age, sex, income using Forward Sortation index from postal codes³¹), co-morbidity history using ICD-based Elixhauser score categories³², health care utilization (number of unique opioid prescribers, number of hospital visits), and drug utilization (level 3 ATC codes³³, oral morphine equivalents³⁴, concurrent use with benzodiazepines, number of opioid and benzodiazepine dispensations, number of unique opioid and benzodiazepine molecules). Depending on the potential predictor and data availability, we used data from 30 days to 5 years before the opioid dispensation to generate model features (eFigure 1 in Supplement); 30 days was used to reflect the immediate nature of the risk and 5 years to fully capture co-morbidities. This approach aligns with how health providers would assess patients using the entire history of comorbidities and then the more immediate factors in deciding on the need for a therapeutic as well as risk in patients. Experiments were performed to identify the features and data sets that contributed most to predicting the outcomes, with a view to minimizing the potential future data requirements for health departments and PMPs.

Statistical Analyses and Machine-Learning Prediction Evaluation

We randomly divided the patients in the 2017 portion of our study cohort into training (70%) and validation (30%) sets¹³ by patients and opioid dispensations such that no patients in the training set were in the validation set. Baseline characteristics and event rates were compared in the training vs validation group, and between those who experienced the outcome and those

who did not, using chi-squared tests of independence. As well, we used all 2018 data as another independent validation set.

First, we trained commonly used^{13,35} ML algorithms (eAppendix in Supplement) and out of box models were further tuned when training on the dataset using 5-fold cross validation on the training data. to address model overfitting^{13,36}. As is common in ML validation studies^{10,13}, we reported model discrimination performance (i.e. how well a model differentiates those at higher risk from those at lower risk)¹¹ using area under the receiver operating characteristic curve (AUROC; c-statistic). We then stratified the two ML models with the highest c-statistics into percentile categories according to absolute risk of our outcome, as was done in previous studies^{10,37}. We also plotted AUROC¹¹ and precision-recall curves (PRCs)³⁸.

Because discrimination alone is insufficient to assess ML model prediction capability, we assessed a second necessary property, namely, calibration (i.e., how similar the predicted absolute risk is to the observed risk across different risk strata)^{11,39}. Using the two ML models with the highest discrimination performance discussed above, we assessed calibration performance on the 2018 data by plotting observed (fraction of positives) vs predicted risk (mean predicted value). Using these two ML classifiers, we analyzed the top 0.1, 1, 5, and 10 percentiles of predicted risk by the number of true and false positives, positive likelihood ratios (PLR)²⁰, post-test probabilities, and number needed to screen. We also performed a simulation of daily data uploads for 2018 Quarter 1 to view the predictive capabilities if a ML risk predictor were to be deployed into a monitoring workflow.

BMJ Open

For the XGBoost and logistic regression classifiers, we reported feature importance³⁵ and plotted PRCs that compared all dispenses to those within the top 10 percentiles of estimated risk. As well, for the XGBoost classifier, we described feature importance on model outcome using SHAP values^{26,40} to add an additional layer of interpretability.

Finally, we compared ML risk prediction (the two ML models with highest discrimination performance) to current guideline approaches as others have¹⁰, using the 2019 Centers for Medicare & Medicaid Services (CMS) opioid safety measures⁴¹ and the 2017 Canadian Opioid Prescribing Guideline³. We also compared the discrimination performance of different logistic regression classifier models using various combinations of features derived from their respective databases: **1**) demographic and drug/health utilization features from PIN and **2**) co-morbidity features derived from DAD, NACRS and Claims.

Patient and Public Involvement

This research was done without patient involvement. Patients were not invited to comment on the study design and were not consulted to develop patient relevant outcomes or interpret the results. Patients were not invited to contribute to the writing or editing of this document for readability or accuracy. There are no plans to disseminate the results of the research to study participants.

Results

Patient Characteristics and Predictors

We identified 392,979 patients with at least one opioid dispensation in 2017 (Figure 1). This cohort was used to train (n= 275,150, 70%) and validate (n=117,829, 30%) ML models. In 2017 and 2018, 6,608 and 5,423 patients experienced the defined outcome, respectively. Baseline characteristics were different between those who experienced the outcome and those who did not (eTable 3 in Supplement) while characteristics were similar between the training and validation sets (eTable 4 in Supplement). There were 2,283,075 opioid dispensations in 2017 and 1,977,389 in 2018. Overall, in 2017, 2.03% (n= 45,757) of opioid dispensations were associated with the outcome; in 2018, the estimate was 1.6% (n= 31,392).

As described above, we categorized our candidate features into four groups (eTable 5 in Supplement).

Machine-Learning Prediction Performance

Using the 2017 validation set, AUROCs for the XGBoost and logistic regression classifiers had the highest discrimination performance at 0.87, while the neural network classifier had lower performance at 0.80 (eTable 6 in Supplement).

Discrimination performance was similar for the 2018 validation set (n=393,023; eTable 6 in Supplement). XGBoost and logistic regression had the highest estimated AUROCs and area under PRCs while the neural network classifier was lower (Figure 2A, 2B). As expected, precision-recall curves indicate stronger predictive performance in opioid dispensations at higher predicted risk percentiles (Figure 2C, 2D).

In the 2018 validation set, although discrimination performance was similar (0.88), individual feature importance was different between the logistic regression and XGBoost

BMJ Open

classifiers, with logistic regression feature importance more reliant on co-morbidity data from DAD, NACRS and Claims while XGBoost relied more on drug utilization data from PIN (eFigure 2). In the XGBoost classifier, history of drug abuse, alcoholism, and prior hospitalization carried the highest importance for predicting the study outcome (eFigure 3A) where the presence of these features in a patient suggested a strong prediction towards having the defined outcome (eFigure 3B and 3C).

Calibration

When considering dispensations predicted to be in the highest percentiles of risk, the top 5percentile captured 42% of all outcomes using the XGBoost and logistic regression classifiers (Table 1). Also, as the predicted risk percentiles get higher (top 10 percentile to top 0.1 percentile), so too do the corresponding PPVs with the top 0.1 percentile associated with a PPV of 33% for the XGBoost classifier. As well, lower categories of risk percentiles were associated with lower outcomes (Figure 3, eFigure 4). When we simulated a monitoring workflow scenario with daily data uploads, a similar pattern was illustrated where the dispensations predicted to be higher risk had higher event rates (Figure 4).

After using the XGBoost and logistic regression classifiers to identify the dispensations in the highest predicted risk percentiles, the pre-test probability of the outcome (1.6%) was transformed into higher post-test probabilities, with higher probabilities in the riskier percentiles (Table 1). The number needed to screen also decreased as predicted risk increased (Table 1).

Comparing discrimination performance, ML risk prediction outperformed the current guideline approaches when using various combinations of guideline recommendations (Table 2). In many of the guideline scenarios, the estimated AUROCs were close to the 0.5 mark. When we estimated the discrimination performance of the logistic regression classifier based on database source, using all databases produced an AUROC of 0.88. Reducing the database source to only DAD, NACRS, Claims (co-morbidities only) resulted in an AUROC of 0.85, while PIN (prescription history) only was 0.78 (Table 3).

Discussion

This study showed that ML techniques using available administrative data (prescription histories and ICD codes) may provide enough discriminatory performance to predict adverse outcomes associated with opioid prescribing. Indeed, our ML analyses showed very high discrimination performance at 0.88. The linear model (logistic regression) and XGBoosted Trees carried higher discrimination and calibration performance, while the neural network classifier did not perform as well. By identifying the predicted top 5-10 percentile of absolute risk pursuant to an opioid dispensation, we were able to capture approximately half of all outcomes using ML methods. All ML models we trained had higher discrimination performance using independent (external) validation sets than the clinical guideline approach.

Since the prevalence of our defined outcome is relatively low in the general population, PPVs would also be expectedly low. However, estimated PPVs increased when we considered higher risk dispensations, as is expected since PPV is related to event prevalence. This is important because different users of a risk predictor will require different predictive

BMJ Open

capabilities. Similarly, our estimates of positive likelihood ratios and associated post-test probabilities also increased in dispensations with higher predicted risk indicating the strong predictive capabilities of the XGBoost and logistic regression classifiers; likelihood ratios >10 generate conclusive changes from pre-test to post-test probabilities²⁰.

The current guideline approach to assess absolute opioid prescribing risk produced cstatistic estimates closer to 0.5 indicating that discrimination was not much better than chance alone. ML models with higher predictive performance can better support health departments and PMPs with monitoring mandates to identify and intervene on those at high risk and their associated prescribers. We also found that adding co-morbidity features from administrative databases increased prediction performance compared to prescription history alone, thus making the case for the use of this data by PMPs and health departments. However, if only prescription history is available, our trained XGBoost classifier still had strong discrimination performance.

We found only one study that used ML approaches to quantify the absolute risk of an event pursuant to an opioid dispensation¹⁰. Their methodology used rolling 3-month windows for estimating risk and ML model training while we used historic records to estimate 30-day risk. Differences in study population and feature selection may explain why their highest performing ML model was deep learning (neural network classifier) and ours was not. Nevertheless, we were able to replicate their predictive performance using our ML approach as we both showed that ML approaches have higher predictive capabilities than guideline approaches. Both of our studies used predicted percentile risk estimates to identify high risk dispensations and were able to do so with strong discrimination and calibration performance.

Furthermore, we emphasized prognostic metrics which are more informative to assess the clinical utility of ML classifiers using pre- and post-test probabilities, something not done in other studies and recommended in medical guidelines²⁰. This major aspect of our study, not done previously, is important because any ML classifier that does not increase prognostic information compared to baseline cannot be incorporated into decision making for the purpose of intervening on higher risk instead of lower risk patients. Indeed, another study we found describes how identifying cases in higher predicted risk percentiles using ML methods can be deployed in hospital settings for the purpose of targeted interventions³⁷ upon discharge, however the effect on outcomes is still to be determined.

The limitations of our study are similar to other ML studies¹⁰ and need to be addressed when considering deployment of ML risk predictors. Our training dataset was not able to account for non-prescription opioid consumption and the risk associated with non-prescription use, both of which are substantial contributors to overall risk². Regarding our analysis, we assumed that all dispensations were independent events; future research in this area should focus on employing ML methods using correlated data. As with all ML projects, our models were trained using Alberta data and might not be generalizable to other populations, or to specific populations within Alberta. However, our analyses were done on a large population and these results would be expected to be generalizable to the vast majority of patients. Moreover, one of the benefits of the ML process is that models can be retrained or similar methods could be used to develop new models to accommodate different populations.

This study suggests that ML risk prediction can support PMPs, especially if readily available administrative health data is used. PMPs currently use population-based guidelines

which we, and others, have shown cannot predict absolute individual risk. The ML process allows for model training, validation and deployment to specific settings in which, for the case of PMPs, high risk patients can be identified and targeted for intervention either at the patient or provider level. Moreover, ML classifiers can be retrained over time as changes in populations and trends in prescribing occur and are therefore specific to the population unlike broadly based guidelines. Further research can assess whether implementation of a ML-based PMPs IL monitoring system by PMPs leads to improved clinical outcomes.

References

- 1. Belzak L, Halverson J. Evidence synthesis The opioid crisis in Canada: a national perspective. *Health Promotion and Chronic Disease Prevention in Canada*. 2018;38(6):224-233.
- 2. Gomes T, Khuu W, Martins D, et al. Contributions of prescribed and non-prescribed opioids to opioid related deaths: population based cohort study in Ontario, Canada. *BMJ*. 2018;362:k3207.
- 3. Busse JW, Craigie S, Juurlink DN, et al. Guideline for opioid therapy and chronic noncancer pain. *Canadian Medical Association Journal.* 2017;189(18):E659-E666.
- 4. Dowell D. CDC guideline for prescribing opioids for chronic pain. 2016.
- 5. ismp Canada. Essential Clinical Skills for Opioid Prescribers. 2017; <u>https://www.ismp-</u> <u>canada.org/download/OpioidStewardship/Opioid-Prescribing-Skills.pdf</u>. Accessed Nov 2018.
- 6. Centre for Effective Practice. Management of Chronic Non Cancer Pain. 2017; thewellhealth.ca/cncp.
- College of Physicians and Surgeons of Alberta. TPP Alberta OME and DDD Conversion Factors.
 2020; <u>http://www.cpsa.ca/tpp/</u>. Accessed Jun 2020.
- World health Organization. Classification of Diseases (ICD). 2019; <u>https://www.who.int/classifications/icd/icdonlineversions/en/</u>. Accessed Jun 2020.
- 9. Gomes T, Mamdani MM, Dhalla IA, Paterson JM, Juurlink DN. Opioid Dose and Drug-Related Mortality in Patients With Nonmalignant PainOpioid Dose and Drug-related Mortality. *JAMA Internal Medicine*. 2011;171(7):686-691.
- 10. Lo-Ciganic W-H, Huang JL, Zhang HH, et al. Evaluation of Machine-Learning Algorithms for Predicting Opioid Overdose Risk Among Medicare Beneficiaries With Opioid Prescriptions. *JAMA network open.* 2019;2(3):e190968-e190968.
- 11. Alba AC, Agoritsas T, Walsh M, et al. Discrimination and Calibration of Clinical Prediction Models: Users' Guides to the Medical Literature. *JAMA*. 2017;318(14):1377-1384.
- 12. Shah NH, Milstein A, Bagley P, Steven C. Making Machine Learning Models Clinically Useful. JAMA. 2019;322(14):1351-1352.
- 13. Liu Y, Chen P-HC, Krause J, Peng L. How to Read Articles That Use Machine Learning: Users' Guides to the Medical Literature. *JAMA*. 2019;322(18):1806-1816.
- 14. Bastanlar Y, Ozuysal M. Introduction to machine learning. *Methods in molecular biology (Clifton, NJ).* 2014;1107:105-128.
- 15. Thottakkara P, Ozrazgat-Baslanti T, Hupf BB, et al. Application of machine learning techniques to high-dimensional clinical data to forecast postoperative complications. *PloS one.* 2016;11(5):e0155705.
- 16. Alberta Machine Intelligence Institute. Machine Learning Process Lifecycle. In:2019.
- 17. Hsich E, Gorodeski EZ, Blackstone EH, Ishwaran H, Lauer MS. Identifying important risk factors for survival in patient with systolic heart failure using random survival forests. *Circulation: Cardiovascular Quality and Outcomes.* 2011;4(1):39-45.
- Caruana R, Lou Y, Gehrke J, Koch P, Sturm M, Elhadad N. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. Paper presented at: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining2015.
- 19. Yusuf M, Atal I, Li J, et al. Reporting quality of studies using machine learning models for medical diagnosis: a systematic review. *BMJ open.* 2020;10(3):e034568.
- 20. Jaeschke R, Guyatt GH, Sackett DL, et al. Users' Guides to the Medical Literature: III. How to Use an Article About a Diagnostic Test B. What Are the Results and Will They Help Me in Caring for My Patients? *JAMA*. 1994;271(9):703-707.
- 21. Shortliffe EH, Sepúlveda MJ. Clinical Decision Support in the Era of Artificial Intelligence. *JAMA*. 2018;320(21):2199-2200.

BMJ Open

2		
3	22.	Moons KGM, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction
4		model for Individual Prognosis Or Diagnosis (TRIPOD): Explanation and Elaboration. Annals of
5		Internal Medicine 2015:162(1)·W1-W73
6	23	equator network. Transparent reporting of a multivariable prediction model for individual
7	23.	prognosis or diagnosis (TPIPOD): The TPIPOD statement, 2020; https://www.equator
8		prognosis of diagnosis (TRIPOD). The TRIPOD statement. 2020, <u>Inteps.//www.equator-</u>
9		network.org/reporting-guidelines/tripod-statement/. Accessed Feb 2020.
10	24.	Cohen JF, Korevaar DA, Altman DG, et al. STARD 2015 guidelines for reporting diagnostic
11		accuracy studies: explanation and elaboration. BMJ Open. 2016;6(11):e012799.
12	25.	Buitinck L, Louppe G, Blondel M, et al. API design for machine learning software: experiences
13		from the scikit-learn project. arXiv preprint arXiv:13090238. 2013.
14	26.	Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Paper presented at:
15		Advances in neural information processing systems2017.
10	27.	Chen T. Guestrin C. Xgboost: A scalable tree boosting system. Paper presented at: Proceedings
17	_/.	of the 22nd acm sigkdd international conference on knowledge discovery and data mining2016
10	28	The nandas development team, nandas dev/nandas: Dandas, 2020:
20	20.	https://doi.org/10.5281/zopodo.2500124_lop.2021
20	20	The set of
21	29.	Zhou H, Della PR, Roberts P, Gon L, Dhallwal SS. Utility of models to predict 28-day or 30-day
22		unplanned hospital readmissions: an updated systematic review. BMJ Open. 2016;6(6):e011060.
23	30.	Brownlee J. A Gentle Introduction to Imbalanced Classification. 2020;
25		https://machinelearningmastery.com/what-is-imbalanced-classification/. Accessed Jan 2021.
26	31.	Government of Canada. Forward Sortation Area—Definition. 2015;
27		https://www.ic.gc.ca/eic/site/bsf-osb.nsf/eng/br03396.html. Accessed April 2020, 2020.
28	32.	Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9-
29		CM and ICD-10 administrative data. <i>Medical care</i> . 2005:1130-1139.
30	33.	World Health Organization, International language for drug utilization research, ATC/DDD, 2020;
31		https://www.whocc.no/. Accessed Jun 2020, 2020
32	3/	College of Physicians and Surgeons of Alberta, OME and DDD conversion factors
33	54.	http://www.cpsa.ca/wp.contont/uploads/2017/06/OME and DDD conversion Factors ndf
34	25	<u>Inter.//www.cpsa.cd/wp-content/upioaus/2017/00/OME-and-DDD-conversion-Factors.pur</u> .
35	35.	Goldstein BA, Navar Alvi, Carter RE. Moving beyond regression techniques in cardiovascular risk
36		prediction: applying machine learning to address analytic challenges. European neart journal.
37		201/;38(23):1805-1814.
38	36.	Rose S. Machine Learning for Prediction in Electronic Health Data. JAMA Network Open.
39		2018;1(4):e181404-e181404.
40	37.	Morgan DJ, Bame B, Zimand P, et al. Assessment of Machine Learning vs Standard Prediction
41		Rules for Predicting Hospital Readmissions. JAMA Network Open. 2019;2(3):e190348-e190348.
42	38.	Saito T, Rehmsmeier M. The Precision-Recall Plot Is More Informative than the ROC Plot When
43		Evaluating Binary Classifiers on Imbalanced Datasets. PLOS ONE. 2015;10(3):e0118432.
44 45	39.	Shah ND. Steverberg FW. Kent DM. Big Data and Predictive Analytics: Recalibrating
45		Expectations /AMA 2018-320(1):27-28
40 47	40	Molnar C. Interpretable machine learning. A Guide for Making Black Box Models Explainable
47 18	40.	
40 40	4.1	2013. Contara for Madiana & Madianid Convince (CMC) Announcement of colondar year (CV) 2010
42 50	41.	Centers for Medicare & Medicaid Services (CMS). Announcement of calendar year (CY) 2019
51		Medicare Advantage capitation rates and Medicare Advantage and Part D payment policies and
52		final call letter.
53		
54		
55		
56		
57		
58		20
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure Legend

Figure 1. Patient flow diagram of study participants used for training and validating ML models. NACRS: National Ambulatory Care Reporting System; DAD: Discharge Abstract Database; VS: Vital Statistics; PIN: Pharmaceutical Information Network; Claims: Physician Claims

Figure 2. Area under the receiver operating characteristic curve (AUROC) (A) and precision-recall curves (B) for all dispensations using logistic regression (L1), neural network, support vector machine (SVM), XGBoost and Naïve-Bayes; precision-recall curves for higher risk dispensations according to predicted risk percentile categories for logistic regression (C) and XGBoost (D) using the 2018 validation set.

Figure 3. Calibration curves plotting observed vs. quantiles of estimated risk for XGBoost (A) and logistic regression (B) classifiers using the 2018 validation dataset. For both classifiers, the majority of counts (dispensations) were predicted to be lower risk.

Figure 4. Simulation of a clinical workflow with daily uploads and events per 100 daily dispenses by risk percentiles using 2018 Quarter 1 (Q1) data for logistic regression (A) and XGBoost (B) classifiers. For both classifiers, the majority of counts (dispensations) were predicted to be lower risk.

Table 1. Highest percentiles of estimated risk and predictive performance using the XGBoost and logistic regression classifiers for the 2018 validation dataset (n=393,023). Total number of dispenses= 1,977,389; total number of outcomes= 31,392.

Metric	Top 0.1%ile		Top 1%ile		Top 5%ile		Top 10%ile	
	XGBoost	Logistic Regression	XGBoost	Logistic Regression	XGBoost	Logistic Regression	XGBoost	Logistic Regression
Number of								
Dispenses	1,977	1,977	19,774	19,774	98,869	98,869	197,739	197,739
TP captured	655	472	4204	4100	13224	13293	18404	18409
Percent of TP	2.09	1.50	13.39	13.06	42.13	42.35	58.63	58.64
FP captured	1322	1505	15570	15674	85645	85576	179335	179330
PPV	33.13	23.87	21.26	20.73	13.38	13.45	9.31	9.31
PLR	30.71	19.44	16.74	16.22	9.57	9.63	6.36	6.36
Post-test								
Probability*	33.13	23.87	21.26	20.73	13.38	13.45	9.31	9.31
NNS	3.17	4.49	5.08	5.22	8.48	8.43	12.95	12.95

*Pre-test probability estimated at 1.6% using prevalence.

TP: true positives; FP: false positives; PPV: positive predictive value; PLR: positive likelihood ratio; NNS: number needed to screen

Note: Logistic regression used L1 (lasso) parameter regularization
Table 2. Discrimination performance of guideline approach using the 2018 validation set. Guideline approaches were adapted from the 2017 Canadian Opioid Prescribing Guideline and 2019 Centers for Medicare & Medicaid Services (CMS) opioid safety measures and compared to logistic regression and XGBoost classifiers (each with an estimated area under the receiver operating characteristic curve of 0.88).

Canadian Guidelines *	AUROC	Sensitivity	Specificity
History of mental disorder only	0.620	0.90	0.34
Substance abuse only	0.686	0.99	0.37
OME/day >90 only	0.539	0.22	0.85
(Mental disorder and substance abuse) OR OME/day >90	0.690	0.91	0.47
Mental disorder and substance abuse AND OME/day >90	0.560	0.20	0.91
Mental disorder OR substance abuse OR OME/day >90	0.589	0.99	0.18
CMS Guidelines**	4.		
High opioid dose (>120 OME/day for 90+days)	0.507	0.081	0.933
Concurrency (Opioid & BZRA for 30+ days)	0.575	0.423	0.727
Multiple doctors (>4)	0.591	0.294	0.888
Multiple pharmacies (>4)	0.537	0.120	0.959
All conditions	0.50	0.001	0.999
Any condition	0.622	0.62	0.625

OME: daily oral morphine equivalents; BZRA: benzodiazepine receptor agonist. Elixhauser scoring ICD codes were used to identify mental disorders and substance abuse.

2	
3	*The Canadian guidelines do not specify timelines. >90 OME was determined by taking the average
4	daily OME over the 30 days prior to dispensation
5	
6	**The CMS guidelines specify a timeline of 90 or more days at >120 OME and concurrent use of
7	onioide and honzodiazonings for 20 days or more
8	opiolus and benzoulazepines for 50 days of more
9	
10	
11	
12	
13	
14	
15	
10	
17	
10	
19	
20	
27	
23	
23	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
40	
47	
40	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	24
59	24
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 3. Discrimination performance based on database source using area under the receiver operating characteristic curve (AUROC) for the logistic regression classifier on the 2018 validation set.

Database source	Predictor Variables formed	AUROC
	from database	
PIN only	Drug utilization + Prescription	0.78
	history (ATC level 3)	
DAD, NACRS, Claims	Co-morbidities	0.85
PIN, DAD NACRS, Claims (all	Demographic + Drug Utilization	0.88
databases used in study)	+ Healthcare Utilization	
	+ Co-morbidities	

Note: drug utilization includes features describing oral morphine equivalents³⁴, concurrent use with benzodiazepines, number of opioid and benzodiazepine dispensations, number of unique opioid and benzodiazepine molecules; health care utilization includes features describing number of unique health providers visited, number of hospital visits; logistic regression used L1 (lasso) parameter regularization

Figure 1. Patient flow diagram of study participants used for training and validating ML models. NACRS: National Ambulatory Care Reporting System; DAD: Discharge Abstract Database; VS: Vital Statistics; PIN: Pharmaceutical Information Network; Claims: Physician Claims

BMJ Open

Figure 2. Area under the receiver operating characteristic curve (A) and precision-recall curves (B) for all dispensations using logistic regression (L1), neural network, support vector machine (SVM), XGBoost and Naïve-Bayes; precision-recall curves for higher risk dispensations according to predicted risk percentile categories for logistic regression (C) and XGBoost (D) using the 2018 validation set.

BMJ Open

Figure 3. Calibration curve plotting observed vs. quantiles of estimated risk for the XGBoost classifier using the 2018 validation dataset. The majority of counts (dispensations) were predicted to be lower risk.

(A) XGBoost

BMJ Open

Figure 4. Simulation of a clinical workflow with daily uploads and events per 100 daily dispenses by risk percentiles using 2018 Quarter 1 (Q1) data for logistic regression (A) and XGBoost (B) classifiers. For both classifiers, the majority of counts (dispensations) were predicted to be lower risk.

(A) Logistic Regression (L1)

1	
2 3 4	Supplementary Content
5	eAppendix. Machine learning algorithms
7 8 9	eTable 1. Diagnostic codes used to exclude patients who had cancer, were pregnant, or were under palliative care.
10 11 12	eTable 2. Diagnostic codes used to identify the defined study outcome from emergency visit, hospitalization and death data.
13 14 15 16	eTable 3. Baseline characteristics of study patients (n=392,979). Co-morbidities were determined using Elixhauser criteria. All p-values in the chi ² test of independence were <0.001 unless otherwise indicated.
17 18 19	eTable 4. Characteristics of study participants between training and validation groups using 2017 data.
20 21	eTable 5. Candidate predictors used to train ML algorithms.
22 23 24 25	eTable 6. Discrimination performance using area under the receiver operating characteristic curve (AUROC) of various ML algorithms. Training and validation were done using 2017 data (n=393,979); another independent validation was performed using 2018 data (n=393,023).
26 27	eFigure1. Schematic of study design and feature generation
28 29 30 31	eFigure2 . Feature importance from logistic regression and tree-based (XGBoost) classifiers using the 2018 validation set.
32 33 34	eFigure3 . Shapley values and feature impact in the XGBoost classifier using the 2018 validation set to describe "associations" between features and the outcome.
35 36 37 38 39	eFigure 4. Calibration curve plotting observed vs. quantiles of estimated risk for the logistic regression (L1) classifier using the 2018 validation dataset. The majority of counts (dispensations) were predicted to be lower risk.
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	eReferences.

59

eAppendix. Machine Learning Algorithms

Introduction

While there are always updates and new methods coming up in the fields of machine learning, in this study, we have focused on some of the most reliable and proven approaches for predictive modelling which are explainable and popularly used in previous studies of similar nature.

Logistic Regression

Regression analysis models the relationship between a dependent variable and a set of independent variables [1]. Typically, this includes understanding how the value of the dependent variable changes with the changes in the values of independent variables. Logistic regression [1] uses the logistic function to model a binary dependent variable, where, based on the values of the independent variables the model can approximate one of the two classes, the instance belongs to. This basic binary model can be extended to deal with multiple classes (e.g. One-vs-all classifiers). However, logistic regression is only capable of modeling a linear relationship of independent variables to the dependent variable, hence limited to problems with linear decision boundaries. We used the sci-kit learn library in our experiments[6] and found L1 regularization to be more effective.

Ridge Classifier

We used the ridge classifier implemented in the Scikit learn library[5]. It implements a classifier using ridge regression which uses an L2 regularization on the least square objective function. The library converts the labels into -1 and 1 and fits a linear regression on the converted labels with the regularization.

Random Forest

Random forest is a tree ensemble learning algorithm that has wide applicability in many domains[1]. Random forest is a nonlinear learning algorithm, which arrives at nonlinear decision boundaries by independently combining multiple decision trees. Each individual decision tree in the forest can be grown independently of each other on a subset of the training data. Random forests are mainly sensitive to the number of trees, the depth of a tree and the number of covariates randomly chosen to split at each node[1]. These hyper-parameters can be tuned to find the best configuration of every dataset. Random Forests, in general, are less prone to overfit since they always grow individual trees on a subset of the training data[1]. At prediction time, the decision of each tree is aggregated to compute the final prediction.

Neural Networks (NN)

Neural networks are another collection of non-linear learning algorithms with high representation power. They are known to be able to find mappings from an input to an output from a larger non-linear function space [2]. This ability to represent a larger space of nonlinear

functions has shown to be very effective recently in many application domains such as natural language processing, computer vision, genomics, computer games and health[2]. Neural networks come in many flavors learning nonlinear mapping of different types of data such as Convolutional NNs being most effective with images and Recurrent NNs for time series and language data. Identifying the most effective neural network structure is one of the difficult and the most time-consuming aspect of applying neural networks to new application domains and data. Generally, neural networks try to exploit the relationships in the raw unstructured data (eg: image and text) presented to the network but with more structured data such as health records and ICD codes learning relationships is much complex. Our neural network models are mainly based on densely connected hidden layers with ReLu[6] activation function. We used the crossentropy loss for the binary classification Adam optimizer. We used a simple feed forward network using Sklearn MLP classifier with hyperparameter tuning for the NN.

Boosted Learning Algorithms

Boosting is a process to ensemble multiple base learning algorithms to arrive at better overall performance than any individual base learner[1]. In contrast to independently building multiple models from the subsets of the data, boosting re-weights the training data every time a model is learned for future models. This weighting happens to give more preference to currently misclassified data points in the next round compared to the correctly classified data points. Therefore future learners try to do better on the misclassified data points leading to a collection base learner having a better-combined prediction. This process is sequential so each base learner is dependent on the output of the previously trained model (it is worthy to note XGBoost provides a parallel tree boosting alternative). In our work, we have experimented with several boosting meta-learning algorithms such as XGBoost[7], AdaBoost[5] and GBM[5]. XGBoost uses a variant of trees as the base learner whereas AdaBoost (from Sci-kit learn) can use many ML algorithms as base learners. GBM uses logistic regression by default as the base learner. We used all 3 types of boosting with tuned hyperparameters for comparison.

Naive Bayes

Naive Bayes is based on the Bayes theorem with a strong independence assumption between the covariates[1]. This assumption helps in building a simple probabilistic model for learning and inference. Naive Bayes coefficients scale linearly with the number of covariates making this a suitable model for high-dimensional data. We used Naive Bayes as a simple baseline learning algorithm for comparison.

Support Vector Machines (SVM)

SVMs[4] are maximum margin classifiers optimizing for learning a hyperplane having the maximum distance away from each of the class data points[1]. SVM is a linear classifier but with the kernel trick to map the inputs to the higher dimensional space, it can learn nonlinear decision boundaries in the input space. SVMs are very effective binary classifiers with the kernel trick[1]. With larger datasets, SVMs tend to become more computationally intensive.

eTable 1. Diagnostic codes used to exclude patients who had cancer, were pregnant, or were under palliative care.

Condition	ICD 9	ICD 10
Cancer	140.x - 239.x	C00.x - C99.x, D00.x - D49.x
Pregnancy	630.x - 679.x	O00.x - O99.x
Palliative	V66	Z51.0, Z51.1, Z51.5

eTable 2. Diagnostic codes used to identify the defined study outcome from emergency visit, hospitalization and death data.

ICD 10	Condition
T40.x	Poisoning by, adverse effect of and underdosing of narcotics and psychodysleptics
F55.x	Abuse of non-psychoactive substances
F11.x - F19.x	Mental and behavioral disorders due to psychoactive substance use

eTable 3. Baseline characteristics of study patients (n=392,979). Co-morbidities were determined using

Elixhauser criteria. All p-values in the chi² test of independence were <0.001 unless otherwise indicated.

	Event		n=6,608	
	n=386,371			
Age:				
Mean (SD)	48.1 (16.4)		41.2 (12.4)	
18-45	162057	41.9	3466	52.4
45-65	154632	40.0	2656	40.2
>65*	69682	18.0	486	7.4
Male	197491	50.3	3922	59.4
Female	194794	49.7	2686	40.6
Alcohol Disorder	66320	16.9	5220	79.0
Arrhythmia	90621	23.1	1959	29.6
Blood Loss Anemia	1164	0.3	82	1.2
Congestive Heart	18954	4.8	565	8.6
Failure				
Coagulopathy	8053	2.1	356	5.4
Deficiency Anemia	34188	8.7	971	14.7
Depression	159140	40.6	5518	83.5
Diabetes**	64132	16.3	1408	21.3
Substance Abuse	74678	19.0	5485	83.0
Disorder				
Fluid Disorder	42690	10.9	3012	45.6
Hypertension**	140171	35.7	2624	39.7
Hypothyroidism	45519	11.6	601	9.1
Injury^	195688	49.9	5541	83.9
Liver Disorder	21656	5.5	1588	24.0
Neurologic Disorder	230490	58.8	5387	81.5
Obesity	63393	16.2	970	14.7
Poisoning [^]	17434	4.4	2775	42.0
Psychoses	35870	9.1	3162	47.9
Renal Disorder	16166	4.1	499	7.6
Rheumatoid Conditions	111458	28.4	3157	47.8
HIV Infection	1098	0.3	141	2.1
Paralysis	3874	1.0	187	2.8
Peptic Ulcer Disease	11728	3.0	509	7.7
Pulmonary Circulation Disorder	9611	2.4	430	6.5
Chronic Pulmonary Disease	102990	26.3	2913	44.1
Peripheral Vascular Disease	14467	3.7	389	5.9
Valvular Disease	7308	1.9	226	3.4
Weight Loss	16207	4.1	747	11.3

*p-value for age >65 is an estimated 0.037

^ Injury: ICD10: S00-T98; Poisoning: ICD10: T36-T50

** Complicated, uncomplicated diabetes and hypertension were collapsed into one category each

to beer terien only

eTable 4. Characteristics of study participants between training and validation groups using
2017 data.

Characteristic	Number in	Percent	Number in	Percent
	training group		validation group	
	N=275,150~		N=117,829~	
Age:				
Mean (SD)	48.3 (16)		48.2 (16)	
18-45	114356	41.5	49909	42.3
45-65	111859	40.7	47132	40.0
>65	48935	17.8	20788	17.6
Male	138603	48.5	59339	48.4
Female	136545	47.8	58490	47.7
Alcohol Disorder	46792	16.4	20199	16.5
Arrhythmia	63637	22.3	27201	22.2
Blood Loss Anemia	839	0.3	336	0.3
Congestive Heart	13320	4.7	5694	4.6
Failure				
Coagulopathy	5697	2.0	2393	2.0
Deficiency Anemia	24096	8.4	10179	8.3
Depression	112080	39.2	47628	38.9
Diabetes**	45131	15.8	19144	15.6
Substance Abuse	52609	18.4	22713	18.5
Disorder				
Fluid Disorder	30272	10.6	12780	10.4
Hypertension**	98546	34.5	41840	34.1
Hypothyroidism	31908	11.2	13666	11.2
Injury*	137423	48.1	58865	48.0
Liver Disorder	15252	5.3	6567	5.4
Neurologic	161706	56.5	69341	56.6
Disorder	44607	45.0	10000	45.4
Obesity	44607	15.6	18882	15.4
Poisoning*	12503	4.4	5293	4.3
Psychoses	25422	8.9	10860	8.9
Renal Disorder	11403	4.0	4817	3.9
Rheumatoid Conditions	/8268	27.4	33420	27.3
HIV Infection	774	0.3	336	0.3
Paralysis	2717	1.0	1176	1.0
Peptic Ulcer	8239	2,9	3533	2.9
Disease	0200	2.9		2.5
Pulmonary	6771	2.4	2877	2.3
Circulation				
Disorder				
Chronic Pulmonary	72265	25.3	30949	25.3
Disease				

Peripheral Vascular	10228	3.6	4278	3.5
Disease				
Valvular Disease	5111	1.8	2215	1.8
Weight Loss	11477	4.0	4790	3.9

~p-values for chi² test of independence were all >0.06 when comparing training and validation sets. *Injury: ICD10: S00-T98; Poisoning: ICD10: T36-T50

** Complicated, uncomplicated diabetes and hypertension were collapsed into one category each

eTable 5. Candidate predictors used to train ML algorithms.

Category (data source)	Description
Demographic information (PIN)	age, sex, postal codes, mean income
Drug utilization history (PIN)	drug dispenses in past 30 days using on ATC codes, oral morphine equivalents, concurrent use with benzodiazepines defined as at least 7 days of cumulative concurrent use in the 30 days prior to dispensation, number of dispensations and unique molecules of opioids and benzodiazepines
Health care utilization (PIN	flags for previous hospitalizations, number of unique
DAD)	providers
ICD based co-morbidities (DAD,	Elixhauser condition flags based on the past 5 years of claims,
NACRS, Claims)	hospitalizations, and emergency visits.

Note: ICD: International Statistical Classification of Diseases and Related Health Problems, World Health Organization.

eTable 6. Discrimination performance using area under the receiver operating characteristic curve (AUROC) of various ML algorithms using all features (demographics, health utilization, prescription history, co-morbidities). Training and validation were done using 2017 data (n=393,979); another independent validation was performed using 2018 data (n=393,023).

Algorithm	Train	Validation 2017	Validation 2018
XGBoost Classifier	0.897	0.870	0.884
Logistic Regression	0.887	0.869	0.884
Gradient Boosting Classifier	0.898	0.868	0.883
AdaBoost Classifier	0.884	0.868	0.882
Random Forest Classifier	0.909	0.863	0.881
Ridge Classifier	0.895	0.863	0.879
SVM	0.896	0.860	0.878
Gaussian Naive Bayes	0.846	0.826	0.847
Decision Tree Classifier	0.919	0.791	0.822
Neural Networks	0.827	0.804	0.821

Note: Logistic regression used L1 (lasso) parameter regularization

eFigure 1. Schematic of study design and feature generation

eFigure2. Feature importance from logistic regression and tree-based (XGBoost) classifiers using the 2018 validation set. The logistic regression classifier relied more on co-morbidity data from DAD, NACRS, and Claims databases; XGBoost classifier relied more on data from the PIN database. AUROCs for both classifiers were similar at 0.88.

LOGISTIC REGRESSION	
Drug Abuse	1.00
Age	0.65
Prior Hospitalization	0.62
Alcohol Abuse	0.62
Fluid Disorder	0.32
Substance Poison	0.31
Psychoses	0.31
Num_Benzo_Ingred_30	0.26
Depression	0.19
Concurrent_Opioid_Benzo_30	0.19
Injury	0.17

TREE-BASED MODEL	
Age	1.00
Num_Fills_30	1.00
Num_Opioid_Fills_30	0.86
Num_Benzo_Fills_30	0.46
Doctor_Risk_30	0.45
Total_OME_30_Days_Supply	0.43
Substance poison	0.37
Pharmacy_Risk_30	0.35
Num_Doctors_30	0.34
Income	0.34
Prior hospitalization	0.26

Note: Logistic regression used L1 (lasso) parameter regularization

eFigure 3. Shapley values and feature impact in the XGBoost classifier using the 2018 validation set to describe "associations" between features and the outcome. Features with the most impact on the model with drug abuse with drug abuse ranked highest (A); tornado plot illustrating feature impact. Red indicates higher impact and plots to the right of 0.0 indicate the tendency to be associated with the study outcome while blue indicates lower impact and plots to the left of 0.0 indicate the tendency to be associated with no outcome (B); explaining the prediction of study outcomes based on predictor values for 4 patients (C).

(A)

(B)

Note: RCPT_AGE- age at opioid dispensation; Fluiddo- fluid disorder according to Elixhauser comorbidity; Gender_M-male sex' NO5B-ANXIOLYTICS- prescribed ATC code benzodiazepine derivatives; Pharmacy_Risk_30- derived feature using proportion of opioid/benzodiazepine patients that experienced the study outcome in the previous 30 days prior to opioid dispensation for each pharmacy; NO3A-ANTIEPILEPTICS- ATC code for anti-epileptics dispensed to patient; Doctor_Risk_30- derived feature using proportion of opioid/benzodiazepine patients that experienced the study outcome in the previous 30 days prior to opioid dispensation for each physician; Num_Opi_Fills_30- number of opioid dispensations in the previous 30 days prior to opioid dispensation; PriorHospRelevant- flag for history of any opioid related hospitalization in the previous 180 days prior to opioid dispensation; NO7B-DRUGS USED IN ADDICTIVE DISORDERS- ATC code for drugs dispensed to patient for treating substance abuse disorders; A11D-VITAMIN B1, PLAIN AND IN COMBINATION WITH VITAMIN B6 AND B12- ATC code for patients dispensed Vitamins B1, B6, or B12; CODEIN: history of codeine use

Note: The "reference point" is called the "base value" at -3.902. Values in bold to the left of the base value indicate a lower predicted probability of the study outcome and values in bold to the right indicate a higher predicted probability of the study outcome. The top plot describes a patient at "low risk" for the study outcome. As can be seen from the feature values, this patient has a negative history for the specified features. The middle 2 plots describe a patient at "medium risk" while the bottom plot shows a patient at "high risk" for the study outcome.

eFigure 4. Calibration curve plotting observed vs. quantiles of estimated risk for the logistic regression (L1) classifier using the 2018 validation dataset. The majority of counts (dispensations) were predicted to be lower risk.

eReferences

- 1. Friedman, J., Hastie, T., Tibshirani, R.: The elements of statistical learning, vol. 1. Springer series in statistics New York (2001)
- 2. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)
- 3. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009.
- 4. Chang CC, Lin CJ. LIBSVM: A library for support vector machines. ACM transactions on intelligent systems and technology (TIST). 2011 May 6;2(3):1-27.
- 5. <u>Scikit-learn: Machine Learning in Python</u>, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.
- Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. InProceedings of the 27th international conference on machine learning (ICML-10) 2010 (pp. 807-814).

 Chen T, Guestrin C. Xgboost: A scalable tree boosting system. InProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining 2016 Aug 13 (pp. 785-794).

BMJ Open

BMJ Open

Safe opioid prescribing: a prognostic machine learning approach to predicting 30-day risk after an opioid dispensation in Alberta, Canada

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-043964.R2
Article Type:	Original research
Date Submitted by the Author:	12-Apr-2021
Complete List of Authors:	Sharma, Vishal; University of Alberta, School of Public Health Kulkarni, Vinaykumar; OKAKI Health Analytics Eurich, Dean; University of Alberta, School of Public Health Kumar, Luke; Alberta Machine Intelligence Institute Samanani, Salim; Okaki Health Intelligence,
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Health informatics, Public health
Keywords:	PUBLIC HEALTH, EPIDEMIOLOGY, Adverse events < THERAPEUTICS, Health & safety < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Clinical governance < HEALTH SERVICES ADMINISTRATION & MANAGEMENT
	•

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

Safe opioid prescribing: a prognostic machine learning approach to predicting 30-day risk after an opioid dispensation in Alberta, Canada

Author list (in order):

Vishal Sharma (0000-0001-7907-1183), Vinaykumar Kulkarni, Dean T. Eurich (0000-0003-2197-0463), Luke Kumar, Salim Samanani (0000-0001-6751-4805)

Address for each author:

2-040 Li Ka Shing Center for Health Research Innovation, School of Public Health, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1 Vishal Sharma BPharm PhD Candidate,

OKAKI Health Intelligence, Edmonton, Alberta, Canada, Vinaykumar Kulkarni MSc

2-040 Li Ka Shing Center for Health Research Innovation, School of Public Health, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1 Dean Eurich professor

Alberta Machine Intelligence Institute, Edmonton, Alberta, Canada, T5J 3B1 Luke Kumar MSc

OKAKI Health Intelligence, Calgary, Alberta, Canada, Salim Samanani MD, Medical Director

Corresponding Author:

Dean Eurich, 2-040 Li Ka Shing Center for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1; Phone 780-492-6333; fax 780-492-7455; email: deurich@ualberta.ca

Acknowledgement

This study is based on data provided by The Alberta Strategy for Patient Orientated Research (AbSPORU) SUPPORT unit and Alberta Health. The interpretation and conclusions contained herein are those of the researchers and do not necessarily represent the views of the Government of Alberta or AbSPOR. Neither the Government of Alberta, ABSPOR nor Alberta Health expresses any opinion in relation to this study. This work was supported by Mitacs through the Mitacs Accelerate Program (VS and DTE).

Contributors: VS VK LK SS and DTE were involved in the conception and design of the study. VS VK LK SS and DTE analyzed the data. VS VK and LK drafted the article. VS VK LK DTE and SS revised the article. All authors gave final approval of the version to be published. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted. DTE is the guarantor.

Funding: This study received no funding.

Copyright/license for publication: The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all **authors**, a worldwide licence to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future), to i) publish, reproduce, distribute, display and store the Contribution, ii) translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution, iii) create any other derivative work(s) based on the Contribution, iv) to exploit all subsidiary rights in the Contribution, v) the inclusion of electronic links from the Contribution to third party material where-ever it may be located; and, vi) licence any third party to do any or all of the above.

Competing Interest: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the submitted work; Salim Samanani has received grants from the College of Physicians & Surgeons of Alberta; no other relationships or activities that could appear to have influenced the submitted work.

Ethical approval: This study was approved by the Health Research Ethics board at the University of Alberta (#Pro00083807_AME2).

Data Sharing: The data used in this study is not available for external analysis. However, administrative health data can be accessed from Alberta Health by following defined research protocols and confidentiality agreements.

<text><text> Transparency: The lead author, VS, (the manuscript's guarantor, Dean Eurich) affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as originally planned (and, if relevant, registered) have been explained.

Word Count: 3357

Abstract

Objective: To develop machine-learning models employing administrative-health data that can estimate risk of adverse outcomes within 30-days of an opioid dispensation for use by health-departments or prescription monitoring programs.

Design, Setting, and Participants: This prognostic study was conducted in Alberta, Canada between 2017-2018. Participants included all patients over 18 years of age who received at least one opioid dispensation. Pregnant and cancer patients were excluded.

Exposure: Each opioid dispensation served as an exposure.

Main Outcomes/Measures: Opioid related adverse outcomes were identified from linked administrative health-data. Machine-learning algorithms were trained using 2017 data to predict risk of hospitalization, emergency department visit, and mortality within 30-days of an opioid dispensation. Two validation sets, using 2017 and 2018 data, were used to evaluate model performance. Model discrimination and calibration performance were assessed for all patients and those at higher risk. Machine-learning discrimination was compared to current opioid guidelines.

Results: Participants in the 2017 training set (n=275,150) and validation set (n=117,829) had similar baseline characteristics. In the 2017 validation set, c-statistics for the XGBoost, logistic regression, and neural network classifiers were 0.87, 0.87, and 0.80, respectively. In the 2018 validation set (n=393,023), the corresponding c-statistics were 0.88, 0.88, and 0.82. C-statistics from the Canadian guidelines ranged from 0.54-0.69 while the US guidelines ranged from 0.50-0.62. The top 5-percentile of predicted risk for the XGBoost and logistic regression classifiers captured 42% of all events and translated into post-test probabilities of 13.38% and 13.45%, respectively, up from the pre-test probability of 1.6%.

Conclusion: Machine-learning classifiers, especially incorporating hospitalization/physician claims data, have better predictive performance compared to guideline or prescription history only approaches when predicting 30-day risk of adverse outcomes. Prescription monitoring programs and health departments with access to administrative data can use machine-learning classifiers to effectively identify those at higher risk compared to current guideline-based approaches.

Article Summary

Strengths and Limitations:

- This study incorporated near complete capture of opioid dispensations from community pharmacies and used validated administrative health data.
- This study used commonly available algorithms to train machine-learning models using data which is available to government health departments in all provinces in Canada and other single payer jurisdictions; ML classifiers were evaluated with informative prognostic metrics not usually seen in other studies.
- Our predictive models used dispense events and not medication utilization, which is difficult to capture in administrative data.

• Our training dataset does not account for non-prescription opioids, opioids administered in hospitals, and other risks associated with non-prescription use.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Introduction

Canada is among the countries with the highest rates of opioid prescribing in the world, making prescription opioid use a key driver of the current opioid crisis¹; a major part of the policy response to the opioid crisis focuses on endorsing safe, appropriate opioid prescribing²⁻⁴. In order to minimize high risk opioid prescribing and to identify patients at high risk of opioid related adverse outcomes, numerous health regulatory bodies have released clinical practice recommendations for health providers regarding appropriate opioid prescribing^{3,5,6}.

Prescription monitoring programs (PMPs) have been implemented around the world, like Alberta's provincial Triplicate Prescription Program (TPP)⁷ in Canada, and are mandated to monitor the utilization and appropriate use of opioids to reduce adverse outcomes. In most jurisdictions, both population-level monitoring metrics and clinical decision aids are used to identify patients at risk of hospitalization or death and are most often based on prescribing guidelines. However, a comprehensive infrastructure of administrative data containing patient level International Statistical Classification of Diseases and Related Health Problems (ICD)⁸ codes and prescription drug histories exists in Alberta and other provinces in Canada which could be further integrated to predict opioid-related risk. Furthermore, current guidelines addressing high risk prescribing and utilization of opioids were derived from studies that used traditional statistical methods to identify population level risk factors for overdose rather than an individual's absolute risk^{3,9,10}; these population estimates may not be generalizable to different populations¹¹. Thus, a functional gap exists in many health jurisdictions where much of the available administrative health data is not being leveraged for opioid prescription monitoring.

BMJ Open

Supervised machine learning (ML)^{12,13} is an approach that uses computer algorithms to build predictive models in the clinical setting that can make use of the large amounts of available administrative data^{14,15}, all within a well-defined process¹⁶. Supervised ML trains on labelled data to develop prediction models that are specific to different populations and, in many cases, can provide better predictive performance than traditional, population-based statistical models^{10,15,17}. We identified one study¹⁰ that applied ML techniques to predict overdose risk in opioid patients pursuant to a prescription. In their validation sample, they found that the deep neural network (DNN) and gradient boosting machines (GBM) algorithms carried the best discrimination performance based on estimated c-statistics and that the ML approach out-performed the guideline approach in terms of risk prediction; neural networks have little interpretability and are not necessarily better at predicting outcomes when trained on structured data¹⁸. This study relied on c-statistics to evaluate their ML models and did not emphasize other performance metrics required to assess clinical utility that are recommended by medical reporting guidelines^{11,13,19,20}. It also did not address the important issue of ML model interpretability²¹. Reporting informative prognostic metrics is needed to better understand the capabilities of ML classifiers if health departments and PMPs are to incorporate them into their decision-making processes.

The objective of our study was to further develop and validate ML algorithms (beyond just DNN) to predict the 30-day risk of hospitalization, emergency visit and mortality for a patient in Alberta, Canada at the time of an opioid dispensation using administrative data routinely available to health departments and PMPs and evaluate them using the above referenced reporting guidelines. We also analyzed feature importance to provide meaningful

BMJ Open

interpretations of the ML models. Comparing discrimination performance (area under the receiver operating characteristics curves), we hypothesized that the ML process would perform better than the current guideline approach for predicting risk of adverse outcomes related to opioid prescribing.

Methods

Study Design and Participants

This prognostic study used a supervised ML scheme. All patients in Alberta, Canada who received a dispensation for an opioid, were 18 years of age and older between Jan 1, 2017 and Dec 31, 2018 were eligible. Patients were excluded from all analyses if they had any previous diagnosis of cancer, received palliative interventions or were pregnant during the study period (eTable 1 in Supplement) as use of opioids in these contexts is clinically different.

Government health departments and payers in many jurisdictions have systems to capture prescription histories and ICD diagnostic codes. As such, we linked various administrative health data sets available in Alberta, Canada using unique patient identifiers in order to establish a complete description of patient demographics, drug exposures and health outcomes. These databases include *1) Pharmaceutical Information Network (PIN):* PIN data includes all dispensing records from community pharmacies from all prescriber types occurring in the province outside of the hospital setting. PIN collects all drug dispensations irrespective of age or insurance status in Alberta; Anatomical Therapeutic Chemical classification (ATC) codes²² were used to identify opioid dispensations (eSupplement), *2) Population and Vital Statistics Data (VS, Alberta Services):* sex, age, date of birth, death date, immigration and emigration

BMJ Open

data, and underlying cause of death according to the World Health Organization algorithm using ICD codes⁸, 3) Hospitalizations and Emergency Department Visits (National Ambulatory *Care Reporting System [NACRS], Discharge Abstract Database [DAD]):* all services, length of stay, diagnosis (up to 25 ICD-10⁸ based diagnoses). Data and coding accuracy are routinely validated both provincially and centrally via the Canadian Institute for Health Information, and 4) Physician Visits/Claims (Alberta Health): all claims from all settings (e.g., outpatient, office visits, emergency departments, inpatient) with associated date of service, ICD code, procedure and billing information.

This study followed the TRIPOD and STARD reporting guidelines²³⁻²⁵ and received ethics approval from the University of Alberta ethics board (Pro00083807_AME1). All analyses were done using Python (v. 3.6.8,), SciKit Learn²⁶ (v. 0.23.2) SHAP²⁷ (v. 0.35), XGBoost (v. 0.90)²⁸, Pandas (v. 1.0.5)²⁹ and H20 Driverless AI (version 1.9).

Measures and Outcome

ML models were trained on a labelled dataset in which the observation/analysis unit was an opioid dispensation. Every opioid dispensation, not just the incident one, was used as a potential instance to predict the risk of our outcome. The primary outcome was a composite of a drug-related hospitalization, emergency department (ED) visit or mortality within 30 days of an opioid dispensation based on ICD-10 codes identified from DAD, NACRS and Vital Statistics (T40, F55, F10-19; eTable 2 in Supplement)^{2,10,30}.

We anticipated that our defined outcome would be a rare event, leading to a class imbalanced dataset³¹. To address this, we relied on specifying balanced class weightage for

BMJ Open

supporting algorithms; other approaches were deemed not suitable (e.g., oversampling using randomly repeating minority class); under sampling (sub-sampling within the majority class) resulted in changes in outcome prevalence. Class weightage is a commonly used method³² to address class imbalance along with over and under-sampling approaches. However, oversampling, which involves generating new opioid dispensations from the original data distribution and is prone to introducing bias, is difficult due to the categorical nature of the data and beyond the scope of this study. With under-sampling, which takes samples from the majority class (in this case, no 30-day event after dispensation), we would not be able to use all of the information provided by the data in instances with no outcome. Hence, we decided to use the class weightage method which does not alter the data distribution. Instead, the learning process is adjusted in a way that increases the importance of the positive class (instances that led to a 30-day event)³³.

Predictor Candidates for ML Models

Predictor variables in our ML models included those that were informed by the literature^{3,4,10} and those directly obtained from the data sets. These included features based on demographics (age, sex, income using Forward Sortation index from postal codes³⁴), comorbidity history using ICD-based Elixhauser score categories³⁵, health care utilization (number of unique providers, number of hospital and emergency department visits), and drug utilization (level 3 ATC codes²², oral morphine equivalents³⁶, concurrent use with benzodiazepines, number of opioid and benzodiazepine dispensations, number of unique opioid and benzodiazepine molecules). Depending on the potential predictor and data availability, we used data from 30 days to 5 years before the opioid dispensation to generate model features

BMJ Open

(eFigure 1 in Supplement); 30 days was used to reflect the immediate nature of the risk and 5 years to fully capture co-morbidities. This approach aligns with how health providers would assess patients using the entire history of co-morbidities and then the more immediate factors in deciding on the need for a therapeutic as well as risk in patients. We performed experiments to identify the features and data sets that contributed most to predicting the outcomes with a view to minimizing the potential future data requirements for health departments and PMPs.

Statistical Analyses and Machine-Learning Prediction Evaluation

We randomly divided the patients in the 2017 portion of our study cohort into training (70%) and validation (30%) sets¹³ by patients and opioid dispensations such that no patients in the training set were in the validation set. Baseline characteristics and event rates were compared in the training vs validation group, and between those who experienced the outcome and those who did not using chi-squared tests of independence. As well, we used all the 2018 data as another independent validation set.

We trained commonly used^{13,37} ML algorithms (eAppendix in Supplement) and further tuned out-of-box models using 5-fold cross validation on the training data to address model overfitting^{13,38}. As is common in ML validation studies^{10,13}, we reported model discrimination performance (i.e. how well a model differentiates those at higher risk from those at lower risk)¹¹ using area under the receiver operating characteristic curve (AUROC; c-statistic). We then stratified the two ML models with the highest c-statistics into percentile categories (deciles) according to absolute risk of our outcome, as was done in previous studies^{10,39}. We also plotted AUROC¹¹ and precision-recall curves (PRCs)⁴⁰.
BMJ Open

Because discrimination alone is insufficient to assess ML model prediction capability, we assessed a second necessary property, namely, calibration (i.e., how similar the predicted absolute risk is to the observed risk across different risk strata)^{11,41}. Using the two ML models with the highest discrimination performance, we assessed calibration performance on the 2018 data by plotting observed (fraction of positives) vs predicted risk (mean predicted value). Using these same two ML classifiers, we analyzed the top 0.1, 1, 5, and 10 percentiles of predicted risk by the number of true and false positives, positive likelihood ratios (PLR)²⁰, positive predictive values (PPV), post-test probabilities, and number needed to screen. We also performed a simulation of daily data uploads for 2018 Quarter 1 to view the predictive capabilities if a ML risk predictor were to be deployed into a monitoring workflow.

For the XGBoost and logistic regression classifiers, we reported feature importance³⁷ and plotted PRCs that compared all dispenses to those within the top 10 percentiles of estimated risk. As well, for the XGBoost classifier, we described feature importance on model outcome using SHAP values^{27,42} to add an additional layer of interpretability.

Finally, we compared ML risk prediction (the two ML models with highest discrimination performance) to current guideline approaches as others have¹⁰, using the 2019 Centers for Medicare & Medicaid Services (CMS) opioid safety measures⁴³ and the 2017 Canadian Opioid Prescribing Guideline³. We also compared the discrimination performance of different logistic regression classifier models using various combinations of features derived from their respective databases: **1**) demographic and drug/health utilization features from PIN and 2) comorbidity features derived from DAD, NACRS and Claims.

Patient and Public Involvement

This research was done without patient involvement. Patients were not invited to comment on the study design and were not consulted to develop patient relevant outcomes or interpret the results. Patients were not invited to contribute to the writing or editing of this document for readability or accuracy. There are no plans to disseminate the results of the research to study participants.

Results

Patient Characteristics and Predictors

We identified 392,979 patients with at least one opioid dispensation in 2017 (Figure 1). This cohort was used to train (n= 275,150, 70%) and validate (n=117,829, 30%) ML models. In 2017 and 2018, 6,608 and 5,423 patients experienced the defined outcome, respectively. Baseline characteristics were different between those who experienced the outcome and those who did not (eTable 3 in Supplement) while characteristics were similar between the training and validation sets (eTable 4 in Supplement). There were 2,283,075 opioid dispensations in 2017 and 1,977,389 in 2018. Overall, in 2017, 2.03% (n= 45,757) of opioid dispensations were associated with the outcome; in 2018, the estimate was 1.6% (n= 31,392).

As described above, we categorized our candidate features into four groups (eTable 5 in Supplement). When using all of the databases, the total number of features was 283 and 34 when considering only co-morbidities.

Machine-Learning Prediction Performance

BMJ Open

Using the 2017 validation set, AUROCs for the XGBoost and logistic regression classifiers had the highest discrimination performance at 0.87, while the neural network classifier had lower performance at 0.80 (eTable 6 in Supplement).

Discrimination performance was similar for the 2018 validation set (n=393,023; eTable 6 in Supplement). XGBoost and logistic regression had the highest estimated AUROCs and area under PRCs while the neural network classifier was lower (Figure 2A, 2B). As expected, precision-recall curves indicate stronger predictive performance in opioid dispensations at higher predicted risk percentiles (Figure 2C, 2D).

In the 2018 validation set, although discrimination performance was similar (0.88), individual feature importance was different between the logistic regression and XGBoost classifiers, with logistic regression feature importance more reliant on co-morbidity data from DAD, NACRS and Claims while XGBoost relied more on drug utilization data from PIN (eFigure 2). With the XGBoost classifier, history of drug abuse, alcoholism, and prior hospitalization/emergency visit carried the highest importance for predicting the study outcome (eFigure 3A) where the presence of these features in a patient suggested a strong prediction towards having the defined outcome (eFigure 3B and 3C).

Calibration

When considering dispensations predicted to be in the highest percentiles of risk, the top 5-percentile captured 42% of all outcomes using the XGBoost and logistic regression classifiers (Table 1). Also, as the predicted risk percentiles get higher (top 10 percentile to top 0.1 percentile), so too do the corresponding PPVs with the top 0.1 percentile associated with a

BMJ Open

PPV of 33% for the XGBoost classifier. As well, lower categories of risk percentiles were associated with lower outcomes (Figure 3, eFigure 4). When we simulated a monitoring workflow scenario with daily data uploads, a similar pattern was illustrated where the dispensations predicted to be higher risk had higher event rates (Figure 4).

After using the XGBoost and logistic regression classifiers to identify the dispensations in the highest predicted risk percentiles, the pre-test probability of the outcome (1.6%) was transformed into higher post-test probabilities, with higher probabilities in the riskier percentiles (Table 1). The number needed to screen also decreased as predicted risk increased (Table 1).

Comparing discrimination performance, ML risk prediction outperformed the current guideline approaches when using various combinations of guideline recommendations (Table 2). In many of the guideline scenarios, the estimated AUROCs were close to the 0.5 mark. When we estimated the discrimination performance of the logistic regression classifier based on database source, using all databases produced an AUROC of 0.88. Reducing the database source to only DAD, NACRS, Claims (co-morbidities only) resulted in an AUROC of 0.85, while PIN (prescription history) only was 0.78 (Table 3).

Discussion

This study showed that ML techniques using available administrative data (prescription histories and ICD codes) may provide enough discriminatory performance to predict adverse outcomes associated with opioid prescribing. Indeed, our ML analyses showed very high discrimination performance at 0.88. The linear model (logistic regression) and XGBoost carried

BMJ Open

higher discrimination and calibration performance, while the neural network classifier did not perform as well. By identifying the predicted top 5-10 percentile of absolute risk pursuant to an opioid dispensation, we were able to capture approximately half of all outcomes using ML methods. All ML models we trained had higher discrimination performance using the validation sets compared to the clinical guideline approach.

Since the prevalence of our defined outcome is relatively low in the general population, PPVs would also be expectedly low. However, estimated PPVs increased when we considered higher risk dispensations, as is expected since PPV is related to event prevalence. This is important because different users of a risk predictor will require different predictive capabilities. Similarly, our estimates of positive likelihood ratios and associated post-test probabilities also increased in dispensations with higher predicted risk indicating the strong predictive capabilities of the XGBoost and logistic regression classifiers; likelihood ratios >10 generate conclusive changes from pre-test to post-test probabilities²⁰.

The current guideline approach to assess absolute opioid prescribing risk produced cstatistic estimates closer to 0.5 indicating that discrimination was not much better than chance alone. ML models with higher predictive performance can better support health departments and PMPs with monitoring mandates to identify and intervene on those at high risk and their associated prescribers. We also found that adding co-morbidity features from administrative databases increased prediction performance compared to prescription history alone, thus making the case for the use of this data by PMPs and health departments. However, if only prescription history is available, our trained XGBoost classifier still had strong discrimination performance.

BMJ Open

We found only one study that used ML approaches to quantify the absolute risk of an event pursuant to an opioid dispensation¹⁰. Their methodology used rolling 3-month windows for estimating risk and ML model training while we used historic records to estimate 30-day risk. Differences in study population and feature selection may explain why their highest performing ML model was deep learning (neural network classifier) and ours was not. Nevertheless, we were able to replicate their predictive performance using our ML approach as we both showed that ML approaches have higher predictive capabilities than guideline approaches. Both of our studies used predicted percentile risk estimates to identify high risk dispensations and were able to do so with strong discrimination and calibration performance. Furthermore, we emphasized prognostic metrics which are more informative to assess the clinical utility of ML classifiers using pre- and post-test probabilities, something not done in other studies and recommended in medical guidelines²⁰. This major aspect of our study, not done previously, is important because any ML classifier that does not increase prognostic information compared to baseline cannot be incorporated into decision making for the purpose of intervening on higher risk instead of lower risk patients. Indeed, another study we found describes how identifying cases in higher predicted risk percentiles using ML methods can be deployed in hospital settings for the purpose of targeted interventions³⁹ upon discharge, however the effect on outcomes is still to be determined.

The limitations of our study are similar to other ML studies¹⁰ and need to be addressed when considering deployment of ML risk predictors. Our training dataset was not able to account for non-prescription opioid consumption and the risk associated with non-prescription use, both of which are substantial contributors to overall risk². Regarding our analysis, we

Page 19 of 45

BMJ Open

assumed that all dispensations were independent events; future research in this area should focus on employing ML methods using correlated data. As with all ML projects, our models were trained using Alberta data and might not be generalizable to other populations, or to specific populations within Alberta. However, one of the benefits of the ML process is that models can be retrained or similar methods could be used to develop new models to accommodate different populations.

This study suggests that ML risk prediction can support PMPs, especially if readily available administrative health data is used. PMPs currently use population-based guidelines which we, and others, have shown cannot predict absolute individual risk. The ML process allows for flexibility in model training, validation and deployment to specific settings in which, for the case of PMPs, high risk patients can be identified and targeted for intervention either at the patient or provider level. For example, a ML classifier can be trained on accessible data to create an aggregated list of "high risk" patients at regular time intervals to identify points of intervention. Moreover, ML classifiers can be retrained over time as changes in populations and trends in prescribing occur and are therefore specific to the population unlike broadly based guidelines. Further research can assess whether implementation of a ML-based monitoring system by PMPs leads to improved clinical outcomes within their own jurisdictions and whether other available features or feature reduction can yield sufficiently valid results for their own intended purposes.

References

- 1. Belzak L, Halverson J. Evidence synthesis The opioid crisis in Canada: a national perspective. *Health Promotion and Chronic Disease Prevention in Canada*. 2018;38(6):224-233.
- 2. Gomes T, Khuu W, Martins D, et al. Contributions of prescribed and non-prescribed opioids to opioid related deaths: population based cohort study in Ontario, Canada. *BMJ*. 2018;362:k3207.
- 3. Busse JW, Craigie S, Juurlink DN, et al. Guideline for opioid therapy and chronic noncancer pain. *Canadian Medical Association Journal.* 2017;189(18):E659-E666.
- 4. Dowell D. CDC guideline for prescribing opioids for chronic pain. 2016.
- 5. ismp Canada. Essential Clinical Skills for Opioid Prescribers. 2017; <u>https://www.ismp-</u> <u>canada.org/download/OpioidStewardship/Opioid-Prescribing-Skills.pdf</u>. Accessed Nov 2018.
- 6. Centre for Effective Practice. Management of Chronic Non Cancer Pain. 2017; thewellhealth.ca/cncp.
- College of Physicians and Surgeons of Alberta. TPP Alberta OME and DDD Conversion Factors.
 2020; <u>http://www.cpsa.ca/tpp/</u>. Accessed Jun 2020.
- World health Organization. Classification of Diseases (ICD). 2019; <u>https://www.who.int/classifications/icd/icdonlineversions/en/</u>. Accessed Jun 2020.
- 9. Gomes T, Mamdani MM, Dhalla IA, Paterson JM, Juurlink DN. Opioid Dose and Drug-Related Mortality in Patients With Nonmalignant PainOpioid Dose and Drug-related Mortality. *JAMA Internal Medicine*. 2011;171(7):686-691.
- 10. Lo-Ciganic W-H, Huang JL, Zhang HH, et al. Evaluation of Machine-Learning Algorithms for Predicting Opioid Overdose Risk Among Medicare Beneficiaries With Opioid Prescriptions. *JAMA network open.* 2019;2(3):e190968-e190968.
- 11. Alba AC, Agoritsas T, Walsh M, et al. Discrimination and Calibration of Clinical Prediction Models: Users' Guides to the Medical Literature. *JAMA*. 2017;318(14):1377-1384.
- 12. Shah NH, Milstein A, Bagley P, Steven C. Making Machine Learning Models Clinically Useful. JAMA. 2019;322(14):1351-1352.
- 13. Liu Y, Chen P-HC, Krause J, Peng L. How to Read Articles That Use Machine Learning: Users' Guides to the Medical Literature. *JAMA*. 2019;322(18):1806-1816.
- 14. Bastanlar Y, Ozuysal M. Introduction to machine learning. *Methods in molecular biology (Clifton, NJ).* 2014;1107:105-128.
- 15. Thottakkara P, Ozrazgat-Baslanti T, Hupf BB, et al. Application of machine learning techniques to high-dimensional clinical data to forecast postoperative complications. *PloS one.* 2016;11(5):e0155705.
- 16. Alberta Machine Intelligence Institute. Machine Learning Process Lifecycle. In:2019.
- 17. Hsich E, Gorodeski EZ, Blackstone EH, Ishwaran H, Lauer MS. Identifying important risk factors for survival in patient with systolic heart failure using random survival forests. *Circulation: Cardiovascular Quality and Outcomes.* 2011;4(1):39-45.
- Caruana R, Lou Y, Gehrke J, Koch P, Sturm M, Elhadad N. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. Paper presented at: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining2015.
- 19. Yusuf M, Atal I, Li J, et al. Reporting quality of studies using machine learning models for medical diagnosis: a systematic review. *BMJ open.* 2020;10(3):e034568.
- 20. Jaeschke R, Guyatt GH, Sackett DL, et al. Users' Guides to the Medical Literature: III. How to Use an Article About a Diagnostic Test B. What Are the Results and Will They Help Me in Caring for My Patients? *JAMA*. 1994;271(9):703-707.
- 21. Shortliffe EH, Sepúlveda MJ. Clinical Decision Support in the Era of Artificial Intelligence. *JAMA*. 2018;320(21):2199-2200.

2		
3	22.	World Health Organization. International language for drug utilization research, ATC/DDD. 2020;
4		https://www.whocc.no/. Accessed Jun 2020, 2020.
5	23	Moons KGM, Altman DG, Reitsma IB, et al. Transparent Reporting of a multivariable prediction
6	201	model for Individual Prognosis Or Diagnosis (TRIPOD): Evaluation and Elaboration Annals of
7		Internal Medicine, 2015:162(1):W1 W72
8	24	internal Medicine. 2013,102(1). W1-W73.
9	24.	equator network. Transparent reporting of a multivariable prediction model for individual
10		prognosis or diagnosis (TRIPOD): The TRIPOD statement. 2020; <u>https://www.equator-</u>
11		network.org/reporting-guidelines/tripod-statement/. Accessed Feb 2020.
12	25.	Cohen JF, Korevaar DA, Altman DG, et al. STARD 2015 guidelines for reporting diagnostic
14		accuracy studies: explanation and elaboration. <i>BMJ Open</i> . 2016;6(11):e012799.
15	26.	Buitinck L, Louppe G, Blondel M, et al. API design for machine learning software: experiences
16		from the scikit-learn project. arXiv preprint arXiv:13090238. 2013.
17	27.	Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Paper presented at:
18		Advances in neural information processing systems2017.
19	28.	Chen T, Guestrin C. Xgboost: A scalable tree boosting system. Paper presented at: Proceedings
20		of the 22nd acm sigkdd international conference on knowledge discovery and data mining2016.
21	29.	The pandas development team. pandas-dev/pandas: Pandas. 2020;
22		https://doi.org/10.5281/zenodo.3509134. Jan 2021.
23	30.	Zhou H. Della PR. Roberts P. Goh L. Dhaliwal SS. Utility of models to predict 28-day or 30-day
24		unplanned hospital readmissions; an updated systematic review. <i>BMJ Open</i> , 2016;6(6):e011060.
25	31	Brownlee L A Gentle Introduction to Imbalanced Classification, 2020.
26 27	51.	https://machinelearningmastery.com/what-is-imbalanced-classification/ Accessed Ian 2021
27	30	King G. Zeng L. Logistic regression in rare events data. <i>Political analysis</i> 2001;9(2):137-163
20 20	52. 22	lobron IM. Khochgoftaar TM. Survey on doon loarning with class imbalance. <i>Journal of Pig</i>
30	55.	Data 2010:6(1):1 E4
31	24	Dala. 2019;0(1):1-54.
32	34.	Government of Canada. Forward Sortation Area—Definition. 2015;
33	~-	https://www.ic.gc.ca/eic/site/bst-osb.nst/eng/br03396.html. Accessed April 2020, 2020.
34	35.	Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9-
35		CM and ICD-10 administrative data. <i>Medical care</i> . 2005:1130-1139.
36	36.	College of Physicians and Surgeons of Alberta. OME and DDD conversion factors.
37		http://www.cpsa.ca/wp-content/uploads/2017/06/OME-and-DDD-Conversion-Factors.pdf.
38	37.	Goldstein BA, Navar AM, Carter RE. Moving beyond regression techniques in cardiovascular risk
39		prediction: applying machine learning to address analytic challenges. European heart journal.
40		2017;38(23):1805-1814.
41	38.	Rose S. Machine Learning for Prediction in Electronic Health Data. JAMA Network Open.
42		2018;1(4):e181404-e181404.
43	39.	Morgan DJ, Bame B, Zimand P, et al. Assessment of Machine Learning vs Standard Prediction
44 15		Rules for Predicting Hospital Readmissions. JAMA Network Open. 2019;2(3):e190348-e190348.
45	40.	Saito T. Rehmsmeier M. The Precision-Recall Plot Is More Informative than the ROC Plot When
47		Evaluating Binary Classifiers on Imbalanced Datasets. <i>PLOS ONE</i> , 2015:10(3):e0118432.
48	41	Shah ND Stevenberg FW Kent DM Big Data and Predictive Analytics: Recalibrating
49		Expectations /AMA 2018-320(1)-27-28
50	12	Molpar C. Interpretable machine learning. A Guide for Making Black Box Models Explainable
51	42.	Notital C. Interpretable machine learning. A Galae jor Making Black box Models Explainable.
52	40	2013. Contars for Medicara & Medicaid Services (CMS). Announcement of colondar year (CV) 2010.
53	43.	Centers for Medicale & Medicald Services (CMS). Announcement of Calendar year (CY) 2019
54		ivience and Part D payment policies and iviencare Advantage and Part D payment policies and
55		tinal call letter.
56		
57		
58		20
59 60		For peer review only - http://bmiopen.hmi.com/site/about/quidelines.yhtml
00		. or peer renerronly integrating openion free about guidelines whith

Figure Legend

Figure 1. Patient flow diagram of study participants used for training and validating ML models. NACRS: National Ambulatory Care Reporting System; DAD: Discharge Abstract Database; VS: Vital Statistics; PIN: Pharmaceutical Information Network; Claims: Physician Claims

Figure 2. Area under the receiver operating characteristic curve (AUROC) (A) and precision-recall curves (B) for all dispensations using logistic regression (L1), neural network, support vector machine (SVM), XGBoost and Naïve-Bayes; precision-recall curves for higher risk dispensations according to predicted risk percentile categories for logistic regression (C) and XGBoost (D) using the 2018 validation set.

Figure 3. Calibration curve plotting observed vs. quantiles (deciles) of estimated risk for the XGBoost classifier using the 2018 validation dataset. The majority of counts (dispensations) were predicted to be lower risk.

Figure 4. Simulation of a clinical workflow with daily uploads and events per 100 daily dispenses by risk percentiles using 2018 Quarter 1 (Q1) data for logistic regression (A) and XGBoost (B) classifiers.

Table 1. Highest percentiles of estimated risk and predictive performance using the XGBoost and logistic regression classifiers for the 2018 validation dataset (n=393,023). Total number of dispenses= 1,977,389; total number of outcomes= 31,392.

Metric	Тор	Top 0.1%ile		Top 1%ile		Top 5%ile		Top 10%ile	
	XGBoost	Logistic Regression	XGBoost	Logistic Regression	XGBoost	Logistic Regression	XGBoost	Logistic Regression	
Number of Dispenses	1,977	1,977	19,774	19,774	98,869	98,869	197,739	197,739	
TP captured	655	472	4204	4100	13224	13293	18404	18409	
Percent of TP	2.09	1.50	13.39	13.06	42.13	42.35	58.63	58.64	
FP captured	1322	1505	15570	15674	85645	85576	179335	179330	
PPV	33.13	23.87	21.26	20.73	13.38	13.45	9.31	9.31	
PLR	30.71	19.44	16.74	16.22	9.57	9.63	6.36	6.36	
Post-test									
Probability*	33.13	23.87	21.26	20.73	13.38	13.45	9.31	9.31	
NNS	3.17	4.49	5.08	5.22	8.48	8.43	12.95	12.95	

*Pre-test probability estimated at 1.6% using prevalence.

TP: true positives; FP: false positives; PPV: positive predictive value; PLR: positive likelihood ratio; NNS:

number needed to screen

Note: Logistic regression used L1 (lasso) parameter regularization

Table 2. Discrimination performance of guideline approach using the 2018 validation set. Guideline approaches were adapted from the 2017 Canadian Opioid Prescribing Guideline and 2019 Centers for Medicare & Medicaid Services (CMS) opioid safety measures and compared to logistic regression and XGBoost classifiers (each with an estimated area under the receiver operating characteristic curve of 0.88).

Canadian Guidelines *	AUROC	Sensitivity	Specificity
History of mental disorder only	0.620	0.90	0.34
Substance abuse only	0.686	0.99	0.37
OME/day >90 only	0.539	0.22	0.85
(Mental disorder and substance abuse) OR OME/day >90	0.690	0.91	0.47
Mental disorder and substance abuse AND OME/day >90	0.560	0.20	0.91
Mental disorder OR substance abuse OR OME/day >90	0.589	0.99	0.18
CMS Guidelines**	4.		
High opioid dose (>120 OME/day for 90+days)	0.507	0.081	0.933
Concurrency (Opioid & BZRA for 30+ days)	0.575	0.423	0.727
Multiple doctors (>4)	0.591	0.294	0.888
Multiple pharmacies (>4)	0.537	0.120	0.959
All conditions	0.50	0.001	0.999
Any condition	0.622	0.62	0.625

OME: daily oral morphine equivalents; BZRA: benzodiazepine receptor agonist. Elixhauser scoring ICD codes were used to identify mental disorders and substance abuse.

1 2 3 4 5 6 7 8 9	*The Canadian guidelines do not specify timelines. >90 OME was determined by taking the average daily OME over the 30 days prior to dispensation **The CMS guidelines specify a timeline of 90 or more days at >120 OME and concurrent use of opioids and benzodiazepines for 30 days or more
10 11 12 13 14 15 16 17 18	
19 20 21 22 23 24 25 26 27 28	
29 30 31 32 33 34 35 36 37	
38 39 40 41 42 43 44 45 46 47	
47 48 49 50 51 52 53 54 55 55	
50 57 58 59 60	24 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 3. Discrimination performance based on database source using area under the receiver operating characteristic curve (AUROC) for the logistic regression classifier on the 2018 validation set.

Database source	Predictor Variables formed from database	AUROC	Number of features
PIN only	Drug utilization + Prescription	0.78	248*
	history		
DAD, NACRS, Claims	Co-morbidities	0.85	34
PIN, DAD NACRS, Claims	Demographic + Drug Utilization	0.88	283
(all databases used in	+ Healthcare Utilization		
study)	+ Co-morbidities		

Note: drug utilization includes features describing oral morphine equivalents³⁶, concurrent use with benzodiazepines, number of opioid and benzodiazepine dispensations, number of unique opioid and benzodiazepine molecules; health care utilization includes features describing number of unique health providers visited, number of hospital/emergency department visits; logistic regression used L1 (lasso) parameter regularization

Figure 1. Patient flow diagram of study participants used for training and validating ML models. NACRS: National Ambulatory Care Reporting System; DAD: Discharge Abstract Database; VS: Vital Statistics; PIN: Pharmaceutical Information Network; Claims: Physician Claims

BMJ Open

Figure 2. Area under the receiver operating characteristic curves (A) and precision-recall curves (B) for all dispensations using logistic regression (L1), neural network, support vector machine (SVM), XGBoost and Naïve-Bayes; precision-recall curves for higher risk dispensations according to predicted risk percentile categories for logistic regression (C) and XGBoost (D) using the 2018 validation set.

BMJ Open

Figure 3. Calibration curve plotting observed vs. quantiles (deciles) of estimated risk for the XGBoost classifier using the 2018 validation dataset. The majority of counts (dispensations) were predicted to be lower risk.

Figure 4. Simulation of a clinical workflow with daily uploads and events per 100 daily dispenses by risk percentiles using 2018 Quarter 1 (Q1) data for logistic regression (A) and XGBoost (B) classifiers.

(A) Logistic Regression (L1)

59

1 2						
4	Supplementary Content					
5 6	eAppendix. Machine learning algorithms					
7 8 9	eTable 1. Diagnostic codes used to exclude patients who had cancer, were pregnant, or were under palliative care.					
10 11 12	eTable 2. Diagnostic codes used to identify the defined study outcome from emergency visit, hospitalization and death data.					
13 14 15 16	eTable 3. Baseline characteristics of study patients (n=392,979). Co-morbidities were determined using Elixhauser criteria. All p-values in the chi ² test of independence were <0.001 unless otherwise indicated.					
17 18 19	eTable 4. Characteristics of study participants between training and validation groups using 2017 data.					
20 21	eTable 5. Candidate predictors used to train ML algorithms.					
22 23 24 25	eTable 6. Discrimination performance using area under the receiver operating characteristic curve (AUROC) of various ML algorithms. Training and validation were done using 2017 data (n=393,979); another independent validation was performed using 2018 data (n=393,023).					
20	eFigure1. Schematic of study design and feature generation					
28 29 30 31	eFigure2 . Feature importance from logistic regression and tree-based (XGBoost) classifiers using the 2018 validation set.					
32 33 34	eFigure3 . Shapley values and feature impact in the XGBoost classifier using the 2018 validation set to describe "associations" between features and the outcome.					
35 36 37 38 39	eFigure 4. Calibration curve plotting observed vs. quantiles of estimated risk for the logistic regression (L1) classifier using the 2018 validation dataset. The majority of counts (dispensations) were predicted to be lower risk.					
40 41 42 43 44 45 46 47 48 49 50 51 52 53 53 54 55 56 57	eReferences.					

eAppendix. Machine Learning Algorithms

Introduction

While there are always updates and new methods coming up in the fields of machine learning, in this study, we have focused on some of the most reliable and proven approaches for predictive modelling which are explainable and popularly used in previous studies of similar nature.

Logistic Regression

Regression analysis models the relationship between a dependent variable and a set of independent variables [1]. Typically, this includes understanding how the value of the dependent variable changes with the changes in the values of independent variables. Logistic regression [1] uses the logistic function to model a binary dependent variable, where, based on the values of the independent variables the model can approximate one of the two classes, the instance belongs to. This basic binary model can be extended to deal with multiple classes (e.g. One-vs-all classifiers). However, logistic regression is only capable of modeling a linear relationship of independent variables to the dependent variable, hence limited to problems with linear decision boundaries. We used the sci-kit learn library in our experiments[6] and found L1 regularization to be more effective.

Ridge Classifier

We used the ridge classifier implemented in the Scikit learn library[5]. It implements a classifier using ridge regression which uses an L2 regularization on the least square objective function. The library converts the labels into -1 and 1 and fits a linear regression on the converted labels with the regularization.

Random Forest

Random forest is a tree ensemble learning algorithm that has wide applicability in many domains[1]. Random forest is a nonlinear learning algorithm, which arrives at nonlinear decision boundaries by independently combining multiple decision trees. Each individual decision tree in the forest can be grown independently of each other on a subset of the training data. Random forests are mainly sensitive to the number of trees, the depth of a tree and the number of covariates randomly chosen to split at each node[1]. These hyper-parameters can be tuned to find the best configuration of every dataset. Random Forests, in general, are less prone to overfit since they always grow individual trees on a subset of the training data[1]. At prediction time, the decision of each tree is aggregated to compute the final prediction.

Neural Networks (NN)

Neural networks are another collection of non-linear learning algorithms with high representation power. They are known to be able to find mappings from an input to an output from a larger non-linear function space [2]. This ability to represent a larger space of nonlinear

functions has shown to be very effective recently in many application domains such as natural language processing, computer vision, genomics, computer games and health[2]. Neural networks come in many flavors learning nonlinear mapping of different types of data such as Convolutional NNs being most effective with images and Recurrent NNs for time series and language data. Identifying the most effective neural network structure is one of the difficult and the most time-consuming aspect of applying neural networks to new application domains and data. Generally, neural networks try to exploit the relationships in the raw unstructured data (eg: image and text) presented to the network but with more structured data such as health records and ICD codes learning relationships is much complex. Our neural network models are mainly based on densely connected hidden layers with ReLu[6] activation function. We used the crossentropy loss for the binary classification Adam optimizer. We used a simple feed forward network using Sklearn MLP classifier with hyperparameter tuning for the NN.

Boosted Learning Algorithms

Boosting is a process to ensemble multiple base learning algorithms to arrive at better overall performance than any individual base learner[1]. In contrast to independently building multiple models from the subsets of the data, boosting re-weights the training data every time a model is learned for future models. This weighting happens to give more preference to currently misclassified data points in the next round compared to the correctly classified data points. Therefore future learners try to do better on the misclassified data points leading to a collection base learner having a better-combined prediction. This process is sequential so each base learner is dependent on the output of the previously trained model (it is worthy to note XGBoost provides a parallel tree boosting alternative). In our work, we have experimented with several boosting meta-learning algorithms such as XGBoost[7], AdaBoost[5] and GBM[5]. XGBoost uses a variant of trees as the base learner whereas AdaBoost (from Sci-kit learn) can use many ML algorithms as base learners. GBM uses logistic regression by default as the base learner. We used all 3 types of boosting with tuned hyperparameters for comparison.

Naive Bayes

Naive Bayes is based on the Bayes theorem with a strong independence assumption between the covariates[1]. This assumption helps in building a simple probabilistic model for learning and inference. Naive Bayes coefficients scale linearly with the number of covariates making this a suitable model for high-dimensional data. We used Naive Bayes as a simple baseline learning algorithm for comparison.

Support Vector Machines (SVM)

SVMs[4] are maximum margin classifiers optimizing for learning a hyperplane having the maximum distance away from each of the class data points[1]. SVM is a linear classifier but with the kernel trick to map the inputs to the higher dimensional space, it can learn nonlinear decision boundaries in the input space. SVMs are very effective binary classifiers with the kernel trick[1]. With larger datasets, SVMs tend to become more computationally intensive.

eTable 1. Diagnostic codes used to exclude patients who had cancer, were pregnant, or were under palliative care.

Condition	ICD 9	ICD 10
Cancer	140.x - 239.x	C00.x - C99.x, D00.x - D49.x
Pregnancy	630.x - 679.x	O00.x - O99.x
Palliative	V66	Z51.0, Z51.1, Z51.5

eTable 2. Diagnostic codes used to identify the defined study outcome from emergency visit, hospitalization and death data.

ICD 10	Condition
T40.x	Poisoning by, adverse effect of and underdosing of narcotics and psychodysleptics
F55.x	Abuse of non-psychoactive substances
F11.x - F19.x	Mental and behavioral disorders due to psychoactive substance use

eTable 3. Baseline characteristics of study patients (n=392,979). Co-morbidities were determined using
Elixhauser criteria. All p-values in the chi ² test of independence were <0.001 unless otherwise indicated.

Characteristic	Number without	Percent	Number with Event	Percent	
	Event		n=6,608		
	n=386,371				
Age:					
Mean (SD)	48.1 (16.4)		41.2 (12.4)		
18-45	162057	41.9	3466	52.4	
45-65	154632	40.0	2656	40.2	
>65*	69682	18.0	486	7.4	
Male	197491	50.3	3922	59.4	
Female	194794	49.7	2686	40.6	
Alcohol Disorder	66320	16.9	5220	79.0	
Arrhythmia	90621	23.1	1959	29.6	
Blood Loss Anemia	1164	0.3	82	1.2	
Congestive Heart	18954	4.8	565	8.6	
Failure					
Coagulopathy	8053	2.1	356	5.4	
Deficiency Anemia	34188	8.7	971	14.7	
Depression	159140	40.6	5518	83.5	
Diabetes**	64132	16.3	1408	21.3	
Substance Abuse	74678	19.0	5485	83.0	
Disorder					
Fluid Disorder	42690	10.9	3012	45.6	
Hypertension**	140171	35.7	2624	39.7	
Hypothyroidism	45519	11.6	601	9.1	
Injury^	195688	49.9	5541	83.9	
Liver Disorder	21656	5.5	1588	24.0	
Neurologic Disorder	230490	58.8	5387	81.5	
Obesity	63393	16.2	970	14.7	
Poisoning^	17434	4.4	2775	42.0	
Psychoses	35870	9.1	3162	47.9	
Renal Disorder	16166	4.1	499	7.6	
Rheumatoid Conditions	111458	28.4	3157	47.8	
HIV Infection	1098	0.3	141	2.1	
Paralysis	3874	1.0	187	2.8	
Peptic Ulcer Disease	11728	3.0	509	7.7	
Pulmonary Circulation	9611	2.4	430	6.5	
Disorder					
Chronic Pulmonary	102990	26.3	2913	44.1	
Disease					
Peripheral Vascular	14467	3.7	389	5.9	
Disease					
Valvular Disease	7308	1.9	226	3.4	
Weight Loss	16207	4.1	747	11.3	

*p-value for age >65 is an estimated 0.037

^ Injury: ICD10: S00-T98; Poisoning: ICD10: T36-T50

** Complicated, uncomplicated diabetes and hypertension were collapsed into one category each

For beer terien only

eTable 4. Characteristics of study participants between training and validation groups using
2017 data.

Characteristic	Number in	Percent	Number in	Percent
	training group		validation group	
	N=275,150~		N=117,829~	
Age:				
Mean (SD)	48.3 (16)		48.2 (16)	
18-45	114356	41.5	49909	42.3
45-65	111859	40.7	47132	40.0
>65	48935	17.8	20788	17.6
Male	138603	48.5	59339	48.4
Female	136545	47.8	58490	47.7
Alcohol Disorder	46792	16.4	20199	16.5
Arrhythmia	63637	22.3	27201	22.2
Blood Loss Anemia	839	0.3	336	0.3
Congestive Heart	13320	4.7	5694	4.6
Failure				
Coagulopathy	5697	2.0	2393	2.0
Deficiency Anemia	24096	8.4	10179	8.3
Depression	112080	39.2	47628	38.9
Diabetes**	45131	15.8	19144	15.6
Substance Abuse	52609	18.4	22713	18.5
Disorder				
Fluid Disorder	30272	10.6	12780	10.4
Hypertension**	98546	34.5	41840	34.1
Hypothyroidism	31908	11.2	13666	11.2
Injury*	137423	48.1	58865	48.0
Liver Disorder	15252	5.3	6567	5.4
Neurologic	161706	56.5	69341	56.6
Disorder				
Obesity	44607	15.6	18882	15.4
Poisoning*	12503	4.4	5293	4.3
Psychoses	25422	8.9	10860	8.9
Renal Disorder	11403	4.0	4817	3.9
Rheumatoid Conditions	78268	27.4	33420	27.3
HIV Infection	774	0.2	226	0.2
Paralysis	2717	0.5	550 1176	0.5
Panalysis Pontic Illcor	2/1/	2.0	2522	2.0
Disease	8239	2.9	3333	2.9
Pulmonary Circulation Disorder	6771	2.4	2877	2.3
Chronic Pulmonary Disease	72265	25.3	30949	25.3

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Peripheral Vascular	10228	3.6	4278	3.5	
Disease					
Valvular Disease	5111	1.8	2215	1.8	
Weight Loss	11477	4.0	4790	3.9	

Note: p-values for chi² test of independence were all >0.06 when comparing training and validation sets. *Injury: ICD10: S00-T98; Poisoning: ICD10: T36-T50

** Complicated, uncomplicated diabetes and hypertension were collapsed into one category each

eTable 5. Anatomical Therapeutic Chemical classification of opioid molecules used for this study and candidate predictors used to train ML algorithms.

Category (data source)	Description			
ATC codes used to identify	N01AH01, N01AH03, N01AH06, N07BC01, N07BC02,			
opioids from PIN data	N07BC51, R05DA03, R05DA04, R05DA09, R05DA20, N02A			
Demographic information (PIN)	age, sex, postal codes, mean income			
Drug utilization history (PIN)	drug dispenses in past 30 days using on ATC codes, oral			
	morphine equivalents, concurrent use with benzodiazepines			
	defined as at least 7 days of cumulative concurrent use in the			
	30 days prior to dispensation, number of dispensations and			
	unique molecules of opioids and benzodiazepines			
Health care utilization (PIN	flags for previous hospitalizations and emergency			
DAD)	department visits, number of unique providers			
ICD based co-morbidities (DAD,	Elixhauser condition flags based on the past 5 years of claims,			
NACRS, Claims)	hospitalizations, and emergency visits.			

Note: ATC- Anatomical Therapeutic Chemical classification (https://www.whocc.no/atc_ddd_index); PIN- Pharmaceutical Information Network; ICD- International Statistical Classification of Diseases and Related Health Problems, World Health Organization; total number of features 283

eTable 6. Discrimination performance using area under the receiver operating characteristic curve (AUROC) of various ML algorithms using all features (demographics, health utilization, prescription history, co-morbidities). Training and validation were done using 2017 data (n=393,979); another independent validation was performed using 2018 data (n=393,023).

Algorithm	Irain	Validation 2017	Validation 2018		
XGBoost Classifier	0.897	0.870	0.884		
Logistic Regression	0.887	0.869	0.884		
Gradient Boosting Classifier	0.898	0.868	0.883		
AdaBoost Classifier	0.884	0.868	0.882		
Random Forest Classifier	0.909	0.863	0.881		
Ridge Classifier	0.895	0.863	0.879		
SVM	0.896	0.860	0.878		
Gaussian Naive Bayes 🧹	0.846	0.826	0.847		
Decision Tree Classifier	0.919	0.791	0.822		
Neural Networks	0.827	0.804	0.821		

Note: Logistic regression used L1 (lasso) parameter regularization

eFigure 1. Schematic of study design and feature generation

eFigure2. Feature importance from logistic regression and tree-based XGBoost classifiers using the 2018 validation set. The logistic regression classifier relied more on co-morbidity data from DAD, NACRS, and Claims databases; XGBoost classifier relied more on data from the PIN database. AUROCs for both classifiers were similar at 0.88.

Logistic Regression		XGBoost	
history of drug abuse	1.00	age at dispensation	1.00
		number of prescriptions	
age at dispensation	0.65	dispensed in previous 30 days	1.00
history of prior hospitalization/ED		number of opioid dispensations in	
visit	0.62	previous 30 days	0.86
		number of BZD dispensations in	
history of alcohol use disorder	0.62	previous 30 days	0.46
history of fluid and electrolyte			
disorder	0.32	Doctor risk score*	0.45
		total OME consumed in previous	
history of poisoning	0.31	30 days	0.43
history of psychoses	0.31	history of poisoning	0.37
number of unique BZD dispensed			
in previous 30 days	0.26	pharmacy risk score**	0.35
		<u> </u>	
		number of unique providers that	
history of depression	0.19	prescribed an opioid or BZD	0.34
concurrent use of opioid and BZD		4	
in previous 30 days	0.19	income	0.34
		history of prior hospitalization/ED	
history of injury	0.17	visit	0.26

Note: Logistic regression used L1 (lasso) parameter regularization; BZD- benzodiazepine; OMEoral morphine equivalents; ED: emergency department

*derived feature using proportion of opioid/benzodiazepine patients that experienced the study outcome in the previous 30 days prior to opioid dispensation for each physician;

**derived feature using proportion of opioid/benzodiazepine patients that experienced the study outcome in the previous 30 days prior to opioid dispensation for each pharmacy

eFigure 3. SHAP values and feature impact of the XGBoost classifier using the 2018 validation set to describe "associations" between features and the outcome. Features with the most impact on the model with drug abuse ranked highest (A); tornado plot illustrating feature impact (B); explaining the prediction of study outcome based on predictor values for 4 patients using SHAP values(C).

(A)

Note: Pharmacy risk score- derived feature using proportion of opioid patients that experienced the study outcome in the previous 30 days prior to opioid dispensation for each pharmacy; training and validating the XGBoost classifier with these features alone resulted in an AUC of 0.877 in the 2018 validation set

BMJ Open

2								
3	(B)							
4								
5					1			High
6	History of drug abuse disorder		0		•••			
/ 8	History of alcohol use disorder		_					
9	History of poisoning						-	
10	History of postining							
11	HISTORY OF HOSPITALIZATION/ED VISIT							
12	Age at opioid dispense					•••	• •	
13	History of psychosis			-		-		
14	History of fluid disorder					_		
15	History of injury			•	-			
10	Number of onioid dispenses in prior 30 days				-			U
18	History of liver disorder							alu
19	History of liver disorder							2
20	Number of dispensation in prior 30 days		•••					atu
21	History of anxiolytics use in prior 30 days					_		Ъ
22	Pharmacy risk score		• •					
23	History of neurologic disorder							
24	Total OME in prior 30 days							
25								
27	History of depression							
28	History of diabetes					•		
29	History of oral blood glucose lowering drugs use in prior 30 days			• •				
30	History of obesity					-		
31	History of anti-epileptics use in prior 30 days							
32	motory of and ophopalos ase in phor 50 days							21
33		-3	-2	-1	0	i	2	Low
34			SHAP v	alue (impa	ict on mo	del output)	
35								

Note: Pharmacy risk score- derived feature using proportion of opioid/benzodiazepine patients that experienced the study outcome in the previous 30 days prior to opioid dispensation for each pharmacy; red indicates higher values of categorical variables and plots to the right of 0.0 indicate the tendency to be associated with the study outcome while blue indicates lower values of categorical variables and plots to the left of 0.0 indicate the tendency to be associated with no outcome

How to read this figure: Using hospitalization within 30-days of an opioid dispensation as the outcome of interest, there are 4 scenarios to consider: the XGBoost classifier has low or high confidence in predicting a hospitalization and low or high confidence in predicting **NO** hospitalization. Start at the base SHAP value of near 0.0 ("base value") in which the classifier is not confident in the prediction. SHAP values (in bold) that are above 0.0 indicate a tendency towards a hospitalization while those that are below 0.0 indicate a tendency for **NO** hospitalization. As the SHAP value moves above 0.0, for example 3.11 in the top panel, the classifier's confidence in predicting a hospitalization is higher. As the SHAP value approaches closer to the base value, for example 0.16 in the second panel, the classifier has relatively lower confidence in predicting a hospitalization. When the SHAP value is below 0.0, for example -0.44 in the bottom panel, the classifier has lower confidence in predicting **NO** hospitalization.

The top panel (SHAP value 3.11) depicts an instance predicted to be high risk for our outcome. This individual has a positive history of drug abuse disorder, liver disorder, diabetes, fluid/electrolyte disorder, alcohol use disorder, poisoning and B vitamin use in the prior 30 days. The third panel (SHAP value -5.40) depicts an instance predicted to be low risk (i.e., no hospitalization) and has a negative history for poisoning, drug and alcohol use disorder. **Note-** drug abuse: drug abuse disorder; poisoning: history of poisoning; vitamin B1: vitamin B1 in prior 30 days; anti-glycemics: anti-glycemic agents in prior 30 days; age: age at opioid dispensation; # opioid dispenses: number of opioid dispensations in prior 30 days; Hosp/ED visit: history of prior hospitalizations and/or emergency visits in past 6 months; Total OME: total oral morphine equivalents in prior 30 days; DIAZEPAM: history of diazepam use in prior 30 days **eFigure 4.** Calibration curve plotting observed vs. quantiles of estimated risk for the logistic regression (L1) classifier using the 2018 validation dataset. The majority of counts (dispensations) were predicted to be lower risk.

eReferences

- 1. Friedman, J., Hastie, T., Tibshirani, R.: The elements of statistical learning, vol. 1. Springer series in statistics New York (2001)
- 2. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)
- 3. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009.
- 4. Chang CC, Lin CJ. LIBSVM: A library for support vector machines. ACM transactions on intelligent systems and technology (TIST). 2011 May 6;2(3):1-27.
- 5. <u>Scikit-learn: Machine Learning in Python</u>, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.
- Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. InProceedings of the 27th international conference on machine learning (ICML-10) 2010 (pp. 807-814).

 Chen T, Guestrin C. Xgboost: A scalable tree boosting system. InProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining 2016 Aug 13 (pp. 785-794).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open

Safe opioid prescribing: a prognostic machine learning approach to predicting 30-day risk after an opioid dispensation in Alberta, Canada

Journal:	BMJ Open
Manuscript ID bmjopen-2020-043964.R3	
Article Type:	Original research
Date Submitted by the Author:	11-May-2021
Complete List of Authors:	Sharma, Vishal; University of Alberta, School of Public Health Kulkarni, Vinaykumar; OKAKI Health Analytics Eurich, Dean; University of Alberta, School of Public Health Kumar, Luke; Alberta Machine Intelligence Institute Samanani, Salim; Okaki Health Intelligence,
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Health informatics, Public health
Keywords:	PUBLIC HEALTH, EPIDEMIOLOGY, Adverse events < THERAPEUTICS, Health & safety < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Clinical governance < HEALTH SERVICES ADMINISTRATION & MANAGEMENT
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
Safe opioid prescribing: a prognostic machine learning approach to predicting 30-day risk after an opioid dispensation in Alberta, Canada

Author list (in order):

Vishal Sharma (0000-0001-7907-1183), Vinaykumar Kulkarni, Dean T. Eurich (0000-0003-2197-0463), Luke Kumar, Salim Samanani (0000-0001-6751-4805)

Address for each author:

2-040 Li Ka Shing Center for Health Research Innovation, School of Public Health, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1 Vishal Sharma BPharm PhD Candidate,

OKAKI Health Intelligence, Edmonton, Alberta, Canada, Vinaykumar Kulkarni MSc

2-040 Li Ka Shing Center for Health Research Innovation, School of Public Health, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1 Dean Eurich professor

Alberta Machine Intelligence Institute, Edmonton, Alberta, Canada, T5J 3B1 Luke Kumar MSc

OKAKI Health Intelligence, Calgary, Alberta, Canada, Salim Samanani MD, Medical Director

Corresponding Author:

Dean Eurich, 2-040 Li Ka Shing Center for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1; Phone 780-492-6333; fax 780-492-7455; email: deurich@ualberta.ca

Acknowledgement

This study is based on data provided by The Alberta Strategy for Patient Orientated Research (AbSPORU) SUPPORT unit and Alberta Health. The interpretation and conclusions contained herein are those of the researchers and do not necessarily represent the views of the Government of Alberta or AbSPOR. Neither the Government of Alberta, ABSPOR nor Alberta Health expresses any opinion in relation to this study. This work was supported by Mitacs through the Mitacs Accelerate Program (VS and DTE).

Contributors: VS VK LK SS and DTE were involved in the conception and design of the study. VS VK LK SS and DTE analyzed the data. VS VK and LK drafted the article. VS VK LK DTE and SS revised the article. All authors gave final approval of the version to be published. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted. DTE is the guarantor.

Funding: This study received no funding.

Copyright/license for publication: The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all **authors**, a worldwide licence to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future), to i) publish, reproduce, distribute, display and store the Contribution, ii) translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution, iii) create any other derivative work(s) based on the Contribution, iv) to exploit all subsidiary rights in the Contribution, v) the inclusion of electronic links from the Contribution to third party material where-ever it may be located; and, vi) licence any third party to do any or all of the above.

Competing Interest: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the submitted work; Salim Samanani has received grants from the College of Physicians & Surgeons of Alberta; no other relationships or activities that could appear to have influenced the submitted work.

Ethical approval: This study was approved by the Health Research Ethics board at the University of Alberta (#Pro00083807_AME1).

Data Sharing: The data used in this study is not available for external analysis. However, administrative health data can be accessed from Alberta Health by following defined research protocols and confidentiality agreements.

<text><text> Transparency: The lead author, VS, (the manuscript's guarantor, Dean Eurich) affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as originally planned (and, if relevant, registered) have been explained.

Word Count: 3357

Abstract

Objective: To develop machine-learning models employing administrative-health data that can estimate risk of adverse outcomes within 30-days of an opioid dispensation for use by health-departments or prescription monitoring programs.

Design, Setting, and Participants: This prognostic study was conducted in Alberta, Canada between 2017-2018. Participants included all patients 18 years of age and older who received at least one opioid dispensation. Pregnant and cancer patients were excluded.

Exposure: Each opioid dispensation served as an exposure.

Main Outcomes/Measures: Opioid related adverse outcomes were identified from linked administrative health-data. Machine-learning algorithms were trained using 2017 data to predict risk of hospitalization, emergency department visit, and mortality within 30-days of an opioid dispensation. Two validation sets, using 2017 and 2018 data, were used to evaluate model performance. Model discrimination and calibration performance were assessed for all patients and those at higher risk. Machine-learning discrimination was compared to current opioid guidelines.

Results: Participants in the 2017 training set (n=275,150) and validation set (n=117,829) had similar baseline characteristics. In the 2017 validation set, c-statistics for the XGBoost, logistic regression, and neural-network classifiers were 0.87, 0.87, and 0.80, respectively. In the 2018 validation set (n=393,023), the corresponding c-statistics were 0.88, 0.88, and 0.82. C-statistics from the Canadian guidelines ranged from 0.54-0.69 while the US guidelines ranged from 0.50-0.62. The top 5-percentile of predicted risk for the XGBoost and logistic regression classifiers captured 42% of all events and translated into post-test probabilities of 13.38% and 13.45%, respectively, up from the pre-test probability of 1.6%.

Conclusion: Machine-learning classifiers, especially incorporating hospitalization/physician claims data, have better predictive performance compared to guideline or prescription history only approaches when predicting 30-day risk of adverse outcomes. Prescription monitoring programs and health departments with access to administrative data can use machine-learning classifiers to effectively identify those at higher risk compared to current guideline-based approaches.

Article Summary

Strengths and Limitations:

- This study incorporated near complete capture of opioid dispensations from community pharmacies and used validated administrative health data.
- This study used commonly available algorithms to train machine-learning models using data which is available to government health departments in all provinces in Canada and other single payer jurisdictions; ML classifiers were evaluated with informative prognostic metrics not usually seen in other studies.
- Our predictive models used dispense events and not medication utilization, which is difficult to capture in administrative data.

ore teries only

• Our training dataset does not account for non-prescription opioids, opioids administered in hospitals, and other risks associated with non-prescription use.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Introduction

Canada is among the countries with the highest rates of opioid prescribing in the world, making prescription opioid use a key driver of the current opioid crisis¹; a major part of the policy response to the opioid crisis focuses on endorsing safe, appropriate opioid prescribing²⁻⁴. In order to minimize high risk opioid prescribing and to identify patients at high risk of opioid related adverse outcomes, numerous health regulatory bodies have released clinical practice recommendations for health providers regarding appropriate opioid prescribing^{3,5,6}.

Prescription monitoring programs (PMPs) have been implemented around the world, like Alberta's provincial Triplicate Prescription Program (TPP)⁷ in Canada, and are mandated to monitor the utilization and appropriate use of opioids to reduce adverse outcomes. In most jurisdictions, both population-level monitoring metrics and clinical decision aids are used to identify patients at risk of hospitalization or death and are most often based on prescribing guidelines. However, a comprehensive infrastructure of administrative data containing patient level International Statistical Classification of Diseases and Related Health Problems (ICD)⁸ codes and prescription drug histories exists in Alberta and other provinces in Canada which could be further integrated to predict opioid-related risk. Furthermore, current guidelines addressing high risk prescribing and utilization of opioids were derived from studies that used traditional statistical methods to identify population level risk factors for overdose rather than an individual's absolute risk^{3,9,10}; these population estimates may not be generalizable to different populations¹¹. Thus, a functional gap exists in many health jurisdictions where much of the available administrative health data is not being leveraged for opioid prescription monitoring.

Supervised machine learning (ML)^{12,13} is an approach that uses computer algorithms to build predictive models in the clinical setting that can make use of the large amounts of available administrative data^{14,15}, all within a well-defined process¹⁶. Supervised ML trains on labelled data to develop prediction models that are specific to different populations and, in many cases, can provide better predictive performance than traditional, population-based statistical models^{10,15,17}. We identified one study¹⁰ that applied ML techniques to predict overdose risk in opioid patients pursuant to a prescription. In their validation sample, they found that the deep neural network (DNN) and gradient boosting machines (GBM) algorithms carried the best discrimination performance based on estimated c-statistics and that the ML approach out-performed the guideline approach in terms of risk prediction; neural networks have little interpretability and are not necessarily better at predicting outcomes when trained on structured data¹⁸. This study relied on c-statistics to evaluate their ML models and did not emphasize other performance metrics (e.g., positive likelihood ratios, pre and post-test probabilities) required to assess clinical utility that are recommended by medical reporting guidelines^{11,13,19,20}. It also did not address the important issue of ML model interpretability²¹. Reporting informative prognostic metrics is needed to better understand the capabilities of ML classifiers if health departments and PMPs are to incorporate them into their decision-making processes.

The objective of our study was to further develop and validate ML algorithms (beyond just DNN) to predict the 30-day risk of hospitalization, emergency visit and mortality for a patient in Alberta, Canada at the time of an opioid dispensation using administrative data routinely available to health departments and PMPs and evaluate them using the above

BMJ Open

referenced reporting guidelines. We also analyzed feature importance to provide meaningful interpretations of the ML models. Comparing discrimination performance (area under the receiver operating characteristics curves), we hypothesized that the ML process would perform better than the current guideline approach for predicting risk of adverse outcomes related to opioid prescribing.

Methods

Study Design and Participants

This prognostic study used a supervised ML scheme. All patients in Alberta, Canada who received a dispensation for an opioid, were 18 years of age and older between Jan 1, 2017 and Dec 31, 2018 were eligible. Patients were excluded from all analyses if they had any previous diagnosis of cancer, received palliative interventions or were pregnant during the study period (eTable 1 in Supplement) as use of opioids in these contexts is clinically different.

Government health departments and payers in many jurisdictions have systems to capture prescription histories and ICD diagnostic codes. As such, we linked various administrative health data sets available in Alberta, Canada using unique patient identifiers in order to establish a complete description of patient demographics, drug exposures and health outcomes. These databases include *1) Pharmaceutical Information Network (PIN):* PIN data includes all dispensing records from community pharmacies from all prescriber types occurring in the province outside of the hospital setting. PIN collects all drug dispensations irrespective of age or insurance status in Alberta; Anatomical Therapeutic Chemical classification (ATC) codes²² were used to identify opioid dispensations and their respective opioid molecules (eTable 5), *2)*

Population and Vital Statistics Data (VS, Alberta Services): sex, age, date of birth, death date, immigration and emigration data, and underlying cause of death according to the World Health Organization algorithm using ICD codes⁸, *3) Hospitalizations and Emergency Department Visits (National Ambulatory Care Reporting System [NACRS], Discharge Abstract Database [DAD]):* all services, length of stay, diagnosis (up to 25 ICD-10⁸ based diagnoses). Data and coding accuracy are routinely validated both provincially and centrally via the Canadian Institute for Health Information, and *4) Physician Visits/Claims (Alberta Health):* all claims from all settings (e.g., outpatient, office visits, emergency departments, inpatient) with associated date of service, ICD code, procedure and billing information.

This study followed the TRIPOD and STARD reporting guidelines²³⁻²⁵ and received ethics approval from the University of Alberta ethics board (Pro00083807_AME1).

Measures and Outcome

ML models were trained on a labelled dataset in which the observation/analysis unit was an opioid dispensation. Every opioid dispensation, not just the incident one, was used as a potential instance to predict the risk of our outcome. The primary outcome was a composite of a drug-related hospitalization, emergency department (ED) visit or mortality within 30 days of an opioid dispensation based on ICD-10 codes used by others and identified from DAD, NACRS and Vital Statistics (T40, F55, F10-19; eTable 2 in Supplement)^{2,10,26}.

We anticipated that our defined outcome would be a rare event, leading to a class imbalanced dataset²⁷. To address this, we relied on specifying balanced class weightage for supporting algorithms; other approaches were deemed not suitable (e.g., oversampling using

BMJ Open

randomly repeating minority class); under sampling (sub-sampling within the majority class) resulted in changes in outcome prevalence. Class weightage is a commonly used method²⁸ to address class imbalance along with over and under-sampling approaches. However, oversampling, which involves generating new opioid dispensations from the original data distribution and is prone to introducing bias, is difficult due to the categorical nature of the data and beyond the scope of this study. With under-sampling, which takes samples from the majority class (in this case, no 30-day event after dispensation), we would not be able to use all of the information provided by the data in instances with no outcome. Hence, we decided to use the class weightage method which does not alter the data distribution. Instead, the learning process is adjusted in a way that increases the importance of the positive class (instances that led to a 30-day event)²⁹.

Predictor Candidates for ML Models

Predictor variables in our ML models included those that were informed by the literature^{3,4,10} and those directly obtained from the data sets. These included features based on demographics (age, sex, income using Forward Sortation index from postal codes³⁰), co-morbidity history using ICD-based Elixhauser score categories³¹, health care utilization (number of unique providers, number of hospital and emergency department visits), and drug utilization (level 3 ATC codes²², oral morphine equivalents³², concurrent use with benzodiazepines, number of opioid and benzodiazepine dispensations, number of unique opioid and benzodiazepine dispensations of unique opioid and benzodiazepine dispensations (level 1 in Supplement); 30 days was used to reflect the immediate nature of the risk and 5

years to fully capture co-morbidities. This approach aligns with how health providers would assess patients using the entire history of co-morbidities and then the more immediate factors in deciding on the need for a therapeutic as well as risk in patients. We performed experiments to identify the features and data sets that contributed most to predicting the outcomes with a view to minimizing the potential future data requirements for health departments and PMPs.

Statistical Analyses and Machine-Learning Prediction Evaluation

We randomly divided the patients in the 2017 portion of our study cohort into training (70%) and validation (30%) sets¹³ by patients and opioid dispensations such that no patients in the training set were in the validation set. Baseline characteristics and event rates were compared in the training vs validation group, and between those who experienced the outcome and those who did not using chi-squared tests of independence. As well, we used all the 2018 data as another independent validation set.

We trained commonly used^{13,33} ML algorithms (eAppendix in Supplement) and further tuned out-of-box models using 5-fold cross validation on the training data to address model overfitting^{13,34}. As is common in ML validation studies^{10,13}, we reported model discrimination performance (i.e. how well a model differentiates those at higher risk from those at lower risk)¹¹ using area under the receiver operating characteristic curve (AUROC; c-statistic). We then stratified the two ML models with the highest c-statistics into percentile categories (deciles) according to absolute risk of our outcome, as was done in previous studies^{10,35}. We also plotted AUROC¹¹ and precision-recall curves (PRCs)³⁶.

BMJ Open

Because discrimination alone is insufficient to assess ML model prediction capability, we assessed a second necessary property, namely, calibration (i.e., how similar the predicted absolute risk is to the observed risk across different risk strata)^{11,37}. Using the two ML models with the highest discrimination performance, we assessed calibration performance on the 2018 data by plotting observed (fraction of positives) vs predicted risk (mean predicted value). Using these same two ML classifiers, we analyzed the top 0.1, 1, 5, and 10 percentiles of predicted risk by the number of true and false positives, positive likelihood ratios (PLR)²⁰, positive predictive values (PPV), post-test probabilities, and number needed to screen. We also performed a simulation of daily data uploads for 2018 Quarter 1 to view the predictive capabilities if a ML risk predictor were to be deployed into a monitoring workflow.

For the XGBoost and logistic regression classifiers, we reported feature importance³³ and plotted PRCs that compared all dispenses to those within the top 10 percentiles of estimated risk. As well, for the XGBoost classifier, we described feature importance on model outcome using SHAP values^{38,39} to add an additional layer of interpretability.

Finally, we compared ML risk prediction (the two ML models with highest discrimination performance) to current guideline approaches as others have¹⁰, using the 2019 Centers for Medicare & Medicaid Services (CMS) opioid safety measures⁴⁰ and the 2017 Canadian Opioid Prescribing Guideline³. This was done by using the guidelines as "rules" when coding for the 30-day risk of event at the time of each opioid dispensation on the entire 2018 validation set. We also compared the discrimination performance of different logistic regression classifier models using various combinations of features derived from their respective databases: **1**)

demographic and drug/health utilization features from PIN and 2) co-morbidity features derived from DAD, NACRS and Claims.

All analyses were done using Python (v. 3.6.8,), SciKit Learn⁴¹ (v. 0.23.2) SHAP³⁹ (v. 0.35), XGBoost (v. 0.90)⁴², Pandas (v. 1.0.5)⁴³ and H20 Driverless AI (version 1.9).

Patient and Public Involvement

This research was done without patient involvement. Patients were not invited to comment on the study design and were not consulted to develop patient relevant outcomes or interpret the results. Patients were not invited to contribute to the writing or editing of this document for readability or accuracy. There are no plans to disseminate the results of the è. research to study participants.

Results

Patient Characteristics and Predictors

We identified 392,979 patients with at least one opioid dispensation in 2017 (Figure 1). This cohort was used to train (n= 275,150, 70%) and validate (n=117,829, 30%) ML models. In 2017 and 2018, 6,608 and 5,423 patients experienced the defined outcome, respectively. Baseline characteristics were different between those who experienced the outcome and those who did not (eTable 3 in Supplement) while characteristics were similar between the training and validation sets (eTable 4 in Supplement). There were 2,283,075 opioid dispensations in 2017 and 1,977,389 in 2018. Overall, in 2017, 2.03% (n= 45,757) of opioid dispensations were associated with the outcome; in 2018, the estimate was 1.6% (n= 31,392).

BMJ Open

As described above, we categorized our candidate features into four groups (eTable 5 in Supplement). When using all of the databases, the total number of features was 283 and 34 when considering only co-morbidities.

Machine-Learning Prediction Performance

Using the 2017 validation set, AUROCs for the XGBoost and logistic regression classifiers had the highest discrimination performance at 0.87, while the neural network classifier had lower performance at 0.80 (eTable 6 in Supplement).

Discrimination performance was similar for the 2018 validation set (n=393,023; eTable 6 in Supplement). XGBoost and logistic regression had the highest estimated AUROCs and area under PRCs while the neural network classifier was lower (Figure 2A, 2B). As expected, precision-recall curves indicate stronger predictive performance in opioid dispensations at higher predicted risk percentiles (Figure 2C, 2D).

In the 2018 validation set, although discrimination performance was similar (0.88), individual feature importance was different between the logistic regression and XGBoost classifiers, with logistic regression feature importance more reliant on co-morbidity data from DAD, NACRS and Claims while XGBoost relied more on drug utilization data from PIN (eFigure 2). With the XGBoost classifier, history of drug abuse, alcoholism, and prior hospitalization/emergency visit carried the highest importance for predicting the study outcome (eFigure 3A) where the presence of these features in a patient suggested a strong prediction towards having the defined outcome (eFigure 3B and 3C).

Calibration

When considering dispensations predicted to be in the highest percentiles of risk, the top 5-percentile captured 42% of all outcomes using the XGBoost and logistic regression classifiers (Table 1). Also, as the predicted risk percentiles get higher (top 10 percentile to top 0.1 percentile), so too do the corresponding PPVs with the top 0.1 percentile associated with a PPV of 33% for the XGBoost classifier. As well, lower categories of risk percentiles were associated with lower outcomes (Figure 3, eFigure 4). When we simulated a monitoring workflow scenario with daily data uploads, a similar pattern was illustrated where the dispensations predicted to be higher risk had higher event rates (Figure 4).

After using the XGBoost and logistic regression classifiers to identify the dispensations in the highest predicted risk percentiles, the pre-test probability of the outcome (1.6%) was transformed into higher post-test probabilities, with higher probabilities in the riskier percentiles (Table 1). The number needed to screen also decreased as predicted risk increased (Table 1).

Comparing discrimination performance, ML risk prediction outperformed the current guideline approaches when using various combinations of guideline recommendations (Table 2). In many of the guideline scenarios, the estimated AUROCs were close to the 0.5 mark. When we estimated the discrimination performance of the logistic regression classifier based on database source, using all databases produced an AUROC of 0.88. Reducing the database source to only DAD, NACRS, Claims (co-morbidities only) resulted in an AUROC of 0.85, while PIN (prescription history) only was 0.78 (Table 3).

Discussion

BMJ Open

This study showed that ML techniques using available administrative data (prescription histories and ICD codes) may provide enough discriminatory performance to predict adverse outcomes associated with opioid prescribing. Indeed, our ML analyses showed very high discrimination performance at 0.88. The linear model (logistic regression) and XGBoost carried higher discrimination and calibration performance, while the neural network classifier did not perform as well. By identifying the predicted top 5-10 percentile of absolute risk pursuant to an opioid dispensation, we were able to capture approximately half of all outcomes using ML methods. All ML models we trained had higher discrimination performance using the validation sets compared to the clinical guideline approach.

Since the prevalence of our defined outcome is relatively low in the general population, PPVs would also be expectedly low. However, estimated PPVs increased when we considered higher risk dispensations, as is expected since PPV is related to event prevalence. This is important because different users of a risk predictor will require different predictive capabilities. Similarly, our estimates of positive likelihood ratios and associated post-test probabilities also increased in dispensations with higher predicted risk indicating the strong predictive capabilities of the XGBoost and logistic regression classifiers; likelihood ratios >10 generate conclusive changes from pre-test to post-test probabilities²⁰.

The current guideline approach to assess absolute opioid prescribing risk produced cstatistic estimates closer to 0.5 indicating that discrimination was not much better than chance alone. ML models with higher predictive performance can better support health departments and PMPs with monitoring mandates to identify and intervene on those at high risk and their associated prescribers. We also found that adding co-morbidity features from administrative

databases increased prediction performance compared to prescription history alone, thus making the case for the use of this data by PMPs and health departments. However, if only prescription history is available, our trained XGBoost classifier still had strong discrimination performance.

We found only one study that used ML approaches to quantify the absolute risk of an event pursuant to an opioid dispensation¹⁰. Their methodology used rolling 3-month windows for estimating risk and ML model training while we used historic records to estimate 30-day risk. Differences in study population and feature selection may explain why their highest performing ML model was deep learning (neural network classifier) and ours was not. Nevertheless, we were able to replicate their predictive performance using our ML approach as we both showed that ML approaches have higher predictive capabilities than guideline approaches. Both of our studies used predicted percentile risk estimates to identify high risk dispensations and were able to do so with strong discrimination and calibration performance. Furthermore, we emphasized prognostic metrics which are more informative to assess the clinical utility of ML classifiers using pre- and post-test probabilities, something not done in other studies and recommended in medical guidelines²⁰. This major aspect of our study, not done previously, is important because any ML classifier that does not increase prognostic information compared to baseline cannot be incorporated into decision making for the purpose of intervening on higher risk instead of lower risk patients. Indeed, another study we found describes how identifying cases in higher predicted risk percentiles using ML methods can be deployed in hospital settings for the purpose of targeted interventions³⁵ upon discharge, however the effect on outcomes is still to be determined.

BMJ Open

The limitations of our study are similar to other ML studies¹⁰ and need to be addressed when considering deployment of ML risk predictors. Our training dataset was not able to account for non-prescription opioid consumption and the risk associated with non-prescription use, both of which are substantial contributors to overall risk². Regarding our analysis, we assumed that all dispensations were independent events; future research in this area should focus on employing ML methods using correlated data. As with all ML projects, our models were trained using Alberta data and might not be generalizable to other populations, or to specific populations within Alberta. However, one of the benefits of the ML process is that models can be retrained or similar methods could be used to develop new models to accommodate different populations.

This study suggests that ML risk prediction can support PMPs, especially if readily available administrative health data is used. PMPs currently use population-based guidelines which we, and others, have shown cannot predict absolute individual risk. The ML process allows for flexibility in model training, validation and deployment to specific settings in which, for the case of PMPs, high risk patients can be identified and targeted for intervention either at the patient or provider level. For example, a ML classifier can be trained on accessible data to create an aggregated list of "high risk" patients at regular time intervals to identify points of intervention. Moreover, ML classifiers can be retrained over time as changes in populations and trends in prescribing occur and are therefore specific to the population unlike broadly based guidelines. Further research can assess whether implementation of a ML-based monitoring system by PMPs leads to improved clinical outcomes within their own jurisdictions and whether other available features or feature reduction can yield sufficiently valid results for their own intended purposes.

to preteries only

1						
2						
3	References					
4						
5	1.	Belzak L, Halverson J. Evidence synthesis - The opioid crisis in Canada: a national perspective.				
7		Health Promotion and Chronic Disease Prevention in Canada. 2018;38(6):224-233.				
, 8	2.	Gomes T, Khuu W, Martins D, et al. Contributions of prescribed and non-prescribed opioids to				
9		opioid related deaths: population based cohort study in Ontario, Canada. BMJ. 2018;362:k3207.				
10	3.	Busse JW, Craigie S, Juurlink DN, et al. Guideline for opioid therapy and chronic noncancer pain.				
11		Canadian Medical Association Journal. 2017;189(18):E659-E666.				
12	4.	Dowell D. CDC guideline for prescribing opioids for chronic pain. 2016.				
13	5.	ismp Canada. Essential Clinical Skills for Opioid Prescribers. 2017; <u>https://www.ismp-</u>				
14		canada.org/download/OpioidStewardship/Opioid-Prescribing-Skills.pdf. Accessed Nov 2018.				
15	6.	Centre for Effective Practice. Management of Chronic Non Cancer Pain. 2017;				
10 17		thewellhealth.ca/cncp.				
17	7.	College of Physicians and Surgeons of Alberta. TPP Alberta – OME and DDD Conversion Factors.				
19		2020; http://www.cpsa.ca/tpp/. Accessed Jun 2020.				
20	8.	World health Organization. Classification of Diseases (ICD). 2019;				
21		https://www.who.int/classifications/icd/icdonlineversions/en/. Accessed Jun 2020.				
22	9.	Gomes T, Mamdani MM, Dhalla IA, Paterson JM, Juurlink DN. Opioid Dose and Drug-Related				
23		Mortality in Patients With Nonmalignant PainOpioid Dose and Drug-related Mortality. JAMA				
24		Internal Medicine. 2011;171(7):686-691.				
25	10.	Lo-Ciganic W-H, Huang JL, Zhang HH, et al. Evaluation of Machine-Learning Algorithms for				
20 27		Predicting Opioid Overdose Risk Among Medicare Beneficiaries With Opioid Prescriptions. JAMA				
27		network open. 2019;2(3):e190968-e190968.				
29	11.	Alba AC, Agoritsas T, Walsh M, et al. Discrimination and Calibration of Clinical Prediction Models:				
30		Users' Guides to the Medical Literature. JAMA. 2017;318(14):1377-1384.				
31	12.	Shah NH, Milstein A, Bagley P, Steven C. Making Machine Learning Models Clinically Useful.				
32		JAMA. 2019;322(14):1351-1352.				
33	13.	Liu Y, Chen P-HC, Krause J, Peng L. How to Read Articles That Use Machine Learning: Users'				
34		Guides to the Medical Literature. JAMA. 2019;322(18):1806-1816.				
35	14.	Bastanlar Y, Ozuysal M. Introduction to machine learning. Methods in molecular biology (Clifton,				
30		NJ). 2014;1107:105-128.				
38	15.	Thottakkara P, Ozrazgat-Baslanti T, Hupf BB, et al. Application of machine learning techniques to				
39		high-dimensional clinical data to forecast postoperative complications. PloS one.				
40		2016;11(5):e0155705.				
41	16.	Alberta Machine Intelligence Institute. Machine Learning Process Lifecycle. In: 2019.				
42	17.	Hsich E, Gorodeski EZ, Blackstone EH, Ishwaran H, Lauer MS. Identifying important risk factors				
43		for survival in patient with systolic heart failure using random survival forests. Circulation:				
44		Cardiovascular Quality and Outcomes. 2011;4(1):39-45.				
45 46	18.	Caruana R, Lou Y, Gehrke J, Koch P, Sturm M, Elhadad N. Intelligible models for healthcare:				
40		Predicting pneumonia risk and hospital 30-day readmission. Paper presented at: Proceedings of				
48		the 21th ACM SIGKDD international conference on knowledge discovery and data mining2015.				
49	19.	Yusuf M, Atal I, Li J, et al. Reporting quality of studies using machine learning models for medical				
50		diagnosis: a systematic review. BMJ open. 2020;10(3):e034568.				
51	20.	Jaeschke R, Guyatt GH, Sackett DL, et al. Users' Guides to the Medical Literature: III. How to Use				
52		an Article About a Diagnostic Test B. What Are the Results and Will They Help Me in Caring for				
53		My Patients? JAMA. 1994;271(9):703-707.				
54 55	21.	Shortliffe EH, Sepúlveda MJ. Clinical Decision Support in the Era of Artificial Intelligence. JAMA.				
55 56		2018;320(21):2199-2200.				
57						
58		20				
59						
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				

22.	World Health Organization. International language for drug utilization research, ATC/DDD. 2020;
23.	<u>Mitps://www.whocc.no/</u> . Accessed Jun 2020, 2020. Moons KGM, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): Explanation and Elaboration. <i>Annals of</i>
	Internal Medicine. 2015:162(1):W1-W73.
24.	equator network. Transparent reporting of a multivariable prediction model for individual
	prognosis or diagnosis (TRIPOD): The TRIPOD statement. 2020; https://www.equator-
	network.org/reporting-guidelines/tripod-statement/. Accessed Feb 2020.
25.	Cohen JF, Korevaar DA, Altman DG, et al. STARD 2015 guidelines for reporting diagnostic
	accuracy studies: explanation and elaboration. <i>BMJ Open</i> . 2016;6(11):e012799.
26.	Zhou H, Della PR, Roberts P, Goh L, Dhaliwal SS. Utility of models to predict 28-day or 30-day
27	unplanned hospital readmissions: an updated systematic review. <i>BMJ Open.</i> 2016;6(6):e011060.
27.	Browniee J. A Genue introduction to impalanced classification. 2020; https://machinelearningmastery.com/what.is.imbalanced-classification/_Accessed Jap 2021
28	King G. Zeng L. Logistic regression in rare events data. <i>Political analysis</i> 2001;9(2):137-163
20. 29.	Iohnson IM. Khoshgoftaar TM. Survey on deep learning with class imbalance. <i>Journal of Big</i>
	Data. 2019;6(1):1-54.
30.	Government of Canada. Forward Sortation Area—Definition. 2015;
	https://www.ic.gc.ca/eic/site/bsf-osb.nsf/eng/br03396.html. Accessed April 2020, 2020.
31.	Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9-
	CM and ICD-10 administrative data. <i>Medical care</i> . 2005:1130-1139.
32.	College of Physicians and Surgeons of Alberta. OME and DDD conversion factors.
22	http://www.cpsa.ca/wp-content/uploads/2017/06/OME-and-DDD-Conversion-Factors.pdf.
33.	Goldstein BA, Navar AM, Carter RE. Moving beyond regression techniques in cardiovascular risk
34.	Rose S. Machine Learning for Prediction in Electronic Health Data. JAMA Network Open.
	2018;1(4):e181404-e181404.
35.	Morgan DJ, Bame B, Zimand P, et al. Assessment of Machine Learning vs Standard Prediction
	Rules for Predicting Hospital Readmissions. JAMA Network Open. 2019;2(3):e190348-e190348.
36.	Saito T, Rehmsmeier M. The Precision-Recall Plot Is More Informative than the ROC Plot When
~-	Evaluating Binary Classifiers on Imbalanced Datasets. <i>PLOS ONE</i> . 2015;10(3):e0118432.
37.	Shah ND, Steyerberg EW, Kent DM. Big Data and Predictive Analytics: Recalibrating
20	Expectations. JAMA. 2018;320(1):27-28. Molpar C. Interpretable machine learning. A Guide for Making Plack Pox Models Explainable.
50.	2019
39.	Lundberg SM. Lee S-I. A unified approach to interpreting model predictions. Paper presented at:
	Advances in neural information processing systems2017.
40.	Centers for Medicare & Medicaid Services (CMS). Announcement of calendar year (CY) 2019
	Medicare Advantage capitation rates and Medicare Advantage and Part D payment policies and
	final call letter.
41.	Buitinck L, Louppe G, Blondel M, et al. API design for machine learning software: experiences
	from the scikit-learn project. arXiv preprint arXiv:13090238. 2013.
42.	Chen T, Guestrin C. Xgboost: A scalable tree boosting system. Paper presented at: Proceedings
10	The pandas development team, pandas dev/pandas: Pandas, 2020:
45.	https://doi.org/10.5281/zepodo.3509134_lap.2021
	<u>111293// 401015/ 1013201/20104013303134</u> , Juli 2021.
	21

Figure Legend

Figure 1. Patient flow diagram of study participants used for training and validating ML models. NACRS: National Ambulatory Care Reporting System; DAD: Discharge Abstract Database; VS: Vital Statistics; PIN: Pharmaceutical Information Network; Claims: Physician Claims

Figure 2. Area under the receiver operating characteristic curve (AUROC) (A) and precisionrecall curves (B) for all dispensations using logistic regression (L1), neural network, support vector machine (SVM), XGBoost and Naïve-Bayes; precision-recall curves for higher risk dispensations according to predicted risk percentile categories for logistic regression (C) and XGBoost (D) using the 2018 validation set.

Figure 3. Calibration curve plotting observed vs. quantiles (deciles) of estimated risk for the XGBoost classifier using the 2018 validation dataset. The majority of counts (dispensations) were predicted to be lower risk.

Figure 4. Simulation of a clinical workflow with daily uploads and events per 100 daily dispenses by risk percentiles using 2018 Quarter 1 (Q1) data for logistic regression (A) and XGBoost (B) classifiers.

Table 1. Highest percentiles of estimated risk and predictive performance using the XGBoost and logistic regression classifiers for the 2018 validation dataset (n=393,023). Total number of dispenses= 1,977,389; total number of outcomes= 31,392.

Metric Top (0.1%ile	Top 1%ile		Top 5%ile		Top 10%ile	
	XGBoost	Logistic Regression	XGBoost	Logistic Regression	XGBoost	Logistic Regression	XGBoost	Logistic Regression
Number of Dispenses	1,977	1,977	19,774	19,774	98,869	98,869	197,739	197,739
TP captured	655	472	4204	4100	13224	13293	18404	18409
Percent of TP	2.09	1.50	13.39	13.06	42.13	42.35	58.63	58.64
FP captured	1322	1505	15570	15674	85645	85576	179335	179330
PPV	33.13	23.87	21.26	20.73	13.38	13.45	9.31	9.31
PLR	30.71	19.44	16.74	16.22	9.57	9.63	6.36	6.36
Post-test								
Probability*	33.13	23.87	21.26	20.73	13.38	13.45	9.31	9.31
NNS	3.17	4.49	5.08	5.22	8.48	8.43	12.95	12.95

*Pre-test probability estimated at 1.6% using prevalence.

TP: true positives; FP: false positives; PPV: positive predictive value; PLR: positive likelihood ratio; NNS:

number needed to screen

Note: Logistic regression used L1 (lasso) parameter regularization

Table 2. Discrimination performance of guideline approach using the 2018 validation set. Guideline approaches were adapted from the 2017 Canadian Opioid Prescribing Guideline and 2019 Centers for Medicare & Medicaid Services (CMS) opioid safety measures and compared to logistic regression and XGBoost classifiers (each with an estimated area under the receiver operating characteristic curve of 0.88). These guidelines were used as rules to predict the 30day risk of event at the time of opioid dispensation.

Canadian Guidelines *	AUROC	Sensitivity	Specificity
History of mental disorder only	0.620	0.90	0.34
Substance abuse only	0.686	0.99	0.37
OME/day >90 only	0.539	0.22	0.85
(Mental disorder and substance abuse) OR OME/day >90	0.690	0.91	0.47
Mental disorder and substance abuse AND OME/day >90	0.560	0.20	0.91
Mental disorder OR substance abuse OR OME/day >90	0.589	0.99	0.18
CMS Guidelines**	1.6		
High opioid dose (>120 OME/day for 90+days)	0.507	0.081	0.933
Concurrency (Opioid & BZRA for 30+ days)	0.575	0.423	0.727
Multiple doctors (>4)	0.591	0.294	0.888
Multiple pharmacies (>4)	0.537	0.120	0.959
All conditions	0.50	0.001	0.999
Any condition	0.622	0.62	0.625
	I	1	1

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

OME: daily oral morphine equivalents; BZRA: benzodiazepine receptor agonist. Elixhauser scoring ICD codes were used to identify mental disorders and substance abuse.

*The Canadian guidelines do not specify timelines. >90 OME was determined by taking the average daily OME over the 30 days prior to dispensation

**The CMS guidelines specify 90 or more days at >120 OME and concurrent use of opioids and benzodiazepines for 30 days or more within an assessment period of 180 days.

tor peer terien only

Table 3. Discrimination performance based on database source using area under the receiver operating characteristic curve (AUROC) for the logistic regression classifier on the 2018 validation set.

Database source	Predictor Variables formed	AUROC	Number of
	from database		features
PIN only	Drug utilization + Prescription	0.78	248*
	history		
DAD, NACRS, Claims	Co-morbidities	0.85	34
PIN, DAD NACRS, Claims	Demographic + Drug Utilization	0.88	283
(all databases used in	+ Healthcare Utilization		
study)	+ Co-morbidities		

Note: drug utilization includes features describing oral morphine equivalents³², concurrent use with benzodiazepines, number of opioid and benzodiazepine dispensations, number of unique opioid and benzodiazepine molecules; health care utilization includes features describing number of unique health providers visited, number of hospital/emergency department visits; logistic regression used L1 (lasso) parameter regularization; PIN- Pharmaceutical Information Network; DAD- Discharge Abstract Database; NACRS- National Ambulatory Care Reporting System

Figure 1. Patient flow diagram of study participants used for training and validating ML models. NACRS: National Ambulatory Care Reporting System; DAD: Discharge Abstract Database; VS: Vital Statistics; PIN: Pharmaceutical Information Network; Claims: Physician Claims

BMJ Open

Figure 2. Area under the receiver operating characteristic curves (A) and precision-recall curves (B) for all dispensations using logistic regression (L1), neural network, support vector machine (SVM), XGBoost and Naïve-Bayes; precision-recall curves for higher risk dispensations according to predicted risk percentile categories for logistic regression (C) and XGBoost (D) using the 2018 validation set.

AUC: area under the curve

BMJ Open

Figure 4. Simulation of a clinical workflow with daily uploads and events per 100 daily dispenses by risk percentiles using 2018 Quarter 1 (Q1) data for logistic regression (A) and XGBoost (B) classifiers.

(A) Logistic Regression (L1)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary Content

eAppendix. Machine learning algorithms

eTable 1. Diagnostic codes used to exclude patients who had cancer, were pregnant, or were under palliative care.

eTable 2. Diagnostic codes used to identify the defined study outcome from emergency visit, hospitalization and death data.

eTable 3. Baseline characteristics of study patients (n=392,979). Co-morbidities were determined using Elixhauser criteria. All p-values in the chi² test of independence were <0.001 unless otherwise indicated.

eTable 4. Characteristics of study participants between training and validation groups using 2017 data.

eTable 5. Candidate predictors used to train ML algorithms.

eTable 6. Discrimination performance using area under the receiver operating characteristic curve (AUROC) of various ML algorithms. Training and validation were done using 2017 data (n=393,979); another independent validation was performed using 2018 data (n=393,023).

eFigure1. Schematic of study design and feature generation

eFigure2. Feature importance from logistic regression and tree-based (XGBoost) classifiers using the 2018 validation set.

eFigure3. Shapley values and feature impact in the XGBoost classifier using the 2018 validation set to describe "associations" between features and the outcome.

eFigure 4. Calibration curve plotting observed vs. quantiles of estimated risk for the logistic regression (L1) classifier using the 2018 validation dataset. The majority of counts (dispensations) were predicted to be lower risk.

eReferences.

eAppendix. Machine Learning Algorithms

Introduction

While there are always updates and new methods coming up in the fields of machine learning, in this study, we have focused on some of the most reliable and proven approaches for predictive modelling which are explainable and popularly used in previous studies of similar nature.

Logistic Regression

Regression analysis models the relationship between a dependent variable and a set of independent variables [1]. Typically, this includes understanding how the value of the dependent variable changes with the changes in the values of independent variables. Logistic regression [1] uses the logistic function to model a binary dependent variable, where, based on the values of the independent variables the model can approximate one of the two classes, the instance belongs to. This basic binary model can be extended to deal with multiple classes (e.g. One-vs-all classifiers). However, logistic regression is only capable of modeling a linear relationship of independent variables to the dependent variable, hence limited to problems with linear decision boundaries. We used the sci-kit learn library in our experiments[6] and found L1 regularization to be more effective.

Ridge Classifier

We used the ridge classifier implemented in the Scikit learn library[5]. It implements a classifier using ridge regression which uses an L2 regularization on the least square objective function. The library converts the labels into -1 and 1 and fits a linear regression on the converted labels with the regularization.

Random Forest

Random forest is a tree ensemble learning algorithm that has wide applicability in many domains[1]. Random forest is a nonlinear learning algorithm, which arrives at nonlinear decision boundaries by independently combining multiple decision trees. Each individual decision tree in the forest can be grown independently of each other on a subset of the training data. Random forests are mainly sensitive to the number of trees, the depth of a tree and the number of covariates randomly chosen to split at each node[1]. These hyper-parameters can be tuned to find the best configuration of every dataset. Random Forests, in general, are less prone to overfit since they always grow individual trees on a subset of the training data[1]. At prediction time, the decision of each tree is aggregated to compute the final prediction.

Neural Networks (NN)

Neural networks are another collection of non-linear learning algorithms with high representation power. They are known to be able to find mappings from an input to an output from a larger non-linear function space [2]. This ability to represent a larger space of nonlinear

functions has shown to be very effective recently in many application domains such as natural language processing, computer vision, genomics, computer games and health[2]. Neural networks come in many flavors learning nonlinear mapping of different types of data such as Convolutional NNs being most effective with images and Recurrent NNs for time series and language data. Identifying the most effective neural network structure is one of the difficult and the most time-consuming aspect of applying neural networks to new application domains and data. Generally, neural networks try to exploit the relationships in the raw unstructured data (eg: image and text) presented to the network but with more structured data such as health records and ICD codes learning relationships is much complex. Our neural network models are mainly based on densely connected hidden layers with ReLu[6] activation function. We used the cross-entropy loss for the binary classification Adam optimizer. We used a simple feed forward network using Sklearn MLP classifier with hyperparameter tuning for the NN.

Boosted Learning Algorithms

Boosting is a process to ensemble multiple base learning algorithms to arrive at better overall performance than any individual base learner[1]. In contrast to independently building multiple models from the subsets of the data, boosting re-weights the training data every time a model is learned for future models. This weighting happens to give more preference to currently misclassified data points in the next round compared to the correctly classified data points. Therefore future learners try to do better on the misclassified data points leading to a collection base learner having a better-combined prediction. This process is sequential so each base learner is dependent on the output of the previously trained model (it is worthy to note XGBoost provides a parallel tree boosting alternative). In our work, we have experimented with several boosting meta-learning algorithms such as XGBoost[7], AdaBoost[5] and GBM[5]. XGBoost uses a variant of trees as the base learner whereas AdaBoost (from Sci-kit learn) can use many ML algorithms as base learners. GBM uses logistic regression by default as the base learner. We used all 3 types of boosting with tuned hyperparameters for comparison.

Naive Bayes

Naive Bayes is based on the Bayes theorem with a strong independence assumption between the covariates[1]. This assumption helps in building a simple probabilistic model for learning and inference. Naive Bayes coefficients scale linearly with the number of covariates making this a suitable model for high-dimensional data. We used Naive Bayes as a simple baseline learning algorithm for comparison.

Support Vector Machines (SVM)

SVMs[4] are maximum margin classifiers optimizing for learning a hyperplane having the maximum distance away from each of the class data points[1]. SVM is a linear classifier but with the kernel trick to map the inputs to the higher dimensional space, it can learn nonlinear decision boundaries in the input space. SVMs are very effective binary classifiers with the kernel trick[1]. With larger datasets, SVMs tend to become more computationally intensive.

eTable 1. Diagnostic codes used to exclude patients who had cancer, were pregnant, or were under palliative care.

Condition	ICD 9	ICD 10
Cancer	140.x - 239.x	C00.x - C99.x, D00.x - D49.x
Pregnancy	630.x - 679.x	000.x - 099.x
Palliative	V66	Z51.0, Z51.1, Z51.5

eTable 2. Diagnostic codes used to identify the defined study outcome from emergency visit, hospitalization and death data.

ICD 10	Condition
Т40.х	Poisoning by, adverse effect of and underdosing of narcotics and psychodysleptics
F55.x	Abuse of non-psychoactive substances
F11.x - F19.x	Mental and behavioral disorders due to psychoactive substance use

3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
33	
24	
34	
35	
36	
37	
38	
39	
10	
40	
41	
42	
43	
44	
45	
12	
40	
4/	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
57 E0	
28	
59	

1 2

eTable 3. Baseline characteristics of study patients (n=392,979). Co-morbidities were determined using Elixhauser criteria. All p-values in the chi² test of independence were <0.001 unless otherwise indicated.

Characteristic	Number without Event	Percent	Number with Event n=6,608	Percent
	n=386,371			
Age:				
Mean (SD)	48.1 (16.4)		41.2 (12.4)	
18-45	162057	41.9	3466	52.4
45-65	154632	40.0	2656	40.2
>65*	69682	18.0	486	7.4
Male	197491	50.3	3922	59.4
Female	194794	49.7	2686	40.6
Alcohol Disorder	66320	16.9	5220	79.0
Arrhythmia	90621	23.1	1959	29.6
Blood Loss Anemia	1164	0.3	82	1.2
Congestive Heart Failure	18954	4.8	565	8.6
Coagulopathy	8053	2.1	356	5.4
Deficiency Anemia	34188	8.7	971	14.7
Depression	159140	40.6	5518	83.5
Diabetes**	64132	16.3	1408	21.3
Substance Abuse Disorder	74678	19.0	5485	83.0
Fluid Disorder	42690	10.9	3012	45.6
Hypertension**	140171	35.7	2624	39.7
Hypothyroidism	45519	11.6	601	9.1
Injury^	195688	49.9	5541	83.9
Liver Disorder	21656	5.5 🥌	1588	24.0
Neurologic Disorder	230490	58.8	5387	81.5
Obesity	63393	16.2	970	14.7
Poisoning [^]	17434	4.4	2775	42.0
Psychoses	35870	9.1	3162	47.9
Renal Disorder	16166	4.1	499	7.6
Rheumatoid Conditions	111458	28.4	3157	47.8
HIV Infection	1098	0.3	141	2.1
Paralysis	3874	1.0	187	2.8
Peptic Ulcer Disease	11728	3.0	509	7.7
Pulmonary Circulation Disorder	9611	2.4	430	6.5
Chronic Pulmonary Disease	102990	26.3	2913	44.1
Peripheral Vascular Disease	14467	3.7	389	5.9
Valvular Disease	7308	1.9	226	3.4
Weight Loss	16207	4.1	747	11.3

*p-value for age >65 is an estimated 0.037

1 2	
3	^ Injury: ICD10: S00-T98; Poisoning: ICD10: T36-T50
4 5	** Complicated, uncomplicated diabetes and hypertension were collapsed into one category each
6	
7 8	
9	
10	
11	
13	
14 15	
16	
17 18	
19	
20	
21	
23	
24 25	
26	
27 28	
29	
30 31	
32	
33 24	
35	
36	
37 38	
39	
40 41	
42	
43 44	
45	
46 47	
48	
49 50	
50	
52	
53 54	
55	
56 57	
58	6
59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
3	
----------	--
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
 22	
20	
24 25	
25	
26	
27	
28	
29	
30	
31	
27	
32	
33	
34	
35	
36	
37	
38	
20	
10	
40	
41	
42	
43	
44	
45	
46	
10	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
20	
5/	
58	
59	

1 2

eTable 4. Characteristics of study participants between training and validation groups using 2017 data.

Characteristic	Number in	Percent	Number in	Percent
	training group		validation group	
	N=275,150~		N=117,829~	
Age:				
Mean (SD)	48.3 (16)		48.2 (16)	
18-45	114356	41.5	49909	42.3
45-65	111859	40.7	47132	40.0
>65	48935	17.8	20788	17.6
Male	138603	48.5	59339	48.4
Female	136545	47.8	58490	47.7
Alcohol Disorder	46792	16.4	20199	16.5
Arrhythmia	63637	22.3	27201	22.2
Blood Loss Anemia	839	0.3	336	0.3
Congestive Heart	13320	4.7	5694	4.6
Failure				
Coagulopathy	5697	2.0	2393	2.0
Deficiency Anemia	24096	8.4	10179	8.3
Depression	112080	39.2	47628	38.9
Diabetes**	45131	15.8	19144	15.6
Substance Abuse	52609	18.4	22713	18.5
Disorder				
Fluid Disorder	30272	10.6	12780	10.4
Hypertension**	98546	34.5	41840	34.1
Hypothyroidism	31908	11.2	13666	11.2
Injury*	137423	48.1	58865	48.0
Liver Disorder	15252	5.3	6567	5.4
Neurologic	161706	56.5	69341	56.6
Disorder				
Obesity	44607	15.6	18882	15.4
Poisoning*	12503	4.4	5293	4.3
Psychoses	25422	8.9	10860	8.9
Renal Disorder	11403	4.0	4817	3.9
Rheumatoid	78268	27.4	33420	27.3
Conditions			222	
HIV Infection	774	0.3	336	0.3
Paralysis	2717	1.0	1176	1.0
Peptic Ulcer	8239	2.9	3533	2.9
Pulmonary	6771	∂ 4	7077))
Circulation	0//1	2.4	28//	2.3
Disorder				
Chronic Pulmonary	72265	25.3	30949	25.3
Disease				

Peripheral Vascular	10228	3.6	4278	3.5		
Disease						
Valvular Disease	5111	1.8	2215	1.8		
Weight Loss	11477	4.0	4790	3.9		

Note: p-values for chi² test of independence were all >0.06 when comparing training and validation sets. *Injury: ICD10: S00-T98; Poisoning: ICD10: T36-T50

** Complicated, uncomplicated diabetes and hypertension were collapsed into one category each

eTable 5. Anatomical Therapeutic Chemical classification of opioid molecules used for this study and candidate predictors used to train ML algorithms.

Category (data source)	Description				
ATC codes used to identify	N01AH01, N01AH03, N01AH06, N07BC01, N07BC02,				
opioids from PIN data	N07BC51, R05DA03, R05DA04, R05DA09, R05DA20, N02A				
Opioid molecules used in this	alfentanil, butorphanol, codeine, diamorphine, fentanyl,				
study	hydrocodone, hydromorphone, meperidine, morphine,				
	oxycodone, oxymorphone, pentazocine, sufentanil,				
	tapentadol, tramadol				
Demographic information (PIN)	age, sex, postal codes, mean income				
Drug utilization history (PIN)	drug dispenses in past 30 days using on ATC codes, oral				
	morphine equivalents, concurrent use with benzodiazepines				
	to identifyN01AH01, N01AH03, N01AH06, N07BC01, N07BC02, N07BC51, R05DA03, R05DA04, R05DA09, R05DA20, N02Aes used in thisalfentanil, butorphanol, codeine, diamorphine, fentanyl, hydrocodone, hydromorphone, meperidine, morphine, oxycodone, oxymorphone, pentazocine, sufentanil, tapentadol, tramadolformation (PIN)age, sex, postal codes, mean incomehistory (PIN)drug dispenses in past 30 days using on ATC codes, oral morphine equivalents, concurrent use with benzodiazepines defined as at least 7 days of cumulative concurrent use in the 30 days prior to dispensation, number of dispensations and unique molecules of opioids and benzodiazepineszation (PINflags for previous hospitalizations and emergency department visits, number of unique providersorbidities (DAD,Elixhauser condition flags based on the past 5 years of claims bospitalizations, and emergency visits				
	30 days prior to dispensation, number of dispensations and				
	unique molecules of opioids and benzodiazepines				
Health care utilization (PIN	flags for previous hospitalizations and emergency				
DAD)	department visits, number of unique providers				
ICD based co-morbidities (DAD,	Elixhauser condition flags based on the past 5 years of claims,				
NACRS, Claims)	hospitalizations, and emergency visits.				

Note: ATC- Anatomical Therapeutic Chemical classification (https://www.whocc.no/atc_ddd_index); PIN- Pharmaceutical Information Network; ICD- International Statistical Classification of Diseases and Related Health Problems, World Health Organization; total number of features 283

eTable 6. Discrimination performance using area under the receiver operating characteristic curve (AUROC) of various ML algorithms using all features (demographics, health utilization, prescription history, co-morbidities). Training and validation were done using 2017 data (n=393,979); another independent validation was performed using 2018 data (n=393,023).

Algorithm	Train	Validation 2017	Validation 2018
XGBoost Classifier	0.897	0.870	0.884
Logistic Regression	0.887	0.869	0.884
Gradient Boosting Classifier	0.898	0.868	0.883
AdaBoost Classifier	0.884	0.868	0.882
Random Forest Classifier	0.909	0.863	0.881
Ridge Classifier	0.895	0.863	0.879
SVM	0.896	0.860	0.878
Gaussian Naive Bayes	0.846	0.826	0.847
Decision Tree Classifier	0.919	0.791	0.822
Neural Networks	0.827	0.804	0.821

Note: Logistic regression used L1 (lasso) parameter regularization

eFigure2. Feature importance from logistic regression and tree-based XGBoost classifiers using the 2018 validation set. The logistic regression classifier relied more on co-morbidity data from DAD, NACRS, and Claims databases; XGBoost classifier relied more on data from the PIN database. AUROCs for both classifiers were similar at 0.88.

Logistic Regression		XGBoost	
history of drug abuse	1.00	age at dispensation	1.00
		number of prescriptions	
age at dispensation	0.65	dispensed in previous 30 days	1.00
history of prior hospitalization/ED		number of opioid dispensations in	
visit	0.62	previous 30 days	0.86
		number of BZD dispensations in	
history of alcohol use disorder	0.62	previous 30 days	0.46
history of fluid and electrolyte			
disorder	0.32	Doctor risk score*	0.45
		total OME consumed in previous	
history of poisoning	0.31	30 days	0.43
history of psychoses	0.31	history of poisoning	0.37
number of unique BZD dispensed	•		
in previous 30 days	0.26	pharmacy risk score**	0.35
		number of unique providers that	
history of depression	0.19	prescribed an opioid or BZD	0.34
concurrent use of opioid and BZD		4	
in previous 30 days	0.19	income	0.34
		history of prior hospitalization/ED	
history of injury	0.17	visit	0.26

Note: Logistic regression used L1 (lasso) parameter regularization; BZD- benzodiazepine; OMEoral morphine equivalents; ED: emergency department

*derived feature using proportion of opioid/benzodiazepine patients that experienced the study outcome in the previous 30 days prior to opioid dispensation for each physician;

**derived feature using proportion of opioid/benzodiazepine patients that experienced the study outcome in the previous 30 days prior to opioid dispensation for each pharmacy

eFigure 3. SHAP values and feature impact of the XGBoost classifier using the 2018 validation set to describe "associations" between features and the outcome. Features with the most impact on the model with drug abuse ranked highest (A); tornado plot illustrating feature impact (B); explaining the prediction of study outcome based on predictor values for 4 patients using SHAP values(C).

(A)

Note: Pharmacy risk score- derived feature using proportion of opioid patients that experienced the study outcome in the previous 30 days prior to opioid dispensation for each pharmacy; training and validating the XGBoost classifier with these features alone resulted in an AUC of 0.877 in the 2018 validation set

BMJ Open

1									
2					Ť.				Hic
3	Listen of drug shues disorder			_					
4 5	History of drug abuse disorder		-	-					
6	History of alcohol use disorder				-		_		
7	History of poisoning			-	-			-	
8	History of Hospitalization/ED visit					-			Т
9 10	Thistory of Hospitalization/ED visit								Т
11	Age at opioid dispense							••	
12	History of psychosis			-					
13	History of fluid disorder								
14 15	History of injuny								
16	History of Highry			1 Autom					Т
17	Number of opioid dispenses in prior 30 days					00			
18	History of liver disorder			•					
19 20	Number of dispensation in prior 30 days				_				
21									
22	History of anxiolytics use in prior 30 days								
23 24	Pharmacy risk score		• •	• •	_		• •		
24 25	History of neurologic disorder					-			
26	Total OME in prior 30 days				-				
27									
28 29	History of depression			0.0	-				
30	History of diabetes			-		-			
31	History of oral blood glucose lowering drugs use in prior 30 days								
32	History of obesity								
33 34									
35	History of anti-epileptics use in prior 30 days			-					
36			2	1				- <u>-</u>	Lo
37		-3	-2 SHAP	value (im	nact on r	nodel ou	tout)	2	
30 39			JUA	Turue (ini		nouci ou	cpuc)		
40	Note: Pharmacy risk score- derived feature using proportion of opio	id/ben	zodiazepi	ne patient	ts that ex	perience	d the s	tudy out	tcom

Note: Pharmacy risk score- derived feature using proportion of opioid/benzodiazepine patients that experienced the study outcome in the previous 30 days prior to opioid dispensation for each pharmacy; red indicates higher values of categorical variables and plots to the right of 0.0 indicate the tendency to be associated with the study outcome while blue indicates lower values of categorical variables and plots to the left of 0.0 indicate the tendency to be associated with no outcome

> For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

(C)

How to read the figure on the next page: Using hospitalization within 30-days of an opioid dispensation as the outcome of interest, there are 4 scenarios to consider: the XGBoost classifier has low or high confidence in predicting a hospitalization and low or high confidence in predicting NO hospitalization. Start at the base SHAP value of near 0.0 ("base value") in which the classifier is not confident in the prediction. SHAP values (in bold) that are above 0.0 indicate a tendency towards a hospitalization while those that are below 0.0 indicate a tendency for NO hospitalization. As the SHAP value moves above 0.0, for example 3.11 in the top panel, the classifier's confidence in predicting a hospitalization is higher. As the SHAP value approaches closer to the base value, for example 0.16 in the second panel, the classifier has relatively lower confidence in predicting a hospitalization. When the SHAP value is below 0.0, for example -5.4 in the third panel, the classifier's confidence in predicting NO hospitalization is higher and when the SHAP value is closer to 0.0, for example -0.44 in the bottom panel, the classifier NO hospitalization is higher and when the SHAP value is closer to 0.0, for example -0.44 in the bottom panel, the classifier has lower confidence in predicting NO

The top panel (SHAP value 3.11) depicts an instance predicted to be high risk for our outcome. This individual has a positive history of drug abuse disorder, liver disorder, diabetes, fluid/electrolyte disorder, alcohol use disorder, poisoning and B vitamin use in the prior 30 days. The third panel (SHAP value -5.40) depicts an instance predicted to be low risk (i.e., no hospitalization) and has a negative history for poisoning, drug and alcohol use disorder. **Note-** drug abuse: drug abuse disorder; poisoning: history of poisoning; vitamin B1: vitamin B1 in prior 30 days; anti-glycemics: anti-glycemic agents in prior 30 days; age: age at opioid dispensation; # opioid dispenses: number of opioid dispensations in prior 30 days; Hosp/ED visit: history of prior hospitalizations and/or emergency visits in past 6 months; Total OME: total oral morphine equivalents in prior 30 days; DIAZEPAM: history of diazepam use in prior 30 days.

BMJ Open

eFigure 4. Calibration curve plotting observed vs. quantiles of estimated risk for the logistic regression (L1) classifier

eReferences

- 1. Friedman, J., Hastie, T., Tibshirani, R.: The elements of statistical learning, vol. 1. Springer series in statistics New York (2001)
- 2. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)
- 3. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009.
- 4. Chang CC, Lin CJ. LIBSVM: A library for support vector machines. ACM transactions on intelligent systems and technology (TIST). 2011 May 6;2(3):1-27.
- 5. <u>Scikit-learn: Machine Learning in Python</u>, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.
- Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. InProceedings of the 27th international conference on machine learning (ICML-10) 2010 (pp. 807-814).
- 7. Chen T, Guestrin C. Xgboost: A scalable tree boosting system. InProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining 2016 Aug 13 (pp. 785-794).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml