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eAppendix. Machine Learning Algorithms 

 

Introduction 

While there are always updates and new methods coming up in the fields of machine learning, 

in this study, we have focused on some of the most reliable and proven approaches for predictive 

modelling which are explainable and popularly used in previous studies of similar nature. 

Logistic Regression 

Regression analysis models the relationship between a dependent variable and a set of 

independent variables [1]. Typically, this includes understanding how the value of the dependent 

variable changes with the changes in the values of independent variables. Logistic regression [1] 

uses the logistic function to model a binary dependent variable, where, based on the values of 

the independent variables the model can approximate one of the two classes, the instance 

belongs to. This basic binary model can be extended to deal with multiple classes (e.g. One-vs-all 

classifiers). However, logistic regression is only capable of modeling a linear relationship of 

independent variables to the dependent variable, hence limited to problems with linear decision 

boundaries. We used the sci-kit learn library in our experiments[6] and found L1 regularization 

to be more effective. 

Ridge Classifier 

We used the ridge classifier implemented in the Scikit learn library[5]. It implements a classifier 

using ridge regression which uses an L2 regularization on the least square objective function. The 

library converts the labels into -1 and 1 and fits a linear regression on the converted labels with 

the regularization. 

Random Forest 

Random forest is a tree ensemble learning algorithm that has wide applicability in many 

domains[1]. Random forest is a nonlinear learning algorithm, which arrives at nonlinear decision 

boundaries by independently combining multiple decision trees. Each individual decision tree in 

the forest can be grown independently of each other on a subset of the training data. Random 

forests are mainly sensitive to the number of trees, the depth of a tree and the number of 

covariates randomly chosen to split at each node[1]. These hyper-parameters can be tuned to 

find the best configuration of every dataset. Random Forests, in general, are less prone to overfit 

since they always grow individual trees on a subset of the training data[1]. At prediction time, 

the decision of each tree is aggregated to compute the final prediction.  

Neural Networks (NN) 

Neural networks are another collection of non-linear learning algorithms with high 

representation power. They are known to be able to find mappings from an input to an output 

from a larger non-linear function space [2]. This ability to represent a larger space of nonlinear 
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functions has shown to be very effective recently in many application domains such as natural 

language processing, computer vision, genomics, computer games and health[2]. Neural 

networks come in many flavors learning nonlinear mapping of different types of data such as 

Convolutional NNs being most effective with images and Recurrent NNs for time series and 

language data. Identifying the most effective neural network structure is one of the difficult and 

the most time-consuming aspect of applying neural networks to new application domains and 

data. Generally, neural networks try to exploit the relationships in the raw unstructured data (eg: 

image and text) presented to the network but with more structured data such as health records 

and ICD codes learning relationships is much complex. Our neural network models are mainly 

based on densely connected hidden layers with ReLu[6] activation function. We used the cross-

entropy loss for the binary classification Adam optimizer. We used a simple feed forward 

network using  Sklearn  MLP classifier with hyperparameter tuning  for the NN. 

Boosted Learning Algorithms 

Boosting is a process to ensemble multiple base learning algorithms to arrive at better overall 

performance than any individual base learner[1]. In contrast to independently building multiple 

models from the subsets of the data, boosting re-weights the training data every time a model is 

learned for future models. This weighting happens to give more preference to currently 

misclassified data points in the next round compared to the correctly classified data points. 

Therefore future learners try to do better on the misclassified data points leading to a collection 

base learners having a better-combined prediction. This process is sequential so each base 

learner is dependent on the output of the previously trained model (it is worthy to note XGBoost 

provides a parallel tree boosting alternative). In our work, we have experimented with several 

boosting meta-learning algorithms such as XGBoost[7], AdaBoost[5] and GBM[5]. XGBoost uses 

a variant of trees as the base learner whereas AdaBoost (from Sci-kit learn) can use many ML 

algorithms as base learners. GBM uses logistic regression by default as the base learner. We used 

all 3 types of boosting with tuned hyperparameters for comparison. 

Naive Bayes 

Naive Bayes is based on the Bayes theorem with a strong independence assumption between the 

covariates[1]. This assumption helps in building a simple probabilistic model for learning and 

inference. Naive Bayes coefficients scale linearly with the number of covariates making this a 

suitable model for high-dimensional data. We used Naive Bayes as a simple baseline learning 

algorithm for comparison.  

Support Vector Machines (SVM) 

SVMs[4] are maximum margin classifiers optimizing for learning a hyperplane having the 

maximum distance away from each of the class data points[1]. SVM is a linear classifier but with 

the kernel trick to map the inputs to the higher dimensional space, it can learn nonlinear decision 

boundaries in the input space. SVMs are very effective binary classifiers with the kernel trick[1]. 

With larger datasets, SVMs tend to become more computationally intensive. 
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eTable 1. Diagnostic codes used to exclude patients who had cancer, were pregnant, or were 

under palliative care. 

Condition ICD 9 ICD 10 

Cancer 140.x - 239.x C00.x - C99.x, D00.x - D49.x 

Pregnancy 630.x - 679.x O00.x - O99.x 

Palliative V66 Z51.0, Z51.1, Z51.5 

 

eTable 2. Diagnostic codes used to identify the defined study outcome from emergency visit, 

hospitalization and death data. 

ICD 10 Condition 

T40.x Poisoning by, adverse effect of and underdosing of narcotics and 

psychodysleptics  

F55.x Abuse of non-psychoactive substances 

F11.x - F19.x Mental and behavioral disorders due to psychoactive substance use 

  

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) BMJ Open

 doi: 10.1136/bmjopen-2020-043964:e043964. 11 2021;BMJ Open, et al. Sharma V



5 

 

eTable 3. Baseline characteristics of study patients (n=392,979). Co-morbidities were determined using 

Elixhauser criteria.  All p-values in the chi2 test of independence were <0.001 unless otherwise indicated. 

  

Characteristic Number without 

Event   

n=386,371  

Percent Number with Event   

n=6,608  

Percent 

Age:     

Mean (SD) 48.1 (16.4) -- 41.2 (12.4) -- 

      18-45  162057 41.9 3466 52.4 

       45-65  154632 40.0 2656 40.2 

     >65*  69682 18.0 486 7.4 

Male  197491 50.3 3922 59.4 

Female  194794 49.7 2686 40.6 

Alcohol Disorder 66320 16.9 5220 79.0 

Arrhythmia  90621 23.1 1959 29.6 

Blood Loss Anemia  1164 0.3 82 1.2 

Congestive Heart 

Failure  
18954 4.8 565 8.6 

Coagulopathy  8053 2.1 356 5.4 

Deficiency Anemia  34188 8.7 971 14.7 

Depression  159140 40.6 5518 83.5 

Diabetes** 64132 16.3 1408 21.3 

Substance Abuse 

Disorder  
74678 19.0 5485 83.0 

Fluid Disorder  42690 10.9 3012 45.6 

Hypertension** 140171 35.7 2624 39.7 

Hypothyroidism  45519 11.6 601 9.1 

Injury^  195688 49.9 5541 83.9 

Liver Disorder  21656 5.5 1588 24.0 

Neurologic Disorder  230490 58.8 5387 81.5 

Obesity  63393 16.2 970 14.7 

Poisoning^  17434 4.4 2775 42.0 

Psychoses  35870 9.1 3162 47.9 

Renal Disorder  16166 4.1 499 7.6 

Rheumatoid Conditions  111458 28.4 3157 47.8 

HIV Infection  1098 0.3 141 2.1 

Paralysis  3874 1.0 187 2.8 

Peptic Ulcer Disease  11728 3.0 509 7.7 

Pulmonary Circulation 

Disorder  
9611 2.4 430 6.5 

Chronic Pulmonary 

Disease  
102990 26.3 2913 44.1 

Peripheral Vascular 

Disease  
14467 3.7 389 5.9 

Valvular Disease  7308 1.9 226 3.4 

Weight Loss  16207 4.1 747 11.3 

*p-value for age >65 is an estimated 0.037  
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^ Injury: ICD10: S00-T98; Poisoning: ICD10: T36-T50 

** Complicated, uncomplicated diabetes and hypertension were collapsed into one category each 
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eTable 4.  Characteristics of study participants between training and validation groups using 

2017 data. 

Characteristic Number in 

training group 

N=275,150~ 

Percent Number in 

validation group 

N=117,829~  

Percent 

Age:       

Mean (SD) 48.3 (16) -- 48.2 (16) -- 

          18-45  114356 41.5 49909 42.3 

            45-65  111859 40.7 47132 40.0 

         >65  48935 17.8 20788 17.6 

Male  138603 48.5 59339 48.4 

Female  136545 47.8 58490 47.7 

Alcohol Disorder 46792 16.4 20199 16.5 

Arrhythmia  63637 22.3 27201 22.2 

Blood Loss Anemia  839 0.3 336 0.3 

Congestive Heart 

Failure  

13320 4.7 5694 4.6 

Coagulopathy  5697 2.0 2393 2.0 

Deficiency Anemia  24096 8.4 10179 8.3 

Depression  112080 39.2 47628 38.9 

Diabetes** 45131 15.8 19144 15.6 

Substance Abuse 

Disorder  

52609 18.4 22713 18.5 

Fluid Disorder  30272 10.6 12780 10.4 

Hypertension** 98546 34.5 41840 34.1 

Hypothyroidism  31908 11.2 13666 11.2 

Injury*  137423 48.1 58865 48.0 

Liver Disorder  15252 5.3 6567 5.4 

Neurologic 

Disorder  

161706 56.5 69341 56.6 

Obesity  44607 15.6 18882 15.4 

Poisoning*  12503 4.4 5293 4.3 

Psychoses  25422 8.9 10860 8.9 

Renal Disorder  11403 4.0 4817 3.9 

Rheumatoid 

Conditions  

78268 27.4 33420 27.3 

HIV Infection  774 0.3 336 0.3 

Paralysis  2717 1.0 1176 1.0 

Peptic Ulcer 

Disease  

8239 2.9 3533 2.9 

Pulmonary 

Circulation 

Disorder  

6771 2.4 2877 2.3 

Chronic Pulmonary 

Disease  

72265 25.3 30949 25.3 
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Peripheral Vascular 

Disease  

10228 3.6 4278 3.5 

Valvular Disease  5111 1.8 2215 1.8 

Weight Loss  11477 4.0 4790 3.9 

Note: p-values for chi2 test of independence were all >0.06 when comparing training and validation sets. 

*Injury: ICD10: S00-T98; Poisoning: ICD10: T36-T50  

** Complicated, uncomplicated diabetes and hypertension were collapsed into one category each 

 

 

 

 

eTable 5.  Anatomical Therapeutic Chemical classification of opioid molecules used for this 

study and candidate predictors used to train ML algorithms. 

Category (data source) Description 

ATC codes used to identify 

opioids from PIN data 

N01AH01, N01AH03, N01AH06, N07BC01, N07BC02, 

N07BC51, R05DA03, R05DA04, R05DA09, R05DA20, N02A 

Opioid molecules used in this 

study 

alfentanil, butorphanol, codeine, diamorphine, fentanyl, 

hydrocodone, hydromorphone, meperidine, morphine, 

oxycodone, oxymorphone, pentazocine, sufentanil, 

tapentadol, tramadol 

Demographic information (PIN) age, sex, postal codes, mean income 

Drug utilization history (PIN) drug dispenses in past 30 days using on ATC codes, oral 

morphine equivalents, concurrent use with benzodiazepines 

defined as at least 7 days of cumulative concurrent use in the 

30 days prior to dispensation, number of dispensations and 

unique molecules of opioids and benzodiazepines 

Health care utilization (PIN 

DAD) 

flags for previous hospitalizations and emergency 

department visits, number of unique providers 

ICD based co-morbidities (DAD, 

NACRS, Claims) 

Elixhauser condition flags based on the past 5 years of claims, 

hospitalizations, and emergency visits. 

Note: ATC- Anatomical Therapeutic Chemical classification (https://www.whocc.no/atc_ddd_index); 

PIN- Pharmaceutical Information Network; ICD- International Statistical Classification of Diseases and 

Related Health Problems, World Health Organization; total number of features 283 
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eTable 6.  Discrimination performance using area under the receiver operating characteristic 

curve (AUROC) of various ML algorithms using all features (demographics, health utilization, 

prescription history, co-morbidities).  Training and validation were done using 2017 data 

(n=393,979); another independent validation was performed using 2018 data (n=393,023).   

Algorithm Train  Validation 2017 Validation 2018 

XGBoost Classifier 0.897 0.870 0.884 

Logistic Regression 0.887 0.869 0.884 

Gradient Boosting Classifier 0.898 0.868 0.883 

AdaBoost Classifier 0.884 0.868 0.882 

Random Forest Classifier 0.909 0.863 0.881 

Ridge Classifier 0.895 0.863 0.879 

SVM 0.896 0.860 0.878 

Gaussian Naive Bayes 0.846 0.826 0.847 

Decision Tree Classifier 0.919 0.791 0.822 

Neural Networks 0.827 0.804 0.821 

Note: Logistic regression used L1 (lasso) parameter regularization 
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eFigure 1.  Schematic of study design and feature generation 
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eFigure2.  Feature importance from logistic regression and tree-based XGBoost classifiers using the 

2018 validation set.  The logistic regression classifier relied more on co-morbidity data from DAD, 

NACRS, and Claims databases; XGBoost classifier relied more on data from the PIN database.  AUROCs 

for both classifiers were similar at 0.88. 

 

Logistic Regression XGBoost 

history of drug abuse 1.00 age at dispensation 1.00 

age at dispensation 0.65 

number of prescriptions 

dispensed in previous 30 days 1.00 

history of prior hospitalization/ED 

visit 0.62 

number of opioid dispensations in 

previous 30 days 0.86 

history of alcohol use disorder 0.62 

number of BZD dispensations in 

previous 30 days 0.46 

history of fluid and electrolyte 

disorder 0.32 Doctor risk score* 0.45 

history of poisoning 0.31 

total OME consumed in previous 

30 days 0.43 

history of psychoses 0.31 history of poisoning 0.37 

number of unique BZD dispensed 

in previous 30 days 0.26 pharmacy risk score** 0.35 

history of depression 0.19 

number of unique providers that 

prescribed an opioid or BZD 0.34 

concurrent use of opioid and BZD 

in previous 30 days 0.19 income 0.34 

history of injury 0.17 

history of prior hospitalization/ED 

visit 0.26 

Note: Logistic regression used L1 (lasso) parameter regularization; BZD- benzodiazepine; OME- 

oral morphine equivalents; ED: emergency department 

*derived feature using proportion of opioid/benzodiazepine patients that experienced the study 

outcome in the previous 30 days prior to opioid dispensation for each physician; 

**derived feature using proportion of opioid/benzodiazepine patients that experienced the study 

outcome in the previous 30 days prior to opioid dispensation for each pharmacy 
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eFigure 3.  SHAP values and feature impact of the XGBoost classifier using the 2018 validation set to 

describe “associations” between features and the outcome.  Features with the most impact on the 

model with drug abuse ranked highest (A); tornado plot illustrating feature impact (B); explaining the 

prediction of study outcome based on predictor values for 4 patients using SHAP values(C). 

(A) 

 

Note: Pharmacy risk score- derived feature using proportion of opioid patients that experienced the 

study outcome in the previous 30 days prior to opioid dispensation for each pharmacy; training and 

validating the XGBoost classifier with these features alone resulted in an AUC of 0.877 in the 2018 

validation set 
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(B) 

 

Note: Pharmacy risk score- derived feature using proportion of opioid/benzodiazepine patients that experienced the study outcome 

in the previous 30 days prior to opioid dispensation for each pharmacy; red indicates higher values of categorical variables and plots 

to the right of 0.0 indicate the tendency to be associated with the study outcome while blue indicates lower values of categorical 

variables and plots to the left of 0.0 indicate the tendency to be associated with no outcome 
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(C) 

How to read the figure on the next page: Using hospitalization within 30-days of an opioid dispensation as the 

outcome of interest, there are 4 scenarios to consider: the XGBoost classifier has low or high confidence in 

predicting a hospitalization and low or high confidence in predicting NO hospitalization.  Start at the base SHAP 

value of near 0.0 (“base value”) in which the classifier is not confident in the prediction.  SHAP values (in bold) that 
are above 0.0 indicate a tendency towards a hospitalization while those that are below 0.0 indicate a tendency for 

NO hospitalization.  As the SHAP value moves above 0.0, for example 3.11 in the top panel, the classifier’s 
confidence in predicting a hospitalization is higher.  As the SHAP value approaches closer to the base value, for 

example 0.16 in the second panel, the classifier has relatively lower confidence in predicting a hospitalization.  

When the SHAP value is below 0.0, for example -5.4 in the third panel, the classifier’s confidence in predicting NO 

hospitalization is higher and when the SHAP value is closer to 0.0, for example -0.44 in the bottom panel, the 

classifier has lower confidence in predicting NO hospitalization. 

The top panel (SHAP value 3.11) depicts an instance predicted to be high risk for our outcome.  This individual has 

a positive history of drug abuse disorder, liver disorder, diabetes, fluid/electrolyte disorder, alcohol use disorder, 

poisoning and B vitamin use in the prior 30 days.  The third panel (SHAP value -5.40) depicts an instance predicted 

to be low risk (i.e., no hospitalization) and has a negative history for poisoning, drug and alcohol use disorder.  

Note- drug abuse: drug abuse disorder; poisoning: history of poisoning; vitamin B1: vitamin B1 in prior 30 days; 

anti-glycemics: anti-glycemic agents in prior 30 days; age: age at opioid dispensation; # opioid dispenses: number 

of opioid dispensations in prior 30 days; Hosp/ED visit: history of prior hospitalizations and/or emergency visits in 

past 6 months; Total OME: total oral morphine equivalents in prior 30 days; DIAZEPAM: history of diazepam use in 

prior 30 days. 
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eFigure 3C
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eFigure 4.  Calibration curve plotting observed vs. quantiles of estimated risk for the logistic regression (L1) classifier 

using the 2018 validation dataset.  The majority of counts (dispensations) were predicted to be lower risk. 
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