
Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

In this manuscript, the authors performed imaging of the normal and diseased tonsil tissues using 

imaging mass cytometry and visualized the multi-dimensional mass cytometry data with a set of 

algorithms (“SpatialViz”). The visualization was used for the characterization of the tonsil tissues in 

health and disease by locating the single cells and providing the 2D or 3D tissue images. 

The manuscript provides interesting work in mass cytometry and its data visualization. However, I 

have some comments that the authors need to address before this manuscript can be accepted for 

publication in CommsBio. 

By using metal labels for the cells, mass cytometry provides more potential labels and distinctive 

spectra with barely no overlap as compared with fluorescence cytometry. The high-dimension data 

obtained with mass cytometry motived the development of visualization tools such as the t-SNE 

mentioned in the manuscript. More key references for the development of mass cytometric 

techniques should be included in the introduction part. 

Imaging mass cytometry is destructive as compared with fluorescence imaging. For clinical 

applications, the tissue samples need to be kept while the UV laser exposure vaporized the tissue 

in mass cytometry. This way the tissue sample can not be re-observed? The staining of the tissue 

samples and then imaging with optical microscopy are less complex and widely adopted by 

pathologists. The motivation of this study should be explained better in the introduction part. 

Parameters should be provided for the imaging using mass cytometry. How long does it take to get 

an image for a given tissue size? What's the power of the laser and excitation time? 

Will the laser ablation alter the original position of cells in tissue? 

It seems the authors has performed optical microscopic imaging of the tissues. Please includes 

these images and compare with the mass cytometric imaging. What's the resolution of the imaging 

mass cytometry? Scale bar is lacking in some figures. 

In terms of the single cell measurements, related work has been reported as “Learning Single-Cell 

Distances from Cytometry Data”. Please comment. 

Figure 1e: Hard to tell which color is for the individual marker. 

For the 3D reconstruction, how to keep the relative position of single cells on different layers? 

Reviewer #2 (Remarks to the Author): 

The paper submitted by Coskun and colleagues presents a SpatialViz, a new tools for the analysis 

expression profile at tissue level. 

The developed method is important for the analysis of spatial complexity in multiplexed datasets 

based on quantitative osservables. Although the paper provides many quantitative details of the 

differences found tissues from normal and diseased subjects, at the current stage it is difficult to 

understand the level of generalization of the method. 

Thus, I believe that the paper can be considered for publication after addressing the points 

reported below. 

Major Revisions 

1) The Methods section of the manuscript needs to be improved. More details about pipeline and 

the analysis should be provided. 

- More details about the pipeline used for extracting the regions of interest should be included. 



More information about the standard data analysis pipeline in Cell Profiler and HistoCAT should be 

reported. 

- Little information is provided about the K-means clustering analysis. What are the parameters 

used for the the optimization of the K-Neighbors Classifier module in scipy? 

- Please provide a better description input features used for the classification. 

- Why did you used Gephi Force Atlas algorithm for calculating the average k-NN distance? Would 

not be better to have a unique pipeline with using python libraries? 

2) In the method section a description of the dataset for testing the method should be improved. 

- How many subjects were screened? Did you used 3 tissue slices for each sample? 

- Are the number of subjects large enough for the generalization of the method? 

- Could you include a quantitative analysis of the consistency in the results in the different tissue 

slices? 

3) In the GitHub page with the SpatialViz codes and datasets poor information about the content 

of the files is included. Please improve the description of the files and include the files with the 

data divided by subjects and slices.



Response to the reviewer  

Reviewer #1 (Remarks to the Author):  

In this manuscript, the authors performed Imaging of the normal and diseased tonsil tissues using imaging mass 

cytometry and visualized the multi-dimensional mass cytometry data with a set of algorithms ("SpatialViz"). The 

visualization was used for the characterization of the tonsil tissues in health and disease by locating the single 

cells and providing the 2D or 3D tissue images.  

The manuscript provides a computational framework in imaging mass cytometry for studying tonsil biology in 

health and disease.  We thank the reviewer for acknowledging our research work's potential, including our novel 

imaging and data visualization tools.  

However, I have some comments that the authors need to address before this manuscript can be accepted for 

publication in CommsBio. By using metal labels for the cells, mass cytometry provides more potential labels and 

distinctive spectra with barely no overlap as compared with fluorescence cytometry. The high-dimension data 

obtained with mass cytometry motivated the development of visualization tools such as the t-SNE mentioned in 

the manuscript. More key references for the development of mass cytometric techniques should be included in 

the introduction part.  

We agree with the reviewer that the imaging mass cytometry (IMC) technology has advantages over routine 

immunofluorescence and fluorescence cytometry. We refer to the edited introduction in the main manuscript with 

additional text detailing the benefit of using IMC to visualize proteins in-situ in archived patients samples. 

We have added the following paragraph to the introduction to clarify this issue (lines 72-99):  

"Although this multiplexed power may be partially obtained by fluorescence cytometry, the fluorophores used to 
detect biomarkers of interest have overlapping spectra leading to signal spillover between target and non-target 
detectors. That necessitates the use of additional signal processing techniques to correct for fluorophores signals 
in non-target detectors, often referred to as spillover compensation. Signal compensation can be more 
complicated and often lead to erroneous results.15,16 Another shortcoming of cell suspension cytometry techniques 
is its inability to analyze biomarkers in situ from patients' samples, resulting in the loss of the precious spatial 
single-cell data. Several fluorescence-based multiplexed techniques were later developed and tested for patients' 
archived FFPE samples, including cyclic immunofluorescence.17  These methods rely on antibody staining, 
bleaching, and imaging cycles that suffer from sample autofluorescence, epitope loss, and laborious procedures. 
On the other hand, IMC detects the abundance of metal isotopes conjugated to antibodies against multiple 
biomarkers. These lanthanide isotopes are rare elements that would not be found in biological samples, resulting 
in high signal specificity.18 The signal is further amplified by polymeric metal-chelating reagents, allowing a 
range of proteins to be detected. Preserving in situ cell-cell interaction and tumor microenvironments, IMC 
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relates the metal isotope abundance to their pixel location, providing images of multiple proteins simultaneously 
in archived patients samples at subcellular resolution (1-µm).18–20   

IMC is widely used in many applications, including drug testing and tumor studies. IMC was previously 
used to investigate the potential benefit of the chemotherapeutic agents on three different cancer types. A 
multiplex antibody panel was designed to target several proteins associated with common cancer oncoproteins 
and other markers to detect T cell infiltration (CD8) and the epithelial organization (Beta-catenin and Pan-
cytokeratin) 21. Further, IMC was used to analyze more than 15 proteins associated with different stages of 
Multiple sclerosis (MS), identifying a subset of T cell phenotypes associated with different MS stages  22. Besides, 
IMC was used to decipher the breast cancer tumors using a panel of 35 biomarkers associated with breast cancer 
subtypes, grades, signaling, oncogenes, and epigenetics. Different breast cancer subtypes were found to have a 
strong correlation with survival. Remarkably, tumor stroma is highly infiltrated with yielded low survival rates.19 
IMC revealed mRNA-to-protein associations at the subcellular level in breast cancer patient samples.23 RNA 
probes and their encoding protein antibodies were conjugated to different metal isotopes to study their correlation 
at the population level. This growing body of discoveries highlights the importance of IMC technology to reveal 
interdependencies among cell types and provide spatial maps for multiple subcellular resolution parameters." 

 
Imaging mass cytometry is destructive as compared with fluorescence imaging. For clinical applications, the 

tissue samples need to be kept while the UV laser exposure vaporized the tissue in mass cytometry. This way the 

tissue sample can not be re-observed? The staining of the tissue samples and then Imaging with optical 

microscopy are less complex and widely adopted by pathologists. The motivation of this study should be 

explained better in the introduction part.  

We agree with the reviewer that IMC relies on the UV laser ablation that vaporizes the tissue to ionize the metal 

isotopes and analyze their abundance based on their time-of-flight. Since the tissue is physically ablated, re-

observing is not possible. However, this problem can be overcome by using serial sections from the patients' 

biopsy. This approach is akin to clinical practice. Biopsy samples used for immune-histological analysis cannot 

be re-observed, and pathologists often rely on sequential tissue sections to observe more biomarkers of interest. 

This process is often laborious and susceptible to the variability of interpretation between observers. Thereby, 

IMC outperforms the routine IHC as it provides a high multiplex power in one experiment run with high 

sensitivity and specificity from up to 40 markers in one tissue specimen.  

Reference: Tan, W. C. C. et al. Overview of multiplex immunohistochemistry/immunofluorescence techniques in 

the era of cancer immunotherapy. Cancer Commun (Lond) 40, 135–153 (2020). 

 

 

 

Parameters should be provided for the Imaging using mass cytometry. How long does it take to get an image for 

a given tissue size? What's the power of the laser and excitation time?  

 

https://www.zotero.org/google-docs/?EsgOIm
https://www.zotero.org/google-docs/?UgbPhc
https://www.zotero.org/google-docs/?U2q51W
https://www.zotero.org/google-docs/?syAI9i
https://www.zotero.org/google-docs/?BNRk40
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We thank the reviewer for this suggestion. All changes are reflected in the supplementary notes section.  

Details about the Fluidigm Imaging Mass Cytometer 

ROIs size and Imaging Time:  

Regions of interest (ROIs) chosen from the tonsil samples were approximately 2500 µm x 2500 µm. The laser 

type is Nd: YAG with a wavelength of 213-nm. The energy output was less than or equal to 3µJ. It takes 2 hours 

to image 1mm2; thereby, it took approximately 12.5 hours to acquire individual ROIs on the tonsil sections.  

Description  System  Specifications  

Laser type Nd: YAG 

Wavelength 213 nm 

Energy Output 3µJ 

Tissue thickness for full ablation  ≤ 7µm thickness 

Sample size ≥ 15 mm x 45 mm 

Scan Area ≥ 1 mm2 / 2Hr (@200Hz) 

 

Supplementary Table 2. System specification for the Hyperion imaging system by Fluidigm.  

 

Slide Imaging Time (H: M:S) Laser Power (dB) Ablation Power (Hz) 

Normal Tonsil 1 9:59:51 2.5 200 

Normal Tonsil 2 9:59:51 2.5 200 

Normal Tonsil 3 9:59:51 2 200 

Diseased Tonsil 1 7:45:34 2 200 
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Diseased Tonsil 2 9:59:51 2 200 

Diseased Tonsil 3 9:59:51 2.5 200 

 

Supplementary Table 3. Experimental details regarding samples, imaging time, laser power, and ablation 
power were used to obtain the paper's data. 

 

Since these product specifications can vary between different experimental runs, we also included some of the 

parameters associated with two experimental runs for one normal tonsil sample and one diseased tonsil sample. As 

shown in the snapshots below, different ablation energy values were tried out before choosing the ROIs' final 

values. This optimization process was done by testing out different values of ablation energies on smaller regions 

100 µm x 100 µm instead of 2500 µm x 2500 µm. The value that resulted in a strong signal with the minimum 

background was finally chosen for the bigger ROIs.  

Will the laser ablation alter the original position of cells in tissue?  

We thank the reviewer for this insightful comment. IMC technique was validated against immunofluorescence to 

confirm that cells remain stationary during the imaging, maintaining cell morphology and cell-cell interaction. 

Bodenmiller's lab is a worldwide pioneer to adopt IMC, which he detailed in his invited talk (host is Dr. Coskun, 

senior author of this paper) found at the link below. Dr. Bodenmiller showed an IF image and an IMC image from 

the same cancer tissue (Figure 1) to show that this novel technique can capture native tissue architecture without 

altering cells' position or cytoskeletal proteins' organization.  
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Figure 1. IMC and Optical imaging of immunolabeled breast cancer tissue section.  

Data is from the Minutes 14.25 -Multiscale analysis of in situ tumor biology towards precision medicine 

(https://www.youtube.com/watch?v=lU_RmHlMz_I&amp%3Bt=65s ) 

 

 

It seems the authors has performed optical microscopic Imaging of the tissues. Please includes these images and 

compare with the mass cytometric Imaging. What's the resolution of the imaging mass cytometry? Scale bar is 

lacking in some figures.  

 

We thank the reviewer for this helpful comment. We imaged an area of 2.5 mm x 2.5 mm in tonsil tissues using 

2,500 x 2,500 pixels, yielding 1-µm per pixel. In the meantime, the IMC system (Technical spec, page7) focuses 

the laser beam to 1-µm  spot size, limiting the ultimate resolution of multiplexed imaging. Pixel sampling analysis 

and laser focal area determine the imaging mass cytometry system's physical resolution to be 1-µm. As noted, the 

comparisons of optical images and IMC were previously reported in the literature, agreeing well with each other. 

Thus, IMC shows a performance of a 10× optical microscope in the range of micron spatial details. Further optical 

characterization of imaging optics is beyond the scope of this current work that specifically reports multiplexed 

data and SpatialViz data visualization methods.  

 

Besides, all figures in the main manuscript and supplementary have been updated with their appropriate scale 

bars. 

 

In terms of the single cell measurements, related work has been reported as "Learning Single-Cell Distances from 

Cytometry Data". Please comment.  

https://www.youtube.com/watch?v=lU_RmHlMz_I&amp%3Bt=65s
https://www.fluidigm.com/binaries/content/documents/fluidigm/resources/hyperion-imaging-system-ug-400311-a2/hyperion-imaging-system-ug-400311-a2/fluidigm%3Afile
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We appreciate the reviewer's insight into this interesting field of research. "Learning Single-Cell Distances from 

Cytometry Data" presents a learning method using the Mahalanobis distance metric derived from the data. From 

labeled single-cell cytometry data, this learning metric can be used for the classification of single-cell differences. 

Here, the Mahalanobis distance metric better separates cell populations compared with the Euclidean distance 

metric. There are similarities in capturing cell types from various biomarkers. While the previous cytometry data 

was performed in cell suspensions without spatial cell positions, and our approach covers imaging cytometry and 

data classification in physical spatial distances.  Specifically, we have used k-nearest neighborhoods (KNN) to 

determine the spatial distances between neighboring using spatial proximity analysis of marker pairs in the 

multiplexed data. 

 

Figure 1e: Hard to tell which color is for the individual marker.  

 

We thank the reviewer for the detailed feedback. Figure 1e has been updated with individual tSNE plots for eight 

markers in the normal and diseased condition. These markers were also highlighted in the Phenographs for each 

sample, along with their corresponding cellular phenotypes.  

 
 

For the 3D reconstruction, how to keep the relative position of single cells on different layers?  

We appreciate the reviewer's question about explaining the 3D reconstruction cell position. From 2D marker 

images (defined on the x and y-axis), we reconstruct the 3D marker images by keeping each image's x and y 
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coordinates and adding z-axis coordinates representing the same intensity level.  The z coordinates define a 3D 

surface plot that shows the variation of the expression level. This process is shown in the figure below.  

 

 
 

To visualize the bordering of the markers, we overlay markers on the same x and y coordinates. The 3D 

visualization lets us better distinguish the bordering effect of the markers. When changing the camera's position 

in the 3D coordinates, each cell's relative position is unaltered. Still, the perceived depth is modified as the original 

point of view angle is changed, as illustrated below. 

 

 



8 

We present the absolute distance between two cells with different camera positions in the 3D coordinates. In the 

figure below, 𝑙𝑙1 and 𝑙𝑙2 have the same exact length (20-µm). But depending on the angle of the point of view, the 

depth perception is changed. In the left figure, the angle of point of view is equal to 0 degrees (directly 

perpendicular from the center of the image), and this is equivalent to the usual 2D image. On the other hand, the 

right figure has a positive angle. The perception is changed, enlarging the relative distance at the bottom of the 

image and decreasing the relative distance in the second image's top part.  

 
 

We have added the following to the manuscript to clarify this issue: 
Topographic visuals preserve relative physical distances in 2D/3D representations, and they may experience aesthetic 

variations due to the depth perception. 

 

Reviewer #2 (Remarks to the Author):  

 

The paper submitted by Coskun and colleagues presents a SpatialViz, a new tools for the analysis expression 

profile at tissue level.  

The developed method is important for the analysis of spatial complexity in multiplexed datasets based on 

quantitative osservables. Although the paper provides many quantitative details of the differences found tissues 

from normal and diseased subjects, at the current stage it is difficult to understand the level of generalization of 

the method.  

Thus, I believe that the paper can be considered for publication after addressing the points reported below.  

 

Major Revisions  
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1) The Methods section of the manuscript needs to be improved. More details about pipeline and the analysis 

should be provided.  

- More details about the pipeline used for extracting the regions of interest should be included. More information 

about the standard data analysis pipeline in Cell Profiler and HistoCAT should be reported.  

 

We thank the editor for the time and effort. All suggestions have been addressed in the material and methods 

section. The paragraph below is included in the methods section of the revised manuscript in response to this 

comment (lines 416-428).  

Data analysis pipeline was generated by adding different CellProfiler modules. In the image processing library, 

the "ImageMath" module was added and applied to DNA signals from Ir191 and Ir193. This function multiplied 

the nuclear signal by ten to make the process of nucleus segmentation more efficient. The nucleus signal was then 

segmented and added using the "IdentifyPrimaryObjects" module in the object processing library pipeline. After 

a few iterations, the nuclei diameter range was set to be 5-20 pixels. Cell membrane boundaries were segmented 

using the "IdentifySecondaryObjects" module by expanding the primary objects' pixel size by three. Single-cell 

protein expression data were extracted from the "MeasureObjectIntensity" module in the measurement library. 

This data was exported to a spreadsheet in the file format .csv by the module "ExportToSpreadsheet" from the 

data tools library. Finally, cell masks were generated for later downstream processing using the 

"ConvertObjectsToImage" module from the object processing library such that each ROI had a separate cell 

segmentation mask. Finally, ROIs in the form of OME-TIFF data were extracted from MCD viewer alongside 

their cell mask generated by CellProlifer were all imported to HistoCAT to analyze correlation and cellular 

compositions of the tonsil tissue in health and disease state at the subcellular level. 

- Little information is provided about the K-means clustering analysis. What are the parameters used for the the 

optimization of the K-Neighbors Classifier module in scipy?  

 

These edits have been inserted in the main manuscript in the materials and methods section (lines 429-447). 

 

Pixel-level image clustering using K-Means: Marker images were clustered in an unsupervised manner using 

the K-means algorithm on each IMC image's grayscale pixel level. K-means clustering was performed using the 

Scikit-Learn package cluster K-Means in Python with default parameters. From each marker image (2,500x2,500 

pixels), we extracted the expression binary mask representing the anatomical region. The binary mask is defined 

as binary thresholding with a threshold of 60 that was determined experimentally. Each marker mask was then 

flattened to a single vector (matrix size: 6375000) and stacked together. The resulting matrix (22 × 6375000) is 
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used for K-means clustering using the Scikit-Learn package in Python with default parameters (n_initial = 10, 

maximum_iterations = 300, tolerance = 1e-4). The K values were chosen from empirical results, given the better 

separation of images.  

k-NN distance: K-nearest neighbors (k-NN) of distance for each cell was computed using the K-Neighbors 

Classifier module of the Scikit-Learn package in Python with default parameters. The KNN classifier was 

performed using the Scikit-Learn package in Python with default parameters (leaf_size = 30, p=2, 

metric=’minkowski',weights=’uniform'). For each individual single-cell, only ten nearest neighbors were chosen 

for calculating the pairwise distance between markers. 

- Please provide a better description input features used for the classification.  

The same as above was included in the methods section to describe the classification approach (lines 429-437). 

Pixel-level image clustering using K-Means: Marker images were clustered in an unsupervised manner using 

the K-means algorithm on each IMC image's grayscale pixel level. K-means clustering was performed using the 

Scikit-Learn package cluster K-Means in Python with default parameters. From each marker image (2,500x2,500 

pixels), we extracted the expression binary mask representing the anatomical region. The binary mask is defined 

as binary thresholding with a threshold of 60 that was determined experimentally. Each marker mask was then 

flattened to a single vector (matrix size: 6375000) and stacked together. The resulting matrix (22 × 6375000) is 

used for K-means clustering using the Scikit-Learn package in Python with default parameters (n_initial = 10, 

maximum_iterations = 300, tolerance = 1e-4). The K values were chosen from empirical results, given the better 

separation of images.  

- Why did you used Gephi Force Atlas algorithm for calculating the average k-NN distance? Would not be better 

to have a unique pipeline with using python libraries?  

We appreciate the reviewer's insight, and we agree that using a unique pipeline using python libraries is more 

suited for the visualizations. Therefore, instead of using the Gephi Force Atlas algorithm, custom-developed 

python scripts were used in the revised manuscript and associated Figures. The following paragraph is now 

included in the revised manuscript's methods section (lines 448-457). 

Network graph: Custom-developed Python scripts were used for generating both intra-cluster/inter-cluster 

spatial network maps and spatial reference maps using the Python NetworkX library. NetworkX is a Python 

package for exploration and analysis of networks and networks algorithm that provides data structures 

representing many types of networks, both directed and undirected. Using NetworkX generates various graph 

formats with flexibility in Python language and connects to other Python packages such as SciPy, NumPy, or 

Sklearn. From the average of the calculated k-NN distance, the spatial proximity network graph was laid out 
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using the Networkx package 42 in Python with spring layout (k=0.3 and iteration=30). The area ratio of the 

marker determined the size of the nodes. The nodes' color corresponded to the cluster to which they belong, and 

the weight between the nodes showed the average k-NN distance between two markers or clusters. Edges between 

the nodes showed the average k-NN distance between two markers or clusters.  

2) In the method section a description of the dataset for testing the method should be improved.  

- How many subjects were screened? Did you used 3 tissue slices for each sample?  

 

We thank the editor for the time and effort. All suggestions have been addressed in the material and methods 

section. The paragraph below is included in the revised manuscript's materials and methods section (lines 399-

415). 

 

"Three sections from the normal tonsil FFPE block and three additional sections from the diseased tonsil FFPE 

block were used for this experiment. These samples were first imaged using the bright field imaging setting on 

the Keyence microscope (BZX 810) to mark the regions of interest (ROIs) that will later be used to reference the 

IMC signal acquisition. Two different ROIs were chosen from each section. Thus, we had six different ROIs from 

each condition with the size of 2500 um x 2500 um, adding up to a total of 12 ROIs from both healthy and diseased 

tonsils. Fluidigm's Hyperion imaging system was used to retrieve signals from 18 mass-channels associated with 

biomarkers of interest in addition to 2 nuclear channels. After the Hyperion system is done with imaging the 

chosen areas, it automatically saves the data corresponding to each ROI as a separate MathCad file. These files 

were first viewed on the MCD viewer software (v1.0.560.6) and exported as OME-TIFF 16-bit file format such 

that each ROI would have 20 different OME-TIFF files, each corresponding to a different mass-channel and its 

conjugated protein. After a series of optimizations, cellular segmentation masks and single-cell protein expression 

data were generated using the Cellprofiler (4.0.7) data analysis pipeline as recommended by Fluidigm. All ROIs 

with their corresponding OME-TIFF files were first imported into CellProfiler. The Metadata function was used 

to divide the images based on their ROI number, isotope name, and sample name. Then, the NamesAndTypes 

function was used to match the isotopes' names to their conjugated antibodies and proteins. The "groups" function 

was used to group individual OME-TIFF images based on their corresponding ROI. Finally, the data analysis 

pipeline was applied to each ROI file separately." 

 

- Are the number of subjects large enough for the generalization of the method?  

 

We appreciate the reviewer's question about the generalizability of the method. Here, we show the visualization 

across tissue samples of Lung cancer for different stages. The H&E image is shown for four cancer stages.   

https://www.zotero.org/google-docs/?I9uZB2
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Then we apply our anatomical clustering pipeline to color and visualize different tissue regions in thirteen lung 

cancer biopsies in the microarray format.  SpatialViz results are similar to those obtained in the tonsil sections 

used in this paper. We will not include this data in our revised manuscript because it is beyond the scope of this 

presented work related to tonsil tissue biology. 
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- Could you include a quantitative analysis of the consistency in the results in the different tissue slices?  

 

We show the following dot plot representation of markers expression level and cell prevalence area for all 12 

ROIs to analyze the different tissues' results. The circle area represents the cell prevalence area of a specific 

marker, and the colormap represents the normalized expression level. 
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The same process is generated without the DNA1, DNA2, and Histone3 markers to distinguish other markers in 

the figure below. 

 



15 

 
 

 
To look at consistency across the dataset, we performed hierarchical clustering of the ROI from the markers area 

ratio and expression level. 
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We also performed hierarchical clustering of the ROI from dot plot representation of spatial proximity analysis 

using pairwise marker mean cell-to-cell distance and fraction of distance inferior to 30-μm. 

 

 
 

 

 
We have added the following to the manuscript (lines 327 -334). 
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    Quantification across tissue datasets for marker expression level and cell prevalence area per marker (Fig. 

8b) showed consistency in both expression level (circle color) and cell prevalence area (circle area) for healthy 

and diseased tonsils. Pairwise marker cell distance and a fraction of length less than 30-μm (Fig. 8c and 

Supplementary Fig. 20) exhibited higher values for Granzyme B and CD68 in diseased tonsils than healthy 

tonsils. Clustering of three healthy and three diseased tonsil datasets provided noticeable differences in 

markers' expression level and markers' cell prevalence area. The mean value of pairwise analysis yielded 

different cell-to-cell distances and spatial proximity within a fraction of length inferior to 30-μm separation in 

healthy and disease tonsil data (Supplementary Fig. 21). 

 

3) In the GitHub page with the SpatialViz codes and datasets poor information about the content of the files is 

included. Please improve the description of the files and include the files with the data divided by subjects and 

slices.  

We appreciate the reviewer's suggestions about the documentation on the GitHub page with the SpatialViz codes. 

The GitHub page (https://github.com/coskunlab/SpatialViz) has now been updated with a detailed README file 

showing the codes' organization, example images, and step by step usage guidelines.  

 

 

 

 

 

https://github.com/coskunlab/SpatialViz


REVIEWERS' COMMENTS: 

Reviewer #1 (Remarks to the Author): 

The authors have replied to all my previous comments and made changes in the manuscript. I 

recommend the manuscript in its current format to be accepted. 

Reviewer #2 (Remarks to the Author): 

In the final version of the manuscript the authors addressed the points raised in my previous 

review. 

Thus I suggest the editor to accept the paper for publication.


