Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2020

Synthesis of Pentasubstituted 2-Aryl Pyrroles from Boryl and Stannyl Alkynes via One-Pot Sequential Ti-Catalyzed [2+2+1] Pyrrole Synthesis/Cross Coupling Reactions

Yukun Cheng, Channing K. Klein and Ian A. Tonks

Contribution from the Department of Chemistry, University of Minnesota – Twin Cities, 207 Pleasant St SE, Minneapolis MN 55455, United States. Email: <u>itonks@umn.edu</u>

Supporting Information

General Considerations	S2
Initial Screening of Heteroatom-Substituted Alkynes (Table 1)	S3
Optimization of Reaction Conditions	S10
Catalyst Synthesis	S14
Substrate Syntheses	S15
Catalytic Pyrrole Syntheses: Alkynyl BBN and Alkynyl Stannanes Scopes (Table 3)	S30
L Donor Effect Study	S50
Directing Group Strength Comparisons	S56
One-Pot Reactions	S65
Catalytic Pyrrole Syntheses: Hydrocarbon Alkyne Scopes (Table 4)	S109
References	S130

General Considerations

All air- and moisture-sensitive compounds were manipulated in a glovebox under nitrogen atmosphere. Solvents for air- and moisture-sensitive reactions (PhCF₃, PhCH₃, C₆H₆) were dried through activated alumina on a Pure Process Technology solvent purification system. PhOCH₃ and NMR solvents (CDCl₃ and C₆D₆) were dried over CaH₂ or Na⁰/Ph₂CO and vacuum transferred before passing through activated alumina and storing over activated 3 Å molecular sieves in the glovebox. C₆D₅Br was synthesized following a reported procedure¹ and passed through activated alumina before storing over activated 3 Å molecular sieves in the glovebox. **1a-SnMe₃**, **1f-Sn^{***n***}Bu₃**, **1g-Sn^{***n***}Bu₃**, **2**, n-butyllithium, *B*-methoxy-9-borabicyclo[3,3,1]nonane solution in hexanes and Me₃SnCl solution in hexanes were purchased from Millipore-Sigma. Azobenzene was purchased from TCI Chemicals and purified by hexane/water extraction three times. Terminal alkynes were purchased from Oakwood Products, Inc. and Millipore-Sigma. **1a-BBN**,² **1e-BBN**,³ **1g-BBN**,⁴ **1a-Cu**,⁵ and [py₂TiCl₂(NPh)]₂⁶ were prepared following the reported procedures.

GC chromatographs were collected on Agilent 7890B GC system equipped with the HP-5 column (30 m, 0.32 mm, 0.25 μ m, 7 inch cage), an oxidation-methanation reactor (Polyarc[®] System, Activated Research Company), and a FID detector for quantitative carbon detection.^{7,8} ¹H, ¹¹B, ¹³C{¹H}, ¹⁹F{¹H}, ¹¹⁹Sn{¹H}, ¹¹H-¹³C and ¹H-¹⁵N HMBC, NOESY, and No-D ¹H NMR were collected on Bruker Avance III HD NanoBay 400 MHz or Bruker Avance III HD 500 MHz spectrometers. Chemical shifts are reported with respect to residual protio-solvent impurity for ¹H (s, 7.26 ppm for CDCl₃; s, 7.16 ppm for C₆D₆) and ¹³C (t, 77.16 ppm for CDCl₃; t, 128.06 ppm for C₆D₆). ¹¹B NMR was externally referenced to BF₃·OEt₂ in the corresponding solvent as 0.0 ppm. ¹¹⁹Sn NMR in CDCl₃ was externally referenced to Me₄Sn in CDCl₃ as 0.00 ppm. ¹¹⁹Sn NMR in toluene was referenced to the chemical shifts of the corresponding stannyl alkynes in C₆D₆ (**1a-SnMe**₃,⁹ **1g-Sn**^{*n*}**Bu**₃¹⁰) or CDCl₃ (**1b-SnMe**₃, **1c-SnMe**₃, **1d-SnMe**₃). No-D ¹H NMR was referenced to the proton signal of the internal standard triphenylmethane (Ph₃C*H*, s, 5.54 ppm in PhCF₃; s, 5.34 ppm in PhCH₃). ¹H NMR of catalytic reactions in C₆D₅Br were referenced to the proton signal of the internal standard triphenylmethane (Ph₃C*H*, s, 5.45 ppm).

Initial Screening of Heteroatom-Substituted Alkynes (Table 1)

General Procedure for Initial Screening of Heteroatom-Substituted Alkynes as Heterocoupling Partner (Procedure A)

 $[py_2TiCl_2(NPh)]_2$ (3.7 mg, 0.005 mmol, 0.05 equiv), heteroatom-substituted 2-phenylethyne (**1a-M**, 0.1 mmol, 1 equiv) and 0.5 mL of PhCF₃ stock solution containing 1-phenyl-1-propyne (**2**) (11.6 mg, 0.1 mmol, 1 equiv), azobenzene (8.2 mg, 0.045 mmol, 0.45 equiv) and triphenylmethane (4.9 mg, 0.02 mmol, 0.2 equiv, internal standard) were added to an NMR tube. The reaction was then sealed and heated in a preheated oil bath at 115 °C. No-D NMR spectra were collected before and after heating to monitor the reaction. The reaction was quenched with 5% HCl in methanol and extracted with EtOAc/H₂O. The organic phase was dried over MgSO₄ and evaporated under vacuum. The crude product mixture was characterized by GC-Polyarc[®]/FID to calculate the yield and selectivity.

Reaction of 1a-Bpin (Table 1, Entry 1)

The reaction was performed following **Procedure A** using **1a-Bpin** (22.8 mg, 0.1 mmol, 1 equiv) with the reaction being heated for 16 h. Selectivity calculated for the major regioisomer of the heterocoupling, product **5a**.

Figure S1. No-D ¹H NMR of the reaction of **1a-Bpin** at time = 0 (top), time = 16 h (bottom) in PhCF₃.

Figure S2. ¹H NMR of the reaction of **1a-Bpin** in CDCl₃ after HCl workup.

Figure S3. NOESY NMR spectrum of the reaction of **1a-Bpin** in CDCl₃ after HCl workup.

Figure S4. Quantitative GC-FID chromatograph of the reaction of **1a-Bpin** after HCl workup.

Sample yield calculation based on quantitative carbon detection:

$$Yield of \ \mathbf{3a} = \frac{Surface Area of \ \mathbf{3a}}{\# of \ C \ of \ \mathbf{3a}} \times \frac{\# of \ C \ of \ Ph_3CH}{Surface Area \ of \ Ph_3CH} \times equiv \ of \ Ph_3CH \times 100\%$$

Reaction of 1a-BBN (Table 1, Entry 2)

The reaction was performed following **Procedure A** using **1a-BBN** (29.4 mg, 0.1 mmol, 1 equiv) with the reaction being heated for 20 h. Selectivity calculated for the major regioisomer of the heterocoupling, product **3a**.

Figure S5. No-D ¹H NMR of the reaction of **1a-BBN** at time = 0 (top), time = 20 h (bottom) in PhCF₃.

Figure S6. Quantitative GC-FID chromatograph of the reaction of **1a-BBN** after HCl workup.

Reaction of 1a-SnMe₃ (Table 1, Entry 3)

The reaction was performed following **Procedure A** using **1a-SnMe**₃ (26.5 mg, 0.1 mmol, 1 equiv) with the reaction being heated for 20 h. Selectivity calculated for the major regioisomer of the heterocoupling, product **3a**.

5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 fl (ppa)

Figure S7. No-D ¹H NMR of the reaction of **1a-SnMe**₃ at time = 0 (top), time = 20 h (bottom) in PhCF₃.

	Retention Time (min)	Surface Area	# of C	Yield (%)
Ph ₃ CH	5.45	97.101	19	n.a.
3a	19.26	297.256	23	50.6
4a	18.75	7.061	23	1.2
5a	14.78	39.048	23	6.6
homocoupled 2	15.26, 17.44, 18.37	20.440	24	3.3

Figure S8. Quantitative GC-FID chromatograph of the reaction of **1a-SnMe**₃ after HCl workup.

Reaction of 1a-Cu (Table 1, Entry 4)

The reaction was performed following **Procedure A** using **1a-Cu** (16.5 mg, 0.1 mmol, 1 equiv) with the reaction being heated for 16 h. Yield of **3a** was found to be 7%. **4a** and **5a** were not found. Selectivity was not determined due to the peak overlapping with homocoupled **2**.

Figure S9. No-D ¹H NMR of the reaction of **1a-Cu** at time = 0 (top), time = 16 h (bottom) in PhCF₃.

Figure S10. ¹H NMR of the reaction of **1a-Cu** after HCl workup.

Optimization of Reaction Conditions

Attempted Optimization of Catalysis with 1a-Bpin as Heterocoupling Partner

Ti catalyst (0.01 mmol, absolute quantity of titanium, 0.1 equiv), azobenzene (8.2 mg, 0.045 mmol, 0.45 equiv), 2-phenylethynyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**1a-Bpin**) (22.8 mg, 0.1 mmol, 1 equiv), 1-phenyl-1-propyne (**2**) (11.6 mg. 0.1 mmol, 1 equiv), triphenylmethane (4.9 mg, 0.02 mmol, 0.2 equiv, internal standard) and 0.5 mL of solvent were added to a 4 mL scintillation vial equipped with a stir bar in the glovebox. The vial was then sealed with a PTFE-lined Teflon screw cap, brought out of the glovebox and heated at 115 °C on an aluminum well plate for 16 h. After cooling down to room temperature, the reaction was quenched with 5% HCl in methanol and extracted with EtOAc/H₂O. The organic phase was dried over MgSO₄ and evaporated to yield a mixture containing **3a**, **5a** and the regioisomers from the homocoupling of **2**. The yields and selectivity were determined by GC-Polyarc[®]/FID. The yield of **4a** was lower than 1% throughout the whole optimization and was considered negligible.

A trend can be found that the sum yield of heterocoupling (**3a** and **5a**) as well as the yield of homocoupling of **2** are solvent dependent. Further, the ratio of the heterocoupling product (**3a/5a**) increases the catalyst ancillary halogen is changed from Cl, Br, to I, indicating that a more electron-deficient Ti center favors **3a** over **5a** (Figure S11 and S12). However, none of the attempted reactions ultimately led to high-yielding, selective outcomes.

Figure S11. Scope of catalyst and solvent

Figure S12. Yield distribution in PhCF₃.

Optimization of Catalysis with 1a-BBN as Heterocoupling Partner

 $[py_2TiCl_2(NPh)]_2$, azobenzene, *B*-phenylethynyl-9-borabicyclo[3,3,1]nonane (**1a-BBN**, 29.4 mg, 0.1 mmol, 1 equiv), 1-phenyl-1-propyne (11.6 mg, 0.1 mmol, 1 equiv), triphenylmethane (4.9 mg, 0.02 mmol, 0.2 equiv, internal standard) and 0.5 mL solvent were added to an NMR tube. The total nitrene equivalent was kept as 1 by adjusting the molar quantity of azobenzene according to the Ti catalyst loading, following the relationship of:

$$Equiv_{nitrene} = Equiv_{[py_2TiCl_2(NPh)]_2} + Equiv_{azobenzene} \times 2$$

The reaction was then sealed and heated in a preheated oil bath for 20 h. The reaction was quenched with 5% HCl in methanol and extracted with EtOAc/H₂O. The organic phase was dried over MgSO₄ and evaporated under vacuum. The crude product mixture was characterized by GC-Polyarc[®]/FID to determine the yield and selectivity.

Entry	%[Ti]	Solvent	Т (°С)	3a (%)	4a (%)	5a (%)	homocoupled 2 (%)	Selectivity ^a
1	5	PhCF ₃	115	6.6	0.3	< 0.1	0.2	22.3:1 (12.5:1)
2	5	C_6D_5Br	115	21.8	0.5	0.1	2.9	36.2:1 (6.2:1)
3	10	C_6D_5Br	115	74.3	1.2	0.1	3.0	55.8:1 (17.1:1)
4	15	C_6D_5Br	115	64.9	1.2	0.1	3.6	50.7:1 (13.2:1)
5	10	PhCH ₃	115	66.6	2.0	0.1	1.3	31.5:1 (19.6:1)
6	10	PhCF ₃	115	54.6	1.2	0.1	2.2	41.8:1 (15.7:1)
7	10	PhOCH ₃	115	20.0	0.4	0.1	1.6	41.2:1 (9.6:1)
8	10^{b}	C_6D_5Br	115	3.3	0.3	0.2	0.2	7.4:1 (4.9:1)
9	20 ^c	C_6D_5Br	115	3.2	0.1	0.1	0.2	20.1:1 (9.2:1)
10	10	C_6D_5Br	90	45.2	0.9	0.1	3.1	48.5:1 (11.3:1)
11	10	C_6D_5Br	145	60.5	1.4	0.2	1.9	38.7:1 (17.6:1)
12 ^{<i>d</i>}	10	C_6D_5Br	115	65.9	1.4	< 0.1	1.5	45.5:1 (22.7:1)

Table S1. Optimization of the catalysis using 1a-BBN as heterocoupling partner.

^{*a*}Selectivity with respect to all heterocoupling pyrrole regioisomer products. Selectivity = 3a/(4a+5a). In parenthesis: selectivity with respect to all possible pyrrole products. Selectivity in parenthesis = 3a/(4a+5a+homocoupled 2). ^{*b*}Ti catalyst = [py₂TiBr₂(NPh)]₂. ^{*c*}Ti catalyst = py₃TiI₂(NPh). ^{*a*}Time = 0.5 h.

Catalysis with 1a-SnMe3 as Heterocoupling Partner

 $[py_2TiCl_2(NPh)]_2$ (3.7 mg, 0.005 mmol, 0.05 equiv), azobenzene (8.2 mg, 0.045 mmol, 0.45 equiv), phenylethynyl trimethylstannane (**1a-SnMe**₃, 26.5 mg, 0.1 mmol, 1 equiv), 1-phenyl-1-propyne (11.6 mg, 0.1 mmol, 1 equiv), triphenylmethane (4.9 mg, 0.02 mmol, 0.2 equiv, internal standard) and 0.5 mL solvent were added to an NMR tube. The reaction was then sealed and heated in a preheated oil bath for 20 h. The reaction was quenched with 10% HCl in methanol and extracted with EtOAc/H₂O. The organic phase was dried over MgSO₄ and evaporated under vacuum. The crude product mixture was characterized by GC-Polyarc[®]/FID to determine the yield and selectivity.

Precaution: Trialkyltin species are highly toxic. Proper PPE is required. All the chemical and labware waste should be handled separately from the normal waste stream and quenched thoroughly.

Entry	Solvent	Т (°С)	Conc. (M)	3a (%)	4a (%)	5a (%)	homocoupled 2 (%)	Selectivity ^a
1	PhCF ₃	115	0.2	50.6	1.2	6.6	3.3	6.4:1 (4.5:1)
2	C_6D_5Br	115	0.2	47.5	1.1	3.3	4.4	10.7:1 (5.4:1)
3	C_6D_5Br	60	0.2	30.4	0.7	2.0	0.9	11.1:1 (8.4:1)
4	PhCH ₃	115	0.2	51.1	1.2	6.0	2.7	7.1:1 (5.1:1)
5^b	PhCH ₃	115	0.2	46.2	0.9	4.6	4.2	8.3:1 (4.7:1)
6	PhCH ₃	90	0.2	57.7	1.3	4.9	2.6	9.3:1 (6.6:1)
7	$PhCH_3$	75	0.2	41.4	1.1	3.3	3.6	9.3:1 (5.2:1)
8	PhCH ₃ ^c	90	0.2	28.1	0.9	3.8	0.5	6.0:1 (5.4:1)
9	$PhCH_3$	90	0.07	18.8	0.5	1.8	0.4	8.3:1 (7.2:1)
10	PhCH ₃	90	0.8	66.0	1.8	4.6	2.9	10.3:1 (7.1:1)
11	PhCH ₃	90	2.0	64.5	2.0	3.9	2.8	10.9:1 (7.4:1)
12 ^d	PhCH ₃	90	0.8	68.5	2.1	4.5	1.5	10.4:1 (8.4:1)

Table S2. Optimization of the catalysis using 1a-SnMe₃ as heterocoupling partner.

^{*a*}Selectivity with respect to all heterocoupling pyrrole regioisomer products. Selectivity = 3a/(4a+5a). In parenthesis: selectivity with respect to all possible pyrrole products. Selectivity in parenthesis = 3a/(4a+5a+homocoupled 2). ^{*b*}10% [py₂TiCl₂(NPh)]₂. ^{*c*}2 equiv 1a-SnMe₃. ^{*d*}Time = 9 h.

Catalyst Synthesis

Synthesis of [TiCl₂(NPh)]_n

$$\label{eq:cl4} TiCl_4 \quad + \quad PhN(SiMe_3)_2 \quad \overbrace{50 \ ^\circ C, \ overnight}^{CH_2Cl_2} \quad 1/n \ [TiCl_2(NPh)]_n \quad + \quad 2 \ Me_3SiCl_3$$

The synthesis of $[TiCl_2(NPh)]_n$ was modified from the synthetic procedure of $py_3TiBr_2(NTol)$.⁶ TiCl₄ (2.000 g, 10.5 mmol), *N*-phenyl-*N*,*N*-bis(trimethylsilyl)amine (2.500 g, 10.5 mmol), 20 mL of CH₂Cl₂ and a stirbar were added to a 20 mL scintillation vial in the glovebox. The reaction was then sealed with a PTFE-lined Teflon screw cap and heated at 50 °C overnight while stirring. After cooling down, the suspension was filtered through a fine frit and washed with CH₂Cl₂ until the fresh filtrate changed from yellow to colorless. The precipitate was further washed by 20 mL of pentane twice to remove the remaining CH₂Cl₂. After drying under vacuum for 3 h, $[TiCl_2(NPh)]_n$ was obtained as black powder. Yield: 1.003 g (4.78 mmol, 45%). Attempts in characterizing the compound by ¹H NMR failed due to its low solubility in common organic solvents. Further addition of THF to the compound yielded $[(THF)_2TiCl_2(NPh)]_2$ in 95% yield.¹¹

Substrate Syntheses

Synthesis of 2-phenylethynyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1a-Bpin)

The synthesis was performed following a reported procedure using phenylacetylene (4.086 g, 40 mmol, limiting reagent) as the terminal alkyne reactant.^{12,13} **1a-Bpin** was obtained as white needled-shaped crystals in 76% yield (6.900 g). Spectra data was consistent with literature values.¹⁴

¹H NMR (CDCl₃, 400 MHz): δ 7.54-7.51 (m, 2H), 7.38-7.28 (m, 3H), 1.32 (s, 12H) ppm.

Figure S13. ¹H NMR spectrum of **1a-Bpin** in CDCl₃.

General Synthetic Procedure for *B*-Arylethynyl-9-Borabicyclo[3,3,1]nonanes (1b-d-BBN)

The synthesis was performed following a modification of the reported procedure.² Terminal aryl alkyne (10 mmol), dry THF (15 mL) and a stir bar were added to a N₂-filled 50 mL Schlenk flask and cooled at -78 °C. n-BuLi solution in hexanes (2.5 M, 4.0 mL, 10 mmol, 1.0 equiv) was slowly added to the mixture and stirred for 15 min at -78 °C. *B*-methoxy-9-BBN solution in hexanes (1.0 M, 10 mL, 10 mmol, 1.0 equiv) was added and the mixture was stirred for 1.5 h at -78 °C. BF₃·OEt₂ (1.6 mL, 13 mmol, 1.3 equiv) was added, after which the reaction was further stirred at -78 °C for 0.5 h before warming up to room temperature. All volatiles were removed under vacuum, and the mixture was dissolved in

dry benzene (15 mL). The suspension was then filtered via cannula filtration into another N₂-filled 50 mL Schlenk flask. The resulting solution was concentrated under vacuum, yielding the white-pale yellow crude product. The Schlenk flask was then transferred into the glovebox, and the crude product was washed sequentially with pentane (3 x 10 mL). Redissolving the white solid in 30 mL of benzene separated the product from remaining LiBF₄ after filtration through a medium frit. The filtrate was concentrated to yield the *B*-arylethynyl-9-BBN after drying.

B-(*p*-methoxyphenyl)ethynyl-9-borabicyclo[3,3,1]nonane (1b-BBN) off-white powder, 43% yield.

¹H NMR (C₆D₆, 400 MHz): δ 7.49 (d, *J* = 8.3 Hz, 2H), 6.65 (d, *J* = 8.3 Hz, 2H), 3.75-3.72 (br, 4H), 3.20 (s, 3H), 2.25-2.02 (m, 10H), 1.83-1.69 (m, 2H), 1.40 (s, 3H), 1.29-1.17 (br, 4H)

¹³C{¹H} NMR (C₆D₆, 101 MHz): δ 159.48, 133.57, 118.48, 114.20, 104.44, 102.05 (br), 70.21, 54.75, 32.49, 26.96 (br), 25.08, 24.74 ppm.

¹¹B NMR (C₆D₆, 128 MHz): δ 22.8 ppm.

Figure S14. ¹H NMR spectrum of **1b-BBN** in C₆D₆.

Figure S16. ¹¹B NMR spectrum of 1b-BBN in C₆D₆.

B-(*p*-(trifluoromethyl)phenyl)ethynyl-9-borabicyclo[3,3,1]nonane (1c-BBN) The crude product was further recrystallized from the saturated pentane solution at 0 °C overnight. Product was obtained as white crystalline solid after filtration and drying in 40% yield.

¹H NMR (C₆D₆, 500 MHz): δ 7.30 (d, *J* = 8.1 Hz, 2H), 7.22 (d, *J* = 8.2 Hz, 2H), 3.69-3.64 (m, 4H), 2.24-2.04 (m, 10H), 1.82-1.74 (m, 2H), 1.30 (s, 3H), 1.21-1.15 (m, 4H).

¹³C{¹H} NMR (C₆D₆, 101 MHz): δ 131.98, 130.07 (q, J = 1.5 Hz), 128.75 (q, J = 32.4 Hz), 125.35 (q, J = 3.7 Hz), 124.94 (q, J = 271.9 Hz), 100.92, 70.72, 32.14, 25.93 (br), 25.11, 24.56 ppm.

¹¹B NMR (C₆D₆, 161 MHz): δ 19.4 ppm.

¹⁹F{¹H} NMR (C₆D₆, 471 MHz): δ -62.31 ppm.

Figure S18. ${}^{13}C{}^{1}H$ NMR spectrum of 1c-BBN in C₆D₆.

Figure S19. ¹¹B NMR spectrum of 1c-BBN in C₆D₆.

Figure S20. ${}^{19}F{}^{1}H$ NMR spectrum of **1c-BBN** in C₆D₆.

B-(*o*-tolyl)ethynyl-9-borabicyclo[3,3,1]nonane (1d-BBN) isolated as alkynylborane:THF = 1/1.25 adduct, white powder, 46% yield.

¹H NMR (C₆D₆, 500 MHz): δ 7.54 (dd, *J* = 7.2, 1.8 Hz, 1H), 7.04-6.91 (m, 3H), 3.70-3.62 (m, 5H), 2.49 (s, S19 3H), 2.21-2.00 (m, 10H), 1.77-1.67 (m, 2H), 1.43 (s, 2H), 1.30-1.18 (m, 5H) ppm.

¹³C{¹H} NMR (C₆D₆, 101 MHz): δ 139.74, 131.92, 129.31, 125.44, 69.24, 32.22, 24.62, 24.58, 20.89 ppm.
¹¹B NMR (C₆D₆, 161 MHz): δ 26.7 ppm.

Figure S21. ¹H NMR spectrum of 1d-BBN in C₆D₆.

Figure S22. ${}^{13}C{}^{1}H$ NMR spectrum of 1d-BBN in C₆D₆.

Figure S23. ¹¹B NMR spectrum of 1d-BBN in C₆D₆.

Synthesis of Pyridine-Adduct of B-phenylethynyl-9-BBN (1a-BBN-py)

-26.7

The synthesis of **1a-BBN-py** was adopted from the reported procedure for the synthesis of pyridineadduct of *B*-(1-propynyl)-9-BBN, using 1a-BBN instead as the *B*-alkynyl-9-BBN reactant and benzene as solvent. **1a-BBN-py** was obtained in quantitative yield.

¹H NMR (C_6D_6 , MHz): δ 8.29 (d, J = 5.0 Hz, 2H), 7.53 (d, J = 6.9 Hz, 2H), 6.97 (t, J = 7.3 Hz, 2H), 6.90 (t, , J = 7.3 Hz, 1H), 6.58 (t, J = 7.6 Hz, 1H), 6.28 (t, J = 7.1 Hz, 2H), 3.20-3.06 (br, 2H), 2.44-2.11 (m, 5H), 2.09-1.97 (m, 2H), 1.64 (s, 2H), 1.55-1.41 (m, 3H) ppm.

 $^{13}C\{^{1}H\}$ NMR (C₆D₆, MHz): δ 145.59, 138.94, 131.81, 128.59, 126.37, 125.10, 34.07, 29.89, 25.61, 25.02 ppm.

¹¹B NMR (C₆D₆, MHz): δ -3.2 ppm.

Figure S24. ¹H NMR spectrum of **1a-BBN-py** in C₆D₆.

Figure S25. ${}^{13}C{}^{1}H$ NMR spectrum of **1a-BBN-py** in C₆D₆.

Figure S26. ¹¹B NMR spectrum of **1a-BBN-py** in C₆D₆.

General Synthetic Procedure for Arylethynyl Trimethylstannanes (1b-d-SnMe₃)

The synthesis was performed following a modification of the reported procedure.¹⁵ Terminal aryl alkyne (2.5 mmol), dry diethyl ether (5 mL) and a stir bar were added to a N₂-filled 50 mL Schlenk flask and cooled at -78 °C. n-BuLi solution in hexanes (2.5 M, 1.5 mL, 3.8 mmol, 1.5 equiv) was slowly added to the mixture and stirred for 15 min at -78 °C. Trimethyltin chloride solution in hexanes (1.0 M, 5 mL, 5 mmol, 2.0 equiv) was added via syringe. The resulting white suspension was stirred for an hour at room temperature. All volatiles were carefully removed under vacuum. Pentane (5 mL) was added to the white mixture, and the resulting suspension was washed by 3 x 10 mL of water. After drying over MgSO₄ and evaporation under vacuum, arylethynyl trimethylstannane was obtained as yellow or colorless oil.

Precaution: Trialkyltin species are highly toxic. Proper PPE is required. A secondary cold trap is recommended for evacuation of the crude reaction mixture. All the chemical and labware waste should be handled separately from the normal waste stream and quenched thoroughly.

(p-methoxyphenyl)ethynyl trimethylstannane (1b-SnMe₃) 55% yield.

¹H NMR (CDCl₃, 500 MHz): δ 7.40 (d, 8.7 Hz, 2H), 6.81 (d, 8.7 Hz, 2H), 3.80 (s, 3H), 0.34 (s, 9H) ppm.

¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 159.58, 133.54, 115.95, 113.92, 109.11, 91.54, 55.40, -7.50 ppm.

Figure S28. ¹³C{¹H} NMR spectrum of **1b-SnMe**₃ in CDCl₃.

Figure S29. ¹¹⁹Sn{¹H} NMR spectrum of **1b-SnMe**₃ in CDCl₃.

(*p*-(trifluoromethyl)phenyl)ethynyl trimethylstannane (1c-SnMe₃) 59% yield. ¹H NMR (CDCl₃, 400 MHz): δ 7.54 (s, 4H), 0.37 (s, 9H) ppm. ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 132.26, 125.25, -7.55 ppm. ¹¹⁹Sn{¹H} NMR (CDCl₃, 187 MHz): δ -63.29 ppm. ¹⁹F{¹H} NMR (CDCl₃, MHz): δ -62.79 ppm.

Figure S30. ¹H NMR spectrum of **1c-SnMe**₃ in CDCl₃.

Figure S31. ¹³C{¹H} NMR spectrum of **1c-SnMe**₃ in CDCl₃.

Figure S32. ¹¹⁹Sn{¹H} NMR spectrum of **1c-SnMe**₃ in CDCl₃.

i0 -51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74 -75 -76 -77 -78 -79 -6 f1 (ppm)

Figure S33. ¹⁹F{¹H} NMR spectrum of **1c-SnMe**₃ in CDCl₃.

(o-tolyl)ethynyl trimethylstannane (1d-SnMe₃) 40% yield.

¹H NMR (CDCl₃, 500 MHz): δ 7.42 (d, 7.5 Hz, 1H), 7.20-7.14 (m, 2H), 7.13-7.07 (m, 1H), 2.44 (s, 3H), 0.36 (s, 9H) ppm.

¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 140.52, 132.26, 129.43, 128.17, 125.53, 123.58, 107.97, 97.47, 20.93, -7.47 ppm.

¹¹⁹Sn{¹H} NMR (CDCl₃, 187 MHz): δ -65.64 ppm.

Figure S35. ¹³C{¹H} NMR spectrum of **1d-SnMe**₃ in CDCl₃.

Figure S36. ¹¹⁹Sn{¹H} NMR spectrum of **1d-SnMe**₃ in CDCl₃.

Catalytic Pyrrole Syntheses: Alkynyl BBN and Alkynyl Stannanes Scopes (Table 3)

General Procedure for Catalysis with B-alkynyl-9-BBN as Substrate (Procedure B)

 $[py_2TiCl_2(NPh)]_2$ (7.4 mg, 0.01 mmol, 0.1 equiv), *B*-alkynyl-9-BBN (0.1 mmol, 1 equiv) and 0.5 mL of C_6D_5Br stock solution containing 1-phenyl-1-propyne (11.6 mg, 0.1 mmol, 1 equiv), azobenzene (7.3 mg, 0.04 mmol, 0.4 equiv) and triphenylmethane (4.9 mg, 0.02 mmol, 0.2 equiv, internal standard) were added to an NMR tube. The reaction was then sealed and heated in a preheated oil bath at 115 °C for 0.5 h. NMR spectra were collected before and after heating to monitor the reaction. The reaction was quenched with 5% HCl in methanol and extracted with EtOAc/H₂O. The organic phase was dried over MgSO₄, evaporated and characterized by NMR. The peak assignment of pyrrole products were performed based on the reported chemical shifts,¹⁶⁻¹⁸ and the yields were calculated by the comparison of peak area integral with respect to the internal standard. The peak area of selected ¹H NMR peaks were calculated by Gaussian-Lorentzian fitting to omit the influence from minor baseline overlapping.¹⁹

Catalytic Reaction of **1a-BBN** with 1-phenyl-1-propyne (Table 3)

Figure S37. ¹H NMR of the reaction of **1a-BBN** with 1-phenyl-1-propyne at time = 0 (top), time = 0.5 h (bottom) in C_6D_5Br .

Figure S38. ¹¹B NMR of the reaction of **1a-BBN** with 1-phenyl-1-propyne at time = 0 (top), time = 0.5 h (bottom) in C_6D_5Br .

Figure S39. ¹H NMR of the reaction of **1a-BBN** with 1-phenyl-1-propyne in $CDCl_3$ after HCl workup. S31

Sample yield calculation based on ¹H NMR peak area:

$$Yield of \ \mathbf{3a} = \frac{Peak \ Area \ of \ \mathbf{3a}}{\# \ of \ H \ of \ \mathbf{3a}} \times \frac{\# \ of \ H \ of \ Ph_3CH}{Peak \ Area \ of \ Ph_3CH} \times equiv \ of \ Ph_3CH \times 100\%$$

Catalytic Reaction of 1b-BBN with 1-phenyl-1-propyne (Table 3)

Figure S40. ¹H NMR of the reaction of **1b-BBN** with 1-phenyl-1-propyne at time = 0 (top), time = 0.5 h (bottom) in C_6D_5Br .

Figure S41. ¹¹B NMR of the reaction of **1b-BBN** with 1-phenyl-1-propyne at time = 0 (top), time = 0.5 h (bottom) in C_6D_5Br .

Figure S42. ¹H NMR of the reaction of **1b-BBN** with 1-phenyl-1-propyne in CDCl₃ after HCl workup. S33

Catalytic Reaction of **1c-BBN** with 1-phenyl-1-propyne (Table 3)

Figure S43. ¹H NMR of the reaction of **1c-BBN** with 1-phenyl-1-propyne at time = 0 (top), time = 0.5 h (bottom) in C_6D_5Br .

Figure S44. ¹¹B NMR of the reaction of **1c-BBN** with 1-phenyl-1-propyne at time = 0 (top), time = 0.5 h (bottom) in C_6D_5Br .

Figure S45. ¹⁹F{¹H} NMR of the reaction of **1c-BBN** with 1-phenyl-1-propyne at time = 0 (top), time = 0.5 h (bottom) in C₆D₅Br.

homocoupled 2	2.14, 2.13, 2.12,	Me _{pyrrolyl}	6	2869.3	2.6
	2.11, 2.09	(2 per molecule)			

Figure S46. ¹H NMR of the reaction of **1c-BBN** with 1-phenyl-1-propyne in CDCl₃ after HCl workup.

Catalytic Reaction of 1d-BBN with 1-phenyl-1-propyne (Table 3)

Figure S47. ¹H NMR of the reaction of **1d-BBN** with 1-phenyl-1-propyne at time = 0 (top), time = 0.5 h (bottom) in C_6D_5Br .

Figure S48. ¹¹B NMR of the reaction of **1d-BBN** with 1-phenyl-1-propyne at time = 0 (top), time = 0.5 h (bottom) in C_6D_5Br .

Figure S49. ¹H NMR of the reaction of **1d-BBN** with 1-phenyl-1-propyne in $CDCl_3$ after HCl workup. S37

Catalytic Reaction of 1e-BBN with 1-phenyl-1-propyne (Table 3)

Figure S50. ¹H NMR of the reaction of **1e-BBN** with 1-phenyl-1-propyne at time = 0 (top), time = 0.5 h (bottom) in C_6D_5Br .

Figure S51. ¹¹B NMR of the reaction of **1e-BBN** with 1-phenyl-1-propyne at time = 0 (top), time = 0.5 h (bottom) in C_6D_5Br .

Figure S52. ¹H NMR of the reaction of **1e-BBN** with 1-phenyl-1-propyne in CDCl₃ after HCl workup.

General Procedure for Catalysis with Alkynyl Trialkylstannane as Substrate (Procedure C) (Table 3)

 $[py_2TiCl_2(NPh)]_2$ (14.7 mg, 0.02 mmol, 0.05 equiv), alkynyl trialkylstannane (0.4 mmol, 1 equiv) and 0.5 mL of toluene stock solution containing 1-phenyl-1-propyne (46.5 mg, 0.4 mmol, 1 equiv), azobenzene (32.8 mg, 0.18 mmol, 0.45 equiv) and triphenylmethane (19.5 mg, 0.08 mmol, 0.2 equiv, internal standard) were added to an NMR tube. The reaction was then sealed and heated in a preheated oil bath at 90 °C for 9 h. No-D NMR spectra were collected before and after heating to monitor the reaction. The reaction was quenched with 10% HCl in methanol and extracted with EtOAc/H₂O. The organic phase was dried over MgSO₄, evaporated and characterized by NMR. The peak assignment of pyrrole products were performed based on the reported chemical shifts,^{16-18,20-22} and the yields were calculated by the comparison of peak area integral with respect to the internal standard. The peak area of selected ¹H NMR peaks were calculated by Gaussian-Lorentzian fitting to omit the influence from minor baseline overlapping.¹⁹

Precaution: Trialkyltin species are highly toxic. Proper PPE is required. All the chemical and labware waste should be handled separately from the normal waste stream and quenched thoroughly.

Catalytic Reaction of **1a-SnMe**₃ with 1-phenyl-1-propyne (Table 3)

Figure S53. No-D ¹H NMR of the reaction of **1a-SnMe**₃ with 1-phenyl-1-propyne at time = 0 (top), time = 9 h (bottom) in PhCH₃.

Figure S54. ¹¹⁹Sn{¹H} NMR of the reaction of **1a-SnMe**₃ with 1-phenyl-1-propyne at time = 0 (top), time = 9 h (bottom) in PhCH₃.

Figure S55. ¹H NMR of the reaction of **1a-SnMe**₃ with 1-phenyl-1-propyne in CDCl₃ after HCl workup.

Catalytic Reaction of **1b-SnMe**₃ with 1-phenyl-1-propyne (Table 3)

Figure S56. No-D ¹H NMR of the reaction of **1b-SnMe**₃ with 1-phenyl-1-propyne at time = 0 (top), time = 9 h (bottom) in PhCH₃.

Figure S57. ¹¹⁹Sn{¹H} NMR of the reaction of **1b-SnMe**₃ with 1-phenyl-1-propyne at time = 0 (top), time = 9 h (bottom) in PhCH₃.

Figure S58. ¹H NMR of the reaction of **1b-SnMe**₃ with 1-phenyl-1-propyne in CDCl₃ after HCl workup.

Catalytic Reaction of 1c-SnMe₃ with 1-phenyl-1-propyne (Table 3)

Figure S59. No-D ¹H NMR of the reaction of **1c-SnMe**₃ with 1-phenyl-1-propyne at time = 0 (top), time = 9 h (bottom) in PhCH₃.

Figure S60. ¹¹⁹Sn{¹H} NMR of the reaction of **1c-SnMe**₃ with 1-phenyl-1-propyne at time = 0 (top), time = 9 h (bottom) in PhCH₃.

Figure S61. ¹⁹F{¹H} NMR of the reaction of **1c-SnMe**₃ with 1-phenyl-1-propyne at time = 0 (top), time = 9 h (bottom) in PhCH₃.

Figure S62. ¹H NMR of the reaction of 1c-SnMe₃ with 1-phenyl-1-propyne in CDCl₃ after HCl workup. S45

Catalytic Reaction of ${\bf 1d}\mbox{-}SnMe_3$ with 1-phenyl-1-propyne (Table 3)

Figure S63. No-D ¹H NMR of the reaction of **1d-SnMe**₃ with 1-phenyl-1-propyne at time = 0 (top), time = 9 h (bottom) in PhCH₃.

Figure S64. ¹¹⁹Sn{¹H} NMR of the reaction of 1d-SnMe₃ with 1-phenyl-1-propyne at time = 0 (top), S46

time = 9 h (bottom) in PhCH₃.

Figure S65. ¹H NMR of the reaction of **1d-SnMe**₃ with 1-phenyl-1-propyne in CDCl₃ after HCl workup.

Catalytic Reaction of 1f-SnⁿBu₃ with 1-phenyl-1-propyne (Table 3)

Figure S66. No-D ¹H NMR of the reaction of **1f-Sn**^{*n*}**Bu**₃ with 1-phenyl-1-propyne at time = 0 (top), time = 9 h (bottom) in PhCH₃.

Figure S67. ¹¹⁹Sn{¹H} NMR of the reaction of **1f-Sn**^{*n*}**Bu**₃ with 1-phenyl-1-propyne at time = 0 (top), time = 9 h (bottom) in PhCH₃.

Figure S68. ¹H NMR of the reaction of **1f-Sn^{***n***}Bu**₃ with 1-phenyl-1-propyne in CDCl₃ after HCl workup.

L Donor Effect Study

Reaction with No Pyridine (Figure 3A)

The reaction was performed following **Procedure B** using $[TiCl_2(NPh)]_n$ (4.2 mg, 0.02 mmol, absolute quantity of titanium, 0.2 equiv) as catalyst instead of $[py_2TiCl_2(NPh)]_2$.

Figure S69. ¹H NMR of the reaction using $[TiCl_2(NPh)]_n$ at time = 0 (top), time = 0.5 h (bottom) in C_6D_5Br .

Figure S70. ¹¹B NMR of the reaction using $[TiCl_2(NPh)]_n$ at time = 0 (top), time = 0.5 h (bottom) in C_6D_5Br .

Figure S71. ¹H NMR of the reaction using [TiCl₂(NPh)]_n in CDCl₃ after HCl workup.

Reaction with Excess B-phenylethynyl-9-BBN as Pyridine Scavenger (Figure 3B)

The reaction was performed following **Procedure B** with higher 1a-BBN (41.2 mg, 0.14 mmol, 1.4 equiv) loading and THF (4.3 mg, 0.06 mmol, 0.6 equiv) as additive.

Figure S72. ¹H NMR of the reaction with excess **1a-BBN** at time = 0 (top), time = 0.5 h (bottom) in C_6D_5Br .

Figure S73. ¹¹B NMR of the reaction with excess **1a-BBN** at time = 0 (top), time = 0.5 h (bottom) in C_6D_5Br .

Figure S74. ¹H NMR of the reaction with excess **1a-BBN** in CDCl₃ after HCl workup.

Reaction with Pyridine-Adduct of *B*-phenylethynyl-9-BBN (Figure 3C)

The reaction was performed following **Procedure B** using **1a-BBN-py** (30.1 mg, 0.1 mmol, 1 equiv) as heterocoupling partner instead of **1a-BBN**.

Figure S75. ¹H NMR of the reaction of **1a-BBN-py** at time = 0 (top), time = 0.5 h (bottom) in C₆D₅Br.

Figure S76. ¹¹B NMR of the reaction of **1a-BBN-py** at time = 0 (top), time = 0.5 h (bottom) in C₆D₅Br.

Figure S77. ¹H NMR of the reaction of **1a-BBN-py** in CDCl₃ after HCl workup.

Directing Group Strength Comparisons

Comparison Between TMS and 9-BBN (Figure 5, Top)

The reaction of **1g-BBN** was performed following **Procedure B** using $[TiCl_2(NPh)]_2$ as catalyst (4.2 mg, 0.02 mmol, absolute quantity of titanium, 0.2 equiv) as catalyst instead of $[py_2TiCl_2(NPh)]_2$, and the reaction was not quenched by the HCl workup. Instead the NMR tube was transferred into the glovebox after heating and taking t = 0.5 h NMR spectra. C₆D₆ (0.5 mL) was added to the reaction mixture, and the NMR tube was re-sealed and taken out of the glovebox. The reaction mixture was then characterized by ¹H NMR, ¹H-¹⁵N HMBC and NOESY. **4g-BBN** was found to be the major product.

Figure S78. ¹H NMR in C₆D₅Br of the reaction of **1g-BBN** at time = 0 (top), time = 0.5 h (bottom).

Figure S79. ¹¹B NMR in C₆D₅Br of the reaction of **1g-BBN** at time = 0 (top), time = 0.5 h (bottom).

Figure S80. ¹H NMR of the reaction product mixture of **1g-BBN** in C₆D₅Br/C₆D₆ (1:1, v/v). Chemical shifts were referenced to the proton signal of the internal standard triphenylmethane (Ph₃CH, s, 5.40 ppm).

Figure S81. NOESY (top) and ¹H–¹⁵N HMBC (bottom) NMR spectra of the reaction product mixture of **1g-BBN** in C_6D_5Br/C_6D_6 (1:1, v/v).

Comparison Between TMS and SnⁿBu₃ (Figure 5, Bottom)

The reaction of **1g-Sn^{***n***}Bu**³ was performed following **Procedure C** without being quenched by the HCl workup. Instead the NMR tube was transferred into the glovebox after heating and taking t = 0.5 h NMR spectra. The reaction was diluted with toluene, filtered and evaporated under vacuum. The crude mixture was dissolved in CD₂Cl₂ and characterized by ¹H NMR and NOESY. The solution was then was extracted by EtOAc/H₂O, during which the Sn^{*n*}Bu₃ moiety was hydrolyzed while the TMS moiety remained. The organic phase was then dried by MgSO₄, evaporated, redissoved in CDCl₃ and characterized by ¹H NMR, ¹H-¹³C and ¹H-¹⁵N HMBC and NOESY. **4g-Sn^{***n***}Bu₃** was found to be the major product.

Figure S82. No-D¹H NMR of the reaction of **1g-SnⁿBu**₃ at time = 0 (top), time = 9 h (bottom) in PhCH₃.

Figure S83. ¹¹⁹Sn{¹H} NMR of the reaction of **1g-Sn**^{*n*}**Bu**₃ at time = 0 (top), time = 9 h (bottom) in PhCH₃. Two new ¹¹⁹Sn{¹H} signals observed

Figure S84. ¹H NMR of the reaction of **1g-SnⁿBu**₃ in CD₂Cl₂.

Figure S85. ¹H⁻¹⁵N HMBC of the reaction of **1g-Sn^{***n***}Bu**₃ in CD₂Cl₂.

Figure S86. NOESY NMR spectrum of the reaction of 1g-SnⁿBu₃ in CD₂Cl₂.

Figure S87. ¹H NMR of the reaction of 1g-SnⁿBu₃ in CDCl₃ after extraction.

Figure S88. ¹¹⁹Sn{¹H} NMR of the reaction of **1g-SnⁿBu**₃ in CDCl₃ after extraction.

Figure S89. ¹H–¹⁵N HMBC of the reaction of **1g-SnⁿBu**³ in CDCl₃ after extraction.

List of correlations (chemical shifts in ppm):

Peak — Peak		Peak — Peak		
6.82 (-H)	0.06 (-TMS)	6.61 (-H)	-0.02 (-TMS)	
6.82 (-H)	7.38 (-Ph)	6.61 (-H)	7.45 (-Ph)	
2.12 (-Me)	7.38 (-Ph)	2.14 (-Me)	7.45 (-Ph)	
2.12 (-Me)	7.35 (-Ph)	2.14 (-Me)	7.46 (-Ph)	
0.06 (-TMS)	7.35 (-Ph)			

Figure S90. NOESY NMR spectrum of the reaction of **1g-Sn^{***n***}Bu**₃ in CDCl₃ after extraction.

Figure S91. $^{1}H-^{13}C$ HMBC of the reaction of $1g-Sn^{n}Bu_{3}$ in CDCl₃ after extraction.

Figure S92. Determination of regioisomers and yields.

One-Pot Reactions

One-Pot Pyrrole Synthesis/Arylation in *p***-Fluoroiodobenzene**

 $[py_2TiCl_2(NPh)]_2$ (7.4 mg, 0.01 mmol, 0.1 equiv), *B*-alkynyl-9-BBN (0.1 mmol, 1 equiv), 1-phenyl-1propyne (11.6 mg, 0.1 mmol, 1 equiv), azobenzene (7.3 mg, 0.04 mmol, 0.4 equiv) and triphenylmethane (2.7 mg, 0.011 mmol, 0.11 equiv, internal standard) and 0.5 mL of *p*fluoroiodobenzene (**6a**) were added to an NMR tube. The reaction was then sealed and heated in a preheated oil bath at 115 °C for 0.5 h. NMR spectra were collected before and after heating to monitor the reaction. The NMR tube was then transferred into the glovebox. Pd(PPh₃)₄ (11.6 mg, 0.01 mmol, 0.1 equiv) and NaO⁴Bu (24.0 mg, 0.25 mmol, 2.5 equiv) were added to the reaction, the NMR tube was re-sealed and heated in a preheated oil bath at 115 °C for 20 h. NMR spectra were collected before and after the reaction. The reaction was then quenched with 5% HCl in methanol and extracted with EtOAc/H₂O. The organic phase was dried over MgSO₄ and evaporated under vacuum. The crude product mixture was characterized by NMR and GC-Polyarc[®]/FID to calculate the yield and selectivity.

Figure S93. No-D ¹H NMR of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6a** at time = 0, time = 20 h of pyrrole synthesis, time = 0 and time = 20 h of Suzuki reaction in *p*-fluoroiodobenzene. Chemical shifts were referenced to the proton signal of the internal standard triphenylmethane (Ph₃CH, s, 5.40 ppm).

Figure S94. ¹¹B NMR of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6a** at time = 0, time = 20 h of pyrrole synthesis, time = 0 and time = 20 h of Suzuki reaction in *p*-fluoroiodobenzene.

Figure S95. ¹⁹F NMR of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6a** at time = 0, time = 20 h of pyrrole synthesis, time = 0 and time = 20 h of Suzuki reaction in *p*-fluoroiodobenzene.

3a	2.21	Me _{pyrrolyl}	3	12903.9	24.3
4a	2.24	Me _{pyrrolyl}	3	700.8	1.3
5a	not found	Hpyrrolyl	1	n.a.	n.d.
homocoupled 2	2.14, 2.14, 2.12, 2.10, 2.09	Me _{pyrrolyl} (2 per molecule)	6	2941.0	2.8

Figure S96. ¹H NMR of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6a** in CDCl₃ after HCl workup.

15 -96 -97 -98 -99 -100 -101 -102 -103 -104 -105 -106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -123 -124 fl (ppm)

Figure S97. ¹⁹F{¹H} NMR of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6a** in $CDCl_3$ after HCl workup.

Figure S98. ¹H–¹⁵N HMBC (top) and NOESY (bottom) NMR spectra of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6a** in CDCl₃ after HCl workup.

Figure S99. Quantitative GC-FID chromatograph of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6a** after HCl workup.

General Procedure for One-Pot Pyrrole Synthesis/Arylation in Toluene (Procedure D) (Table 4)

 $[py_2TiCl_2(NPh)]_2$ (7.4 mg, 0.01 mmol, 0.1 equiv), *B*-alkynyl-9-BBN (0.1 mmol, 1 equiv) and 0.5 mL of PhCH₃ stock solution containing 1-phenyl-1-propyne (11.6 mg, 0.1 mmol, 1 equiv), azobenzene (7.3 mg, 0.04 mmol, 0.4 equiv) and triphenylmethane (4.9 mg, 0.02 mmol, 0.2 equiv, internal standard) were added to an NMR tube. The reaction was then sealed and heated in a preheated oil bath at 115 °C for 20 h. NMR spectra were collected before and after heating to monitor the reaction. The NMR tube was then transferred into the glovebox. Pd(PPh₃)₄ (11.6 mg, 0.01 mmol, 0.1 equiv), aryl iodide (0.2 mmol, 2 equiv), NaO^tBu (24.0 mg, 0.25 mmol, 2.5 equiv) and 0.2 mL of PhCH₃ were added to the reaction, the NMR tube was re-sealed and heated in a preheated oil bath at 115 °C for 20 h. NMR spectra were collected before and after the reaction was then quenched with 5% HCl in methanol and extracted with EtOAc/H₂O. The organic phase was dried over MgSO₄ and evaporated under vacuum. The crude product mixture was characterized by NMR and GC-Polyarc[®]/FID to calculate the yield and selectivity.

One-Pot Pyrrole Synthesis/Arylation for 1a-BBN and *p*-Fluoroiodobenzene

The reaction was performed following **Procedure D** using **1a-BBN** (29.4 mg, 0.1 mmol, 1 equiv) as alkynylborane and *p*-fluoroiodobenzene (**6a**, 44.4 mg, 0.2 mmol, 2 equiv) as aryl iodide.

Figure S100. No-D ¹H NMR of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6a** at time = 0, time = 20 h of pyrrole synthesis, time = 0 and time = 20 h of Suzuki reaction in PhCH₃.

Figure S101. ¹¹B NMR of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6a** at time = 0, time = 20 h of pyrrole synthesis, time = 0 and time = 20 h of Suzuki reaction in PhCH₃.

Figure S102. ¹⁹F NMR of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6a** at time = 0 and time = 20 h of Suzuki reaction in PhCH₃.

-5.54

Figure S103. ¹H NMR of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6a** in CDCl₃ after HCl workup.

Figure S104. $^{19}F\{^{1}H\}$ NMR of the one-pot pyrrole synthesis/arylation of 1a-BBN and 6a in CDCl3 after HCl workup.

	Retention Time (min)	Surface Area	# of C	Yield (%)
Ph ₃ CH	5.46	394.879	19	n.a.
7aa	23.28	1732.741	29	57.5
3a	19.26	258.055	23	10.8
4a	18.85	1.164	23	< 0.1
5a	14.99	0.022	23	< 0.1
homocoupled 2	15.29, 17.44, 18.36	109.487	24	4.4

Figure S105. Quantitative GC-FID chromatograph of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6a** after HCl workup.

One-Pot Pyrrole Synthesis/Arylation for 1b-BBN and p-Fluoroiodobenzene

The reaction was performed following **Procedure D** using **1b-BBN** (32.4 mg, 0.1 mmol, 1 equiv) as alkynylborane and *p*-fluoroiodobenzene (**6a**, 44.4 mg, 0.2 mmol, 2 equiv) as aryl iodide.

Figure S106. No-D ¹H NMR of the one-pot pyrrole synthesis/arylation of **1b-BBN** and **6a** at time = 0, time = 20 h of pyrrole synthesis, time = 0 and time = 20 h of Suzuki reaction in PhCH₃.

Pyrrole synthesis time = 0				
	1b-BBN	1b-BBN-py		
Pyrrole synthesis time = 20 h				
3b-BBN				
Suzuki reaction time = 0				
B-O'Bu-9-BBN Suzuki reaction time = 20 h				
	ao 20 10	0 -10 -20 -3	30 -40 -50	-60 -70 -80 -90

Figure S107. ¹¹B NMR of the one-pot pyrrole synthesis/arylation of **1b-BBN** and **6a** at time = 0, time = 20 h of pyrrole synthesis, time = 0 and time = 20 h of Suzuki reaction in PhCH₃.

Figure S108. ¹⁹F NMR of the one-pot pyrrole synthesis/arylation of **1b-BBN** and **6a** at time = 0 and time = 20 h of Suzuki reaction in PhCH₃.

Figure S109. ¹H NMR of the one-pot pyrrole synthesis/arylation of **1b-BBN** and **6a** in CDCl₃ after HCl workup.

15 -96 -97 -98 -99 -100 -101 -102 -103 -104 -105 -106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -123 -124 -1 fl (ppm)

Figure S110. ¹⁹F{¹H} NMR of the one-pot pyrrole synthesis/arylation of **1b-BBN** and **6a** in $CDCl_3$ after HCl workup.

Figure S111. ¹H–¹⁵N HMBC of the one-pot pyrrole synthesis/arylation of **1b-BBN** and **6a** in CDCl₃ after HCl workup.

Figure S112. Quantitative GC-FID chromatograph of the one-pot pyrrole synthesis/arylation of **1b-BBN** and **6a** after HCl workup.

One-Pot Pyrrole Synthesis/Arylation for 1c-BBN and *p*-Fluoroiodobenzene

The reaction was performed following **Procedure D** using **1c-BBN** (36.2 mg, 0.1 mmol, 1 equiv) as alkynylborane and *p*-fluoroiodobenzene (**6a**, 44.4 mg, 0.2 mmol, 2 equiv) as aryl iodide.

Figure S113. No-D ¹H NMR of the one-pot pyrrole synthesis/arylation of **1c-BBN** and **6a** at time = 0, time = 20 h of pyrrole synthesis, time = 0 and time = 20 h of Suzuki reaction in PhCH₃.

Pyrrole synthesis time = 0	
1c-BBN	1с-ВВЛ-ру
Pyrrole synthesis time = 20 h	
3c-BBN	
Suzuki reaction time = 0	
B-O'Bu-9-BBN Suzuki reaction time = 20 h	
90 80 70 60 50 40 30 20 10	0 -10 -20 -30 -40 -50 -60 -70 -80 -90 fl (ppm)

Figure S114. ¹¹B NMR of the one-pot pyrrole synthesis/arylation of **1c-BBN** and **6a** at time = 0, time = 20 h of pyrrole synthesis, time = 0 and time = 20 h of Suzuki reaction in PhCH₃.

Figure S115. ¹⁹F NMR of the one-pot pyrrole synthesis/arylation of **1c-BBN** and **6a** at time = 0, time = 20 h of pyrrole synthesis, time = 0 and time = 20 h of Suzuki reaction in PhCH₃.

Figure S116. ¹H NMR of the one-pot pyrrole synthesis/arylation of **1c-BBN** and **6a** in CDCl₃ after HCl workup.

-58 -59 -60 -61 -62 -63 -64 -65 -106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -123 -124 -125 -126 -12 fl (ppm)

Figure S117. ¹⁹F{¹H} NMR of the one-pot pyrrole synthesis/arylation of **1c-BBN** and **6a** in CDCl₃ after HCl workup.

Figure S118. ¹H–¹⁵N HMBC of the one-pot pyrrole synthesis/arylation of **1c-BBN** and **6a** in CDCl₃ after HCl workup.

Figure S119. Quantitative GC-FID chromatograph of the one-pot pyrrole synthesis/arylation of **1c-BBN** and **6a** after HCl workup.

One-Pot Pyrrole Synthesis/Arylation for 1d-BBN and *p*-Fluoroiodobenzene

The reaction was performed following **Procedure D** using **1d-BBN** (30.8 mg, 0.1 mmol, 1 equiv) as alkynylborane and *p*-fluoroiodobenzene (**6a**, 44.4 mg, 0.2 mmol, 2 equiv) as aryl iodide.

Figure S120. No-D ¹H NMR of the one-pot pyrrole synthesis/arylation of **1d-BBN** and **6a** at time = 0, time = 20 h of pyrrole synthesis, time = 0 and time = 20 h of Suzuki reaction in PhCH₃.

Pyrrole synthesis time = 0	1d-BBN	1d-BBN-py
Pyrrole synthesis time = 20 h		
3d-BBN		
Suzuki reaction time = 0		
<i>B</i> -O'Bu-9-BBN Suzuki reaction time = 20 h		
90 80 70 60 50 40 30	20 10	- 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -

Figure S121. ¹¹B NMR of the one-pot pyrrole synthesis/arylation of **1d-BBN** and **6a** at time = 0, time = 20 h of pyrrole synthesis, time = 0 and time = 20 h of Suzuki reaction in PhCH₃.

Figure S122. ¹⁹F NMR of the one-pot pyrrole synthesis/arylation of **1d-BBN** and **6a** at time = 0 and time = 20 h of Suzuki reaction in PhCH₃.

Figure S123. ¹H NMR of the one-pot pyrrole synthesis/arylation of **1d-BBN** and **6a** in CDCl₃ after HCl workup.

15 - 96 - 97 - 98 - 99 - 100 - 101 - 102 - 103 - 104 - 105 - 106 - 107 - 108 - 109 - 110 - 111 - 112 - 113 - 114 - 115 - 116 - 117 - 118 - 119 - 120 - 121 - 122 - 123 - 124 - 1 fl (ppm)

Figure S124. ¹⁹F{¹H} NMR of the one-pot pyrrole synthesis/arylation of **1d-BBN** and **6a** in CDCl₃ after HCl workup.

Figure S125. $^{1}H-^{15}N$ HMBC of the one-pot pyrrole synthesis/arylation of 1d-BBN and 6a in CDCl₃ after HCl workup.

Figure S126. Quantitative GC-FID chromatograph of the one-pot pyrrole synthesis/arylation of **1d-BBN** and **6a** after HCl workup.

One-Pot Pyrrole Synthesis/Arylation for 1e-BBN and p-Fluoroiodobenzene

The reaction was performed following **Procedure D** using **1e-BBN** (27.4 mg, 0.1 mmol, 1 equiv) as alkynylborane and *p*-fluoroiodobenzene (**6a**, 44.4 mg, 0.2 mmol, 2 equiv) as aryl iodide.

Figure S127. No-D ¹H NMR of the one-pot pyrrole synthesis/arylation of **1e-BBN** and **6a** at time = 0, time = 20 h of pyrrole synthesis, time = 0 and time = 20 h of Suzuki reaction in PhCH₃.

Figure S128. ¹¹B NMR of the one-pot pyrrole synthesis/arylation of **1e-BBN** and **6a** at time = 0, time = 20 h of pyrrole synthesis, time = 0 and time = 20 h of Suzuki reaction in PhCH₃.

Figure S129. ¹⁹F NMR of the one-pot pyrrole synthesis/arylation of **1e-BBN** and **6a** at time = 0 and time = 20 h of Suzuki reaction in PhCH₃.

Figure S130. ¹H NMR of the one-pot pyrrole synthesis/arylation of **1e-BBN** and **6a** in CDCl₃ after HCl workup.

15 -96 -97 -98 -99 -100 -101 -102 -103 -104 -105 -106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -123 -124 -1 fl (ppm)

Figure S131. ¹⁹F{¹H} NMR of the one-pot pyrrole synthesis/arylation of **1e-BBN** and **6a** in $CDCl_3$ after HCl workup.

Figure S132. ¹H–¹⁵N HMBC of the one-pot pyrrole synthesis/arylation of **1e-BBN** and **6a** in CDCl₃ after HCl workup.

^{*a*}The yield was too low to be identified.

Figure S133. Quantitative GC-FID chromatograph of the one-pot pyrrole synthesis/arylation of **1e-BBN** and **6a** after HCl workup.

One-Pot Pyrrole Synthesis/Arylation for 1a-BBN and p-Iodoanisole

The reaction was performed following **Procedure D** using **1a-BBN** (29.4 mg, 0.1 mmol, 1 equiv) as alkynylborane and *p*-iodoanisole (**6b**, 46.8 mg, 0.2 mmol, 2 equiv) as aryl iodide. The extraction was performed with CH_2Cl_2/H_2O .

Figure S134. No-D ¹H NMR of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6b** at time = 0, time = 20 h of pyrrole synthesis, time = 0 and time = 20 h of Suzuki reaction in PhCH₃.

Pyrrole synthesis time = 0	1a-BBN	1a-BBN-py
Pyrrole synthesis time = 20 h		
3a-BBN		
Suzuki reaction time = 0		
B-O'Bu-9-BBN Suzuki reaction time = 20 h		
90 80 70 60 50 40 30	20 10	0 -10 -20 -30 -40 -50 -60 -70 -80 -90

Figure S135. ¹¹B NMR of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6b** at time = 0, time = 20 h of pyrrole synthesis, time = 0 and time = 20 h of Suzuki reaction in PhCH₃.

Figure S136. ¹H NMR of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6b** in CDCl₃ after HCl workup.

Figure S137. ¹H–¹⁵N HMBC of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6b** in CDCl₃ after HCl workup.

Figure S138. Quantitative GC-FID chromatograph of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6b** after HCl workup.

One-Pot Pyrrole Synthesis/Arylation for 1a-BBN and o-Iodotoluene

The reaction was performed following **Procedure D** using **1a-BBN** (29.4 mg, 0.1 mmol, 1 equiv) as alkynylborane and *o*-iodotoluene (**6c**, 43.6 mg, 0.2 mmol, 2 equiv) as aryl iodide.

Figure S139. No-D ¹H NMR of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6c** at time = 0, time = 20 h of pyrrole synthesis, time = 0 and time = 20 h of Suzuki reaction in PhCH₃.

Figure S140. ¹¹B NMR of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6c** at time = 0, time = 20 h of pyrrole synthesis, time = 0 and time = 20 h of Suzuki reaction in PhCH₃.

Figure S141. ¹H NMR of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6c** in CDCl₃ after HCl workup.

Figure S142. $^{1}H-^{15}N$ HMBC of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6c** in CDCl₃ after HCl workup.

Figure S143. Quantitative GC-FID chromatograph of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6c** after HCl workup.

One-Pot Pyrrole Synthesis/Arylation for 1a-BBN and Methyl p-Iodobenzoate

The reaction was performed following **Procedure D** using **1a-BBN** (29.4 mg, 0.1 mmol, 1 equiv) as alkynylborane and methyl *p*-iodobenzoate (**6d**, 52.4 mg, 0.2 mmol, 2 equiv) as aryl iodide.

Figure S144. No-D ¹H NMR of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6d** at time = 0, time = 20 h of pyrrole synthesis, time = 0 and time = 20 h of Suzuki reaction in PhCH₃.

Figure S145. ¹¹B NMR of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6d** at time = 0, time = 20 h of pyrrole synthesis, time = 0 and time = 20 h of Suzuki reaction in PhCH₃.

Figure S146. ¹H NMR of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6d** in CDCl₃ after HCl workup.

Figure S147. $^{1}H^{-15}N$ HMBC of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6d** in CDCl₃ after HCl workup.

Figure S148. Quantitative GC-FID chromatograph of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6d** after HCl workup.

One-Pot Pyrrole Synthesis/Arylation for 1a-BBN and *p*-Iodonitrobenzene

The reaction was performed following **Procedure D** using **1a-BBN** (29.4 mg, 0.1 mmol, 1 equiv) as alkynylborane and *p*-iodonitrobenzene (**6e**, 49.8 mg, 0.2 mmol, 2 equiv) as aryl iodide. The extraction was performed with CH_2Cl_2/H_2O .

Figure S149. No-D ¹H NMR of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6e** at time = 0, time = 20 h of pyrrole synthesis, time = 0 and time = 20 h of Suzuki reaction in PhCH₃.

Figure S150. ¹¹B NMR of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6e** at time = 0, time = 20 h of pyrrole synthesis, time = 0 and time = 20 h of Suzuki reaction in PhCH₃.

Figure S151. ¹H NMR of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6e** in CDCl₃ after HCl workup.

Figure S152. ¹H–¹⁵N HMBC of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6e** in CDCl₃ after HCl workup.

Figure S153. Quantitative GC-FID chromatograph of the one-pot pyrrole synthesis/arylation of **1a-BBN** and **6e** after HCl workup.
Catalytic Pyrrole Syntheses: Hydrocarbon Alkyne Scopes (Table 4)

Catalytic reaction of 1a-BBN with 2-butyne (Table 4)

The reaction was performed following **Procedure B** using **1a-BBN** (29.4 mg, 0.1 mmol, 1 equiv) and 2-butyne (**2g**, 5.4 mg, 0.1 mmol, 1 equiv) with the reaction being heated for 1 h.

Figure S154. ¹H NMR of the reaction of **1a-BBN** with **2g** at time = 0 (top), time = 1 h (bottom) in C_6D_5Br .

Figure S155. ¹¹B NMR of the reaction of **1a-BBN** with **2g** at time = 0 (top), time = 1 h (bottom) in C_6D_5Br .

Figure S156. ¹H NMR of the reaction of **1a-BBN** with **2g** in CDCl₃ after HCl workup.

Catalytic reaction of 1a-BBN with 3-hexyne (Table 4)

The reaction was performed following **Procedure B** using **1a-BBN** (29.4 mg, 0.1 mmol, 1 equiv) and 3-hexyne (**2h**, 8.2 mg, 0.1 mmol, 1 equiv) with the reaction being heated for 1 h.

Figure S157. ¹H NMR of the reaction of **1a-BBN** with **2h** at time = 0 (top), time = 1 h (bottom) in C_6D_5Br .

Figure S158. ¹¹B NMR of the reaction of **1a-BBN** with **2h** at time = 0 (top), time = 1 h (bottom) in C_6D_5Br .

Figure S159. ¹H NMR of the reaction of **1a-BBN** with **2h** in CDCl₃ after HCl workup.

Catalytic reaction of **1a-BBN** with 4-octyne (Table 4)

The reaction was performed following **Procedure B** using **1a-BBN** (29.4 mg, 0.1 mmol, 1 equiv) and 4-octyne (**2i**, 11.0 mg, 0.1 mmol, 1 equiv) with the reaction being heated for 1 h.

Figure S160. ¹H NMR of the reaction of **1a-BBN** with **2i** at time = 0 (top), time = 1 h (bottom) in C_6D_5Br .

Figure S161. ¹¹B NMR of the reaction of **1a-BBN** with **2i** at time = 0 (top), time = 1 h (bottom) in C_6D_5Br .

Figure S162. ¹H NMR of the reaction of **1a-BBN** with **2i** in CDCl₃ after HCl workup.

Catalytic reaction of **1a-BBN** with diphenylacetylene (Table 4)

The reaction was performed following **Procedure B** using **1a-BBN** (29.4 mg, 0.1 mmol, 1 equiv) and diphenylacetylene (**2j**, 17.8 mg, 0.1 mmol, 1 equiv) with the reaction being heated for 1 h. Yields were determined by GC due to peak overlapping in ¹H NMR spectrum after HCl workup.

Figure S163. ¹H NMR of the reaction of **1a-BBN** with **2j** at time = 0 (top), time = 1 h (bottom) in C_6D_5Br .

Figure S164. ¹¹B NMR of the reaction of **1a-BBN** with **2j** at time = 0 (top), time = 1 h (bottom) in C_6D_5Br .

Figure S165. Quantitative GC-FID chromatograph of the reaction of 1a-BBN with 2j after HCl workup.

Catalytic reaction of **1a-BBN** with 1-hexyne (Table 4)

The reaction was performed following **Procedure B** using **1a-BBN** (29.4 mg, 0.1 mmol, 1 equiv) and 1-hexyne (**2k**, 8.2 mg, 0.1 mmol, 1 equiv) with the reaction being heated for 1 h.

Time = 0

Figure S166. ¹H NMR of the reaction of **1a-BBN** with **2k** at time = 0 (top), time = 1 h (bottom) in C_6D_5Br .

Figure S167. ¹¹B NMR of the reaction of **1a-BBN** with **2k** at time = 0 (top), time = 1 h (bottom) in C_6D_5Br .

Figure S168. ¹H NMR of the reaction of 1a-BBN with 2k in CDCl₃ after HCl workup.

Figure S169. $^{1}H-^{15}N$ HMBC of the reaction of **1a-BBN** with **2k** in CDCl₃ after HCl workup.

Figure S170. GC-FID chromatograph of the reaction of 1a-BBN with 2k after HCl workup.

Catalytic reaction of **1a-SnMe**₃ with 2-butyne (Table 4)

The reaction was performed following **Procedure B** using **1a-SnMe**₃ (26.5 mg, 0.1 mmol, 1 equiv) and 2-butyne (**2g**, 5.4 mg, 0.1 mmol, 1 equiv) with the reaction being heated for 20 h.

Figure S171. No-D ¹H NMR of the reaction of **1a-SnMe**₃ with **2g** at time = 0 (top), time = 20 h (bottom) in PhCH₃.

Figure S172. ¹¹⁹Sn{¹H} NMR of the reaction of **1a-SnMe**₃ with **2g** at time = 0 (top), time = 20 h (bottom) in PhCH₃.

Figure S173. ¹H NMR of the reaction of **1a-SnMe**₃ with **2g** in CDCl₃ after HCl workup.

Catalytic reaction of **1a-SnMe**₃ with 3-hexyne (Table 4)

The reaction was performed following **Procedure B** using **1a-SnMe**₃ (26.5 mg, 0.1 mmol, 1 equiv) and 3-hexyne (**2h**, 8.2 mg, 0.1 mmol, 1 equiv) with the reaction being heated for 20 h.

Figure S174. No-D ¹H NMR of the reaction of **1a-SnMe**₃ with **2h** at time = 0 (top), time = 20 h (bottom) in PhCH₃.

Figure S175. ¹¹⁹Sn{¹H} NMR of the reaction of **1a-SnMe**₃ with **2h** at time = 0 (top), time = 20 h (bottom) in PhCH₃.

Figure S176. ¹H NMR of the reaction of **1a-SnMe**₃ with **2h** in CDCl₃ after HCl workup.

Catalytic reaction of **1a-SnMe**₃ with 4-octyne (Table 4)

The reaction was performed following **Procedure B** using **1a-SnMe**₃ (26.5 mg, 0.1 mmol, 1 equiv) and 4-octyne (**2i**, 11.0 mg, 0.1 mmol, 1 equiv) with the reaction being heated for 20 h.

Figure S177. No-D ¹H NMR of the reaction of **1a-SnMe**₃ with **2i** at time = 0 (top), time = 20 h (bottom) in PhCH₃.

Figure S178. ¹¹⁹Sn{¹H} NMR of the reaction of **1a-SnMe**₃ with **2i** at time = 0 (top), time = 20 h (bottom) in PhCH₃.

Figure S179. ¹H NMR of the reaction of **1a-SnMe**₃ with **2i** in CDCl₃ after HCl workup.

Catalytic reaction of **1a-SnMe**₃ with diphenylacetylene (Table 4)

The reaction was performed following **Procedure B** using **1a-SnMe**₃ (26.5 mg, 0.1 mmol, 1 equiv) and diphenylacetylene (**2j**, 17.8 mg, 0.1 mmol, 1 equiv) with the reaction being heated for 20 h. Yields were determined by GC due to peak overlapping in ¹H NMR spectrum after HCl workup.

Figure S180. No-D ¹H NMR of the reaction of **1a-SnMe**₃ with **2j** at time = 0 (top), time = 20 h (bottom) in PhCH₃.

Figure S181. ¹¹⁹Sn{¹H} NMR of the reaction of **1a-SnMe**₃ with **2j** at time = 0 (top), time = 20 h (bottom) in PhCH₃.

Figure S182. Quantitative GC-FID chromatograph of the reaction of **1a-SnMe**₃ with **2j** after HCl workup.

Catalytic reaction of **1a-SnMe**₃ with 1-hexyne (Table 4)

The reaction was performed following **Procedure B** using **1a-SnMe**₃ (26.5 mg, 0.1 mmol, 1 equiv) and 1-hexyne (**2k**, 8.2 mg, 0.1 mmol, 1 equiv) with the reaction being heated for 20 h.

Figure S183. No-D ¹H NMR of the reaction of **1a-SnMe**₃ with **2k** at time = 0 (top), time = 20 h (bottom) in PhCH₃.

Figure S184. ¹¹⁹Sn{¹H} NMR of the reaction of **1a-SnMe**₃ with **2k** at time = 0 (top), time = 20 h (bottom) in PhCH₃.

Figure S185. ¹H NMR of the reaction of **1a-SnMe**₃ with **2k** in CDCl₃ after HCl workup.

Figure S186. ¹H-¹⁵N HMBC of the reaction of **1a-SnMe**₃ with **2k** in CDCl₃ after HCl workup.

Figure S187. GC-FID chromatograph of the reaction of $1a\mbox{-}SnMe_3$ with 2k after HCl workup.

Reference

- G. M. Whitesides and W. J. Ehmann, Mechanism of formation of 1,2,3,4-tetramethylnaphthalene from 2-butyne and triphenyltris(tetrahydrofuran) chromium(III), *J. Am. Chem. Soc.*, 1970, **92**, 5625–5640.
- 2 H. C. Brown and J. A. Sinclair, Organoboranes. XVIII. Reaction of lithium alkynes with methyl dialkylborinates: The synthesis of B-1-alkynyldialkylboranes, *J. Organomet. Chem.*, 1977, **131**, 163–169.
- G. Y. Fang, O. A. Wallner, N. Di Blasio, X. Ginesta, J. N. Harvey and V. K. Aggarwal, Asymmetric Sulfur Ylide Reactions with Boranes: Scope and Limitations, Mechanism and Understanding, *J. Am. Chem. Soc.*, 2007, **129**, 14632–14639.
- 4 J. C. Evans, C. T. Goralski and D. L. Hasha, B-[2-(Trimethylsilyl)ethynyl]-9-borabicyclo[3.3.1]nonane. A new organoboron reagent for the preparation of propargylic alcohols, *J. Org. Chem.*, 1992, **57**, 2941–2943.
- 5 W. Shi, Y. Luo, X. Luo, L. Chao, H. Zhang, J. Wang and A. Lei, Investigation of an Efficient Palladium-Catalyzed C(sp)–C(sp) Cross-Coupling Reaction Using Phosphine–Olefin Ligand: Application and Mechanistic Aspects, *J. Am. Chem. Soc.*, 2008, **130**, 14713–14720.
- 6 X. Y. See, E. P. Beaumier, Z. W. Davis-Gilbert, P. L. Dunn, J. A. Larsen, A. J. Pearce, T. A. Wheeler and I. A. Tonks, Generation of Tillalkyne trimerization catalysts in the absence of strong metal reductants, *Organometallics*, 2017, **36**, 1383–1390.
- 7 C. A. Beach, K. E. Joseph, P. J. Dauenhauer, C. S. Spanjers, A. J. Jones and T. J. Mountziaris, Complete carbon analysis of sulfur-containing mixtures using postcolumn reaction and flame ionization detection, *AIChE J.*, 2017, **63**, 5438–5444.
- 8 C. S. Spanjers, C. A. Beach, A. J. Jones and P. J. Dauenhauer, Increasing flame ionization detector (FID) sensitivity using post-column oxidation–methanation, *Anal. Methods*, 2017, **9**, 1928–1934.
- 9 P. G. Harrison, S. E. Ulrich and J. J. Zuckerman, Tin-119 chemical shifts by the double resonance of organotin compounds, *J. Am. Chem. Soc.*, 1971, **93**, 5398–5402.
- F. Forster, V. M. Rendón López and M. Oestreich, Catalytic Dehydrogenative Stannylation of C(sp)– H Bonds Involving Cooperative Sn–H Bond Activation of Hydrostannanes, *J. Am. Chem. Soc.*, 2018, 140, 1259–1262.
- 11 D. A. Pennington, P. N. Horton, M. B. Hursthouse, M. Bochmann and S. J. Lancaster, Synthesis and catalytic activity of dinuclear imido titanium complexes: The molecular structure of [Ti(NPh)Cl(μ-Cl)(THF)2]2, *Polyhedron*, 2005, 24, 151–156.
- 12 C. Lee, J. Zhou and O. V Ozerov, Catalytic Dehydrogenative Borylation of Terminal Alkynes by a SiNN Pincer Complex of Iridium, *J. Am. Chem. Soc.*, 2013, **135**, 3560–3566.
- 13 C.-I. Lee, J. C. DeMott, C. J. Pell, A. Christopher, J. Zhou, N. Bhuvanesh and O. V. Ozerov, Ligand survey results in identification of PNP pincer complexes of iridium as long-lived and chemoselective catalysts for dehydrogenative borylation of terminal alkynes, *Chem. Sci.*, 2015, **6**, 6572–6582.
- 14 H. E. Ho, N. Asao, Y. Yamamoto and T. Jin, Carboxylic Acid-Catalyzed Highly Efficient and Selective Hydroboration of Alkynes with Pinacolborane, *Org. Lett.*, 2014, **16**, 4670–4673.
- 15 D. Unseld, V. V. Krivykh, K. Heinze, F. Wild, G. Artus, H. Schmalle and H. Berke, Versatile Routes to Mono- and Bis(alkynyl) Manganese(II) and Manganese(III) Complexes via Manganocenes, *Organometallics*, 1999, **18**, 1525–1541.
- 16 H. C. Chiu and I. A. Tonks, Trimethylsilyl-Protected Alkynes as Selective Cross-Coupling Partners in Titanium-Catalyzed [2+2+1] Pyrrole Synthesis, *Angew. Chemie - Int. Ed.*, 2018, **57**, 6090–6094.
- 17 Z. W. Gilbert, R. J. Hue and I. A. Tonks, Catalytic formal [2+2+1] synthesis of pyrroles from alkynes and diazenes via TiII/TiIVredox catalysis, *Nat. Chem.*, 2016, **8**, 63–68.

- 18 X. Li, M. Chen, X. Xie, N. Sun, S. Li and Y. Liu, Synthesis of Multiple-Substituted Pyrroles via Gold(I)-Catalyzed Hydroamination/Cyclization Cascade, *Org. Lett.*, 2015, **17**, 2984–2987.
- 19 L. Petrakis, Spectral line shapes: Gaussian and Lorentzian functions in magnetic resonance, *J. Chem. Educ.*, 1967, **44**, 432.
- 20 G.-Z. Wang, R. Shang, W.-M. Cheng and Y. Fu, Decarboxylative 1,4-Addition of α-Oxocarboxylic Acids with Michael Acceptors Enabled by Photoredox Catalysis, *Org. Lett.*, 2015, **17**, 4830–4833.
- 21 T. N. Danks and S. E. Thomas, Nucleophilic addition to tricarbonyliron(0) complexes of 1-aza-1,3dienes and the production of pyrroles, *J. Chem. Soc. Perkin Trans.* 1, 1990, 761.
- 22 A. S. Demir, I. M. Akhmedov and Ö. Sesenoglu, Synthesis of 1,2,3,5-tetrasubstituted pyrrole derivatives from 2-(2-bromoallyl)-1,3-dicarbonyl compounds, *Tetrahedron*, 2002, **58**, 9793–9799.