Supporting Information

Regioselective B(3,4)–H Arylation of *o*-Carboranes by Weak Amide Coordination at Room Temperature

Yu-Feng Liang,⁺ Long Yang,⁺ Becky Bongsuiru Jei, Rositha Kuniyil and Lutz Ackermann*

Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2, 37077 Göttingen, Germany Lutz.Ackermann@chemie.uni-goettingen.de

Table of Contents

General remarks	S-2
Preparation of amide <i>o</i> -carboranes	S-3
General procedures	S-4
Optimization studies	S-5
Analytical data for products	S-6
Attempts with Other Groups	S-16
Mechanistic Studies	S-17
Computational Data	S-19
X-Ray crystallographic analysis	S-70
References	S-153
¹ H, ¹³ C, and ¹¹ B NMR spectra	S-154

General remarks

Catalytic reactions were carried out in Schlenk flasks under a N₂ atmosphere using pre-dried glassware. Chemicals were purchased from commercial sources and used without further purification. Yields refer to isolated compounds estimated to be >95% pure as determined by ¹H NMR and GC. TLC was performed on Merck TLC Silica Gel 60 F₂₅₄ with detection under UV light at 254 nm. Chromatographic separations were carried out on Merck Geduran SI-60 (0.040–0.063 mm, 230–400 mesh ASTM). IR spectra were recorded on a Bruker FT-IR alpha-P device. EI-MS was recorded on Jeol *AccuTOF* at 70 eV; ESI-MS was recorded on Bruker Daltonik *micrOTOF* and *maXis*. Melting points (M.p.) were measured on StuartTM melting point apparatus SMP3, and the values are uncorrected. Nuclear magnetic resonance (NMR) spectroscopy was performed at 300, 400, 500 or 600 MHz (¹H-NMR), 75, 100 or 125 MHz (¹³C-NMR, APT) and 96, 128 or 160 MHz (¹¹B-NMR) on Bruker *Avance III HD 300*, *Avance III 400*, *Avance III HD 500*, Varian *Unity-300*, *Inova 500* and *Inova 600* instruments. Chemical shifts (δ) are provided in ppm and spectra refer to non-deuterated solvent signal. X-ray structures were measured on Bruker APEX-II CCD diffractometer.

Preparation of amide *o*-carboranes

The amide *o*-carboranes 1 were synthesized according to a previously described method:^[1] $B_{10}H_{12}(CH_3CN)_2$ (1.02 g, 5 mmol) and alkyne (10 mmol) were combined in the presence of AgNO₃ (85 mg, 0.5 mmol) in anhydrous toluene (20 mL) and heated at 70 °C for 24 h under N₂.

The details for the preparation of **1a**: $B_{10}H_{12}(CH_3CN)_2$ (1.02 g, 5 mmol), *N*,*N*-diethyl-3-phenylpropiolamide (2.01 g, 10 mmol), AgNO₃ (85 mg, 0.5 mmol) and anhydrous toluene (20 mL) were placed in a 50 mL Schlenk flask under N₂ atmosphere. The mixture was stirred at 70 °C for 24 h. At ambient temperature, the reaction mixture was transferred into a round bottom flask with EtOAc (20 mL) and washed with brine (5.0 mL). The mixture was extracted with EtOAc (3 × 20 mL) and the combined organic layer was dried over Na₂SO₄, concentrated under reduced pressure and purified by column chromatography on silica gel using a mixture of *n*-hexane and EtOAc (10:1) to afford the amide *o*-carborane **1a** (0.72 g, 45% yield).

General procedures

General procedure A for B(3,4)-H diarylation.

o-Carborane **1a** (1-CONEt₂-2-Ph-*o*-C₂B₁₀H₁₀) (0.20 mmol), 4-iodotoluene **2a** (0.48 mmol), Pd(OAc)₂ (10 mol %), AgTFA (0.48 mmol), TFA (0.20 mmol) and HFIP (0.50 mL) were placed in a 25 mL Schlenk tube under N₂ atmosphere. The mixture was stirred at 25 °C for 16 h. Then, the reaction solution was concentrated to dryness in vacuum and purified by column chromatography on silica gel using a mixture of *n*-hexane and EtOAc (20/1 in v/v) and Gel Permeation Chromatography (GPC) to afford the desired product **3aa**.

General procedure B for B(3)-H monoarylation.

o-Carborane **1a** (1-CONEt₂-2-Ph-o-C₂B₁₀H₁₀) (0.20 mmol), 4-iodotoluene **2a** (0.08 mmol), Pd(OAc)₂ (10 mol %), Ag₂CO₃ (0.24 mmol) and HFIP (0.50 mL) were placed in a 25 mL Schlenk tube under N₂ atmosphere. The mixture was stirred at 25 °C for 4 h. Then, 4-iodotoluene **2a** (0.08 mmol) was added. And 4 h later, another portion of 4-iodotoluene **2a** (0.08 mmol) was added. The resulting mixture was then stirred for 8 h. Then, the reaction solution was concentrated to dryness in vacuum and purified by column chromatography on silica gel using a mixture of *n*-hexane and EtOAc (20/1 in v/v) and Gel Permeation Chromatography (GPC) to afford the desired product **4aa**.

Optimization studies

1a

Table S1. Optimization of reaction conditions.^[a]

3aa

4aa

Entry	Additive	Solvent	Yield of 3aa /%	Yield of 4aa /%
1	AgTFA	PhMe	0	0
2	AgTFA	DCE	0	0
3	AgTFA	MeCN	0	0
4	AgTFA	1,4-Dioxane	0	0
5	AgTFA	H_2O	0	0
6	AgTFA	TFE	21	3
7	AgTFA	HFIP	59	4
8	AgTFA	HFIP	0	0 ^[b]
9		HFIP	0	0
10	AgOAc	HFIP	5	<3
11	Ag ₂ O	HFIP	<3	<3
12	K ₂ HPO ₄	HFIP	0	0
13	Na ₂ CO ₃	HFIP	0	0
14	K_2CO_3	HFIP	0	0
15	NEt ₃	HFIP	0	0
16	AgTFA	HFIP	53	4 ^[c]
17	AgTFA	HFIP	42	3 ^[d]
18	AgTFA	HFIP	71	< 3 ^[e]
19	Ag_2CO_3	HFIP	9	34 ^[f]
20	Ag ₂ CO ₃	HFIP	5	55 ^[f,g]

[a] Reaction conditions: 1a (0.20 mmol), 2 (0.48 mmol), Pd(OAc)₂ (10 mol %), additive (0.48 mmol), solvent (0.50 mL), 25 °C, 16 h, isolated yield. [b] Without Pd(OAc)₂. [c] At 40 °C. [d] At 60 °C. [e] TFA (0.2 mmol) was added. [f] 1a (0.20 mmol), 2a (0.24 mmol), Ag₂CO₃ (0.24 mmol). [g] 2a was added in three portions every 4 h. DCE = dichloroethane, TFE = 2,2,2-trifluoroethanol, HFIP = hexafluoroisopropanol, TFA = trifluoroacetic acid.

Analytical data for products

3aa. The followed using representative procedure Α was *o*-carborane **1**a (1-CONEt₂-2-Ph-*o*-C₂B₁₀H₁₀) (64 mg, 0.20 mmol) and 4-iodotoluene **2a** (105 mg, 0.48 mmol). Isolation by column chromatography (n-hexane/EtOAc: 20/1) yielded 3aa (71 mg, 71%) as a colorless solid. M.p. = 171–172 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.45 (d, J = 8.5 Hz, 2H), 7.39–7.32 (m, 3H), 7.22 (dd, J = 8.5, 7.3 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 6.94–6.90 (m, 4H), 3.49–3.44 (m, 2H), 3.26–3.22 (m, 2H), 2.28 (s, 3H), 2.24 (s, 3H), 1.00 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 156.6$ (C_q), 138.1 (C_q), 137.7(C_q), 136.5 (CH), 133.9 (CH), 133.3(C_q), 130.0 (CH), 129.3 (CH), 128.1 (CH), 127.6 (CH), 127.5 (CH), 85.5 (C_q), 79.3 (C_q), 43.7 (CH₂), 21.2 (CH₃), 21.1 (CH₃), 12.9 (CH₃). ¹¹**B** NMR (160 MHz, CDCl₃): $\delta = 0.65$ (2B), -1.38 (1B), -3.61 (1B), -6.20 (1B), -10.54 (5B). IR (ATR): 2978, 2566, 1653, 1608, 1415, 1264, 1191, 772 cm⁻¹. MS (ESI) m/z (relative intensity): 522 (100) [M+Na]⁺, 500 (40) $[M+H]^+$. **HR-MS** (ESI): m/z calcd. for $C_{27}H_{38}^{10}B_2^{11}B_8NO$ $[M+H]^+$: 500.3964, found: 500.3951.

3ab. The representative procedure **A** was followed using *o*-carborane **1a** (1-CONEt₂-2-Ph-*o*-C₂B₁₀H₁₀) (64 mg, 0.20 mmol) and iodobenzene **2b** (98 mg, 0.48 mmol). Isolation by column chromatography (*n*-hexane/EtOAc: 20/1) yielded **3ab** (64 mg, 68%) as a colorless solid. **M.p.** = 197–198 °C. ¹**H NMR** (400 MHz, CDCl₃): δ = 7.53–7.42 (m, 4H), 7.37–7.32 (m, 1H), 7.29–7.15 (m, 6H), 7.14–7.04 (m, 4H), 3.50–3.41 (m, 2H), 3.26–3.20 (m, 2H), 0.99 (t, *J* = 7.0 Hz, 6H). ¹³**C NMR** (100 MHz, CDCl₃): δ = 156.6 (Cq), 136.6 (CH), 134.0 (CH), 133.2 (Cq), 130.1 (CH), 129.4 (CH), 128.4 (CH), 128.0 (CH), 127.6 (CH), 127.2 (CH), 126.6 (CH), 86.0 (Cq), 79.7 (Cq), 43.8 (CH₂), 12.9 (CH₃). ¹¹**B NMR** (128 MHz, CDCl₃): δ

= 0.34 (2B), -1.31 (1B), -3.28 (1B), -5.82 (1B), -10.20 (5B). **IR** (ATR): 2973, 2567, 1647, 1430, 1266, 1208, 696 cm⁻¹. **MS** (ESI) m/z (relative intensity): 494 (100) [M+Na]⁺, 472 (40) [M+H]⁺. **HR-MS** (ESI): m/z calcd. for C₂₅H₃₄¹⁰B₂¹¹B₈NO [M+H]⁺: 472.3650, found: 472.3631.

3ac. The representative procedure Α was followed using o-carborane **1**a (1-CONEt₂-2-Ph-o-C₂B₁₀H₁₀) (64 mg, 0.20 mmol) and 1-bromo-4-iodobenzene 2c (136 mg, 0.48 mmol). Isolation by column chromatography (n-hexane/EtOAc: 20/1) yielded 3ac (76 mg, 61%) as a colorless solid. M.p. = 205–206 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.50–7.39 (m, 3H), 7.32–7.27 (m, 5H), 7.25–7.22 (m, 3H), 7.21–7.14 (m, 2H), 3.60–3.42 (m, 4H), 1.05 (t, J = 6.9 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃): $\delta = 156.2$ (Cq), 138.0 (CH), 135.6 (CH), 132.0 (C_q), 130.5 (CH), 129.8 (CH), 129.7 (CH), 129.6 (CH), 127.9 (CH), 123.6 (C_q) , 123.2 (C_q) , 84.6 (C_q) , 78.5 (C_q) , 44.0 (CH_2) , 13.1 (CH_3) . ¹¹**B** NMR (96 MHz, CDCl₃): δ = 0.22 (3B), -3.11 (1B), -6.02 (1B), -9.94 (5B). IR (ATR): 2573, 1647, 1578, 1487, 1381, $1205,1010,693 \text{ cm}^{-1}$. MS (ESI) m/z (relative intensity): 652 (100) [M+Na]⁺, 630 (10) [M+H]⁺. **HR-MS** (ESI): m/z calcd. for C₂₅H₃₁¹¹B₁₀⁷⁹Br₂NONa [M+Na]⁺: 652.1657, found: 652.1642.

representative 3ad. The procedure А was followed using o-carborane **1**a (1-CONEt₂-2-Ph-o-C₂B₁₀H₁₀) (64 mg, 0.20 mmol) and 1-chloro-4-iodobenzene 2d (115 mg, 0.48 mmol). Isolation by column chromatography (n-hexane/EtOAc: 20/1) yielded 3ad (73 mg, 68%) as a colorless solid. M.p. = 185–186 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.48-7.40 (m, 3H), 7.35-7.22 (m, 6H), 7.17-7.08 (m, 4H), 3.54-3.40 (m, 4H), 1.06 (t, J) = 7.0 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃): δ = 156.2 (C_q), 137.8 (CH), 135.3 (CH), 135.0 (Cq), 134.7 (Cq), 132.1 (Cq), 129.9 (CH), 129.6 (CH), 128.0 (CH), 127.5 (CH), 126.9 (CH), 84.9 (C_q), 78.9 (C_q), 44.2 (CH₂), 12.9 (CH₃). ¹¹**B** NMR (96 MHz, CDCl₃): $\delta = 0.49$ (3B),

-3.10 (1B), -6.38 (1B), -10.40 (5B). **IR** (ATR): 2571, 1648, 1584, 1489, 1268, 1205, 1092, 730 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 564 (100) [M+Na]⁺, 542 (10) [M+H]⁺. **HR-MS** (ESI): *m/z* calcd. for C₂₅H₃₁¹¹B₁₀³⁵Cl₂NONa [M+Na]⁺: 564.2649, found: 564.2640.

3ae. The representative procedure Α was followed using o-carborane 1a (1-CONEt₂-2-Ph-*o*-C₂B₁₀H₁₀) (64 mg, 0.20 mmol) and 1-(4-iodophenyl)ethanone 2e (118 mg, 0.48 mmol). Isolation by column chromatography (n-hexane/EtOAc: 20/1) yielded 3ae (64 mg, 58%) as a colorless solid. M.p. = 244–245 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.74 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 8.3 Hz, 2H), 7.51–7.39 (m, 7H), 7.34–7.27 (m, 2H), 3.60–3.45 (m, 4H), 2.56 (s, 3H), 2.55 (s, 3H), 1.09 (t, J = 6.9 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃): δ $= 198.3 (C_q), 198.1 (C_q), 156.0 (C_q), 136.6 (C_q), 136.5 (CH), 136.4 (C_q), 134.2 (CH), 131.8$ (C_q), 130.1 (CH), 129.7 (CH), 128.0 (CH), 127.0 (CH), 126.0 (CH), 84.9 (C_q), 78.5 (C_q), 43.9 (CH₂), 26.7 (CH₃), 26.5 (CH₃), 13.0 (CH₃). ¹¹**B** NMR (96 MHz, CDCl₃): $\delta = 0.58$ (3B), -2.61 (1B), -5.98 (1B), -9.67 (5B). **IR** (ATR): 2572, 1679, 1642, 1357, 1266, 1200, 730, 590 cm⁻¹. **MS** (ESI) m/z (relative intensity): 578 (100) [M+Na]⁺, 556 (10) [M+H]⁺. **HR-MS** (ESI): m/zcalcd. for C₂₉H₃₇¹⁰B₂¹¹B₈NO₃Na [M+Na]⁺: 578.3683, found: 578.3676.

3af. The representative procedure **A** was followed using *o*-carborane **1a** (1-CONEt₂-2-Ph-*o*-C₂B₁₀H₁₀) (64 mg, 0.20 mmol) and 1,2-dichloro-4-iodobenzene **2f** (131 mg, 0.48 mmol). Isolation by column chromatography (*n*-hexane/EtOAc: 20/1) yielded **3af** (78 mg, 64%) as a colorless solid. **M.p.** = 208–209 °C. ¹**H NMR** (300 MHz, CDCl₃): δ = 7.48–7.40 (m, 4H), 7.36–7.26 (m, 4H), 7.22–7.11 (m, 3H), 3.60–3.45 (m, 4H), 1.13 (t, J

= 6.9 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃): δ = 155.8 (C_q), 138.1 (CH), 135.6 (CH), 135.4 (CH), 133.2 (CH), 133.0 (C_q), 132.9 (C_q), 132.0 (C_q), 131.5 (C_q), 130.9 (C_q), 130.2 (CH), 129.7 (CH), 129.5 (CH), 128.7 (CH), 128.2 (CH), 85.0 (C_q), 78.2 (C_q), 44.2 (CH₂), 13.0 (CH₃). ¹¹B NMR (96 MHz, CDCl₃): δ = 0.76 (3B), -3.10 (1B), -6.49 (1B), -10.24 (5B). IR (ATR): 2578, 1646, 1473, 1424, 1203, 1028, 695 cm⁻¹. MS (ESI) *m/z* (relative intensity): 632 (100) [M+Na]⁺, 610 (10) [M+H]⁺. HR-MS (ESI): *m/z* calcd. for C₂₅H₂₉¹¹B₁₀³⁵Cl₄NONa [M+Na]⁺: 632.1879, found: 632.1867.

The representative procedure A was followed using o-carborane 3ag. **1**a (1-CONEt₂-2-Ph-*o*-C₂B₁₀H₁₀) (64 mg, 0.20 mmol) and 1-iodo-3,5-dimethylbenzene 2g (112 mg, 0.48 mmol). Isolation by column chromatography (n-hexane/EtOAc: 20/1) yielded 3ag (66 mg, 63%) as a colorless solid. **M.p.** = 203–205 °C. ¹**H** NMR (300 MHz, CDCl₃): δ = 7.52 (d, J = 7.4 Hz, 2H), 7.40-7.32 (m, 1H), 7.29-7.18 (m, 4H), 7.00-6.90 (m, 3H), 6.87 (s, 1H),3.62 (q, J = 7.0 Hz, 2H), 3.09 (q, J = 7.0 Hz, 2H), 2.19 (s, 6H), 2.16 (s, 6H), 1.08 (t, J = 7.0Hz, 6H). ¹³C NMR (75 MHz, CDCl₃): $\delta = 156.8$ (C_q), 136.2 (C_q), 135.6 (C_q), 134.3 (CH), 134.3 (C_a), 131.8 (CH), 130.4 (CH), 130.2 (CH), 129.7 (CH), 129.3 (CH), 127.5 (CH), 87.6 (C_q), 80.3 (C_q), 43.5 (CH₂), 21.4 (CH₃), 21.2 (CH₃), 12.7 (CH₃). ¹¹**B** NMR (96 MHz, CDCl₃): $\delta = 0.69$ (2B), -1.17 (1B), -3.10 (1B), -5.90 (1B), -10.05 (5B). IR (ATR): 2916, 2557, 1646, 1420, 1264, 1183, 855, 689 cm⁻¹. MS (ESI) m/z (relative intensity): 550 (100) [M+Na]⁺, 528 (10) $[M+H]^+$. **HR-MS** (ESI): m/z calcd. for C₂₉H₄₁¹⁰B₂¹¹B₈NONa $[M+Na]^+$: 550.4097, found: 550.4096.

3ba. followed using The representative procedure Α was o-carborane 1b(1-CONMe₂-2-Ph-o-C₂B₁₀H₁₀) (58 mg, 0.20 mmol) and 4-iodotoluene 2a (105 mg, 0.48 mmol). Isolation by column chromatography (n-hexane/EtOAc: 20/1) yielded 3ba (48 mg, 51%) as a colorless solid. M.p. = 158–159 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.45 (d, J = 7.4 Hz, 2H), 7.40–7.36 (m, 1H), 7.34–7.23 (m, 4H), 7.20 (d, J = 7.9 Hz, 2H), 6.99–6.90 (m, 4H), 3.04 (s, 6H), 2.31 (s, 3H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 157.7$ (C_q), 138.3 (C_q), 137.9 (C_q), 136.3 (CH), 133.9 (CH), 133.1 (C_q), 130.0 (CH), 129.5 (CH), 128.4 (CH), 127.8 (CH), 127.6 (CH), 85.9 (C_q), 78.6 (C_q), 40.8 (CH₃), 21.3 (CH₃), 21.2 (CH₃). ¹¹**B** NMR (128 MHz, CDCl₃): $\delta = 0.7$ (2B), -1.3 (1B), -3.2 (1B), -6.4 (1B), -10.6 (5B). IR (ATR): 2921, 2570, 1644, 1393, 1195, 743, 693 cm⁻¹. MS (ESI) *m/z* (relative intensity): 473 (100) $[M+H]^+$. **HR-MS** (ESI): m/z calcd. for $C_{25}H_{34}^{10}B_1^{11}B_9NO$ $[M+H]^+$: 473.3607, found: 473.3606.

The 3bb. representative procedure Α was followed using o-carborane **1b** (1-CONMe₂-2-Ph-*o*-C₂B₁₀H₁₀) (58 mg, 0.20 mmol) and iodobenzene **2b** (98 mg, 0.48 mmol). Isolation by column chromatography (n-hexane/EtOAc: 20/1) yielded 3bb (47 mg, 53%) as a colorless solid. M.p. = 99–100 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.47–7.41 (m, 4H), 7.40-7.35 (m, 1H), 7.32-7.29 (m, 2H), 7.28-7.20 (m, 4H), 7.18-7.10 (m, 4H), 3.03 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 157.7$ (C_q), 136.4 (CH), 133.9 (CH), 133.0 (C_q), 130.0 (CH), 129.6 (CH), 128.6 (CH), 128.2 (CH), 127.9 (CH), 127.5 (CH), 126.8 (CH), 86.4 (C_q), 79.0 (C_q), 40.8 (CH₃). ¹¹**B** NMR (128 MHz, CDCl₃): $\delta = 0.57$ (2B), -1.13 (1B), -3.10 (1B), -6.27 (1B), -10.23 (5B). IR (ATR): 3053, 2581, 1654, 1493, 1373, 1167, 744 cm⁻¹. MS (ESI) m/z (relative intensity): 444 (100) [M+H]⁺, 466 (10) [M+Na]⁺. HR-MS (ESI): m/z calcd. for C₂₃H₃₀¹⁰B₂¹¹B₈NO [M+H]⁺: 444.3336, found: 444.3328.

The representative procedure А was followed using *o*-carborane 3ca. 1c (1-CON(CH₂)₄-2-Ph-o-C₂B₁₀H₁₀) (63 mg, 0.20 mmol) and 4-iodotoluene 2a (105 mg, 0.48 mmol). Isolation by column chromatography (n-hexane/EtOAc: 20/1) yielded **3ca** (59 mg, 60%) as a pink solid. M.p. = 228–230 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.44–7.38 (m, 2H), 7.36–7.28 (m, 3H), 7.22–7.16 (m, 2H), 7.16–7.10 (m, 2H), 6.96–6.87 (m, 4H), 3.65–3.28 (m, 4H), 2.25 (s, 3H), 2.23 (s, 3H), 1.80–1.63 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ = 155.7 (C_a), 138.1 (C_a), 137.7 (C_a), 136.6 (CH), 133.6 (CH), 132.9 (C_a), 129.9 (CH), 129.4 (CH), 128.3 (CH), 127.7 (CH), 127.5 (CH), 85.0 (C_a), 78.7 (C_a), 50.5 (overlapped, CH₂), 21.2 (CH₃), 21.2 (CH₃). ¹¹**B** NMR (128 MHz, CDCl₃): $\delta = 0.57$ (2B), -1.61 (1B), -3.32 (1B), -6.45 (1B), -10.78 (5B). **IR** (ATR): 2975, 2878, 2570, 1639, 1446, 1225, 865, 753, 690 cm⁻¹. **MS** (ESI) m/z (relative intensity): 498 (20) [M+H]⁺, 520 (100) [M+Na]⁺. **HR-MS** (ESI) m/zcalcd for C₂₇H₃₅¹⁰B₂¹¹B₈NONa [M+Na]⁺ 520.3627, found 520.3623.

3cb. The representative procedure Α was followed using o-carborane 1c (1-CON(CH₂)₄-2-Ph-o-C₂B₁₀H₁₀) (63 mg, 0.20 mmol) and iodobenzene **2b** (98 mg, 0.48 mmol). Isolation by column chromatography (n-hexane/EtOAc: 20/1) yielded 3cb (50 mg, 53%) as a colorless solid. M.p. = 176–177 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.51–7.44 (m, 2H), 7.43–7.38 (m, 2H), 7.35–7.30 (m, 1H), 7.25–7.24 (m, 1H), 7.24–7.16 (m, 5H), 7.13–7.04 (m, 4H), 3.63–3.41 (m, 4H), 1.83–1.61 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ = 155.7 (C_q), 136.7 (CH), 133.6 (CH), 132.8 (C_q), 129.9 (CH), 129.5 (CH), 128.4 (CH), 128.1 (CH), 127.7 (CH), 127.4 (CH), 126.6 (CH), 85.5 (C_a), 79.1 (C_a), 50.5 (overlapped, CH₂). ¹¹**B** NMR (96 MHz, CDCl₃): $\delta = 0.48$ (2B), -1.36 (1B), -3.15 (1B), -6.18 (1B), -10.26 (5B). **IR** (ATR): 2921, 2570, 1643, 1389, 1195, 861, 743, 692 cm⁻¹. **MS** (ESI) m/z (relative intensity): 471 (100) $[M+H]^+$, 493 (10) $[M+Na]^+$. **HR-MS** (ESI): *m/z* calcd. for $C_{25}H_{32}^{10}B_1^{11}B_9NO [M+H]^+$: 471.3450, found: 471.3448.

3dd. The representative procedure Α followed using *o*-carborane 1d was (1-CON^{*i*}Pr₂-2-Ph-*o*-C₂B₁₀H₁₀) (70 mg, 0.20 mmol) and 1-chloro-4-iodobenzene **2d** (114 mg, 0.48 mmol). Isolation by column chromatography (n-hexane/EtOAc: 20/1) yielded 3dd (61 mg, 54%) as a colorless solid. M.p. = 232–233 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.52 (d, J = 7.4 Hz, 2H), 7.45–7.41 (m, 1H), 7.35 (d, J = 8.4 Hz, 2H), 7.32–7.27 (m, 2H), 7.19 (d, J= 8.6 Hz, 2H), 7.14 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.4 Hz, 2H), 5.24–5.18 (m, 1H), 3.44–3.39 (m, 1H), 1.29 (d, J = 6.7 Hz, 6H), 1.04 (d, J = 6.7 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 154.5$ (C_q), 137.9 (CH), 136.1 (CH), 134.7 (C_q), 134.5 (C_q), 132.0 (C_q), 129.9 (CH), 129.5 (CH), 128.0 (CH), 127.5 (CH), 126.5 (CH), 83.9 (C_q), 79.1 (C_q), 50.3 (CH), 49.4 (CH), 20.5 (CH₃), 20.3 (CH₃), 19.7 (CH₃), 19.6 (CH₃). ¹¹**B** NMR (128 MHz, CDCl₃): $\delta = 1.47$ (1B), -1.05 (2B), -3.30 (1B), -6.75 (1B), -10.90 (5B). IR (ATR): 2968, 2620, 2585, 1657, 1586, 1491, 1369, 1296, 691 cm⁻¹. MS (ESI) *m/z* (relative intensity): 569 (100) [M+H]⁺, 591 (10) $[M+Na]^+$. **HR-MS** (ESI): m/z calcd. for $C_{27}H_{36}^{10}B_1^{11}B_9^{35}Cl_2NO$ $[M+H]^+$: 569.3141, found: 569.3142.

3ea. The representative procedure **A** was followed using *o*-carborane **1e** $(1-\text{CON}(\text{CH}_2)_4\text{O}-2-\text{Ph}-o-\text{C}_2\text{B}_{10}\text{H}_{10})$ (67 mg, 0.20 mmol) and 4-iodotoluene **2a** (105 mg, 0.48 mmol). Isolation by column chromatography (*n*-hexane/EtOAc: 20/1) yielded **3ea** (54 mg, 52%) as a colorless solid. **M.p.** = 258–259 °C. ¹**H NMR** (400 MHz, CDCl₃): δ = 7.49–7.41 (m, 2H), 7.40–7.32 (m, 3H), 7.28–7.21 (m, 2H), 7.21–7.14 (m, 2H), 7.01 (d, *J* = 7.9 Hz, 2H),

6.96 (d, J = 7.8 Hz, 2H), 3.73–3.58 (m, 4H), 3.48–3.32 (m, 4H), 2.34 (s, 3H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 157.6$ (C_q), 138.7 (C_q), 138.2 (C_q), 136.2 (CH), 134.2 (CH), 133.4 (C_q), 130.1 (CH), 129.6 (CH), 128.5 (CH), 128.0 (CH), 127.8 (CH), 86.7 (C_q), 78.6 (C_q), 66.5 (CH₂), 47.9 (CH₂), 21.3 (CH₃), 21.2 (CH₃). ¹¹B NMR (128 MHz, CDCl₃): $\delta = 0.67$ (2B), -0.88 (1B), -3.11 (1B), -6.12 (1B), -10.53 (5B). IR (ATR): 2843, 2549, 1660, 1447, 1411, 1264, 1225, 771 cm⁻¹. MS (ESI) *m/z* (relative intensity): 514 (70) [M+H]⁺, 536 (100) [M+Na]⁺. HR-MS (ESI): *m/z* calcd. for C₂₇H₃₅¹⁰B₂¹¹B₈NO₂Na [M+Na]⁺: 536.3576, found: 536.3557.

3fa. The representative procedure Α followed using *o*-carborane 1f was (1-CONEt₂-2-^{*n*}Bu-o-C₂B₁₀H₁₀) (60 mg, 0.20 mmol) and 4-iodotoluene **2a** (105 mg, 0.48 mmol). Isolation by column chromatography (n-hexane/EtOAc: 20/1) yielded 3fa (45 mg, 47%) as a colorless solid. M.p. = 88–89 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.39 (d, J = 7.9 Hz, 2H), 7.17 (d, J = 7.8 Hz, 2H), 7.12 (d, J = 7.9 Hz, 2H), 6.99 (d, J = 7.8 Hz, 2H), 4.15-3.66 (m, 2H), 3.66-3.46 (m, 2H), 2.56-2.46 (m, 1H), 2.38 (s, 3H), 2.30 (s, 3H), 2.29–2.18 (m, 1H), 1.66–1.56 (m, 1H), 1.54–1.42 (m, 1H), 1.35–1.19 (m, 8H), 0.91 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 156.3$ (C_a), 137.9 (C_a), 137.8 (C_a), 134.8 (CH), 133.3 (CH), 128.6 (CH), 127.7 (CH), 83.6 (C_q), 73.6 (C_q), 44.2 (CH₂), 34.5 (CH₂), 32.0 (CH₂), 22.4 (CH₂), 21.4 (CH₃), 21.3 (CH₃), 13.8 (CH₃), 13.1 (CH₃). ¹¹**B** NMR (128 MHz, CDCl₃): δ = 2.34 (2B), -1.13 (2B), -2.77 (1B), -7.74 (1B), -10.36 (2B), -12.42 (1B), -13.91 (1B). **IR** (ATR): 2951, 2867, 2568, 1647, 1419, 1265, 809 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): HR-MS 480 (100) $[M+H]^+$, 502 (20) $[M+Na]^+$. (ESI): m/zcalcd. for C₂₅H₄₂¹⁰B₂¹¹B₈NO [M+H]⁺: 480.4276, found: 480.4272.

4aa. The representative procedure B was followed using o-carborane **1**a (1-CONEt₂-2-Ph-o-C₂B₁₀H₁₀) (64 mg, 0.20 mmol) and 4-iodotoluene 2a (53 mg, 0.24 mmol). Isolation by column chromatography (n-hexane/EtOAc: 20/1) yielded 4aa (45 mg, 55%) as a colorless solid. **M.p.** = 180–181 °C. ¹**H** NMR (400 MHz, CDCl₃): δ = 7.45–7.39 (m, 4H), 7.28–7.22 (m, 1H), 7.16–7.05 (m, 4H), 3.55–3.35 (m, 4H), 2.34 (s, 3H), 1.00 (t, J = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 158.3$ (C_q), 139.1 (C_q), 134.6 (CH), 134.0 (C_q), 131.9 (CH), 129.2 (CH), 128.5 (CH), 127.0 (CH), 89.5 (Cq), 82.4 (Cq), 43.6 (CH₂), 21.3 (CH₃), 12.2 (CH₃). ¹¹**B** NMR (128 MHz, CDCl₃): $\delta = -1.0$ (1B), -2.26 (1B), -3.69 (1B), -7.91 (3B), -10.32(4B). IR (ATR): 2635, 2563, 1648, 1476, 1418, 1269, 1208, 1080, 689 cm⁻¹. MS (ESI) m/z(relative intensity): 432 (100) [M+Na]⁺, 410 (10) [M+H]⁺. HR-MS (ESI): m/z calcd. for C₂₀H₃₁¹⁰B₂¹¹B₈NONa [M+Na]⁺: 432.3311, found: 432.3304.

representative procedure B followed using *o*-carborane 4ah. The was **1**a (1-CONEt₂-2-Ph-*o*-C₂B₁₀H₁₀) (64 mg, 0.20 mmol) and 1-iodo-4-nitrobenzene **2h** (60 mg, 0.24 mmol). Isolation by column chromatography (n-hexane/EtOAc: 20/1) yielded 4ah (54 mg, 61%) as a colorless solid. M.p. = 147–148 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.14 (d, J = 8.7 Hz, 2H), 7.78 (d, J = 8.7 Hz, 2H), 7.41–7.30 (m, 3H), 7.22–7.16 (m, 2H), 3.43–3.32 (m, 4H), 1.03 (t, J = 7.0 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃): $\delta = 158.0$ (C_q), 148.3 (C_q), 135.5 (CH), 133.5 (C_q), 131.4 (CH), 129.8 (CH), 127.6 (CH), 122.3 (CH), 90.8 (C_q), 83.0 (C_q), 43.7 (CH₂), 14.0 (CH₃). ¹¹**B** NMR (96 MHz, CDCl₃): $\delta = -0.10$ (2B), -3.09 (2B), -7.61 (3B), -8.98 (2B), -10.71 (1B). **IR** (ATR): 2980, 2561, 1647, 1513, 1346, 1265, 1208, 843, 687 cm⁻¹. **MS** (ESI) m/z (relative intensity): 463 (100) [M+Na]⁺, 441 (10) [M+H]⁺. **HR-MS** (ESI): m/zcalcd. for C₁₉H₂₈¹⁰B₂¹¹B₈N₂O₃Na [M+Na]⁺: 463.3005, found: 463.2995.

The 4ai. representative procedure B was followed using o-carborane **1**a (1-CONEt₂-2-Ph-*o*-C₂B₁₀H₁₀) (64 mg, 0.20 mmol) and 1-iodo-3-bromobenzene 2i (60 mg, 0.24 mmol). Isolation by column chromatography (n-hexane/EtOAc: 20/1) yielded 4ai (47.3 mg, 50%) as a colorless solid. M.p. = 168–169 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.66–7.61 (m, 1H), 7.52–7.45 (m, 2H), 7.40–7.35 (m, 2H), 7.31–7.23 (m, 1H), 7.17–7.09 (m, 3H), 3.36–3.10 (m, 4H), 1.01 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 158.0$ (Cq), 137.1 (CH), 133.8 (Cq), 133.2 (CH), 132.3 (CH), 131.8 (CH), 129.5 (CH), 129.4 (CH), 127.3(CH), 122.5 (C_q), 90.5 (C_q), 82.8 (C_q), 44.1 (CH₂), 43.7 (CH₂), 14.0 (CH₃), 12.2 (CH₃). ¹¹**B** NMR (128 MHz, CDCl₃): $\delta = -0.49$ (2B), -3.35 (2B), -7.81 (3B), -9.66 (3B). IR (ATR): 2976, 2575, 1645, 1420, 1266, 1156, 770, 689 cm⁻¹. MS (ESI) *m/z* (relative intensity): 497 (100) $[M+Na]^+$, 475 (20) $[M+H]^+$. HR-MS (ESI) m/z calcd for $C_{19}H_{28}^{10}B_1^{11}B_9^{79}BrNONa$ [M+Na]⁺: 497.2220, found 497.2229.

4ai. representative procedure B was followed using o-carborane The **1**a (1-CONEt₂-2-Ph-o-C₂B₁₀H₁₀) (64 mg, 0.20 mmol) and 4-iodobenzaldehyde 2j (56 mg, 0.24 mmol). Isolation by column chromatography (n-hexane/EtOAc: 20/1) yielded 4aj (43 mg, 51%) as a colorless solid. M.p. = 211–212 °C. ¹H NMR (300 MHz, CDCl₃): δ = 10.07 (s, 1H), 7.88-7.70 (m, 4H), 7.44-7.37 (m, 2H), 7.35-7.29 (m, 1H), 7.20-7.11 (m, 2H), 3.43-3.30 (m, 4H), 1.03 (t, J = 7.0 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃): $\delta = 192.3$ (CH), 158.0 (C_q), 136.3 (C_q), 135.3 (CH), 133.7 (C_q), 131.8 (CH), 129.7 (CH), 128.5 (CH), 127.2 (CH), 90.8 (C_q), 83.0 (C_q), 43.7 (CH₂), 13.2 (CH₃). ¹¹**B** NMR (96 MHz, CDCl₃): δ = -0.28 (2B), -3.35 (2B), -7.51 (3B), -9.39 (2B), -11.02 (1B). IR (ATR): 2980, 2560, 1719, 1650, 1627, 1420, 1266, 1181, 761, 688 cm⁻¹. MS (ESI) m/z (relative intensity): 424 (100) [M+H]⁺. **HR-MS** (ESI): m/z calcd. for C₂₀H₃₀¹⁰B₂¹¹B₈NO₂ [M+H]⁺: 424.3284, found: 424.3266.

Attempts with Other Groups

o-Carborane **S1-S4** (0.20 mmol), 4-iodotoluene **2a** (105 mg, 0.48 mmol), $Pd(OAc)_2$ (4.5 mg, 10 mol %), AgTFA (106 mg, 0.48 mmol), and HFIP (0.50 mL) were placed in a 25 mL Schlenk tube under N₂ atmosphere. The mixture was stirred at 25 °C for 16 h.

Mechanistic Studies

o-Carborane **1a** (1-CONEt₂-2-Ph-*o*-C₂B₁₀H₁₀) (64 mg, 0.20 mmol), 4-iodotoluene **2a** (105 mg, 0.48 mmol), TEMPO (31 mg, 0.20 mmol), Pd(OAc)₂ (4.5 mg, 10 mol %), AgTFA (106 mg, 0.48 mmol), and HFIP (0.50 mL) were placed in a 25 mL Schlenk tube under N₂ atmosphere. The mixture was stirred at 25 °C for 16 h. Then, the reaction solution was concentrated to dryness in vacuum and purified by column chromatography on silica gel using a mixture of *n*-hexane and EtOAc (20/1 in v/v) to afford the desired product **3aa** (27 mg, 27%).

o-Carborane **1a** (1-CONEt₂-2-Ph-*o*-C₂B₁₀H₁₀) (64 mg, 0.20 mmol), 4-iodotoluene **2a** (105 mg, 0.48 mmol), 1,4-cyclohexadiene (16 mg, 0.20 mmol), Pd(OAc)₂ (4.5 mg, 10 mol %), AgTFA (106 mg, 0.48 mmol), and HFIP (0.50 mL) were placed in a 25 mL Schlenk tube under N₂ atmosphere. The mixture was stirred at 25 °C for 16 h. Then, the reaction solution was concentrated to dryness in vacuum and purified by column chromatography on silica gel using a mixture of *n*-hexane and EtOAc (20/1 in v/v) to afford the desired product **3aa** (52 mg, 52%).

o-Carborane **1a** (1-CONEt₂-2-Ph-*o*-C₂B₁₀H₁₀) (64 mg, 0.20 mmol), 4-iodotoluene **2a** (105 mg, 0.48 mmol), Pd(OAc)₂ (4.5 mg, 10 mol %), AgTFA (106 mg, 0.48 mmol), and HFIP (0.50 mL) were placed in a 25 mL Schlenk tube under N₂ atmosphere. The mixture was stirred at 25 °C for 16 h in dark. Then, the reaction solution was concentrated to dryness in vacuum and purified by column chromatography on silica gel using a mixture of *n*-hexane and EtOAc (20/1 in v/v) to afford the desired product **3aa** (68 mg, 68%).

Compound **4aa** (86 mg, 0.20 mmol), 4-iodotoluene **2a** (53 mg, 0.24 mmol), $Pd(OAc)_2$ (2.3 mg, 5 mol %), AgTFA (53 mg, 0.24 mmol), and HFIP (0.50 mL) were placed in a 25 mL Schlenk tube under N₂ atmosphere. The mixture was stirred at 25 °C for 16 h. Then, the reaction solution was concentrated to dryness in vacuum and purified by column chromatography on silica gel using a mixture of *n*-hexane and EtOAc (20/1 in v/v) to afford the desired product **3aa** (79 mg, 79%).

Computational Data

All calculations were carried out with the Gaussian 16, Revision A.03 package.^[5] Geometry optimizations of all stationary points were performed at the TPSS^[6] level of theory including D3(BJ)^[7] dispersion corrections. All atoms were described with a def2-SVP^[8] basis set. For palladium, the Stuttgart-Dresden effective core potentials was employed.^[9] All stationary points were fully characterized by analytical frequency calculations as either a minimum (no imaginary frequency) or a transition state (only one imaginary frequency) at the same level of theory.

Single point calculations were performed at the PW6B95^[10] level of theory including D3(BJ) dispersion corrections with a def2-TZVP^[8] basis set for all atoms. For palladium, the same pseudopotential as in the optimization was used. Solvent effects were taken into consideration in the single point calculations through the use of SMD^[11] model with a dielectric constant of $\varepsilon = 16.7$, which corresponds to HFIP (Hexafluoro-propan-2-ol).

Unless otherwise stated, all reported energies are Gibbs free energies in kcal mol⁻¹, which were calculated by adding the gas-phase thermal correction to Gibbs free energy at 298.15 K to the single-point energies.

The 3D structures of optimized geometries were constructed by using the CYLview software.^[12]

Scheme S1. Relative Gibbs free energies in kcal mol⁻¹ for various Pd(II) cyclometalated complexes at the B4 and B6 position generated after a second B–H activation at the PBE0-D3(BJ)/def2-TZVP+SMD(HFIP)//TPSS-D3(BJ)/def2-SVP level of theory.

a) Cationic palladacyclic intermediates with AgTFA as a ligand

b) Cationic palladacyclic intermediates with HFIP as a ligand

c) Cationic palladacyclic intermediates without any ligand

d) Neutral palladacyclic intermediates with TFA as a ligand

Scheme S2. Relative Gibbs free energies in kcal mol⁻¹ for various Pd(IV) intermediates at the B4 and B6 position generated after a second oxidative addition at the PBE0-D3(BJ)/def2-TZVP+SMD(HFIP)//TPSS-D3(BJ)/def2-SVP level of theory.

a) Cationic Pd(IV) intermediates with AgTFA as a ligand

b) Cationic Pd(IV) intermediates with HFIP as a ligand

c) Cationic Pd(IV) intermediates without any ligand

d) Neutral Pd(IV) intermediates with TFA as a ligand

Scheme S3. Relative Gibbs free energies in kcal mol⁻¹ for the first and second B–H activation transition states of neutral Pd(II) complexes at the B3 vs B4 and B4 vs B6 position, respectively, at the PBE0-D3(BJ)/def2-TZVP+SMD(HFIP)//TPSS-D3(BJ)/def2-SVP level of theory.

a) First B-H activation transition states at the B3 and B4 position

b) Second B–H activation transition states at the B4 and B6 position

Scheme S4. Relative Gibbs free energies in kcal mol⁻¹ for various second oxidative addition transition states at the B4 and B6 position at the PBE0-D3(BJ)/def2-TZVP+SMD(HFIP) //TPSS-D3(BJ)/def2-SVP level of theory.

a) Oxidative addition transition states to the cationic palladacyclic intermediate with AgTFA as a ligand.

b) Oxidative addition transition states to the cationic palladacyclic intermediate without any ligand.

c) Oxidative addition transition states to the neutral palladacyclic intermediate with TFA as a ligand.

Structure	Electronic Energy	Total Gibbs Free Energy
IMA-B6	-1958.72738	-1958.28092
IMA-B4	-1958.73032	-1958.28255
IMA1-B6	-2075.15553	-2074.67689
IMA1-B4	-2075.15294	-2074.67593
IMA2-B6	-1285.71571	-1285.28436
IMA2-B4	-1285.71878	-1285.28720
IMA3-B6	-1811.84673	-1811.39893
IMA3-B4	-1811.84314	-1811.39462
IMB-B6	-2240.83080	-2240.28129
IMB-B4	-2240.83569	-2240.28436
IMB1-B6	-2357.26437	-2356.68199
IMB1-B4	-2357.26806	-2356.68209
IMB2-B6	-1567.84397	-1567.30874
IMB2-B4	-1567.84474	-1567.30870
IMB3-B6	-2093.94339	-2093.38933
IMB3-B4	-2093.94276	-2093.38689
TS1-B3	-2215.06249	-2214.68844
TS1-B4	-2215.05063	-2214.67925
TS1a-B3	-2068.18141	-2067.80638
TS1a-B4	-2068.17822	-2067.80425
TS2-B6	-2485.22152	-2484.75264
TS2-B4	-2485.22716	-2484.75800
TS2a-B6	-2338.34253	-2337.86967
TS2a-B4	-2338.34461	-2337.87077
TS3-B6	-2240.81864	-2240.26843
TS3-B4	-2240.82092	-2240.26999
TS3a-B6	-1567.83254	-1567.29860

Table S2. Calculated electronic energies at the PBE0-D3(BJ)/def2-TZVP+SMD(HFIP) level of theory and total Gibbs free energies for all reported structures (in Hartree).

TS3a-B4	-1567.83447	-1567.29706
TS3b-B6	-2093.92642	-2093.37574
TS3b-B4	-2093.92805	-2093.37477

Cartesian coordinates of the optimized structures

IMA-B6

Low	est frequency =	= 8.77 cm ⁻¹	
Cha	rge = 1, Multipl	icity = 1	
71	-	-	
0	-0.320984	1.990162	0.899212
Ν	-2.080945	2.887741	-0.152742
С	-1.307988	1.832008	0.096827
С	-1.437729	0.456173	-0.540653
С	-1.543458	-0.861790	0.467729
С	-1.827883	-0.684555	1.939649
С	-2.391576	0.478763	2.485662
Н	-2.726303	1.287611	1.836353
С	-2.575226	0.610763	3.870760
Н	-3.012641	1.533149	4.264384
С	-2.209692	-0.419428	4.744560
Н	-2.343394	-0.306628	5.824126
С	-1.717806	-1.627337	4.217267
Н	-1.528462	-2.483321	4.872853
С	-1.539278	-1.773146	2.818622
Н	-1.322739	-2.762148	2.401868
С	-1.713693	4.173685	0.501075
Н	-2.142080	4.968267	-0.127741
Н	-0.617437	4.263583	0.476351
С	-2.238830	4.265589	1.935178
Н	-2.006468	5.262549	2.344558
Н	-1.758478	3.510973	2.578455
Н	-3.333630	4.130049	1.970287
С	-3.281347	2.918148	-1.011008
Н	-4.066487	3.434089	-0.431730
Н	-3.625403	1.890007	-1.153607
С	-3.034798	3.619228	-2.347237
Н	-2.241235	3.112955	-2.920157
Н	-2.752019	4.676974	-2.215897
Н	-3.963697	3.591085	-2.940424
В	-2.864526	-0.625279	-0.683539
В	-2.407038	-1.673413	-2.045121
Н	-3.298833	-2.116950	-2.706049
В	-1.989862	0.049861	-2.102332
Н	-2.530184	0.885857	-2.755360
В	-0.836852	-1.163381	-2.720412
Н	-0.595062	-1.222783	-3.889473
В	0.423334	-1.424978	-1.473828
Н	1.568228	-1.678948	-1.702059
В	-0.397054	-2.073039	-0.030932
Н	0.113710	-2.745057	0.816751
В	-2.128117	-2.228955	-0.378893

Н	-2.800850	-2.985927	0.254530
В	-0.923959	-2.585514	-1.647914
Н	-0.754585	-3.710950	-2.012945
В	0.061858	-0.382380	-0.113032
В	-0.243669	0.207941	-1.759903
Н	0.336513	1.188303	-2.121687
Pd	1.244654	0.725481	1.025143
0	2.798899	-1.601076	2.868063
С	3.379887	-1.170266	1.845749
0	2.956671	-0.341651	0.975267
С	4.794304	-1.729671	1.529432
F	4.683178	-2.612207	0.515314
F	5.315193	-2.353325	2.590049
F	5.619807	-0.740717	1.154027
С	-4.348518	-0.310418	-0.288929
С	-5.217496	0.200050	-1.284551
С	-4.932250	-0.657892	0.948994
С	-6.576026	0.410170	-1.035227
Н	-4.825521	0.420193	-2.283959
С	-6.293293	-0.447251	1.199542
Н	-4.329064	-1.124809	1.731715
С	-7.141934	0.100068	0.218669
Н	-7.214494	0.806456	-1.832664
Н	-6.709320	-0.728201	2.173445
С	-8.615418	0.299472	0.475949
Н	-9.201463	-0.510973	0.003582
Н	-8.843023	0.292077	1.554007
Н	-8.972638	1.250872	0.046505
Ag	0.672513	-1.228754	3.020507

IMA-B4

Lowest frequency = 13.92 cm^{-1} Charge = 1, Multiplicity = 171 0 -0.591613 -0.544123 2.137574 Ν -2.809693 2.504689 -0.507127 С -1.730797 1.895952 -0.011280 С -1.665147 0.960055 1.184690 С -2.651634 -0.326844 1.600219 С -3.886425 -0.631729 0.788146 С -3.870029 -0.613416 -0.621206 Н -2.956246 -0.370489 -1.163817 С -5.033303 -0.887835 -1.349134 -2.443010 Н -4.999438 -0.868318 С -6.229657 -1.190165 -0.683655 Н -7.137907 -1.408876 -1.253555 С -6.253549 -1.210465 0.717610 Н -7.180676 -1.444179 1.249677 С -5.093220 -0.931473 1.450361 Н -5.125975 -0.945762 2.541130 С -2.620817 3.332037 -1.730294 Н -1.644583 3.832511 -1.658992 Н -3.406998 4.101390 -1.709290 С -2.719964 2.482517 -2.998809 Н -3.884934 -2.622618 3.131168 Н 1.964196 -3.692278 -3.057356

Н	-1.915656	1.729741	-3.034073
С	-4.177897	2.518049	0.055214
Н	-4.305021	1.647647	0.705126
Н	-4.866078	2.378785	-0.795034
С	-4.476322	3.814804	0.809953
Н	-4.392424	4.702267	0.161014
Н	-3.790801	3.941792	1.663970
Н	-5.508438	3.774527	1.195584
В	-1.072417	-0.676911	0.873972
В	-0.004487	-1.010775	2.267305
Н	0.903646	-1.773941	2.096179
В	-0.010242	0.599202	1.548377
В	0.089923	0.445210	3.307145
Н	1.090571	0.748211	3.885656
В	-1.552961	0.761917	3.953558
Н	-1.766512	1.282794	5.007614
В	-2.631974	-0.501684	3.317243
Н	-3.619321	-0.893362	3.854620
В	-1.689301	-1.579617	2.282631
Н	-2.075964	-2.691722	2.099489
В	-0.961937	-0.916453	3.768624
н	-0.749808	-1.631767	4.702200
В	-2.635420	1.110764	2.602375
н	-3,588229	1.817249	2,579164
В	-0.950093	1,698967	2,575562
н	-0.781230	2.879782	2,501685
Pd	1.190667	1.582362	0.299707
0	2,928975	1.150513	1.227368
С	3.574764	0.051800	1.202072
0	3.352554	-0.985644	0.535991
С	4,760265	0.015497	2,203569
F	5.610389	-0.975006	1.916242
F	4.251413	-0.193059	3.438579
F	5.427391	1.178582	2.204191
Ag	1.502537	-1.086161	-0.579578
č	-0.910612	-1.399285	-0.539584
Ċ	-1.195552	-2.789099	-0.633681
С	-0.473376	-0.761574	-1.750298
C	-1.079978	-3.487331	-1.837613
Н	-1.525355	-3.326000	0.258277
С	-0.345113	-1.486986	-2.958119
Ĥ	-0.352336	0.325703	-1.782023
С	-0.645392	-2.857979	-3.025330
H	-1.325114	-4.554764	-1.855783
Н	-0.024305	-0.955124	-3.860241
C	-0.493618	-3.638137	-4.306309
Н	0.399767	-4.287903	-4.256430
н	-1.363152	-4.295624	-4.475644
н	-0.379045	-2.972333	-5.176122

IMA1-B6

Lowest frequency = 6.86 cm^{-1} Charge = 1, Multiplicity = 1 75 0 -0.056387 2.227031 -0.276009 N -2.161580 2.720750 -0.855498

С	-1.169675	1.835831	-0.778445
С	-1.201909	0.412282	-1.318990
С	-0.791469	-0.810332	-0.247958
С	-0.725266	-0.479812	1.223720
С	-1.568506	0.491772	1,795405
Ĥ	-2.324156	0.994052	1.188516
c	-1 486580	0 793104	3 158740
н	-2 152950	1 55000/	3 583593
с С	-2.132330	0 116610	2 076000
	-0.571515	0.110018	5.9/0900
H	-0.510038	0.349037	5.044543
C	0.253533	-0.8/0139	3.420544
Н	0.964301	-1.413803	4.050019
С	0.179887	-1.166602	2.054194
Н	0.828187	-1.936674	1.634403
С	-1.896254	4.093366	-0.348108
Н	-2.607116	4.754165	-0.866816
Н	-0.876531	4.372968	-0.652365
С	-2.060087	4.187445	1.170238
н	-1.903232	5,231121	1,489331
н	-1.321324	3,552075	1 683983
ц	-3 07/352	3 88/36/	1 /82588
с С	2 524075	2 461406	1 256260
	-3.524075	2.401400	-1.550208
п	-4.218524	2.8/5952	-0.605114
Н	-3.685588	1.3/9390	-1.363551
C	-3.775458	3.076199	-2.733375
Н	-3.077805	2.668159	-3.482493
Н	-3.673985	4.174297	-2.721324
Н	-4.804259	2.836884	-3.049494
В	-2.370790	-0.926523	-1.035478
В	-2.063823	-1.989853	-2.426237
Н	-2.980945	-2.647003	-2.821226
В	-2.029982	-0.230806	-2.661611
н	-2.873469	0.424776	-3.188191
B	-0.843494	-1.266975	-3.506412
ц	-0.88/016	_1 302231	-1 691790
р	0.004010	1 175017	-4.054750
D	1 7005124	-1.1/501/	-2.0100/9
п	1./88525	-1.230012	-3.1164/9
В	0.406310	-1.831080	-0.977540
Н	1.243807	-2.323634	-0.280854
В	-1.285336	-2.334844	-0.861505
Н	-1.616809	-3.146521	-0.051996
В	-0.379572	-2.575815	-2.383234
Н	-0.078711	-3.678364	-2.735365
В	0.456739	-0.102001	-1.250361
В	-0.322965	0.274172	-2.796901
н	-0.046131	1.303441	-3.337224
Pd	1.650008	1.167165	-0.347200
0	3 39157/	-0 032668	-0 628611
r c	_3 75/077	-0 0002000	_0 200170
c	- J · / J 4 7 / / 1 0 2 1 7 1 C	-0.002030 0 576537	1 020140
C C	-4.921/16	-0.5/653/	-1.038149
C	-3.93/799	-1.32/760	1.030172
C	-6.194329	-0.644714	-0.461572
Н	-4.838527	-0.305012	-2.096658
С	-5.209928	-1.398526	1.605803
Н	-3.077475	-1.645294	1.625370
С	-6.363974	-1.043969	0.878523

Н	-7.074389	-0.404711	-1.068486
Н	-5.311532	-1.752335	2.637864
С	-7.731822	-1.096417	1.514091
Н	-8.526940	-1.174594	0.755025
Н	-7.820194	-1.951409	2.205171
Н	-7.921331	-0.178892	2.102930
С	4.505754	0.034649	0.263446
Н	5.376282	-0.478178	-0.180865
С	4.171183	-0.668260	1.597237
С	4.861471	1.528524	0.395376
F	3.740220	2.252826	0.721068
F	5.769066	1.720211	1.350338
F	5.317534	2.000273	-0.766841
F	3.260409	0.014379	2.314284
F	5.267774	-0.846165	2.334913
F	3.642791	-1.883532	1.298466
Н	3.168588	-0.964914	-0.838040

IMA1-B4

Lowest frequency = 3.90 cm^{-1} Charge = 1, Multiplicity = 175 0 0.141064 0.072841 1.863033 Ν 2.098988 2.553380 -0.536011 С 1.127309 1.640952 -0.553319 С 1.078885 0.357478 -1.364302 С 2.228483 -0.819740 -1.598237С 3.632245 -0.623187 -1.077544 С 4.727044 -1.019752 -1.870246 Н 4.555879 -1.465781 -2.851407 С -0.845623 -1.407741 6.037447 Н 6.874926 -1.162690 -2.036539 С 6.274882 -0.270977 -0.151777 Н 7.299765 -0.137318 0.208005 С 5.189792 0.128898 0.640893 Н 5.359576 0.574171 1.626250 С 3.878599 -0.047797 0.186295 Н 3.051724 0.265013 0.824782 С 1.947004 0.422080 3.683056 Н 2.551437 4.511781 0.024076 Н 0.891837 3.993037 0.422783 С 2.410373 3.283052 1.824528 Н 2.301847 4.142160 2.507027 Н 1.804456 2.449532 2.216082 Н 3.470970 2.979064 1.820744 С 3.289059 2.613242 -1.411364Н 4.139793 2.885175 -0.765065 Н 3.499319 1.611263 -1.797390С 3.107808 3.615407 -2.552806 Н 2.268152 3.322969 -3.204974 Н 2.921044 4.636746 -2.1813844.027889 Н 3.638474 -3.159935 В 1.700324 0.159519 -2.957487 В 0.490886 -0.799959 -3.814599 Н 0.369173 -0.656268 -4.994795 В -0.035589 0.453803 -2.679204

Н	-0.468633	1.541389	-2.917699
В	-0.873782	-1.118052	-2.702928
Н	-2.005433	-1.189114	-3.090733
В	-0.264732	-2.097442	-1.330658
Н	-0.942317	-2.877422	-0.719023
В	1.473391	-2.370687	-1.602704
Н	2.125923	-3.283030	-1.201457
В	1.929666	-1.582267	-3.117361
Н	2.855205	-1.980961	-3.750670
В	0.345577	-2.380900	-2.983632
Н	0.125047	-3.395045	-3.577221
В	0.938982	-1.162271	-0.400860
В	-0.461612	-0.361335	-1.162290
Pd	-1.583507	0.692324	0.077819
Н	2.454663	0.964267	-3.395318
С	1.269580	-1.312914	1.128667
С	2.183250	-2.316055	1.535060
С	0.695360	-0.528164	2.152088
С	2.510966	-2.508234	2.878974
Н	2.659092	-2.952678	0.784376
С	1.024193	-0.718618	3.499980
Н	-0.029779	0.253093	1.896282
С	1.941460	-1.711041	3.892917
Н	3.225522	-3.294006	3.148124
Н	0.555322	-0.085323	4.261473
С	2.281752	-1.939254	5.345221
Н	1.996930	-1.076404	5.968627
Н	1.744974	-2.825381	5.732614
Н	3.360260	-2.129874	5.478654
0	-3.189056	-0.669554	0.040068
С	-4.201845	-0.734206	-0.978257
Н	-3.798784	-1.172582	-1.907470
С	-5.324513	-1.655771	-0.456199
С	-4.645309	0.708284	-1.287471
F	-6.149305	-2.004816	-1.445649
F	-6.023858	-1.098217	0.538119
F	-4.722963	-2.779413	0.024603
F	-5.800046	0.706312	-1.959454
F	-4.784327	1.428010	-0.158631
F	-3.705501	1.314788	-2.049157
Н	-2.875170	-1.582913	0.216193

IMA2-B6

Lowest frequency = 20.07 cm^{-1} Charge = 1, Multiplicity = 163 0 -1.773162 0.901077 1.386865 Ν 0.269333 1.095375 2.288841 С -0.580739 0.450684 1.489718 С -0.292499 -0.859741 0.763567 С -0.469629 -0.891976 -0.923892 С -0.779521 0.454821 -1.541938 С -1.961042 0.596033 -2.327363 Н -2.494528 -0.292468 -2.677904 С -2.358052 1.867987 -2.782677 Н -3.252813 1.958871 -3.406138

С	-1.601105	3.002543	-2.457980
Н	-1.910190	3.989893	-2.813718
С	-0.436238	2.861960	-1.689791
Н	0.165595	3.741539	-1.441888
С	-0.032168	1.601390	-1.226135
Н	0.867212	1.516109	-0.612326
С	-0.238735	2.310336	2,981077
Ĥ	-1.270480	2.107321	3.304996
н	0.387348	2.438190	3.876763
C	-0.178832	3,548182	2,084651
н	-0 520555	4 428386	2 653836
н	0.920555	3 7/3211	1 7/0/12
Ц	-0 833539	3 /107038	1 207000
с С	1 674069	0 72/070	2 554210
L L	2.0074000	0.754979	2.554210
	2.005096	0.040840	1.//1090
П	2.204530	1.059080	2.42/305
C	1.884524	0.138846	3.946582
н	1.619283	0.849397	4.747048
Н	1.28/581	-0.///30	4.080614
Н	2.949779	-0.119135	4.066434
В	-1.814772	-1.337709	0.061268
В	-1.886059	-3.085727	0.135904
Н	-2.935473	-3.644568	0.262883
В	-1.154000	-2.161184	1.484984
Н	-1.625013	-1.944223	2.561077
В	-0.347129	-3.625540	0.883885
Н	-0.284510	-4.597436	1.576941
В	0.997170	-3.123226	-0.182360
Н	2.019095	-3.737135	-0.269748
В	0.311019	-2.268004	-1.585050
Н	0.797884	-2.145310	-2.667202
В	-1.446305	-2.254403	-1.385320
Н	-2.157048	-2.152128	-2.337004
В	-0.540837	-3,684830	-0.888726
Н	-0.625033	-4.697611	-1.517711
B	1,096063	-1.348232	-0.267560
B	0.628661	-2,178135	1,271108
н	1 330547	-2.050597	2,224936
ЪЧ	-3 111816	0 156739	-0 03863/
C	2 157520	-0 617005	-0 5/1130
c	2 561775	-0.017005	0.300868
c	2 710025	0.001033	-1 720228
c	4 920470	0.119309	-1.720550
	4.629470	-0.342003	1 100202
н	3.433213	-1.488997	1.199383
C	3.9/9313	0.63/964	-1.999318
Н	1.910453	0.2/8160	-2.450616
C	5.063393	0.426813	-1.1252/2
H	5.658553	-0.553017	0./17342
H	4.135617	1.206579	-2.922682
С	6.440478	0.956178	-1.442241
Н	7.052275	0.169842	-1.923123
Н	6.395456	1.811896	-2.135179
Н	6.971836	1.269124	-0.527868

IMA2-B4 Lowest fr

Lov	vest frequency =	25.25 cm ⁻¹	
Cha	arge = 1. Multipl	icity = 1	
63		10109 1	
05	1 /16630	0 3/15117	1 719532
N	-0 002658	_1 22/183	2 269135
C	-0.052050	-0 626230	1 2/0276
Ċ	0.001041	0.020230	0 115750
c	0.755015	1 21/267	1 256455
c	-0.302/22	-1.514507	-1.230433
C		-1.45/080	-0.840508
C II	-2.590972	-2.484086	-1.409922
п С	-2.150955	-3.100540	-2.139152
C II	-3.932973	-2.030539	-1.039546
н	-4.526201	-3.438067	-1.489955
C	-4.5116/9	-1.//1113	-0.101160
н	-5.5610/0	-1.891447	0.18508/
C	-3./3/368	-0.749024	0.465928
Н	-4.1///48	-0.062351	1.195/18
C	-2.39/669	-0.589011	0.096006
Н	-1.81/5/2	0.21/842	0.545425
C	-0.122334	-0.609464	3.625541
н	-0.404380	-1.411484	4.323854
Н	0.896137	-0.276583	3.873830
С	-1.117127	0.552044	3.682104
Н	-1.128979	0.976238	4.699671
Н	-0.831726	1.349636	2.976452
Н	-2.138374	0.212207	3.439883
С	-0.865622	-2.476540	2.114838
Н	-1.837486	-2.306161	2.606347
Н	-1.076443	-2.636535	1.053089
С	-0.131356	-3.675331	2.717499
Н	0.829050	-3.848666	2.204228
Н	0.067340	-3.541497	3.793847
Н	-0.756781	-4.575413	2.597812
В	0.761909	-2.576962	-0.772373
В	2.035481	-2.599458	-1.998033
Н	2.589301	-3.632075	-2.232004
В	2.307069	-1.737847	-0.476647
Н	2.958489	-2.066291	0.470935
В	2.854215	-1.002257	-2.011684
Н	4.023167	-0.874544	-2.235536
В	1.641242	0.242125	-2.495501
Н	1.919466	1.254015	-3.069444
В	0.091990	-0.601715	-2.762695
Н	-0.796968	-0.250561	-3.474368
В	0.338938	-2.326039	-2.465168
Н	-0.347441	-3.131640	-3.010321
В	1.627580	-1.378025	-3.247339
Н	1.882852	-1.540552	-4.403446
В	0.343350	0.335238	-1.269805
В	2.022047	-0.025256	-0.808921
Pd	2.835302	1.212548	0.508307
Н	0.348086	-3.472132	-0.111911
С	-0.504021	1.608601	-0.919208
С	-1.679261	1.879404	-1.661522

С	-0.138494	2.559861	0.057221
С	-2.447543	3.020966	-1.424001
Н	-2.007014	1.178042	-2.433932
С	-0.906109	3.706065	0.296487
Н	0.771903	2.408088	0.653357
С	-2.080233	3.959314	-0.437250
Н	-3.351849	3.190477	-2.018809
Н	-0.584228	4.419352	1.063292
С	-2.900030	5.204704	-0.205997
Н	-2.658407	5.675876	0.760290
Н	-2.703048	5.947915	-1.001095
Н	-3.980537	4.982965	-0.230062

IMA3-B6

Lowest frequency = 14.66 cm^{-1} Charge = 0, Multiplicity = 170

10			
0	-0.172404	-2.148743	-0.459436
Ν	1.896020	-2.172898	-1.309512
С	0.807330	-1.487546	-0.922621
С	0.612546	0.018349	-1.076848
С	0.221276	0.880112	0.295575
С	0.352846	0.166224	1.620659
С	-0.620777	0.362177	2.619225
Н	-1.462278	1.030442	2.430332
С	-0.529948	-0.319011	3.838123
Н	-1.299446	-0.157426	4.599281
С	0.523927	-1.213470	4.075929
Н	0.588042	-1.749970	5.028074
С	1.492944	-1.416276	3.084912
Н	2.324178	-2.107759	3.256285
С	1.409898	-0.728487	1.868148
Н	2.187234	-0.884178	1.117153
С	1.855252	-3.644464	-1.138786
Н	0.849729	-3.990597	-1.421875
Н	2.580593	-4.061868	-1.854723
С	2.189561	-4.068512	0.293345
Н	2.183857	-5.169356	0.365001
Н	3.190532	-3.710459	0.591744
Н	1.444076	-3.668684	0.998816
С	3.139761	-1.612772	-1.852384
Н	3.165171	-0.545409	-1.618720
Н	3.973640	-2.074070	-1.293629
С	3.294753	-1.849588	-3.355754
Н	3.325546	-2.924422	-3.603370
Н	2.463714	-1.386805	-3.912267
Н	4.239649	-1.396050	-3.699634
В	-1.108199	0.289891	-0.710015
В	-1.574220	1.642623	-1.729525
Н	-2.703807	1.711779	-2.109987
В	-0.457286	0.404204	-2.366875
Н	-0.694420	-0.480491	-3.134787
В	-0.159031	2.121128	-2.714118
Н	-0.267082	2.538768	-3.831537
В	1.120127	2.696114	-1.613427
Н	1.930985	3.525415	-1.911758

В	0.507785	2.553346	0.054072
Н	0.871748	3.177707	1.005538
В	-1.139765	1.910063	-0.020587
Н	-1.909317	2.134387	0.859454
В	-0.589061	3.055248	-1.258821
Н	-1.016939	4.173250	-1.290205
В	1.673927	1.367353	-0.580074
В	1.204945	1.058164	-2.285181
Н	2.032576	0.653463	-3.042943
Pd	-1.968288	-1.309543	0.018682
0	-3.626797	-0.362085	0.610518
С	-4.484916	-0.019319	-0.313195
0	-4.521017	-0.345842	-1.489087
С	-5.507839	1.002305	0.251035
F	-6.555871	1.164906	-0.573266
F	-5.984255	0.642917	1.464641
F	-4.901604	2.212796	0.392306
С	3.148729	1.349013	-0.019179
С	4.235607	1.396736	-0.921624
С	3.454874	1.499420	1.351741
С	5.557763	1.514117	-0.478002
Н	4.042668	1.367382	-2.000026
С	4.775430	1.619213	1.797460
Н	2.648042	1.539640	2.088411
С	5.856025	1.612667	0.894123
Н	6.371628	1.549388	-1.211525
Н	4.970066	1.734314	2.870078
С	7.282324	1.709226	1.382335
Н	7.950740	2.103573	0.598905
Н	7.360242	2.361308	2.268902
Н	7.664775	0.712443	1.674571
	A D (

IMA3-B4

J-D4		
vest frequency =	$= 13.79 \text{ cm}^{-1}$	
rge = 0, Multipl	icity = 1	
-0.066648	-0.085552	2.036724
-1.978939	-1.256226	2.104785
-0.899559	-0.824134	1.427174
-0.521440	-1.157290	-0.007229
-1.467556	-1.140038	-1.370103
-2.954777	-0.900207	-1.253273
-3.842971	-1.639263	-2.058406
-3.447295	-2.375442	-2.760178
-5.226007	-1.439225	-1.964325
-5.897483	-2.023785	-2.601225
-5.746317	-0.500192	-1.063441
-6.827510	-0.343897	-0.991567
-4.869200	0.239484	-0.258501
-5.257294	0.983187	0.444962
-3.486630	0.045969	-0.353419
-2.826153	0.640551	0.277452
-2.164543	-0.699480	3.467348
-2.804403	-1.409864	4.013631
-1.182969	-0.664988	3.963318
-2.802308	0.691364	3.420187
	$\begin{array}{l} \textbf{-0.066648} \\ \textbf{-1.978939} \\ \textbf{-0.899559} \\ \textbf{-0.521440} \\ \textbf{-1.467556} \\ \textbf{-2.954777} \\ \textbf{-3.842971} \\ \textbf{-3.447295} \\ \textbf{-5.226007} \\ \textbf{-5.897483} \\ \textbf{-5.746317} \\ \textbf{-6.827510} \\ \textbf{-4.869200} \\ \textbf{-5.257294} \\ \textbf{-3.486630} \\ \textbf{-2.826153} \\ \textbf{-2.164543} \\ \textbf{-2.804403} \\ \textbf{-1.182969} \\ \textbf{-2.802308} \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Н	-2.931166	1.078871	4.445011	
Н	-2.161725	1.393490	2.861623	
Н	-3.793935	0.655751	2.937032	
С	-2.949515	-2.284854	1.694009	
Н	-3.947290	-1.919314	1.990618	
Н	-2.958296	-2.355072	0.602308	
С	-2.643747	-3.646651	2.321742	
Н	-1.656331	-4.013116	1.995279	
н	-2.649984	-3,601791	3,424149	
Н	-3.408266	-4.376229	2.005336	
B	-0.824375	-2.661085	-0.787771	
B	0.613426	-2.986245	-1.750420	
Н	0.913786	-4.125878	-1.961549	
B	0.789976	-2.268612	-0.136856	
Н	1.118272	-2.815516	0.873500	
B	1,795883	-1.668683	-1.481706	
н	2 973390	-1 866595	-1 487667	
B	1.070993	-0.141423	-2.072520	
н	1 701804	0.773316	-2.512559	
R	-0 554488	-0 530173	-2 693888	
н	-1 166353	0.0501/5	-3 527653	
R	-0 827438	-2 266366	-2 505434	
н	-1 584425	-2 845530	-3 222294	
R	0 787218	-1 671377	-2 947575	
н	1 212726	-1 865/78	-1 050099	
B	-0 36/100	0 255183	-1 000830	
B	1 062051	-0 520155	-0 3/3929	
ЪД	1 785110	0.320133	1 260666	
0	3 53/003	0.374413	0 101128	
c	J.JJ 4 00J A A115A1	-0 13/835	0.300100	
0	4.411041	-1 2211/2	0.958661	
c	5 609702	0 211256	-0 524086	
Ē	6 66/5/5	-0 588385	-0.284790	
Ē	5 244466	0.03/800	-0.204750	
, E	6 020112	1 /01269	-0.385001	
Г		-2 /27670	-0.303001	
C	-0.961824	1 690111	-0.233410	
c		2 2/0058		
c	-1.005027	2.249030	0 262210	
c		2.490011	-1 550804	
L L	2,42/145	1 670057	2 621741	
п С	1 124460	1.070057	-2.021/41	
L L	-1.154400	2.//2204 2.110024	0.450015	
п С	0.157641	2.110924	0.9/1245	
	-2.00/309	4.511200	-0.446540	
П	-3.143/08 0 017115	3.910025	-2.290806	
	-0.01/115	4.304303	1.322292	
U U	-2,029880 2,570622	5./0094/	-2020222	
н	-2.5/9632	0.019203	0./910/8	
П	-2.00000	0.435834		
н	-3.080023	J./J0942	-0.39/201	
IMB-B6				
---------	-----------------------	------------------------	------------------------	--
Lov	vest frequency =	15.73 cm ⁻¹		
Cha	rge = 1, Multipl	icity = 1		
86				
0	0.113444	-1.372279	1.828079	
Ν	2.240699	-2.021977	1.890552	
С	1.191845	-1.609208	1.181213	
С	1.129208	-1.459764	-0.332189	
С	0.560392	-0.027259	-0.971240	
С	0.358566	1.195381	-0.103287	
С	0.993914	1.373774	1.140059	
Н	1.685501	0.623170	1.522508	
С	0.803090	2.543091	1.889557	
Н	1.292015	2.641235	2.862490	
C	-0.000114	3.577715	1.399456	
Н	-0.148656	4.488689	1.985323	
C	-0.612682	3.440548	0.138851	
н	-1.180251	4.2/1462	-0.293944	
C II	-0.439488	2.255613	-0.612/84	
H C	-0.852254	2.185668	-1.621/01	
U U	2.0359/4	-2.202183	3.300001 0.601067	
	2.805/0/	-2.91//89	3.08180/	
п С	1.04/115	-2.001099	5.502140 1 124224	
с ц	2.140210	-0.004225	5 205326	
н	1 332203	-0 197261	3 85//52	
н	3 119314	-0 394363	3 937178	
Ċ	3.604582	-2.294918	1,398886	
н	4,291569	-1.782455	2,094009	
н	3.723732	-1.807424	0.428001	
C	3.915006	-3.790159	1.322743	
Н	3.220504	-4.305023	0.639420	
Н	3.858271	-4.275641	2.311209	
Н	4.940790	-3.922608	0.940874	
В	2.213766	-0.510047	-1.406638	
В	1.996899	-1.325077	-2.972029	
Н	2.923346	-1.298723	-3.727119	
В	2.047558	-2.297581	-1.494396	
Н	2.952824	-2.978973	-1.132976	
В	0.907468	-2.727071	-2.792798	
Н	1.057815	-3.736494	-3.415829	
В	-0.711246	-2.123706	-2.331820	
Н	-1.734981	-2.657622	-2.640894	
В	-0.596441	-0.354124	-2.217900	
Н	-1.498943	0.408748	-2.359637	
В	1.059220	0.139557	-2.603155	
н	1.2/64/5	1.254869	-2.9/09/0	
В	0.2954/5	-1.20664/	-3.489648	
Н	-0.010313	-1.0/0158	-4.030259	
Б	002885.0- Cacloc a	-1.350931 _2 202500	-0./03493 _1 00FE12	
D L	0,227461	-2.00/302	-1.0071 _0 /10071	
n bd	U.222401 _1 602502	-3.//IUUO	0.4100/1 0 0107/1	
0	-2, 233/15	1 881808	2 803/11	
č	-2.190646	0.761985	3.472008	

0	-2.313856	-0.390246	2.980461
С	-1.856129	0.827707	4.986427
F	-2.064006	-0.345131	5.604104
F	-2.554668	1.780216	5.614535
F	-0.529075	1.128362	5.104922
С	3.509046	0.270443	-0.996162
С	4.757800	-0.390702	-1.094825
С	3.540724	1.650787	-0.698922
С	5.961801	0.272795	-0.845129
Н	4.790520	-1.443718	-1.397160
С	4.746434	2.315626	-0.446863
Н	2.616366	2.233186	-0.685124
С	5.980549	1.640741	-0.503398
Н	6.906735	-0.275003	-0.932860
Н	4.729805	3.386526	-0.215852
С	7.283488	2.362934	-0.262093
Н	7.779154	2.594459	-1.223445
Н	7.126159	3.314583	0.270565
Н	7.983698	1.742967	0.323191
Ag	-2.585253	1.769141	0.720069
Ι	-3.888664	-0.433178	-0.366760
С	-2.234424	-2.938909	1.127853
С	-2.639555	-3.768248	0.086914
С	-2.161855	-3.337432	2.459879
С	-2.957934	-5.097776	0.413230
Н	-2.702578	-3.427210	-0.946884
С	-2.487321	-4.676669	2.744360
Н	-1.883843	-2.647002	3.259538
С	-2.887807	-5.573591	1.736237
Н	-3.274098	-5.766981	-0.394879
Н	-2.427883	-5.013358	3.785540
С	-3.271794	-6.996565	2.068542
Н	-4.368668	-7.082886	2.180390
Н	-2.966990	-7.691764	1.268898
Н	-2.813965	-7.326859	3.014779

IMB-B4

Lowest frequency = 19.98 cm^{-1} Charge = 1, Multiplicity = 186 0 0.384987 1.093042 1.183958 Ν 2.327716 1.689126 2.093470 С 1.621962 1.352800 1.013473 С 1.308791 2.085096 -0.435187 С 3.485049 0.467682 -1.167532 С 4.558084 -0.216164 -0.370559 С 0.478909 -0.078878 5.753160 Н 5.874426 1.515317 -0.405250 0.604702 С 6.795145 -0.154955 Н 7.715661 0.397064 0.817867 С 6.667412 -1.495777 0.998113 Н 7.483709 -1.992083 1.532052 С 5.501260 -2.203778 0.677769 Н 5.405066 -3.259164 0.950547 С 4.457075 -1.574005 -0.010909 Н 3.573385 -2.149728 -0.285124

С	1.584408	1.770078	3.384636
Н	2.185249	2.424907	4.033477
Н	0.621892	2.264596	3.185046
С	1.371298	0.401520	4.033258
Н	0.923405	0.541105	5.030997
Н	0.679410	-0.215852	3.441101
Н	2.327960	-0.133955	4.160585
С	3.768346	1.991072	2.165589
Н	4.158865	1.432081	3.033341
Н	4.254855	1.568166	1.282221
С	4.054833	3.486804	2.302627
Н	3.659531	4.046923	1.439536
Н	3.614736	3.908183	3.221662
н	5.145511	3.642004	2.349591
В	3,380862	2.197945	-1.103389
В	2.830404	2.723970	-2.708442
н	3.213968	3.765629	-3.151643
В	1,678045	2.693333	-1.355069
н	1.298920	3,638080	-0.732916
B	1,179776	2.083686	-2.962361
н	0.355413	2.656448	-3,612150
R	1 287091	0 299824	-2 909217
н	0.549566	-0.422034	-3 510084
B	2 978788	-0 158822	-2 656054
н	3 465828	_1 200992	-2.050054
R	3 935073	1 3/082/	-2 555771
н	5 101522	1 350978	-2.333771
B	2 570976	1 2/8006	-3 689/3/
ы	2.576576	1 200806	-1 868/16
D D	1 930071	-0 186504	-4.808410
D	0 726602	1 204067	1 502216
Ы	0.720002	0 600442	-1.303310
гu	1 101/22	2 202722	-0.377338
п С	4.104433	2.002/30	-0.304200 0 EQEOEA
c	1.504050	-1.510115	1 444212
c	1 200000	-2.54/450	-1,444512
c	1.200009 0.221E07	-1.//039/	0.002500
с ц	0.006007	-3./03/13	-0.910011
п С	0.920297	-2.434247	-2.529057
C II	0.784330	-2.9//352	1.321357
н	1.6/9230	-1.044544	1.50/530
C	0.282200	-3.988921	0.48112/
н	0.027791	-4.562205	-1.603869
Н	0.765486	-3.123944	2.405656
C	-0.338/9/	-5.233098	1.054811
н	0.244/85	-5.615934	1.908505
н	-1.350450	-4.98/01/	1.428245
Н	-0.433750	-6.029883	0.300353
C	-1.606784	2.599683	-0.262641
C	-2.121105	2.865810	1.005117
С	-1.573139	3.533507	-1.294697
С	-2.592989	4.168334	1.247316
H	-2.170403	2.098068	1.781407
С	-2.054169	4.824097	-1.013999
Н	-1.186473	3.297156	-2.286881
С	-2.568811	5.163403	0.251175
Н	-2.992384	4.398966	2.241489

Н	-2.029595	5.572280	-1.814312
С	-3.120123	6.544343	0.519490
Н	-3.050088	6.805439	1.587981
Н	-2.586564	7.311268	-0.065616
Н	-4.187771	6.594482	0.234905
Ι	-2.447759	0.286898	-2.448016
Ag	-1.577526	-2.042974	-1.210008
0	-2.194402	-0.145159	1.251711
С	-2.399887	-1.347402	1.567499
0	-2.334648	-2.383337	0.856679
С	-2.681687	-1.590086	3.074703
F	-1.475090	-1.763357	3.698344
F	-3.290818	-0.544614	3.653990
F	-3.411208	-2.691583	3.286716

IMB1-B6

Lowest frequency = 10.18 cm^{-1} Charge = 1, Multiplicity = 190 0 0.542182 0.593065 1.035800 Ν 2.212832 0.541067 2.513507 С 1.568024 -0.018710 1.489965 С 0.853192 1.906830 -1.360412 С 1.954930 -1.383421 -0.822753 С 1.777273 -0.044809 -1.511285 С 0.830369 0.074931 -2.555185 Н 0.325064 -0.812093 -2.941004 С 0.570799 1.326237 -3.140143 Н -0.164962 1.393624 -3.944836 С 1.245325 2.468333 -2.693117 Н 1.041916 3.441539 -3.150010 С 2.194352 2.352411 -1.663299 Н 2.738050 3.236003 -1.314674 С 2.455933 1.111105 -1.075066 Н 3.190866 1.045120 -0.270219 С 1.641817 1.798849 3.066199 Н 0.547134 1.692053 3.077222 Н 1.994809 1.862525 4.106629 С 2.264662 2.067881 3.029739 Н 1.667626 3.937262 2.746317 Н 3.166930 3.120755 2.224715 Н 1.676176 2.979181 1.236384 С 3.448648 0.063402 3.161457 Н 3.967077 -0.598845 2.463521 Н 4.092265 0.950186 3.290839 С 3.181123 -0.623485 4.500949 Н 2.703674 5.224740 0.058103 Н 2.533070 -1.505154 4.370289 Н 4.139227 -0.957060 4.932686 В 0.473803 -1.886611 -0.037271 В 0.497059 -3.632048 0.013890 Н -0.533175 -4.236716 -0.010539 В 1.454438 1.004829 -2.696246 Н 0.406024 -2.512229 2.469400 В 1.932672 -4.131733 0.955773 Н 1.935141 -5.106511 1.648338

В	3.392830	-3.581733	0.087971
Н	4.441678	-4.152994	0.138590
В	2.868420	-2.723063	-1.382462
Н	3.483794	-2.566475	-2.392710
В	1.101058	-2.768265	-1.426351
Н	0.536969	-2.679571	-2.469454
В	1,984201	-4.175328	-0.823327
н	2.015830	-5.183489	-1.464605
B	3,448299	-1.808650	0.035174
R	2 794219	-2 663461	1 478536
ц	3 3/0/88	$_{-2} 5/77/1$	2 523652
Ы	-0 803/23	-0 322653	-0 2597052
ΓU Ο	1 606200	1 012171	-0.255705 0 6070E0
C C	-1.090200	1.045474	-0.007050
Ċ	4.794509	-1.005/29	-0.025566
C	5.750298	-1.156138	1.005564
C	5.203669	-0.290405	-1.1/5186
C	7.015823	-0.565136	0.925781
Н	5.517062	-1.778112	1.877097
С	6.468177	0.299865	-1.256746
Н	4.531168	-0.203639	-2.034016
С	7.397908	0.184831	-0.203507
Н	7.727945	-0.704399	1.746741
Н	6.746485	0.848854	-2.163257
С	8.774785	0.793360	-0.310365
Н	9.215312	0.974668	0.683538
Н	9.454383	0.111397	-0.855405
Н	8.752440	1.745493	-0.866347
С	-1.912807	-0.871413	1.335958
С	-2.171323	0.207479	2.182427
Ċ	-2.353852	-2.167262	1.614893
Ċ	-2.895394	-0.034365	3.363698
н	-1.830984	1,218273	1,950176
c	-3.066264	-2.376942	2,804700
н	-2 157698	-3 00211/	0 9/0790
Ċ	-3 352371	-1 322666	3 695266
ц	-2 102712	-1.J22000	1 022520
п	-3.102/13	2 201454	4.052550
т	- 3.413301	-5.591454	1 002023
L L	-2.490042	-1.514909	-1.00//54
C II	-4.14/440	-1.5/1800	4.955092
н	-3./45898	-2.433951	5.515214
н	-4.140/19	-0.691905	5.61/691
Н	-5.200010	-1.804332	4./10326
C	-2.977398	2.289365	-1.111322
Н	-3.657190	1.422795	-1.073890
С	-3.478990	3.364195	-0.122876
С	-2.888870	2.784847	-2.570915
F	-2.622033	4.412336	-0.101223
F	-3.521699	2.847059	1.122691
F	-4.700312	3.806376	-0.437855
F	-4.009184	3.388683	-2.972640
F	-2.630759	1.758468	-3.400161
F	-1.855146	3.666532	-2.682029
Н	-1.032417	2.536259	-0.888386

IMB1-B4				
Low	est frequency =	= 16.48 cm ⁻¹		
Cha	rge = 1, Multipl	icity = 1		
90				
0	0.111114	-0.915174	-0.527259	
Ν	1.241981	-2.638961	-1.376559	
С	1.067793	-1.744280	-0.400406	
С	1.844133	-1.628137	0.904883	
С	3.604037	-1.366959	1.129210	
С	4.617577	-1.437209	0.026040	
С	5.242702	-2.661924	-0.291944	
Н	4.961545	-3.572805	0.243680	
С	6.251920	-2.713459	-1.259046	
Н	6.729751	-3.670193	-1.491078	
С	6.666288	-1.540827	-1.908326	
Н	7.459033	-1.581278	-2.661759	
С	6.085678	-0.312750	-1.561960	
Н	6.430348	0.612429	-2.033817	
C	5.076299	-0.257411	-0.593758	
Н	4.664329	0.709919	-0.300966	
C	0.267596	-2.600159	-2.502907	
н	0.2/3538	-3.609162	-2.942834	
Н	-0./28923	-2.412186	-2.0//606	
C	0.621307	-1.542/65	-3.549288	
н	-0.09/336	-1.603/39	-4.383125	
н	0.559342	-0.531/06	-3.119640	
Н	1.634492	-1.705085	-3.955/28	
C	2.2/3841	-3.686910	-1.464462	
н	2.622106	-3.6906/5	-2.511297	
H C	3.12948/	-3.381548	-0.856201	
L L	1 406202	-5.004090 E 060167	-1.055610	
п	0.015027	- 3.000107 E 202016	1 604277	
п	2 562657	-5.592010	-1.150630	
D D	2,302037	-2 212176	-1.150039	
D R	2.799393	-2.631370	3 398/79	
ц	2,527521	-3 593658	1 106310	
R	1 167580	-2 397683	2 27/700	
н	0 288601	-3 175428	2.274700	
B	1,403106	-1.260757	3.641934	
н	0.617502	-1,215569	4,541474	
В	2.211676	0.202804	2,990532	
Н	2.017976	1.300699	3.414977	
В	3.809668	-0.246966	2.382853	
Н	4.744425	0.487893	2.283881	
В	4.013924	-1.997746	2.652671	
Н	5.095301	-2.495712	2.730212	
В	3.154656	-1.020151	3.862564	
Н	3.650353	-0.800774	4.927759	
В	2.455855	-0.031730	1.223655	
В	0.994448	-0.649890	2.045845	
Pd	-0.425761	0.383856	1.019980	
Н	3.008464	-3.846125	1.100054	
С	2.167729	1.113496	0.163031	
С	1.687188	2.358154	0.640971	

С	2.255250	0.959301	-1.245110
С	1.322057	3.393930	-0.240253
Н	1.620058	2.535365	1.717633
С	1.901766	1.987547	-2.116330
Н	2.615417	0.017089	-1.669260
С	1.431990	3.235350	-1.633816
Н	0.956727	4.339406	0.173964
Н	1.990222	1.832466	-3.197107
С	1.104845	4.356422	-2.589402
Н	0.461423	4.004492	-3.412906
Н	0.596384	5.187560	-2.077884
Н	2.033298	4.749486	-3.042501
С	-1.890653	-0.904818	1.517365
С	-2.663035	-1.281428	0.414729
С	-2.117682	-1.427810	2.793849
С	-3.697019	-2.215152	0.607318
Н	-2.465806	-0.894546	-0.587677
С	-3.149949	-2.364157	2.953342
Н	-1.519343	-1.123402	3.654029
С	-3.959310	-2.769526	1.873456
Н	-4.300670	-2.517414	-0.256097
Н	-3.329775	-2.776163	3.952764
С	-5.087043	-3.753042	2.079711
Н	-5.475443	-4.129653	1.119948
Н	-4.759522	-4.614500	2.686565
Н	-5.925187	-3.274358	2.618929
Ι	-1.166909	1.919800	2.965535
С	-2.962905	3.471417	-1.222013
С	-2.568679	1.982743	-1.326390
С	-2.451089	1.448732	-2.770066
Н	-3.339482	1.394846	-0.803726
F	-1.369254	1.980845	-3.388026
F	-2.267623	0.104204	-2.737923
F	-3.536304	1.702340	-3.506795
F	-1.997085	4.244534	-1.784316
F	-3.069439	3.819266	0.067441
F	-4.124224	3.723695	-1.838769
0	-1.342321	1.769481	-0.662157
Н	-0.637966	2.352219	-1.032929

IMB2-B6

Lowest frequency = 15.23 cm^{-1} Charge = 1, Multiplicity = 1 78 0 -0.236676 0.865503

0	-0.236676	0.865503	-1.239357
Ν	1.397705	2.361180	-0.952922
С	0.721085	1.301102	-0.513901
С	0.941500	0.601726	0.821814
С	1.056365	-1.077853	0.757130
С	1.043219	-1.671090	-0.636505
С	0.083418	-2.664171	-0.948437
Н	-0.510553	-3.120186	-0.154351
С	-0.058861	-3.126880	-2.269491
Н	-0.809758	-3.892489	-2.485653
С	0.760670	-2.620303	-3.284739
Н	0.654574	-2.982702	-4.311622

С	1.725768	-1.648901	-2.974397
Н	2.375996	-1.251711	-3.759939
С	1.858851	-1.167214	-1.667475
Н	2.595365	-0.389555	-1.455167
С	0.946797	2.972830	-2.232532
Н	-0.153258	2.961138	-2.238753
н	1.282467	4.020525	-2.203528
C	1.513655	2.246035	-3.452919
н	1.200151	2.772582	-4.369529
н	2,616896	2 227909	-3, 430535
н	1 138476	1 211630	-3 500226
c	2 567991	2,995694	-0.317934
н	3 021580	2 272210	0 364484
н	3 301018	3 169/60	-1 12/107
Ċ	2 215159	/ 301108	0 305500
ц	1 905505	5 053005	-0.200680
и Ц	1 470097	1 1 2 0 0 5 2	1 107105
п	2 120500	4.120005	1.19/103
п	0 496071	4.722170	1 12004/
D	-0.4009/1	-0.300831	1.120044
Б	-0.098/05	-0.420089	2.850/00
н	-1./95/65	-0.512592	3.320/68
в	-0.1395/3	1.091854	2.0/1008
н	-0./59625	2.090041	1.865693
в	0.629050	0.53855/	3.5//942
н	0.486114	1.171358	4.582229
В	2.176683	-0.246693	3.160988
н	3.145308	-0.196023	3.859508
В	1.821119	-1.682706	2.167862
Н	2.493375	-2.659428	2.036818
В	0.063708	-1.790466	1.995228
н	-0.446291	-2.842399	1.776002
В	0.745609	-1.238367	3.529780
н	0.682182	-1.936485	4.497686
В	2.448023	-0.194135	1.407424
В	1.639405	1.176981	2.254527
Н	2.164128	2.244450	2.260592
Pd	-1.618195	-0.532964	-0.556198
С	3.887833	-0.163882	0.785828
С	4.775179	0.886564	1.120529
С	4.431842	-1.255099	0.071000
С	6.109021	0.881210	0.702950
Н	4.426910	1.712549	1.750898
С	5.767006	-1.262003	-0.346780
Н	3.810829	-2.127770	-0.153340
С	6.631021	-0.190112	-0.050272
Н	6.763865	1.713934	0.982980
Н	6.151198	-2.124805	-0.901923
С	8.079134	-0.206823	-0.474504
Н	8.730049	-0.447902	0.386562
Н	8.263443	-0.961588	-1.255674
Н	8.396639	0.779018	-0.855196
С	-2.894280	0.961895	-0.156449
С	-3.125875	1.755077	-1.283342
С	-3.483681	1.220168	1.082567
С	-3.979173	2.864348	-1.147018
Н	-2.661833	1.543331	-2.252250

С	-4.318202	2.342403	1.189315
Н	-3.310472	0.578496	1.948335
С	-4.585145	3.176493	0.084470
Н	-4.166925	3.494750	-2.023254
Н	-4.781569	2.557956	2.158585
Ι	-3.410131	-2.208827	0.203125
С	-5.520783	4.354501	0.217086
Н	-5.318027	4.924027	1.139943
Н	-5.434985	5.037878	-0.642644
Н	-6.569865	4.009178	0.269957
IMB	2-B4		
Low	est frequency =	$= 10.43 \text{ cm}^{-1}$	
Cha	rge = 1, Multiple	licity $= 1$	
78	0 / 1	2	
0	-0.019404	-0.543358	1.898782
N	-2.204427	-0.466784	2.361904
С	-1.222021	-0.704075	1.493958
С	-1.332735	-1.217966	0.062017
C	-2.469394	-0.896698	-1.171884
Ċ	-3.721658	-0.078718	-0.956729
Ċ	-4.968098	-0.744720	-0.990213
н	-5.008071	-1.821826	-1.166280
C	-6.158690	-0.038148	-0.794368
н	-7.113003	-0.572608	-0.828030
c	-6.129015	1.344778	-0.561130
н	-7.060847	1 897802	-0.407295
c	-4.897897	2,012839	-0.538979
н	-4.860327	3,093921	-0.372395
c	-3.701474	1,311601	-0.739759
н	-2.757797	1.853340	-0.727532
c	-1.806539	0.027799	3.712003
н	-2.657758	-0.188206	4 373688
н	-0.945520	-0.567163	4.052732
c	-1.481277	1,522197	3,719882
н	-1.316919	1.849203	4.759888
н	-0.564553	1.733053	3,146885
н	-2.311805	2,113807	3,299501
c	-3.647431	-0.719397	2,179268
н	-4.172720	0.192256	2.511166
н	-3.850022	-0.824486	1.111351
c	-4.130818	-1.951347	2.946372
н	-3.602559	-2.859117	2,610901
н	-3,992837	-1.850286	4.035625
н	-5.208274	-2.086173	2 755220
B	-2.415326	-2.465907	-0.425725
B	-1 494255	-3 511198	-1 524084
н	-1 759276	-4 675152	-1 577308
R	-0 6950/6	-2 826385	-0 098233
н	-0 428286	-3 372889	0.030233
R	0.1671/6	-2.869998	-1.663666
н	1 1017/7	-3 572060	-1 796958
R	0 072088	_1 011110	-2 257515
н	0 928825	-0 717275	_3 01795/
R	-1.644682	-0.86197/	-2 668032
н	-2.079368	-0.101001	-3 480326
	2.075500	2.TO+20T	2.400020

В	-2.590820	-2.280866	-2.178370
Н	-3.650167	-2.490202	-2.680283
В	-1.009056	-2.512042	-2.937431
Н	-0.927691	-2.955170	-4.044317
В	-0.842462	-0.137449	-1.238203
В	0.235980	-1.432980	-0.637953
Pd	1.652319	-1.132629	0.793259
Н	-3.290931	-2.767418	0.318855
С	-0.575665	1.403971	-1.128098
С	-0.382934	2.116810	-2.333867
С	-0.485808	2.137513	0.073063
С	-0.127369	3.491435	-2.335289
Н	-0.434146	1.588164	-3.290369
С	-0.233190	3.512236	0.071934
Н	-0.607526	1.639760	1.035350
С	-0.050514	4.219606	-1.131978
Н	0.015803	4.008900	-3.290468
Н	-0.166246	4.046622	1.025770
С	0.224741	5.703428	-1.140435
Н	0.307101	6.105803	-0.118169
Н	1.163490	5.927987	-1.677081
Н	-0.581738	6.250823	-1.660831
С	2.322126	0.718781	0.475407
С	2.582245	1.278413	-0.772792
С	2.493578	1.403659	1.680404
С	2.999496	2.618555	-0.801683
Н	2.457377	0.715322	-1.698905
С	2.922907	2.739355	1.613422
Н	2.292086	0.942575	2.652972
С	3.178883	3.365332	0.377690
Н	3.195255	3.081764	-1.774425
Н	3.052554	3.296238	2.548211
С	3.643785	4.801489	0.328737
Н	3.711097	5.167049	-0.707808
Н	2.954477	5.460895	0.884757
Н	4.640934	4.906621	0.792705
Ι	3.718555	-2.084046	-0.341922

IMB3-B6

Low	est frequency =	⁻ 17.47 cm ⁻¹	
Chai	ge = 0, Multipl	icity = 1	
85			
0	-0.198969	-0.140459	1.380639
Ν	1.554248	-1.157624	2.291450
С	0.838955	-0.846161	1.201983
С	1.122891	-1.327199	-0.219757
С	1.248331	-0.190626	-1.420863
С	1.422384	1.266853	-1.080193
С	1.108674	2.233823	-2.051062
Н	0.705780	1.922405	-3.015886
С	1.283869	3.593592	-1.775213
Н	1.018448	4.332921	-2.536880
С	1.764778	4.007853	-0.527366
Н	1.874469	5.073531	-0.304220
С	2.096023	3.048449	0.437641
Н	2.481851	3.355977	1.414320

С	1.938386	1.688413	0.157873
Н	2.261543	0.960969	0.904193
С	1.039769	-0.647854	3.589416
Н	-0.049611	-0.802303	3.602281
Н	1.490824	-1.283946	4.366731
С	1.381118	0.826355	3.819332
Н	1.045768	1.124422	4.827061
Н	2.470202	0.997202	3.756834
Н	0.870853	1.470109	3.086695
С	2.814901	-1.909821	2.344785
Н	3.244188	-1.932885	1.340402
Н	3.511952	-1.322710	2.968472
С	2.637630	-3.322446	2.903776
Н	2.256863	-3.311718	3.939218
Н	1.938757	-3.904667	2.281543
Н	3.613566	-3.836453	2.906796
В	-0.352898	-0.955705	-1.164297
В	-0.421127	-2.245914	-2.354341
Н	-1.485651	-2.576565	-2.782598
В	0.104819	-2.624960	-0.692365
Н	-0.495322	-3.166320	0.183222
В	0.922618	-3.388060	-2.071485
Н	0.806388	-4.566002	-2.255719
В	2.454531	-2.528793	-2.353940
Н	3.453508	-3.056965	-2.750126
В	2.058814	-0.849164	-2.783230
Н	2.733019	-0.087813	-3.410137
В	0.296627	-0.673249	-2.782195
Н	-0.219072	0.167421	-3.447483
В	1.038032	-2.178772	-3.373845
Н	1.012055	-2.453305	-4.539156
В	2.654770	-1.238407	-1.155218
В	1.880486	-2.783468	-0.699277
Н	2.394212	-3.469453	0.128972
Pd	-1.646428	0.191291	-0.086186
0	-2.568688	1.731624	1.411807
С	-1.771785	2.576531	0.927115
0	-1.034361	2.367479	-0.079302
С	-1.576178	3.924618	1.656213
F	-0.534591	3.801342	2.531533
F	-1.269045	4.922098	0.804899
F	-2.658576	4.287844	2.362265
С	4.078332	-0.755066	-0.684043
С	4.984363	-1.709338	-0.166170
С	4.589436	0.539291	-0.928186
С	6.303301	-1.374002	0.159581
Н	4.658350	-2.747769	-0.036737
С	5.908139	0.875591	-0.604270
Н	3.956540	1.297650	-1.394240
С	6.787749	-0.067215	-0.037799
Н	6.973703	-2.144671	0.557451
Н	6.265189	1.891658	-0.808358
С	8.199756	0.312563	0.341295
Н	8.853869	-0.573214	0.400182
Н	8.634065	1.020178	-0.385472
Н	8.219452	0.807865	1.330913

С	-2.655041	-1.462085	0.468963
С	-2.849948	-1.467602	1.855544
С	-3.186816	-2.477867	-0.332592
С	-3.554808	-2.531335	2.444887
Н	-2.482896	-0.645088	2.477101
С	-3.887753	-3.528547	0.274689
Н	-3.063116	-2.462027	-1.416390
С	-4.079029	-3.580320	1.669528
Н	-3.704150	-2.531673	3.531304
Н	-4.299274	-4.322820	-0.359588
I	-3.251696	0.600156	-2.079955
С	-4.850940	-4.715995	2.302580
Н	-4.454135	-5.696724	1.984253
Н	-4.806936	-4.667891	3.403179
Н	-5.915606	-4.684559	2.005273

IMB3-B4

Lowest frequency = 15.78 cm^{-1}				
Cha	rge = 0, Multipl	icity = 1		
85		-		
0	-0.113884	-0.757698	-1.109979	
Ν	1.323477	-2.446117	-1.384635	
С	0.791346	-1.490874	-0.609514	
С	1.112855	-1.200375	0.855383	
С	2.615346	-0.957138	1.534879	
С	3.858530	-1.148990	0.697835	
С	4.934484	-1.895465	1.219438	
Н	4.869043	-2.304122	2.229179	
С	6.082151	-2.123763	0.451017	
Н	6.906005	-2.705306	0.876893	
С	6.175391	-1.616222	-0.852445	
Н	7.072842	-1.797278	-1.452751	
С	5.109904	-0.873106	-1.377204	
Н	5.166080	-0.463149	-2.390817	
С	3.962221	-0.638844	-0.610216	
Н	3.153238	-0.049421	-1.038993	
С	0.790612	-2.538039	-2.770330	
Н	1.000325	-3.563439	-3.111464	
Н	-0.300024	-2.408743	-2.727453	
С	1.438217	-1.511878	-3.701339	
Н	1.053977	-1.649861	-4.725908	
Н	1.197827	-0.486383	-3.379453	
Н	2.535685	-1.629739	-3.723577	
С	2.340789	-3.454167	-1.038301	
н	3.043206	-3.494855	-1.888468	
н	2.917682	-3.103407	-0.177920	
С	1.720665	-4.825961	-0.764140	
н	1.021858	-4.776307	0.086757	
Н	1.169746	-5.209638	-1.639204	
Н	2.520417	-5.545478	-0.520461	
В	1.717713	-2.379829	1.967873	
В	0.937077	-2.032138	3.504070	
Н	0.736345	-2.934988	4.264045	
В	0.010543	-1.882720	1.998447	
H	-0.785368	-2.654619	1.565054	
В	-0.179041	-0.656617	3.275559	

Н	-1.199336	-0.568217	3.887575
В	0.788714	0.768521	2.796025
Н	0.507078	1.894473	3.082163
В	2.495254	0.256543	2.733285
Н	3.461304	0.938341	2.887817
В	2.580503	-1.447483	3.185813
Н	3.576978	-1.895850	3.662176
В	1.420733	-0.386182	3.999304
Н	1.586535	-0.079390	5.145068
В	1.561050	0.476872	1.217158
В	-0.098617	-0.151540	1.567626
Pd	-1.606721	0.048884	0.183618
0	-2.367210	-2.103899	-0.054535
С	-3.027320	-1.745527	-1.073727
0	-3.132247	-0.558376	-1.478858
C	-3.651767	-2.867233	-1.933872
F	-4.698444	-2,437306	-2.655526
F	-2.704927	-3.319778	-2.813125
F	-4.045904	-3.917950	-1.194026
H	2.096661	-3.429104	1.565784
C	1.994410	1.626744	0.223865
c	2.750557	2.692710	0.763710
c	1.632790	1.738854	-1.136803
c	3,130619	3.794858	-0.008884
н	3.038647	2.670541	1.817689
C	2.016404	2.837727	-1,911086
н	1.008911	0.974520	-1.599771
C	2.773880	3.889944	-1.366043
Н	3.710339	4,600328	0.457124
Н	1.697722	2.888073	-2.958048
C	3.169797	5.089844	-2.193265
H	2.829257	4.989028	-3.236792
Н	2.729906	6.015529	-1.779996
Н	4.266438	5.226810	-2.199899
C	-1.295137	1,983099	-0.246348
Ċ	-0.811689	3,004839	0.572309
Ċ	-1.623307	2.222849	-1.588233
C	-0.580665	4.270202	0.011379
H	-0.595716	2.828746	1.626927
C	-1.389931	3,496484	-2.126999
Н	-2.053034	1,429820	-2.209129
C	-0.855248	4.536170	-1.341527
H	-0.174026	5.064281	0.648025
Н	-1.632501	3,678837	-3.180942
C	-0.603681	5,902173	-1.938277
H	-0.069757	6.556553	-1.229628
Н	-0.000021	5.830369	-2.860819
Н	-1.553135	6.400304	-2.208950
I	-3.348285	0.868894	1.907960

TS1-B3

Lowest frequency = -821.43 cm^{-1} Charge = 1, Multiplicity = 1 66 0 1.042245 0.374216 0.336472 N 2.969081 -0.434921 -0.452845

С	1.643776	-0.504387	-0.378265
С	0.756215	-1.521656	-1.056499
С	-0.129319	-2.500492	0.008115
С	0.158985	-2.388717	1.485535
С	-0.893183	-2.014308	2.367775
Н	-1.919970	-1.943681	1.998071
С	-0.641642	-1.869746	3,758792
H	-1.481221	-1.711605	4,445473
Ċ	0.665151	-2.089341	4.267462
н	0.856618	-1.985121	5,339383
Ċ	1 684250	-2 482212	3 395957
н	2 688453	-2.678465	3,782470
Ċ	1 431369	-2 636744	2 020383
н	2 244287	-2 953/36	1 36/353
Ċ	3 62/1568	0 682521	0 2005/3
L L	2 024000	1 500170	0.200040
п	3.021920	1.5901/9 0.93100E	0.130/31
п С	4.004905 2 77/E1E	0.031993	1 701502
L L	3.774313	1 220024	1.701302
	4.270401	1.230034	2.2/294/
п	4.388925	-0.523/55	1.949/42
Н	2.789893	0.236528	2.256013
C	3.8/4244	-1.328429	-1.212213
н	3.339239	-2.255916	-1.442243
Н	4./00001	-1.5831/6	-0.525698
C	4.404368	-0.670053	-2.487544
Н	4.981178	0.244122	-2.271213
Н	3.579395	-0.411571	-3.170921
Н	5.073680	-1.378776	-3.002156
В	-0.951948	-1.140429	-0.734935
В	-1.816138	-1.814438	-2.109411
Н	-2.835561	-1.287033	-2.445634
В	-0.240426	-1.010894	-2.365816
Н	-0.032939	0.083975	-2.798723
В	-0.623665	-2.519092	-3.243193
Н	-0.777987	-2.500949	-4.427763
В	0.206512	-3.871915	-2.406570
Н	0.646267	-4.832902	-2.964112
В	-0.477207	-3.997931	-0.762812
Н	-0.491679	-4.956734	-0.052963
В	-1.718872	-2.740923	-0.589685
Н	-2.586267	-2.890159	0.210690
В	-1.536086	-3.584499	-2.143337
Н	-2.376010	-4.350927	-2.509811
В	1.083796	-3.200141	-1.027523
Н	2.093780	-3.576237	-0.525949
В	0.997708	-2.287631	-2.557358
Н	2.004322	-2.047058	-3.145492
Н	-1.972446	-0.551311	0.325987
Pd	-0.920559	0.806295	0.094089
0	0.224940	2.305399	2.704391
С	0.196071	3.009843	1.660053
0	-0.342826	2.765315	0.542556
С	1.020500	4.323860	1.719665
F	2.298086	4.000596	1.367535
F	1.042399	4.836322	2.952954
F	0.567258	5.241807	0.864363

0	-2.837268	1.425235	-0.154820
С	-3.675419	0.568061	0.273794
0	-3.374444	-0.555473	0.748015
С	-5.174607	0.933605	0.114072
F	-5.892521	0.371453	1.093345
F	-5.589046	0.448635	-1.070953
F	-5.353472	2.255880	0.137862
Ag	-0.405733	0.272149	2.873182

TS1-B4				
Low	est frequency =	-669.46 cm ⁻¹		
Cha	rge = 1, Multipl	icity = 1		
66				
0	-0.239527	1.107893	0.519985	
Ν	-2.216283	1.133549	1.576061	
С	-1.291021	0.474810	0.887460	
С	-1.321664	-0.992649	0.478514	
С	-2.497633	-1.664263	-0.598769	
С	-3.734789	-0.859981	-0.885678	
С	-4.992371	-1.392839	-0.533749	
Н	-5.058409	-2.387277	-0.085567	
С	-6.158481	-0.653090	-0.759644	
Н	-7.128909	-1.080952	-0.490697	
C	-6.083483	0.627709	-1.326596	
Н	-6.996331	1.205486	-1.500970	
C	-4.835287	1.161762	-1.677765	
Н	-4./68686	2.156209	-2.129536	
C	-3.665486	0.422303	-1.464455	
Н	-2./026/3	0.850552	-1./51604	
	-1.954/80	2.574435	1.05930/	
п	-2.534007	2.815009	2.703824	
п С	-0.004012	2.000000	2.000407	
L L	-2.3304/3	2.40494/ 4 E201EC	0.003002	
	-2.100095	4.520150	0.952951	
	-1./492/0	2 220512	-0.200341 0.422125	
C	-3 /03535	0 597/70	2 0010/1	
н	-1 237708	1 397/11	1 9/6252	
н	-3,807340	-0.237972	1.457335	
Ċ	-3,396340	0.187350	3,561346	
н	-2.665784	-0.627246	3,698213	
н	-3.098059	1.033687	4,202206	
Н	-4.381772	-0.168562	3,904486	
В	-2.315146	-2.279469	1.024863	
В	-1.318322	-3.736078	0.875302	
Н	-1.481044	-4.644856	1.632602	
В	-0.578675	-2.217176	1.433726	
Н	-0.275829	-1.922079	2.549743	
В	0.289248	-3.257120	0.253126	
Н	1.296873	-3.821167	0.552263	
В	0.033804	-2.551238	-1.368784	
Н	0.864856	-2.757598	-2.281104	
В	-1.700013	-2.630685	-1.768967	
Н	-2.165931	-2.639612	-2.866118	
В	-2.528558	-3.354742	-0.375878	
Н	-3.571317	-3.914029	-0.511345	

В	-0.922580	-3.960498	-0.859314
Н	-0.794895	-5.040329	-1.352831
В	-0.982941	-1.112109	-1.205681
Н	-0.966087	-0.106708	-1.840666
В	0.265310	-1.496143	0.052612
Н	1.638944	-1.076973	0.958722
Pd	1.444177	0.178279	-0.155799
0	2.146606	0.897825	-3.248852
С	2.279772	1.859852	-2.445380
0	2.054733	1.904969	-1.199578
С	2.716773	3.215804	-3.067457
F	1.609976	3.974746	-3.242358
F	3.556759	3.867449	-2.251112
F	3.307645	3.041047	-4.253462
0	3.192349	-0.781259	-0.627295
С	3.534620	-1.585277	0.318430
0	2.887001	-1.791605	1.363253
С	4.810282	-2.413634	0.023506
F	5.314172	-2.937837	1.138388
F	4.439428	-3.417726	-0.808040
F	5.738986	-1.669706	-0.584439
Н	-3.182415	-2.083106	1.809419
Ag	1.509698	-1.081025	-2.737373

TS1a-B3

Lowest frequency = -817.84 cm⁻¹ Charge = 0, Multiplicity = 165 0 1.253467 0.131692 0.574072 Ν 3.100041 -0.603965 -0.459908 С -0.647540 1.780723 -0.284371 С 0.826519 -1.584283 -1.006845 С -0.062067 -2.545033 0.072939 С 0.305035 -2.507893 1.535656 С -0.662524 -2.109763 2.477554 Н -1.674662 -1.861116 2.152732 С -0.340138 -2.039374 3.837444 Н -1.105346 -1.726244 4.554357 С 0.951741 -2.360709 4.276298 Н 1.204372 -2.298203 5.339544 С 1.916467 -2.766787 3.344770 Н 2.927383 -3.026183 3.674931 С 1.595312 -2.844698 1.984173 Н 2.358048 -3.164546 1.271400 С 3.844576 0.441443 0.293567 Н 1.372447 0.220333 3.265592 Н 0.588151 4.792223 -0.246962 С 4.095099 0.043061 1.747808 Н 4.664668 0.844100 2.248133 Н 4.680435 -0.891054 1.815281 Н 3.142584 -0.093254 2.283266 С 3.895485 -1.441248 -1.375193 Н 3.328205 -2.350441 -1.604980 -1.748885 Н 4.796290 -0.815775 С 4.272689 -0.691128 -2.655099 Н 4.882734 0.201234 -2.437996

Н	3.369452	-0.365045	-3.194849
Н	4.857147	-1.358029	-3.310797
В	-0.824298	-1.104571	-0.588244
В	-1.794587	-1.687143	-1.939509
Н	-2.796624	-1.094451	-2.220743
В	-0.184994	-0.978796	-2.257226
Н	0.068981	0.110701	-2.674362
В	-0.708298	-2.432439	-3.149371
Н	-0.920511	-2.374030	-4.326113
В	0.070968	-3.857246	-2.391380
Н	0.420143	-4.828350	-2.998453
В	-0.539328	-3.986091	-0.722612
Н	-0.584446	-4.969872	-0.047138
В	-1.685662	-2.656618	-0.451194
Н	-2.529587	-2.775324	0.381015
В	-1.634016	-3.467213	-2.033456
Н	-2.536994	-4.170980	-2.383832
В	1.054426	-3.278915	-1.042507
Н	2.067977	-3.733348	-0.616366
В	0.952546	-2.322378	-2.540232
Н	1.938819	-2.143292	-3.183055
Н	-1.832496	-0.370396	0.663922
Pd	-0.623642	0.796399	0.168210
0	1.514282	2.245606	-1.284354
С	1.081097	2.966497	-0.378824
0	0.091009	2.752077	0.414699
С	1.863736	4.267305	-0.052178
F	2.358132	4.840014	-1.165115
F	2.927916	3.938373	0.742901
F	1.137774	5.186540	0.605991
0	-2.504233	1.508063	-0.262973
С	-3.389037	0.776956	0.267601
0	-3.163105	-0.267378	0.944551
С	-4.863144	1.144538	-0.006394
F	-5.630932	0.858271	1.057459
F	-5.296053	0.413216	-1.056139
F	-5.000360	2.442288	-0.301156

TS1a-B4

Low	est frequency =	-875.55 cm ⁻¹	
Cha	rge = 0, Multipl	icity = 1	
65			
0	-0.363737	1.052225	0.202486
Ν	-2.232132	1.125118	1.410814
С	-1.356123	0.426084	0.685040
С	-1.357717	-1.066045	0.388821
С	-2.504264	-1.806956	-0.598013
С	-3.729764	-1.004154	-0.952419
С	-5.004953	-1.510895	-0.633170
Н	-5.094076	-2.495908	-0.168917
С	-6.153276	-0.757649	-0.904011
Н	-7.137523	-1.166598	-0.654822
С	-6.043508	0.513926	-1.485367
Н	-6.941910	1.104403	-1.691540
С	-4.777280	1.022206	-1.806455
Н	-4.678720	2.011012	-2.265218

С	-3.625986	0.267257	-1.548634
Н	-2.646805	0.674347	-1.810485
С	-1.898208	2.562105	1.633418
Н	-2.404821	2.849122	2.568833
н	-0.808068	2.637085	1.774127
C	-2.343372	3,442940	0.464819
н	-2.098410	4,493805	0.690036
н	-1.801665	3 166143	-0.452925
н	-3 430406	3 365358	0 286675
Ċ	-3 5138//	0 6569/1	1 961950
н	-/ 236991	1 //73398	1 795623
н	-3 865602	-0 194920	1 368746
Ċ	-3 /1508/	0.194920	3 116683
ц	-2 706573	-0 525816	3 606477
и Ц	-2.700575	1 166207	1 015863
и П	-3.078384	0 007427	2 010000
П	-4.405907	-0.00/42/	1 060000
D	-2.344109	-2.200011	1 052204
D	-1.55/709	-3./40103	1 800404
п	-1.530910	-4.5/4//2	1.899494
В	-0.603//1	-2.1/9389	1.446435
Н	-0.301099	-1.//613/	2.530061
В	0.245569	-3.335444	0.3/8439
Н	1.242316	-3.8/9384	0.749601
В	0.01//26	-2./99144	-1.308689
Н	0.836929	-2.930937	-2.170463
В	-1.726150	-2.889354	-1.680888
Н	-2.225001	-3.001798	-2.760010
В	-2.566714	-3.474699	-0.227073
Н	-3.621040	-4.027858	-0.309882
В	-0.971496	-4.132773	-0.650757
Н	-0.867311	-5.262831	-1.031820
В	-0.972833	-1.338687	-1.280780
Н	-0.967165	-0.406740	-2.017977
В	0.257386	-1.592135	-0.013764
Н	1.665626	-1.234709	0.781180
Pd	1.395337	0.161840	-0.252952
0	1.609185	2.750757	1.269116
С	1.834455	2.932303	0.072740
0	2.006991	2.055777	-0.861927
С	1.828383	4.388533	-0.469186
F	2.204859	5.270639	0.474722
F	2.614512	4.566768	-1.546222
F	0.550729	4.710847	-0.837614
0	3.228998	-0.644766	-0.679106
С	3.567747	-1.466029	0.225681
0	2.855244	-1.808509	1.208070
С	4.936358	-2.161680	0.060635
F	5.532353	-2.326495	1.252545
F	4.733236	-3.379746	-0.487820
F	5.754758	-1.464656	-0.737163
Н	-3.215135	-2.001086	1.823206

TS2-B6

Lowest frequency = -802.10 cm^{-1} Charge = 1, Multiplicity = 1 79

0	0.376445	1.290307	0.672795
Ν	-1.545293	2.199312	0.022400
С	-0.719767	1.153782	0.019310
С	-0.894017	-0.149555	-0.746951
С	-1.086852	-1.633879	0.022956
С	-1.311090	-1.753493	1.510619
С	-1.465446	-0.630663	2.363131
Н	-1.661458	0.360218	1.950405
С	-1.554982	-0.804048	3.771889
Н	-1.813322	0.053060	4.404880
С	-1.491272	-2.105249	4.328921
Н	-1.560291	-2.238371	5.412338
С	-1.388957	-3.207099	3.477531
Н	-1.366568	-4.219424	3.890614
С	-1.303976	-3.033668	2.085593
Н	-1.208140	-3.910878	1.444038
С	-1.114522	3.388945	0.814406
Н	-1.698766	4.236572	0.429284
Н	-0.050396	3.573413	0.602870
С	-1.351429	3.203651	2.314352
Н	-1.100712	4.139471	2.840069
Н	-0.705050	2.408065	2.722007
Н	-2.407277	2.963102	2.526616
С	-2.822930	2.342664	-0.706459
Н	-3.565305	2.694057	0.030871
Н	-3.149323	1.351258	-1.029876
C	-2.721672	3.306174	-1.889708
Н	-1.966439	2,964916	-2.616098
Н	-2.468982	4.333013	-1.577453
Н	-3.700214	3,340084	-2.396367
В	-2.371535	-1.094610	-1.058749
В	-1.980442	-1.907268	-2.599833
Н	-2.891690	-2.167757	-3.327690
В	-1.448433	-0.237440	-2.350693
Н	-1.928652	0.745723	-2.821380
В	-0.371076	-1.391568	-3.178893
Н	-0.122970	-1.253107	-4.339752
B	0.851355	-1.957650	-1.994345
н	1,981781	-2,237748	-2,263401
B	-0.024658	-2.811332	-0.709584
н	0.420929	-3.651768	0.006202
B	-1.757603	-2.773956	-1.066241
н	-2 493879	-3,583508	-0.589754
B	-0.569456	-2.973251	-2 385499
н	-0 474647	-4 022200	-2 950153
R	0 534193	-1 154422	-0 457188
н	1 153916	-1 56360/	1 019377
R	0 30/698	-0 26/367	-1 986/70
ц	0.954690	0.204507	-1.00470
Dd	1 950107	-0 071537	0 7/13/0
ru A	7 364/71	-0.0/10/	0.741340
c	2,2044/I 2,02072	-1.4JUJJI _7 /51770	1 600010
n n	1 712/10	-2,+JI22J _) 6/7011	1 001679
r r	2 0/2076	-2.04/011 _3 5/7105	1 00/760
Ē	3 6/67/7	-7.74/102	1 217/00
F	2 221070	-4.005505	1.31/423 2 213634
Г	2.0212/0	-2./09342	5.512024

F	5.193853	-3.181900	1.719323
С	-3.833703	-0.735715	-0.619906
С	-4.726529	-0.330056	-1.644072
С	-4.359021	-0.827741	0.686466
С	-6.055269	0.000585	-1.368036
Н	-4.370371	-0.268238	-2.677796
С	-5.691563	-0.495488	0.961928
Н	-3.736982	-1.182547	1.510875
С	-6.566308	-0.069101	-0.055246
Н	-6.713161	0.310689	-2.187504
Н	-6.063953	-0.580101	1.989041
С	-8.010055	0.259525	0.235048
Н	-8.347601	1.134088	-0.346405
Н	-8.661008	-0.589213	-0.046688
Н	-8.172244	0.463549	1.305712
Ag	0.673949	-0.211681	3.377066
0	3.134822	1.368861	1.584473
С	3.205237	1.434534	2.844778
0	2.524851	0.816617	3.709911
С	4.227510	2.461834	3.405113
F	4.742311	2.038794	4.566203
F	5.222505	2.688218	2.541226
F	3.568873	3.624793	3.622227

TS2-B4

Lowest frequency = -828.67 cm⁻¹ Charge = 1, Multiplicity = 179 0 -0.289538 1.258080 0.057084 Ν -2.234915 2.264852 -0.318887 С -1.549926 1.288672 0.276612 С -2.038275 0.233626 1.260345 С -3.567177 -0.645464 1.385890 С -4.757275 -0.412918 0.496189 С -4.840721 -0.957305 -0.798923 Н -4.024357 -1.563768 -1.191615 С -5.981719 -0.745038 -1.583493 Н -6.031771 -1.176901 -2.587821 С -7.058953 -0.002173 -1.081765 Н -7.950967 0.157551 -1.695325 С -6.996425 0.517426 0.220324 Н -7.841233 1.078370 0.631463 С -5.857793 0.312992 1.005322 Н 0.718083 -5.822193 2.019686 С -1.4573493.190698 -1.195430 Н -0.666148 -0.531772 3.463408 Н -2.075736 4.093440 -1.302116 С -1.145544 2.584272 -2.564389 Н -0.655149 3.344976 -3.193657 Н -2.065906 2.256530 -3.077537 Н -0.454569 1.730071 -2.471119 С -3.666995 2.579246 -0.163400 Н -4.162455 1.713172 0.280958 Н -4.078999 2.690519 -1.181373С -3.913513 3.837215 0.671010 н -3.480465 4.739235 0.208109

H-5.0011933.9947200.759373B-2.111327-1.4370560.72892B-1.482090-2.3218212.237872H-0.906373-3.3539682.070323B-0.738009-0.7919581.767719H0.314993-1.5706950.771037B-1.020737-1.1302243.484990H-0.089758-1.2938314.216584B-2.510232-0.2526273.963202H-2.6849440.2220815.045662B-3.860963-0.9467853.042347H-5.004467-0.9508583.377936B-3.255884-2.2089701.961044H-3.924214-3.0779191.533707B-2.560795-2.0084363.614706H-2.781509-2.8325474.451429B-3.1344830.5913942.527855H-3.7129981.6288262.484824B-1.3687130.4895762.827751H-0.7871581.5230832.974823Pd1.014448-0.0428370.887988O2.6301901.1244930.205794C3.1771250.795991-0.884715O2.812408-0.073285-1.724493F5.3256570.842067-1.920433F5.0278412.159367-0.209077F4.0480862.607111-2.111135Ag0.861673-0.954006-1.864675O1.05329-	Н	-3.493516	3.730010	1.684455
B -2.111327 -1.437056 0.792892 B -1.482090 -2.321821 2.237872 H -0.996373 -3.353968 2.070323 B -0.738009 -0.791958 1.767719 H 0.314993 -1.570695 0.771037 B -1.020737 -1.130224 3.484990 H -0.689758 -1.293831 4.216584 B -2.510232 -0.252627 3.963202 H -2.684944 0.222081 5.045662 B -3.860963 -0.946785 3.042347 H -5.004467 -0.950858 3.377936 B -3.225884 -2.208970 1.961044 H -3.924214 -3.077919 1.533707 B -2.560795 -2.008436 3.614706 H -2.781509 -2.832547 4.451429 B -3.134483 0.591394 2.527855 H -3.712998 1.628826 2.484824 B -1	Н	-5.001193	3.994720	0.759373
B -1.482090 -2.321821 2.237872 H -0.906373 -3.353968 2.070323 B -0.738009 -0.791958 1.767719 H 0.314993 -1.570695 0.771037 B -1.020737 -1.130224 3.484990 H -0.089758 -1.293831 4.216584 B -2.510232 -0.252627 3.963202 H -2.684944 0.222081 5.045662 B -3.860963 -0.946785 3.042347 H -5.004467 -0.950858 3.377936 B -3.225884 -2.208970 1.961044 H -3.924214 -3.077919 1.533707 B -2.560795 -2.008436 3.614706 H -2.781509 -2.832547 4.451429 B -3.134483 0.591394 2.527855 H -3.712998 1.628826 2.847751 H -0.787158 1.523083 2.974823 O 2.6	В	-2.111327	-1.437056	0.792892
H-0.906373-3.3539682.070323B-0.738009-0.7919581.767719H0.314993-1.5706950.771037B-1.020737-1.1302243.484990H-0.089758-1.2938314.216584B-2.510232-0.2526273.963202H-2.6849440.2220815.045662B-3.860963-0.9467853.042347H-5.004467-0.9508583.377936B-3.225884-2.2089701.961044H-3.924214-3.0779191.533707B-2.560795-2.0084363.614706H-2.781509-2.8325474.451429B-3.1344830.5913942.527855H-3.7129981.6288262.484824B1.3687130.4895762.827751H-0.7871581.5230832.974823Pd1.014448-0.0428370.887988O2.6301901.1244930.205794C3.1771250.795991-0.884715O2.812408-0.073285-1.724149C4.4382231.613073-1.278093F5.3256570.842067-1.920433F5.0278412.159367-0.209077F4.0480862.607111-2.111135Ag0.861673-0.954006-1.864675O1.058329-2.8400200.490019C2.092659-2.5488251.146410O2.379761-1	В	-1.482090	-2.321821	2.237872
B -0.738009 -0.791958 1.767719 H 0.314993 -1.570695 0.771037 B -1.020737 -1.130224 3.484990 H -0.089758 -1.293831 4.216584 B -2.510232 -0.252627 3.963202 H -2.684944 0.222081 5.045662 B -3.860963 -0.946785 3.042347 H -5.064467 -0.950858 3.377936 B -3.225884 -2.208970 1.961044 H -3.924214 -3.077919 1.533707 B -2.560795 -2.008436 3.614706 H -2.781509 -2.832547 4.451429 B -3.134483 0.591394 2.527855 H -0.787158 1.523083 2.974823 Pd 1.014448 -0.042837 0.887988 O 2.630190 1.124493 0.205794 C 3.177125 0.795991 -0.884715 O 2.812	н	-0.906373	-3.353968	2.070323
H 0.314993 -1.570695 0.771037 B -1.020737 -1.130224 3.484990 H -0.089758 -1.293831 4.216584 B -2.510232 -0.252627 3.963202 H -2.684944 0.222081 5.045662 B -3.860963 -0.946785 3.042347 H -5.004467 -0.950858 3.377936 B -3.225884 -2.208970 1.961044 H -3.924214 -3.077919 1.533707 B -2.560795 -2.008436 3.614706 H -2.781509 -2.832547 4.451429 B -3.134483 0.591394 2.527855 H -3.712998 1.628826 2.484824 B -1.368713 0.489576 2.827751 H -0.787158 1.523083 2.974823 O 2.630190 1.124493 0.205794 C 3.177125 0.795991 -0.884715 O 2.812408 -0.073285 -1.724149 C 4.438223 1.6	В	-0.738009	-0.791958	1.767719
B -1.020737 -1.130224 3.484990 H -0.089758 -1.293831 4.216584 B -2.510232 -0.252627 3.963202 H -2.684944 0.222081 5.045662 B -3.860963 -0.946785 3.042347 H -5.004467 -0.950858 3.377936 B -3.225884 -2.208970 1.961044 H -3.924214 -3.077919 1.533707 B -2.560795 -2.008436 3.614706 H -2.781509 -2.832547 4.451429 B -3.134483 0.591394 2.527855 H -0.787158 1.523083 2.974823 Pd 1.014448 -0.042837 0.887988 O 2.630190 1.124493 0.205794 C 3.177125 0.795991 -0.884715 O 2.812408 -0.073285 -1.724149 C 4.438223 1.613073 -1.278093 F 5.325657 0.842067 -1.920433 F 5.027841 2.	H	0.314993	-1.570695	0.771037
H -0.089758 -1.293831 4.216584 B -2.510232 -0.252627 3.963202 H -2.684944 0.222081 5.045662 B -3.860963 -0.946785 3.042347 H -5.004467 -0.950858 3.377936 B -3.225884 -2.208970 1.961044 H -3.924214 -3.077919 1.533707 B -2.560795 -2.008436 3.614706 H -2.781509 -2.832547 4.451429 B -3.134483 0.591394 2.527855 H -3.712998 1.628826 2.848824 B -1.368713 0.489576 2.827751 H -0.787158 1.523083 2.974823 Pd 1.014448 -0.042837 0.887988 O 2.630190 1.124493 0.205794 C 3.177125 0.795991 -0.884715 O 2.812408 -0.073285 -1.724149 C 4.438223 1.613073 -1.278093 F 5.027841 2.1	B	-1.020737	-1.130224	3 484990
B -2.510232 -0.252627 3.963202 H -2.684944 0.222081 5.045662 B -3.860963 -0.946785 3.042347 H -5.004467 -0.950858 3.377936 B -3.225884 -2.208970 1.961044 H -3.924214 -3.077919 1.533707 B -2.560795 -2.008436 3.614706 H -2.781509 -2.832547 4.451429 B -3.134483 0.591394 2.527855 H -3.712998 1.628826 2.484824 B -1.368713 0.489576 2.827751 H -0.787158 1.523083 2.974823 Pd 1.014448 -0.042837 0.887988 O 2.630190 1.124493 0.205794 C 3.177125 0.795991 -0.884715 O 2.812408 -0.073285 -1.724149 C 4.438223 1.613073 -1.278093 F 5.027841 2.159367 -0.209077 F 4.048086 2.60	н	-0 089758	-1 293831	4 216584
H -2.684944 0.222081 5.045662 H -2.684944 0.222081 5.045662 B -3.860963 -0.946785 3.042347 H -5.004467 -0.950858 3.377936 B -3.225884 -2.208970 1.961044 H -3.924214 -3.077919 1.533707 B -2.560795 -2.008436 3.614706 H -2.781509 -2.832547 4.451429 B -3.134483 0.591394 2.527855 H -3.712998 1.628826 2.484824 B -1.368713 0.489576 2.827751 H -0.787158 1.523083 2.974823 Pd 1.014448 -0.042837 0.887988 O 2.630190 1.124493 0.205794 C 3.177125 0.795991 -0.884715 O 2.812408 -0.073285 -1.724149 C 4.438223 1.613073 -1.278093 F 5.027841 2.159367 -0.209077 F 4.048086 2.607	R	-2 510232	-0 252627	3 963202
B -3.860963 -0.946785 3.042347 H -5.004467 -0.950858 3.377936 B -3.225884 -2.208970 1.961044 H -3.924214 -3.077919 1.533707 B -2.560795 -2.008436 3.614706 H -2.781509 -2.832547 4.451429 B -3.134483 0.591394 2.527855 H -3.712998 1.628826 2.484824 B -1.368713 0.489576 2.827751 H -0.787158 1.523083 2.974823 Pd 1.014448 -0.042837 0.887988 O 2.630190 1.124493 0.205794 C 3.177125 0.795991 -0.884715 O 2.812408 -0.073285 -1.724149 C 4.438223 1.613073 -1.278093 F 5.027841 2.159367 0.209077 F 4.048086 2.607111 -2.111135 Ag 0.861673 -0.954006 -1.864675 O 1.058329 -2.8	н	-2 68/9//	0.232027	5 045662
B -5.004467 -0.950858 3.377936 B -3.225884 -2.208970 1.961044 H -3.924214 -3.077919 1.533707 B -2.560795 -2.008436 3.614706 H -2.781509 -2.832547 4.451429 B -3.134483 0.591394 2.527855 H -3.712998 1.628826 2.484824 B -1.368713 0.489576 2.827751 H -0.787158 1.523083 2.974823 Pd 1.014448 -0.042837 0.887988 O 2.630190 1.124493 0.205794 C 3.177125 0.795991 -0.884715 O 2.812408 -0.073285 -1.724149 C 4.438223 1.613073 -1.278093 F 5.027841 2.159367 -0.209077 F 4.048086 2.607111 -2.111135 Ag 0.861673 -0.954006 -1.864675 O 1.058329 -2.840020 0.490019 C 2.092659 -2.5	B	-3 860963	-0 946785	3 042347
B -3.225884 -2.208970 1.961044 H -3.924214 -3.077919 1.533707 B -2.560795 -2.008436 3.614706 H -2.781509 -2.832547 4.451429 B -3.134483 0.591394 2.527855 H -3.712998 1.628826 2.484824 B -1.368713 0.489576 2.827751 H -0.787158 1.523083 2.974823 Pd 1.014448 -0.042837 0.887988 O 2.630190 1.124493 0.205794 C 3.177125 0.795991 -0.884715 O 2.812408 -0.073285 -1.724149 C 4.438223 1.613073 -1.278093 F 5.027841 2.159367 -0.209077 F 4.048086 2.607111 -2.111135 Ag 0.861673 -0.954006 -1.864675 O 1.058329 -2.840020 0.490019 C 2.092659 -2.548825 1.146410 O 2.379761 -1.38	н	-5 001/67	-0 950858	3 377936
B -3.924214 -3.077919 1.533707 B -2.560795 -2.008436 3.614706 H -2.781509 -2.832547 4.451429 B -3.134483 0.591394 2.527855 H -3.712998 1.628826 2.484824 B -1.368713 0.489576 2.827751 H -0.787158 1.523083 2.974823 Pd 1.014448 -0.042837 0.887988 O 2.630190 1.124493 0.205794 C 3.177125 0.795991 -0.884715 O 2.812408 -0.073285 -1.724149 C 4.438223 1.613073 -1.278093 F 5.027841 2.159367 -0.209077 F 4.048086 2.607111 -2.111135 Ag 0.861673 -0.954006 -1.864675 O 1.058329 -2.840020 0.490019 C 2.092659 -2.548825 1.146410 O 2.379761 -1.389530 1.585197 C 3.082817 -3.696	R	-3 225884	-2 208970	1 961044
B -2.560795 -2.008436 3.614706 H -2.781509 -2.832547 4.451429 B -3.134483 0.591394 2.527855 H -3.712998 1.628826 2.484824 B -1.368713 0.489576 2.827751 H -0.787158 1.523083 2.974823 Pd 1.014448 -0.042837 0.887988 O 2.630190 1.124493 0.205794 C 3.177125 0.795991 -0.884715 O 2.812408 -0.073285 -1.724149 C 4.438223 1.613073 -1.278093 F 5.325657 0.842067 -1.920433 F 5.027841 2.159367 -0.209077 F 4.048086 2.607111 -2.111135 Ag 0.861673 -0.954006 -1.864675 O 1.058329 -2.840020 0.490019 C 2.092659 -2.548825 1.146410 O 2.379761 -1.389530 1.585197 C 3.082817 -3.6964	ц	-2 02/21/	-2.200570	1 522707
B -2.300793 -2.0004436 3.014700 H -2.781509 -2.832547 4.451429 B -3.134483 0.591394 2.527855 H -3.712998 1.628826 2.484824 B -1.368713 0.489576 2.827751 H -0.787158 1.523083 2.974823 Pd 1.014448 -0.042837 0.887988 O 2.630190 1.124493 0.205794 C 3.177125 0.795991 -0.884715 O 2.812408 -0.073285 -1.724149 C 4.438223 1.613073 -1.278093 F 5.027841 2.159367 -0.209077 F 4.048086 2.607111 -2.111135 Ag 0.861673 -0.954006 -1.864675 O 1.058329 -2.840020 0.490019 C 2.092659 -2.548825 1.146410 O 2.379761 -1.389530 1.585197 C 3.082817 -3.696424 1.463870 F 2.477731 -4.566		- 3. 924214	- 3.077919	2 614706
H-2.781369-2.8323474.431425B-3.1344830.5913942.527855H-3.7129981.6288262.484824B-1.3687130.4895762.827751H-0.7871581.5230832.974823Pd1.014448-0.0428370.887988O2.6301901.1244930.205794C3.1771250.795991-0.884715O2.812408-0.073285-1.724149C4.4382231.613073-1.278093F5.3256570.842067-1.920433F5.0278412.159367-0.209077F4.0480862.607111-2.111135Ag0.861673-0.954006-1.864675O1.058329-2.8400200.490019C2.092659-2.5488251.146410O2.379761-1.3895301.585197C3.082817-3.6964241.463870F4.198653-3.2464392.037101F2.477731-4.5668132.291356F3.398567-4.3296100.320148C-1.637447-3.357347-0.841374C-1.518320-1.140892-1.780064C-1.74380-3.903776-2.047726H-1.845504-4.032364-0.006802C-0.848552-3.092528-3.147537H-1.049695-4.988607-2.127231H-0.953894-1.041971-3.887107C-0.367818<	D LL	-2.500/95	-2.000430	J.014/00
B -3.134483 0.391394 2.327833 H -3.712998 1.628826 2.484824 B -1.368713 0.489576 2.827751 H -0.787158 1.523083 2.974823 Pd 1.014448 -0.042837 0.887988 O 2.630190 1.124493 0.205794 C 3.177125 0.795991 -0.884715 O 2.812408 -0.073285 -1.724149 C 4.438223 1.613073 -1.278093 F 5.325657 0.842067 -1.920433 F 5.027841 2.159367 -0.209077 F 4.048086 2.607111 -2.111135 Ag 0.861673 -0.954006 -1.864675 O 1.058329 -2.840020 0.490019 C 2.092659 -2.548825 1.146410 O 2.379761 -1.389530 1.585197 C 3.082817 -3.696424 1.463870 F 3.198567 -4.329610 0.320148 C -1.804391 -1.97004		-2./81509	-2.832547	
H-3.7129981.6288262.484824B-1.3687130.4895762.827751H-0.7871581.5230832.974823Pd1.014448-0.0428370.887988O2.6301901.1244930.205794C3.1771250.795991-0.884715O2.812408-0.073285-1.724149C4.4382231.613073-1.278093F5.3256570.842067-1.920433F5.0278412.159367-0.209077F4.0480862.607111-2.111135Ag0.861673-0.954006-1.864675O1.058329-2.8400200.490019C2.092659-2.5488251.146410O2.379761-1.3895301.585197C3.082817-3.6964241.463870F4.198653-3.2464392.037101F2.477731-4.5668132.291356F3.398567-4.3296100.320148C-1.637447-3.357347-0.841374C-1.518320-1.140892-1.780064C-1.174380-3.903776-2.047726H-1.845504-4.032364-0.006802C-1.044154-1.688653-3.005119H-1.765543-0.075502-1.755810C-0.848552-3.092528-3.147537H-1.049695-4.988607-2.127231H-0.953894-1.041971-3.887107C-0.367818 </td <td>В</td> <td>-3.134483</td> <td>0.591394</td> <td>2.52/855</td>	В	-3.134483	0.591394	2.52/855
B -1.368713 0.489576 2.827751 H -0.787158 1.523083 2.974823 Pd 1.014448 -0.042837 0.887988 O 2.630190 1.124493 0.205794 C 3.177125 0.795991 -0.884715 O 2.812408 -0.073285 -1.724149 C 4.438223 1.613073 -1.278093 F 5.325657 0.842067 -1.920433 F 5.027841 2.159367 -0.209077 F 4.048086 2.607111 -2.111135 Ag 0.861673 -0.954006 -1.864675 O 1.058329 -2.840020 0.490019 C 2.092659 -2.548825 1.146410 O 2.379761 -1.389530 1.585197 C 3.082817 -3.696424 1.463870 F 4.198653 -3.246439 2.037101 F 2.477731 -4.566813 2.291356 F 3.398567 -4.329610 0.320148 C -1.637447 -3.35734	н	-3./12998	1.628826	2.484824
H-0.7871581.5230832.974823Pd1.014448-0.0428370.887988O2.6301901.1244930.205794C3.1771250.795991-0.884715O2.812408-0.073285-1.724149C4.4382231.613073-1.278093F5.3256570.842067-1.920433F5.0278412.159367-0.209077F4.0480862.607111-2.111135Ag0.861673-0.954006-1.864675O1.058329-2.8400200.490019C2.092659-2.5488251.146410O2.379761-1.3895301.585197C3.082817-3.6964241.463870F4.198653-3.2464392.037101F2.477731-4.5668132.291356F3.398567-4.3296100.320148C-1.637447-3.357347-0.841374C-1.637447-3.357347-0.841374C-1.637447-3.357347-0.841374C-1.637447-3.357347-0.841374C-1.637447-3.357347-0.841374C-1.637447-3.357347-0.841374C-1.637447-3.3903776-2.047726H-1.765543-0.075502-1.755810C-0.848552-3.092528-3.147537H-1.049695-4.988607-2.127231H-0.953894-1.041971-3.887107C-0.367	В	-1.368/13	0.489576	2.82//51
Pd1.014448-0.0428370.88798802.6301901.1244930.205794C3.1771250.795991-0.88471502.812408-0.073285-1.724149C4.4382231.613073-1.278093F5.3256570.842067-1.920433F5.0278412.159367-0.209077F4.0480862.607111-2.111135Ag0.861673-0.954006-1.86467501.058329-2.8400200.490019C2.092659-2.5488251.14641002.379761-1.3895301.585197C3.082817-3.6964241.463870F4.198653-3.2464392.037101F2.477731-4.5668132.291356F3.398567-4.3296100.320148C-1.637447-3.357347-0.841374C-1.518320-1.140892-1.780064C-1.044154-1.688653-3.005119H-1.765543-0.075502-1.755810C-0.848552-3.092528-3.147537H-1.049695-4.988607-2.127231H-0.953894-1.041971-3.887107C-0.367818-3.681073-4.449242H0.114056-2.922531-5.086273H0.347601-4.501154-4.273151H-1.219548-4.105045-5.012906	н	-0./8/158	1.523083	2.9/4823
0 2.630190 1.124493 0.205794 C 3.177125 0.795991 -0.884715 0 2.812408 -0.073285 -1.724149 C 4.438223 1.613073 -1.278093 F 5.325657 0.842067 -1.920433 F 5.027841 2.159367 -0.209077 F 4.048086 2.607111 -2.111135 Ag 0.861673 -0.954006 -1.864675 0 1.058329 -2.840020 0.490019 C 2.092659 -2.548825 1.146410 0 2.379761 -1.389530 1.585197 C 3.082817 -3.696424 1.463870 F 4.198653 -3.246439 2.037101 F 2.477731 -4.566813 2.291356 F 3.398567 -4.329610 0.320148 C -1.637447 -3.357347 -0.841374 C -1.518320 -1.140892 -1.780064 C -1.044154 -1.688653 -3.005119 H -1.765543 -0.	Pd	1.014448	-0.042837	0.88/988
C3.1771250.795991-0.884715O2.812408-0.073285-1.724149C4.4382231.613073-1.278093F5.3256570.842067-1.920433F5.0278412.159367-0.209077F4.0480862.607111-2.111135Ag0.861673-0.954006-1.864675O1.058329-2.8400200.490019C2.092659-2.5488251.146410O2.379761-1.3895301.585197C3.082817-3.6964241.463870F4.198653-3.2464392.037101F2.477731-4.5668132.291356F3.398567-4.3296100.320148C-1.637447-3.357347-0.841374C-1.518320-1.140892-1.780064C-1.74380-3.903776-2.047726H-1.845504-4.032364-0.006802C-1.044154-1.688653-3.005119H-1.765543-0.075502-1.755810C-0.848552-3.092528-3.147537H-1.049695-4.988607-2.127231H-0.953894-1.041971-3.887107C-0.367818-3.681073-4.449242H0.114056-2.922531-5.086273H0.347601-4.501154-4.273151H-1.219548-4.105045-5.012906	0	2.630190	1.124493	0.205794
0 2.812408 -0.073285 -1.724149 C 4.438223 1.613073 -1.278093 F 5.325657 0.842067 -1.920433 F 5.027841 2.159367 -0.209077 F 4.048086 2.607111 -2.111135 Ag 0.861673 -0.954006 -1.864675 0 1.058329 -2.840020 0.490019 C 2.092659 -2.548825 1.146410 0 2.379761 -1.389530 1.585197 C 3.082817 -3.696424 1.463870 F 4.198653 -3.246439 2.037101 F 2.477731 -4.566813 2.291356 F 3.398567 -4.329610 0.320148 C -1.637447 -3.357347 -0.841374 C -1.518320 -1.140892 -1.78064 C -1.637447 -3.357347 -0.841374 C -1.518320 -1.140892 -1.78064 C -1.637447 -3.357347 -0.841374 C -1.644154	С	3.177125	0.795991	-0.884715
C 4.438223 1.613073 -1.278093 F 5.325657 0.842067 -1.920433 F 5.027841 2.159367 -0.209077 F 4.048086 2.607111 -2.111135 Ag 0.861673 -0.954006 -1.864675 O 1.058329 -2.840020 0.490019 C 2.092659 -2.548825 1.146410 O 2.379761 -1.389530 1.585197 C 3.082817 -3.696424 1.4638700 F 4.198653 -3.246439 2.037101 F 2.477731 -4.566813 2.291356 F 3.398567 -4.329610 0.320148 C -1.804391 -1.970046 -0.661915 C -1.637447 -3.357347 -0.841374 C -1.518320 -1.140892 -1.780064 C -1.174380 -3.903776 -2.047726 H -1.845504 -4.032364 -0.006802 C -1.044154 -1.688653 -3.005119 H -1.765543 -0.075502 -1.755810 C -0.848552 -3.092528 -3.147537 H -1.049695 -4.988607 -2.127231 H -0.953894 -1.041971 -3.887107 C -0.367818 -3.681073 -4.449242 H 0.114056 -2.922531 -5.086273 H 0.347601 -4.501154 -4.273151 H -1.219548 -4.105045 -5.012906	0	2.812408	-0.073285	-1.724149
F5.3256570.842067-1.920433F5.0278412.159367-0.209077F4.0480862.607111-2.111135Ag0.861673-0.954006-1.864675O1.058329-2.8400200.490019C2.092659-2.5488251.146410O2.379761-1.3895301.585197C3.082817-3.6964241.463870F4.198653-3.2464392.037101F2.477731-4.5668132.291356F3.398567-4.3296100.320148C-1.637447-3.357347-0.841374C-1.518320-1.140892-1.780064C-1.174380-3.903776-2.047726H-1.845504-4.032364-0.006802C-1.044154-1.688653-3.005119H-1.765543-0.075502-1.755810C-0.848552-3.092528-3.147537H-1.049695-4.988607-2.127231H-0.953894-1.041971-3.887107C-0.367818-3.681073-4.449242H0.114056-2.922531-5.086273H0.347601-4.501154-4.273151H-1.219548-4.105045-5.012906	С	4.438223	1.613073	-1.278093
F5.0278412.159367-0.209077F4.0480862.607111-2.111135Ag0.861673-0.954006-1.864675O1.058329-2.8400200.490019C2.092659-2.5488251.146410O2.379761-1.3895301.585197C3.082817-3.6964241.463870F4.198653-3.2464392.037101F2.477731-4.5668132.291356F3.398567-4.3296100.320148C-1.637447-3.357347-0.841374C-1.518320-1.140892-1.780064C-1.174380-3.903776-2.047726H-1.765543-0.075502-1.755810C-0.848552-3.092528-3.147537H-1.049695-4.988607-2.127231H-0.953894-1.041971-3.887107C-0.367818-3.681073-4.449242H0.114056-2.922531-5.086273H-1.219548-4.105045-5.012906	F	5.325657	0.842067	-1.920433
F4.0480862.607111-2.111135Ag0.861673-0.954006-1.864675O1.058329-2.8400200.490019C2.092659-2.5488251.146410O2.379761-1.3895301.585197C3.082817-3.6964241.463870F4.198653-3.2464392.037101F2.477731-4.5668132.291356F3.398567-4.3296100.320148C-1.637447-3.357347-0.841374C-1.518320-1.140892-1.780064C-1.174380-3.903776-2.047726H-1.765543-0.075502-1.755810C-0.848552-3.092528-3.147537H-1.049695-4.988607-2.127231H-0.953894-1.041971-3.887107C-0.367818-3.681073-4.449242H0.114056-2.922531-5.086273H-1.219548-4.105045-5.012906	F	5.027841	2.159367	-0.209077
Ag0.861673-0.954006-1.86467501.058329-2.8400200.490019C2.092659-2.5488251.14641002.379761-1.3895301.585197C3.082817-3.6964241.463870F4.198653-3.2464392.037101F2.477731-4.5668132.291356F3.398567-4.3296100.320148C-1.804391-1.970046-0.661915C-1.637447-3.357347-0.841374C-1.518320-1.140892-1.780064C-1.174380-3.903776-2.047726H-1.845504-4.032364-0.006802C-1.044154-1.688653-3.005119H-1.765543-0.075502-1.755810C-0.848552-3.092528-3.147537H-1.049695-4.988607-2.127231H-0.953894-1.041971-3.887107C-0.367818-3.681073-4.449242H0.114056-2.922531-5.086273H0.347601-4.501154-4.273151H-1.219548-4.105045-5.012906	F	4.048086	2.607111	-2.111135
01.058329-2.8400200.490019C2.092659-2.5488251.14641002.379761-1.3895301.585197C3.082817-3.6964241.463870F4.198653-3.2464392.037101F2.477731-4.5668132.291356F3.398567-4.3296100.320148C-1.804391-1.970046-0.661915C-1.637447-3.357347-0.841374C-1.518320-1.140892-1.780064C-1.174380-3.903776-2.047726H-1.845504-4.032364-0.006802C-1.044154-1.688653-3.005119H-1.765543-0.075502-1.755810C-0.848552-3.092528-3.147537H-1.049695-4.988607-2.127231H-0.953894-1.041971-3.887107C-0.367818-3.681073-4.449242H0.114056-2.922531-5.086273H-1.219548-4.105045-5.012906	Ag	0.861673	-0.954006	-1.864675
C2.092659-2.5488251.146410O2.379761-1.3895301.585197C3.082817-3.6964241.463870F4.198653-3.2464392.037101F2.477731-4.5668132.291356F3.398567-4.3296100.320148C-1.804391-1.970046-0.661915C-1.637447-3.357347-0.841374C-1.518320-1.140892-1.780064C-1.174380-3.903776-2.047726H-1.845504-4.032364-0.006802C-1.044154-1.688653-3.005119H-1.765543-0.075502-1.755810C-0.848552-3.092528-3.147537H-1.049695-4.988607-2.127231H-0.953894-1.041971-3.887107C-0.367818-3.681073-4.449242H0.114056-2.922531-5.086273H-1.219548-4.105045-5.012906	0	1.058329	-2.840020	0.490019
02.379761-1.3895301.585197C3.082817-3.6964241.463870F4.198653-3.2464392.037101F2.477731-4.5668132.291356F3.398567-4.3296100.320148C-1.804391-1.970046-0.661915C-1.637447-3.357347-0.841374C-1.518320-1.140892-1.780064C-1.174380-3.903776-2.047726H-1.845504-4.032364-0.006802C-1.044154-1.688653-3.005119H-1.765543-0.075502-1.755810C-0.848552-3.092528-3.147537H-1.049695-4.988607-2.127231H-0.953894-1.041971-3.887107C-0.367818-3.681073-4.449242H0.114056-2.922531-5.086273H-0.347601-4.501154-4.273151H-1.219548-4.105045-5.012906	С	2.092659	-2.548825	1.146410
C3.082817-3.6964241.463870F4.198653-3.2464392.037101F2.477731-4.5668132.291356F3.398567-4.3296100.320148C-1.804391-1.970046-0.661915C-1.637447-3.357347-0.841374C-1.518320-1.140892-1.780064C-1.174380-3.903776-2.047726H-1.845504-4.032364-0.006802C-1.044154-1.688653-3.005119H-1.765543-0.075502-1.755810C-0.848552-3.092528-3.147537H-1.049695-4.988607-2.127231H-0.953894-1.041971-3.887107C-0.367818-3.681073-4.449242H0.114056-2.922531-5.086273H-1.219548-4.105045-5.012906	0	2.379761	-1.389530	1.585197
F4.198653-3.2464392.037101F2.477731-4.5668132.291356F3.398567-4.3296100.320148C-1.804391-1.970046-0.661915C-1.637447-3.357347-0.841374C-1.518320-1.140892-1.780064C-1.174380-3.903776-2.047726H-1.845504-4.032364-0.006802C-1.044154-1.688653-3.005119H-1.765543-0.075502-1.755810C-0.848552-3.092528-3.147537H-1.049695-4.988607-2.127231H-0.953894-1.041971-3.887107C-0.367818-3.681073-4.449242H0.114056-2.922531-5.086273H-1.219548-4.105045-5.012906	С	3.082817	-3.696424	1.463870
F2.477731-4.5668132.291356F3.398567-4.3296100.320148C-1.804391-1.970046-0.661915C-1.637447-3.357347-0.841374C-1.518320-1.140892-1.780064C-1.174380-3.903776-2.047726H-1.845504-4.032364-0.006802C-1.044154-1.688653-3.005119H-1.765543-0.075502-1.755810C-0.848552-3.092528-3.147537H-1.049695-4.988607-2.127231H-0.953894-1.041971-3.887107C-0.367818-3.681073-4.449242H0.114056-2.922531-5.086273H-1.219548-4.105045-5.012906	F	4.198653	-3.246439	2.037101
F3.398567-4.3296100.320148C-1.804391-1.970046-0.661915C-1.637447-3.357347-0.841374C-1.518320-1.140892-1.780064C-1.174380-3.903776-2.047726H-1.845504-4.032364-0.006802C-1.044154-1.688653-3.005119H-1.765543-0.075502-1.755810C-0.848552-3.092528-3.147537H-1.049695-4.988607-2.127231H-0.953894-1.041971-3.887107C-0.367818-3.681073-4.449242H0.114056-2.922531-5.086273H-1.219548-4.105045-5.012906	F	2.477731	-4.566813	2.291356
C -1.804391 -1.970046 -0.661915 C -1.637447 -3.357347 -0.841374 C -1.518320 -1.140892 -1.780064 C -1.174380 -3.903776 -2.047726 H -1.845504 -4.032364 -0.006802 C -1.044154 -1.688653 -3.005119 H -1.765543 -0.075502 -1.755810 C -0.848552 -3.092528 -3.147537 H -1.049695 -4.988607 -2.127231 H -0.953894 -1.041971 -3.887107 C -0.367818 -3.681073 -4.449242 H 0.114056 -2.922531 -5.086273 H 0.347601 -4.501154 -4.273151 H -1.219548 -4.105045 -5.012906	F	3.398567	-4.329610	0.320148
C -1.637447 -3.357347 -0.841374 C -1.518320 -1.140892 -1.780064 C -1.174380 -3.903776 -2.047726 H -1.845504 -4.032364 -0.006802 C -1.044154 -1.688653 -3.005119 H -1.765543 -0.075502 -1.755810 C -0.848552 -3.092528 -3.147537 H -1.049695 -4.988607 -2.127231 H -0.953894 -1.041971 -3.887107 C -0.367818 -3.681073 -4.449242 H 0.114056 -2.922531 -5.086273 H 0.347601 -4.501154 -4.273151 H -1.219548 -4.105045 -5.012906	С	-1.804391	-1.970046	-0.661915
C -1.518320 -1.140892 -1.780064 C -1.174380 -3.903776 -2.047726 H -1.845504 -4.032364 -0.006802 C -1.044154 -1.688653 -3.005119 H -1.765543 -0.075502 -1.755810 C -0.848552 -3.092528 -3.147537 H -1.049695 -4.988607 -2.127231 H -0.953894 -1.041971 -3.887107 C -0.367818 -3.681073 -4.449242 H 0.114056 -2.922531 -5.086273 H 0.347601 -4.501154 -4.273151 H -1.219548 -4.105045 -5.012906	С	-1.637447	-3.357347	-0.841374
C -1.174380 -3.903776 -2.047726 H -1.845504 -4.032364 -0.006802 C -1.044154 -1.688653 -3.005119 H -1.765543 -0.075502 -1.755810 C -0.848552 -3.092528 -3.147537 H -1.049695 -4.988607 -2.127231 H -0.953894 -1.041971 -3.887107 C -0.367818 -3.681073 -4.449242 H 0.114056 -2.922531 -5.086273 H 0.347601 -4.501154 -4.273151 H -1.219548 -4.105045 -5.012906	С	-1.518320	-1.140892	-1.780064
H-1.845504-4.032364-0.006802C-1.044154-1.688653-3.005119H-1.765543-0.075502-1.755810C-0.848552-3.092528-3.147537H-1.049695-4.988607-2.127231H-0.953894-1.041971-3.887107C-0.367818-3.681073-4.449242H0.114056-2.922531-5.086273H-0.347601-4.501154-4.273151H-1.219548-4.105045-5.012906	С	-1.174380	-3.903776	-2.047726
C -1.044154 -1.688653 -3.005119 H -1.765543 -0.075502 -1.755810 C -0.848552 -3.092528 -3.147537 H -1.049695 -4.988607 -2.127231 H -0.953894 -1.041971 -3.887107 C -0.367818 -3.681073 -4.449242 H 0.114056 -2.922531 -5.086273 H 0.347601 -4.501154 -4.273151 H -1.219548 -4.105045 -5.012906	Н	-1.845504	-4.032364	-0.006802
H-1.765543-0.075502-1.755810C-0.848552-3.092528-3.147537H-1.049695-4.988607-2.127231H-0.953894-1.041971-3.887107C-0.367818-3.681073-4.449242H0.114056-2.922531-5.086273H0.347601-4.501154-4.273151H-1.219548-4.105045-5.012906	С	-1.044154	-1.688653	-3.005119
C -0.848552 -3.092528 -3.147537 H -1.049695 -4.988607 -2.127231 H -0.953894 -1.041971 -3.887107 C -0.367818 -3.681073 -4.449242 H 0.114056 -2.922531 -5.086273 H 0.347601 -4.501154 -4.273151 H -1.219548 -4.105045 -5.012906	Н	-1.765543	-0.075502	-1.755810
H-1.049695-4.988607-2.127231H-0.953894-1.041971-3.887107C-0.367818-3.681073-4.449242H0.114056-2.922531-5.086273H0.347601-4.501154-4.273151H-1.219548-4.105045-5.012906	С	-0.848552	-3.092528	-3.147537
H-0.953894-1.041971-3.887107C-0.367818-3.681073-4.449242H0.114056-2.922531-5.086273H0.347601-4.501154-4.273151H-1.219548-4.105045-5.012906	Н	-1.049695	-4.988607	-2.127231
C -0.367818 -3.681073 -4.449242 H 0.114056 -2.922531 -5.086273 H 0.347601 -4.501154 -4.273151 H -1.219548 -4.105045 -5.012906	Н	-0.953894	-1.041971	-3.887107
H 0.114056 -2.922531 -5.086273 H 0.347601 -4.501154 -4.273151 H -1.219548 -4.105045 -5.012906	Ċ	-0.367818	-3.681073	-4.449242
H 0.347601 -4.501154 -4.273151 H -1.219548 -4.105045 -5.012906	H	0.114056	-2.922531	-5.086273
Н -1.219548 -4.105045 -5.012906	Н	0.347601	-4.501154	-4.273151
	H	-1.219548	-4.105045	-5.012906

TS2a-B6

Lowest frequency = -652.59 cm^{-1} Charge = 0, Multiplicity = 1 78

0	0.200359	1.184047	0.519675
Ν	-1.497228	2.252731	-0.453524
С	-0.792767	1.135918	-0.277250
С	-1.033581	-0.199274	-0.977791
С	-1.112021	-1.543006	0.014392
С	-1.192885	-1.335932	1.508998
С	-1.885459	-0.245601	2.068224
Н	-2.422039	0.456246	1.426737
С	-1.920749	-0.056011	3.453061
Н	-2.463148	0.801257	3.863946
С	-1.268758	-0.958080	4.304920
Н	-1.293052	-0.808726	5.389030
С	-0.585675	-2.051802	3.757339
Н	-0.070306	-2.764088	4.408934
С	-0.544771	-2.240499	2.370335
Н	0.005105	-3.087186	1.957201
С	-0.990278	3,482001	0.216753
Н	-1.449257	4.326621	-0.319323
н	0.094787	3.521951	0.048649
С	-1.337210	3.525904	1.704804
H	-0.961516	4,470749	2.131875
н	-0.858467	2,691663	2.240985
Н	-2.428952	3.482136	1.867309
C	-2.707327	2,412295	-1.271888
H	-3.430203	2,982622	-0.662821
Н	-3.146187	1,424856	-1.434989
C	-2.423100	3.121292	-2,597507
H	-1.686283	2,557479	-3.191614
Н	-2.032131	4.140473	-2,441795
н	-3.359196	3,197663	-3.175959
В	-2.525889	-1.165188	-0.990162
В	-2.317428	-2.194136	-2.422901
Н	-3.312199	-2.539146	-2.992729
В	-1.772108	-0.511106	-2.481246
Н	-2.316687	0.378805	-3.055573
В	-0.790657	-1.780450	-3.249241
Н	-0.682385	-1.820859	-4.440949
B	0.561400	-2.175481	-2.146875
н	1.652053	-2.510837	-2.508839
B	-0.152801	-2.821770	-0.652102
н	0.372703	-3.588558	0.088304
B	-1.909582	-2.825495	-0.809250
н	-2.570931	-3.557783	-0.136082
B	-0.882843	-3,225335	-2, 213740
н	-0.841139	-4 347842	-2.628372
B	0.442159	-1.157858	-0.717770
н	1 574145	-1.483650	0.660687
B	0.005401	-0.488554	-2, 320948
н	0.000401	0.455109	-2 718586
Pd	1 843751	0.455105	0 105706
0	1.850291	2.666668	-1,256924
č	2.658093	2.724607	-0.321719
õ	3,036729	1.778389	0.460299
č	3,232381	4.117448	0.052067
F	4,358108	4,061292	0.783209
F	2.293917	4.782314	0.794116
		-	-

F	3.478160	4.862403	-1.041658
0	3.504272	-1.041163	-0.325781
С	3.440063	-2.169066	0.256483
0	2.497117	-2.569476	0.985141
С	4.590033	-3.154649	-0.047586
F	4.812443	-3.970067	0.995743
F	5.728604	-2.515194	-0.343713
F	4.229867	-3.909616	-1.109608
С	-3.960503	-0.795228	-0.452533
С	-4.875633	-0.142123	-1.308988
С	-4.467780	-1.263600	0.780334
С	-6.200397	0.098094	-0.926840
Н	-4.554994	0.161015	-2.312020
С	-5.791565	-1.025652	1.163865
Н	-3.824645	-1.839010	1.451234
С	-6.681396	-0.324854	0.326451
Н	-6.878150	0.606950	-1.621917
Н	-6.145362	-1.404897	2.129528
С	-8.100316	-0.041172	0.759549
Н	-8.757482	0.141750	-0.106726
Н	-8.517005	-0.879151	1.343966
Н	-8.140047	0.858212	1.403384

TS2a-B4

Lowest frequency = -844.18 cm⁻¹ Charge = 0, Multiplicity = 178 0 0.676732 0.018390 1.058923 Ν 1.605411 2.257361 -0.345554 С 0.883431 1.140403 -0.255086 С 0.947328 -0.089804 -1.154059 С 2.297940 -0.958144 -1.533360 С 3.653958 -0.434809 -1.120414 С 4.730291 -0.502021 -2.026254 Н 4.578158 -0.943453 -3.012734 С 5.989859 -0.002435 -1.673262 Н 6.813215 -0.065181 -2.391768 С 6.194484 0.575563 -0.412783 Н 7.179444 -0.138411 0.966748 С 5.128410 0.645194 0.494210 Н 5.272612 1.086502 1.485520 С 3.869212 0.142203 0.147443 Н 3.060035 0.196870 0.875890 С 0.675910 1.332349 3.304858 Н 1.717523 4.246525 0.256380 Н 0.243361 3.400126 0.776914 С 2.002376 2.983849 2.012307 Н 1.782370 3.789664 2.732475 Н 1.615191 2.038418 2.425667 Н 3.098248 2.906334 1.903273 С 2.553030 2.637148 -1.407552Н 3.390651 3.154440 -0.910365 Н 2.970909 1.732660 -1.860868 С 1.882062 3.527919 -2.455606 Н 1.047215 2.996526 -2.939854 Н 1.475613 4.448359 -2.005211

Н	2.621217	3.811191	-3.223878
В	1.447408	-0.101211	-2.801082
В	0.424357	-1.289190	-3.599346
Н	0.177524	-1.142846	-4.761370
В	-0.275145	-0.217127	-2.364744
Н	-0.950689	0.752883	-2.534957
В	-0.727893	-1.941987	-2.398271
Н	-1.845293	-2.264748	-2.684483
В	0.206920	-2.789472	-1.135495
Н	-0.196139	-3.727545	-0.516384
В	1.929127	-2.638101	-1.545773
Н	2.808163	-3.380026	-1.227582
В	2.061223	-1.733684	-3.058073
Н	3.002924	-1.883430	-3.773803
В	0.722560	-2.875819	-2.837854
Н	0.696786	-3.899232	-3.458922
В	1.217930	-1.622832	-0.260651
В	-0.407305	-1.145061	-0.841821
Н	-1.499973	-1.650801	0.391350
Pd	-1.714563	0.083986	0.200298
0	-1.557909	2.874308	-0.841585
С	-2.343193	2.834727	0.112653
0	-2.756161	1.813662	0.776302
С	-2.849122	4.185313	0.688948
F	-4.009404	4.088243	1.359563
F	-1.908235	4.658490	1.563691
F	-2.998097	5.112267	-0.275819
0	-3.467815	-0.872847	-0.267481
С	-3.408292	-2.094462	0.063696
0	-2.409028	-2.667541	0.579132
С	-4.637688	-2.964220	-0.276736
F	-4.798247	-3.943197	0.627606
F	-5.759832	-2.234787	-0.325004
F	-4.438205	-3.529476	-1.487785
Н	1.958723	0.860401	-3.270341
С	1.677905	-1.754724	1.237979
С	2.884375	-2.425300	1.549617
С	0.895422	-1.309834	2.325526
С	3.299712	-2.610978	2.870791
Н	3.519699	-2.799681	0.741494
С	1.310972	-1.496691	3.649454
Н	-0.056192	-0.804615	2.140920
С	2.522268	-2.146478	3.950060
Н	4.245223	-3.128825	3.069515
Н	0.675508	-1.132837	4.464951
С	2.954557	-2.376097	5.379059
Н	2.534415	-1.612819	6.055178
Н	2.604559	-3.363165	5.736788
Н	4.053625	-2.363904	5.475001

TS3-B6

105-	DU		
Low	est frequency =	$= -42.63 \text{ cm}^{-1}$	
Char	ge = 1, Multipl	icity = 1	
86		-	
0	0.330778	-1.169366	1.857555
Ν	2.475130	-1.765312	1.955053

С	1.407603	-1.440080	1.227467
С	1.315278	-1.398580	-0.290441
С	0.679073	-0.016994	-0.939709
С	0.522236	1.220191	-0.088956
С	1.376675	1.505667	0.989559
Н	2.198202	0.830158	1.231673
Ċ	1 225403	2.676556	1 747543
н	1 907372	2.867071	2.580861
Ċ	0 215502	3 59/361	1 //1587
ц	0.215502	1 506108	2 022621
Ċ	0.004007	2 246096	0 247220
с u	1 200022	2.242902	0.54/250
п С	-1.300923	4.092/03	0.044007
	-0.469505	2.104017	-0.422079
П	-1.0/9626	2.025982	-1.330894
C	2.293978	-1.803151	3.434632
н	3.0/8689	-2.4/1/06	3.819660
Н	1.311828	-2.251512	3.645426
C	2.392495	-0.412649	4.064883
Н	2.312447	-0.506521	5.159842
Н	1.567011	0.230162	3.721649
Н	3.357177	0.068664	3.827582
С	3.824429	-2.085575	1.457400
Н	4.533594	-1.536414	2.099962
Н	3.925941	-1.669036	0.451888
С	4.113142	-3.587096	1.474907
Н	3.404812	-4.131843	0.829621
Н	4.053261	-4.006137	2.493268
Н	5.133843	-3.762437	1.096540
В	2.343444	-0.456870	-1.427762
В	2.105676	-1.315532	-2.957613
н	3.007938	-1.274872	-3.740880
В	2.233605	-2.245619	-1.452128
н	3.171616	-2.886007	-1.095090
B	1.073884	-2.745818	-2.708393
н	1 235033	-3 765963	-3 311511
B	-0 5/15775	-2 18133/	-2 2213/7
Ц	-0.545775	-2,101554	-2,221347
P	-0.407202	-0 100530	-2.515525
ы	1 40061	-0.409559 0.2020E0	2,134273
п	-1.422051	0.323239	-2.29//30
Б	1.120/72	0.120/53	-2.591227
	1.280820	1.238833	-2.995901
В	0.388118	-1.261624	-3.422259
н	0.034612	-1.1/1553	-4.560927
В	-0.446609	-1.38/22/	-0.65/108
В	0.596385	-2.793767	-0.992271
Н	0.482347	-3.748661	-0.281321
Pd	-1.545799	-1.344637	1.059818
0	-1.922013	1.073318	3.445040
С	-2.010777	-0.119411	3.840957
0	-2.193586	-1.171063	3.168645
С	-1.815493	-0.357377	5.362143
F	-2.697727	-1.255258	5.832311
F	-1.925900	0.769725	6.074065
F	-0.563599	-0.859093	5.559075
С	3.631312	0.383665	-1.114151
С	4.894212	-0.254009	-1.128471

С	3.633447	1.794911	-1.030885
С	6.084395	0.467181	-0.990208
Н	4.954037	-1.336169	-1.290056
С	4.822598	2.517632	-0.892316
Н	2.693992	2.349536	-1.101245
С	6.072716	1.869028	-0.851100
Н	7.041867	-0.064953	-1.013648
Н	4.781678	3.611081	-0.834997
С	7.352749	2.648147	-0.672939
Н	7.597104	2.750989	0.401500
Н	8.203480	2.140853	-1.156861
Н	7.266209	3.665187	-1.089491
Ag	-2.014913	1.405234	1.277604
I	-3.744152	-0.513251	-0.274977
С	-3.317078	-2.622288	0.732026
С	-2.935291	-3.668245	-0.121400
С	-4.056450	-2.847000	1.910187
С	-3.199240	-4.984616	0.286926
Н	-2.439258	-3.471614	-1.071854
С	-4.312057	-4.167474	2.277150
Н	-4.387076	-2.019197	2.538436
С	-3.885412	-5.258733	1.483316
Н	-2.872929	-5.807219	-0.358267
Н	-4.863845	-4.353394	3.205036
С	-4.177627	-6.673751	1.913436
Н	-5.254940	-6.809559	2.114017
Н	-3.870542	-7.402429	1.147287
Н	-3.642095	-6.911547	2.850786

TS3-B4

Lowest frequency = -36.850 cm^{-1} Charge = 1, Multiplicity = 1 86 0 0.591412 0.950527

0	0.591412	0.950527	1.273328
Ν	2.574791	1.375412	2.196122
С	1.831490	1.184303	1.104232
С	2.251006	1.258652	-0.355509
С	3.608489	0.423917	-1.205150
С	4.703325	-0.358009	-0.536060
С	5.881567	0.296786	-0.114628
Н	5.975453	1.379394	-0.234220
С	6.949098	-0.430397	0.421246
Н	7.854725	0.095179	0.739271
С	6.867934	-1.826889	0.526302
Н	7.704272	-2.396562	0.943163
С	5.724869	-2.490623	0.060445
Н	5.667726	-3.582731	0.098805
С	4.655154	-1.765418	-0.477434
Н	3.792834	-2.300787	-0.874977
С	1.868039	1.307295	3.508236
Н	2.486794	1.881103	4.214798
Н	0.897760	1.813777	3.397404
С	1.667037	-0.129615	3.992121
Н	1.198923	-0.110827	4.989551
Н	0.994878	-0.679603	3.315831
Н	2.629077	-0.665408	4.070575

С	4.014733	1.673562	2.249435
Н	4.438622	1.040514	3.047719
Н	4.470215	1.338039	1.313796
С	4.301754	3.153000	2.509630
Н	3.884492	3.782941	1.706825
н	3.880065	3.490089	3.471211
н	5,392622	3,310638	2.545548
B	3.557788	2.143317	-1.021749
B	2.963678	2 782753	-2.572278
н	3 355094	3 839015	-2 972730
B	1 863680	2 701264	_1 176351
ц	1 531254	3 624260	-0 102660
D D	1 280860	2 202920	-2 794654
ц	0 180102	2.203074	-2.794094
D	1 222054	2.041107	-3.399679 רסרדכס ר
D	1.525054	0.416919	-2.05/202
	0.00020	-0.246270	-3.46/281
В	3.012264	-0.096563	-2.695925
н	3.448266	-1.129126	-3.106468
В	4.026829	1.36434/	-2.551501
Н	5.183149	1.351775	-2.844813
В	2.611763	1.374759	-3.625092
Н	2.749943	1.400293	-4.812458
В	1.935848	-0.172537	-1.260773
В	0.825839	1.268788	-1.363103
Pd	-0.847610	1.154358	-0.177972
Н	4.324466	2.686613	-0.296385
С	1.476569	-1.518837	-0.575376
С	0.663211	-2.422729	-1.323271
С	1.805528	-1.899781	0.742179
С	0.182409	-3.623838	-0.740911
Н	0.480931	-2.230154	-2.385764
С	1.345071	-3.094680	1.310447
Н	2.459807	-1.262443	1.343252
С	0.508662	-3.971514	0.594752
н	-0.398771	-4.321806	-1.354318
н	1.630794	-3.345477	2,337287
Ċ	-0.046522	-5.220579	1,229310
н	0 652713	-5 6378/9	1 971873
Ц	-0 989731	-1 986100	1 757886
Ц	-0.268350	-5 003876	0 176128
с Г	-0.208550	-J.995070 2 4E1472	1 002000
c c	2 5 2 2 1 0 1	2.451472	-1.002055
C C	- 3. 336191	2.555505	1 619042
	-1./20/45	2.22//00	-1.010945
C II	-3.920/58	3.8856/6	0.108062
Н	-4.080048	1.726504	0.11/160
C	-2.134583	4.840779	-1.219218
Н	-0.90/4/1	3.430/21	-2.324494
C	-3.227303	5.029136	-0.355249
Н	-4.785911	4.006040	0.769163
Н	-1.589925	5.706969	-1.609858
C	-3.668806	6.408921	0.062967
Н	-3.558184	6.537443	1.155179
Н	-3.079203	7.192565	-0.437749
Н	-4.735352	6.569343	-0.174466
I	-2.353904	0.448352	-2.312610
Ag	-1.324396	-1.593495	-0.325559

0	-2.239478	0.857431	1.525845
С	-2.334225	-0.241496	2.135982
0	-2.108821	-1.408629	1.717287
С	-2.730480	-0.113738	3.631044
F	-1.638611	0.309618	4.328982
F	-3.706411	0.793687	3.804183
F	-3.128790	-1.279022	4.156257
тс2/	D D C		
Low	est frequency =	= -91.68 cm ⁻¹	
Cha	rge = 1 Multipl	licity $= 1$	
70	ige i, munp	lieity i	
/0	0 245010	1 000000	1 1 4 4 4 5 0
0	-0.245810	1.088329	-1.164459
N	1.534819	2.4182/3	-0.91/642
C	0./8/838	1.404822	-0.4816/0
C	1.004280	0.626720	0.808117
C	1.075877	-1.042909	0.671639
С	1.152355	-1.618761	-0.723970
С	0.405150	-2.768269	-1.047222
Н	-0.201426	-3.254831	-0.281886
С	0.436087	-3.291822	-2.345602
Н	-0.148127	-4.187567	-2.576776
С	1.205810	-2.672952	-3.340086
Н	1.228105	-3.082833	-4.354511
С	1.951818	-1.528503	-3.025136
Н	2.565629	-1.041922	-3.789317
С	1.926184	-1.005593	-1.727789
Н	2.533949	-0.128099	-1.496938
С	1.095286	3.097871	-2.165934
Н	-0.001523	3,178948	-2.136436
Н	1.520991	4.112026	-2.128171
C	1.554902	2.351529	-3.419744
н	1,252149	2,920776	-4.314206
н	2,653007	2,242803	-3,440365
н	1 094495	1 352206	-3 470062
Ċ	2 782279	2 920822	-0 31/162
L L	2,702275	2.020022	0.353040
и Ц	2 510252	2,14,5,522	
Ċ	2 5017/0	1 251027	-1,157491
L L	2,331740	4.2J1007	0.413181
п	2.232/34	4 152116	1 222140
		4.152110	1.235140
н	3.556452	4.563506	0.848044
В	-0.463095	-0.31/28/	1.05//62
в	-0.6/5008	-0.429810	2.787899
Н	-1.//96/6	-0.5115/1	3.239547
В	-0.0//820	1.091532	2.063923
Н	-0.683961	2.106714	1.886264
В	0.660860	0.474951	3.558385
Н	0.515919	1.071304	4.584908
В	2.194208	-0.327366	3.127882
Н	3.157072	-0.329598	3.836464
В	1.814208	-1.713700	2.073492
Н	2.468723	-2.697666	1.909323
В	0.060677	-1.779030	1.874746
Н	-0.467501	-2.813353	1.618287
В	0.739731	-1.303148	3.441587

н	0.650522	-2.036737	4.381382
В	2.483395	-0.215160	1.380713
В	1.699111	1.140835	2.268678
Н	2.243028	2.199495	2.305115
Pd	-1.749351	-0.133638	-0.481743
С	3.935911	-0.202541	0.785454
С	4.850259	0.789127	1.211580
С	4.456709	-1.256840	0.000754
С	6.192325	0.768034	0.818175
Н	4.514344	1.584018	1.887316
С	5.798505	-1.279408	-0.391558
Н	3.810736	-2.085759	-0.301485
С	6.692849	-0.262734	-0.001077
Н	6.868587	1.556118	1.167693
Н	6.163377	-2.111518	-1.004010
С	8.147801	-0.309273	-0.399597
Н	8.719460	-0.941047	0.306177
Н	8.276367	-0.743674	-1.405059
Н	8.602786	0.694613	-0.387741
С	-3.716952	0.460403	0.138632
С	-4.368167	0.841489	-1.045251
С	-3.786757	1.214679	1.318024
С	-5.045712	2.073101	-1.052950
Н	-4.368665	0.203492	-1.934611
С	-4.481915	2.428522	1.274021
Н	-3.301171	0.876604	2.236077
С	-5.118952	2.880822	0.096872
Н	-5.547769	2.388315	-1.974093
Н	-4.528745	3.036563	2.184417
Ι	-3.418708	-1.953253	0.364601
С	-5.889933	4.178643	0.092664
Н	-5.311067	4.987154	0.571274
Н	-6.148368	4.491747	-0.931124
Н	-6.831671	4.071204	0.661824

TS3a-B4

Low	est frequency =	-79.33 cm^{-1}	
Cha	rge = 1, Multipl	icity = 1	
78		-	
0	-0.297385	-0.474757	2.041406
Ν	-2.516184	-0.574431	2.372191
С	-1.458395	-0.741276	1.576549
С	-1.437361	-1.280716	0.157191
С	-2.452987	-0.935007	-1.121770
С	-3.657444	-0.047184	-0.920079
С	-4.919404	-0.490515	-1.366215
Н	-5.011449	-1.454486	-1.869760
С	-6.059931	0.295075	-1.162115
Н	-7.030158	-0.064408	-1.518313
С	-5.961306	1.530207	-0.506137
Н	-6.854419	2.142429	-0.347048
С	-4.709584	1.975345	-0.059409
Н	-4.615883	2.939923	0.449560
С	-3.564544	1.196372	-0.265026
Н	-2.602207	1.565499	0.088177
С	-2.270578	0.049049	3.702735

Н	-3.055163	-0.332982	4.372863
Н	-1.297595	-0.303277	4.073031
С	-2.316714	1.575851	3.619050
Н	-2.182452	2.002749	4.626696
Н	-1.513763	1.960862	2.970188
Н	-3.285695	1.924931	3.223442
С	-3.914061	-0.994285	2.132905
Н	-4.550276	-0.156400	2.463012
Н	-4.076184	-1.102510	1.057344
С	-4.262780	-2.286214	2.874282
Н	-3.629659	-3.121711	2.532795
Н	-4.145998	-2.184594	3.966037
Н	-5.315500	-2.542044	2.669408
В	-2.483412	-2.527146	-0.401103
В	-1.491408	-3.560631	-1.427043
Н	-1.763427	-4.721712	-1.507569
В	-0.792173	-2.885924	0.059575
Н	-0.609445	-3.433538	1.105938
В	0.180167	-2.931402	-1.434396
Н	1.129966	-3.650134	-1.512115
В	0.146158	-1.284912	-2.145766
Н	1.058538	-0.806752	-2.752636
В	-1.541597	-0.913265	-2.572772
Н	-1.921020	-0.163460	-3.417955
В	-2.535379	-2.314368	-2.149582
Н	-3.552901	-2.525647	-2.730209
В	-0.904149	-2.566780	-2.796583
Н	-0.748605	-3.012275	-3.894976
В	-0.813141	-0.194004	-1.103630
В	0.194500	-1.491602	-0.403070
Pd	1.477439	-0.721370	0.975017
Н	-3.421049	-2.829299	0.259839
С	-0.533472	1.352779	-0.982125
С	-0.548408	2.112822	-2.174206
С	-0.193631	2.043130	0.204593
С	-0.266136	3.483242	-2.175865
Н	-0.785173	1.625322	-3.123768
С	0.086183	3.413348	0.203331
Н	-0.136361	1.512034	1.156336
С	0.047994	4.166649	-0.985515
Н	-0.292448	4.032743	-3.123598
Н	0.350015	3.905542	1.145853
С	0.315379	5.651879	-0.985432
Н	0.859373	5.965224	-0.079884
Н	0.899765	5.955839	-1.870372
Н	-0.635437	6.216256	-1.016491
С	2.983013	0.496568	0.143836
С	2.776223	1.132150	-1.084997
С	3.540498	1.153898	1.253627
С	3.076781	2.496441	-1.172573
Н	2.367352	0.592754	-1.940982
С	3.805758	2.527438	1.135956
Н	3.778571	0.622110	2.180942
С	3.586557	3.216634	-0.073012
Н	2.896322	3.010685	-2.122008
Н	4.222162	3.057017	2.000008

С	3.929857	4.681465	-0.195661
Н	3.494983	5.120972	-1.106780
Н	3.567092	5.251679	0.676653
Н	5.025531	4.821211	-0.243611
I	3.544461	-1.936798	-0.021084

TS3b-B6 Lowest frequency = -120.72 cm⁻¹ Charge = 0, Multiplicity = 185 0 0.706495 1.050401 -0.123317 Ν 1.690728 0.849008 2.326287 С 0.998068 0.216821 1.366366 С 1.400394 -1.076801 0.660983 С 1.541666 -0.989771 -1.029744 С 1.523248 0.320415 -1.664430 С 0.858007 0.477830 -2.894805 Н -0.371266 0.338396 -3.341372 С 0.855565 1.717358 -3.542984 Н 0.324897 1.823434 -4.494198 С 1.509023 2.816463 -2.973144 Н 1.492303 3.788745 -3.474883 С 2.156156 2.671627 -1.741405 Н -1.271862 2.649571 3.527787 С -1.089849 2.159237 1.435578 Н 2.684346 -0.137634 1.340402 С 1.073227 2.088707 2.870490 Н 0.003122 1.890161 3.035634 Н 1.551714 2.264184 3.847054 С 1.249618 3.289262 1.937733 Н 0.798230 4.178860 2.408263 Н 2.319362 3.497314 1.757493 Н 0.738367 3.121613 0.975882 С 2.987521 0.456026 2.885593 Н 3.463098 -0.242782 2.193301 Н 3.621619 1.360054 2.901635 С 2.871781 4.283986 -0.154165 Н 5.006032 2.430427 0.553793 Н 2.249086 -1.063641 4.262735 Н 3.876701 -0.428245 4.647497 -0.034811 В -1.547330 -0.327967 В 0.055330 -3.307223 -0.340231 Н -0.954733 -3.936689 -0.463081 В 1.152127 0.463940 -2.425987 Н -0.199469 -2.288324 2.137654 В -3.849891 1.417748 0.674173 Н 1.371079 -4.855642 1.324226

В

Н

В

Н

В

Н

В

Н

В

2.927185

3.974637

2.488493

3.171528

0.728504

0.233445

1.578044

1.648181

2.976904

-0.080133

0.006791

-1.542475

-3.279211

-3.853162

-2.359385

В	2.245330	-2.404598	1.304489
Н	2.734536	-2.306165	2.388540
Pd	-1.409646	-0.073771	-0.349770
0	-2.635452	1.714514	-0.235951
С	-1.897176	2.748797	-0.401783
0	-0.754277	2.809849	-0.865478
С	-2.520766	4.053896	0.162588
F	-2.119272	4.208988	1.460272
F	-2.111566	5.146143	-0.513727
F	-3.870657	4.049474	0.160552
С	4.367805	-0.762832	-0.032922
С	5.278136	-1.045079	1.010698
С	4.855712	0.012455	-1.108461
С	6.576357	-0.521992	1.018865
Н	4.973674	-1.709268	1.827562
С	6.153179	0.534524	-1.103456
Н	4.217099	0.205380	-1.974128
С	7.035699	0.292914	-0.032488
Н	7.250796	-0.765230	1.848110
Н	6.491580	1.133773	-1.956711
С	8.424397	0.887296	-0.017841
Н	9.087755	0.345636	0.676699
Н	8.880040	0.867296	-1.022822
Н	8.394423	1.945365	0.305393
С	-3.407185	-1.282806	0.249919
С	-4.326122	-0.332891	0.717620
С	-3.120508	-2.453634	0.959068
С	-4.906730	-0.545431	1.973742
Н	-4.539009	0.573894	0.149487
С	-3.716673	-2.632614	2.215932
Н	-2.440426	-3.204727	0.556161
С	-4.612837	-1.687219	2.747194
Н	-5.607116	0.206206	2.356103
Н	-3.475258	-3.537216	2.785808
Ι	-2.989447	-1.299052	-2.050285
С	-5.245743	-1.881998	4.105439
Н	-5.009670	-2.875346	4.520701
Н	-4.885630	-1.120006	4.821506
Н	-6.344627	-1.782497	4.052151

TS3b-B4

Lowest frequency = -109.140 cm^{-1} Charge = 0, Multiplicity = 1 85 0 0.136001 -0.947359 -0.940979 N 1.748870 -2.484961 -1.097230 C 1.140308 -1.506039 -0.412775 C 1.442955 -1.028186 1.002197

C	1.140200	-T. 200022	-0.412//5
С	1.442955	-1.028186	1.002197
С	2.863516	-0.428429	1.577725
С	4.077356	-0.431694	0.680252
С	5.346299	-0.706515	1.224297
Н	5.442126	-0.907183	2.292987
С	6.481810	-0.728297	0.404660
Н	7.459666	-0.943705	0.847049
С	6.367928	-0.479757	-0.970053
Н	7.256318	-0.499043	-1.609589

С	5.108125	-0.202497	-1.518270
Н	5.001735	0.001789	-2.588401
С	3.972190	-0.172672	-0.701646
Н	3.006510	0.064866	-1.150088
С	1.120913	-2.844579	-2.398146
Н	1.482355	-3.855666	-2.642044
Н	0.034650	-2.896211	-2.233489
С	1.474117	-1.855573	-3.509698
Н	0.981673	-2.171143	-4.444676
Н	1.113236	-0.845721	-3.257399
Н	2.564133	-1.815635	-3.685008
С	2.957201	-3.243174	-0.736989
Н	3.596347	-3.262301	-1.637214
Н	3.515250	-2.689658	0.025375
С	2.633854	-4.661934	-0.263177
Н	1.999755	-4.638583	0.637844
Н	2.104808	-5.240227	-1.038832
Н	3.571661	-5.189870	-0.020609
В	2.280144	-1.961180	2.180224
В	1.479057	-1.621679	3.704972
Н	1.478045	-2.465256	4.555060
В	0.506819	-1.789480	2.222718
Н	-0.142534	-2.730942	1.875831
В	0.114155	-0.510986	3.393986
Н	-0.891772	-0.561569	4.039887
В	0.778066	1.021314	2.767655
Н	0.299094	2.096715	2.974881
В	2.543988	0.847229	2.678064
Н	3.352625	1.723012	2.739482
В	2.976775	-0.763978	3.264804
Н	4.052803	-0.973098	3.735476
В	1.649037	0.122978	4.036248
Н	1.776998	0.557259	5.145646
В	1.544238	0.741427	1.192103
В	0.055071	-0.153865	1.644776
Pd	-1.440130	-0.313358	0.281417
0	-1.876067	-2.907847	-0.805496
С	-2.575586	-2.153077	-1.498292
0	-2.824404	-0.912491	-1.308150
С	-3.147232	-2.725292	-2.822604
F	-4.190366	-2.023160	-3.306856
F	-2.162598	-2.694069	-3.774036
F	-3.535207	-4.009411	-2.695217
Н	2.855662	-2.945803	1.856521
С	1.738162	1.782437	0.022539
С	2.855641	2.652614	0.037052
С	0.830134	1.937300	-1.046041
С	3.064838	3.600289	-0.967762
Н	3.586307	2.578816	0.847615
С	1.046630	2.877243	-2.061479
Н	-0.070947	1.321851	-1.091285
С	2.166263	3.726258	-2.046679
Н	3.945358	4.251647	-0.917079
Н	0.316784	2.955340	-2.874686
С	2.391455	4.754870	-3.130513
Н	3.407851	4.673348	-3.555907

Н	1.663624	4.640630	-3.950541
Н	2.292070	5.780660	-2.728720
С	-2.491210	1.883153	0.441678
С	-1.711484	2.904139	1.005776
С	-3.044756	1.998241	-0.840891
С	-1.434488	4.037692	0.236627
Н	-1.311125	2.808859	2.015896
С	-2.741479	3.147210	-1.588733
Н	-3.649608	1.194643	-1.267121
С	-1.939533	4.181169	-1.071505
Н	-0.799955	4.821199	0.665858
Н	-3.146321	3.229947	-2.603961
С	-1.614614	5.409944	-1.887260
Н	-0.521289	5.533809	-1.989730
Н	-2.050252	5.349260	-2.897958
Н	-2.002420	6.324498	-1.402424
Ι	-3.381784	0.369825	1.919947

X-Ray crystallographic analysis

CCDC 1893305

Crystal data and structure refinement for 3aa.			
Identification code	0538_CG_0m		
CCDC number	1893305		
Empirical formula	$C_{27}H_{37}B_{10}NO$		
Formula weight	499.68		
Temperature/K	100.03		
Crystal system	monoclinic		
Space group	C2/c		
a/Å	12.5994(11)		
b/Å	23.669(2)		
c/Å	21.4198(18)		
α/°	90		
β/°	102.169(3)		
$\gamma^{/\circ}$	90		
Volume/Å ³	6244.2(9)		
Z	8		
$\rho_{calc}g/cm^3$	1.190		
μ/mm^{-1}	1.633		
F(000)	2344.0		
Crystal size/mm ³	0.425 imes 0.4 imes 0.368		
Radiation	$CuK\alpha \ (\lambda = 1.54178)$		
2Θ range for data collection/°	7.47 to 149.188		
Index ranges	$-15 \le h \le 14, -29 \le k \le 29, -26 \le l \le 26$		
Reflections collected	38084		
Independent reflections	6321 [$R_{int} = 0.0376$, $R_{sigma} = 0.0261$]		
Data/restraints/parameters	6321/90/429		

Goodness-of-fit on F ²	1.025
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0515, wR_2 = 0.1443$
Final R indexes [all data]	$R_1 = 0.0526, wR_2 = 0.1455$
Largest diff. peak/hole / e Å ⁻³	0.36/-0.24

Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 0538_CG_0m. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	y	z	U(eq)
01	7895.7(7)	3538.7(4)	4870.3(4)	36.1(2)
N1	9698.3(8)	3611.1(4)	5235.0(5)	33.2(2)
C1	8665.1(9)	3762.6(5)	5229.2(5)	29.8(2)
C2	8381.0(9)	4206.9(5)	5694.3(5)	28.4(2)
C3	7618.3(9)	4767.2(5)	5377.8(6)	30.4(2)
C4	7390.5(9)	4882.5(5)	4668.3(6)	31.6(3)
C5	8090.4(10)	4708.2(5)	4278.5(6)	33.0(3)
C6	7855.5(11)	4822.6(6)	3629.1(6)	37.5(3)
C7	6917.4(12)	5116.9(7)	3356.1(7)	43.7(3)
C8	6235.3(11)	5303.7(7)	3743.9(7)	46.5(3)
С9	6466.9(10)	5192.1(6)	4393.1(7)	39.1(3)
C10	9811.5(12)	3144.0(6)	4796.4(7)	43.7(3)
C11	9756.9(13)	3346.6(7)	4119.9(7)	51.4(4)
C12	10726.7(10)	3884.7(6)	5534.5(6)	34.9(3)
C13	11424.7(13)	3531.8(7)	6054.9(8)	51.6(4)
C14	5975.6(9)	3863.5(5)	5299.1(6)	33.1(3)
C15	5650.1(11)	3858.7(6)	4634.0(7)	41.2(3)
C16	4690.8(13)	3599.4(6)	4328.6(8)	48.9(4)
C17	4016.7(11)	3327.7(6)	4670.0(8)	48.3(4)
C18	4345.4(11)	3316.3(6)	5328.7(8)	47.0(4)
C19	5302.7(11)	3577.3(6)	5638.6(7)	39.6(3)
C20	2965.1(13)	3062.6(7)	4323.6(12)	69.5(6)
C21A	8103.3(18)	3332.7(9)	6577.7(11)	30.9(3)
C21B	7856(13)	3279(8)	6541(10)	30.9(3)
C22	7790.4(12)	2874.7(6)	6164.4(6)	40.6(3)
C23	7920.2(12)	2320.0(6)	6371.8(7)	41.0(3)
C24A	8333(3)	2191.1(11)	6990.8(12)	54.7(7)
C24B	8054(18)	2201(10)	7082(11)	38(2)
C25A	8668(4)	2638.9(9)	7406.6(9)	78.8(13)
C25B	7921(17)	2637(6)	7442(7)	45(3)
C26A	8560(3)	3194.4(8)	7201.4(8)	60.2(8)
C26B	7926(16)	3180(6)	7201(6)	39(3)
C27A	8432(4)	1586.4(10)	7214.4(13)	85.0(12)
C27B	8040(19)	1584(7)	7377(10)	53(4)
B1	6948.0(10)	4216.0(6)	5698.8(6)	30.8(3)
B2	7977.9(11)	3967.3(6)	6373.5(6)	30.9(3)
-----	------------	-----------	-----------	---------
B3	9190.7(11)	4384.0(6)	6416.6(6)	31.2(3)
B4	8960.2(11)	4871.1(6)	5771.2(7)	31.0(3)
B5	8915.8(12)	5103.3(6)	6548.6(7)	35.3(3)
B6	8302.8(12)	4553.1(6)	6923.4(7)	34.9(3)
B7	6955.9(11)	4457.2(6)	6488.0(7)	34.2(3)
B8	6721.4(11)	4945.4(6)	5850.2(7)	34.1(3)
B9	7922.2(11)	5341.9(6)	5882.2(7)	34.8(3)
B10	7528.0(12)	5148.9(6)	6599.3(7)	37.2(3)

Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 0538_CG_0m. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	33.7(4)	40.1(5)	35.2(4)	-8.8(4)	9.1(4)	-4.8(3)
N1	30.6(5)	33.1(5)	36.9(5)	-3.4(4)	9.0(4)	3.6(4)
C1	30.5(6)	30.9(6)	28.7(5)	-1.2(4)	7.9(4)	-0.1(4)
C2	23.9(5)	31.1(6)	30.4(6)	-1.8(4)	6.1(4)	-0.1(4)
C3	25.8(5)	30.6(6)	35.6(6)	-1.8(4)	8.3(4)	2.2(4)
C4	27.2(6)	32.6(6)	35.2(6)	1.4(4)	6.7(5)	0.5(4)
C5	29.0(6)	33.6(6)	37.0(6)	0.5(5)	8.0(5)	1.2(4)
C6	35.8(6)	40.9(7)	37.0(7)	1.1(5)	10.2(5)	-0.5(5)
C7	40.3(7)	52.9(8)	36.6(7)	9.1(6)	5.0(5)	1.3(6)
C8	34.1(7)	55.6(8)	48.9(8)	14.4(6)	6.5(6)	8.6(6)
C9	29.7(6)	44.6(7)	44.4(7)	6.9(5)	11.0(5)	6.5(5)
C10	42.1(7)	39.3(7)	51.2(8)	-11.4(6)	13.0(6)	7.3(6)
C11	46.5(8)	63.9(10)	47.5(8)	-19.4(7)	18.5(6)	-0.6(7)
C12	27.5(6)	40.0(7)	37.7(6)	-0.6(5)	8.4(5)	3.6(5)
C13	49.2(8)	49.7(8)	50.1(8)	-3.4(6)	-2.7(7)	16.9(7)
C14	24.5(5)	33.3(6)	41.2(7)	-3.1(5)	6.3(5)	1.8(4)
C15	37.6(7)	38.7(7)	43.2(7)	1.4(5)	-0.4(5)	-3.4(5)
C16	45.6(8)	38.1(7)	52.9(8)	-0.5(6)	-12.5(6)	-0.5(6)
C17	30.0(6)	29.2(6)	78.9(11)	-7.6(6)	-3.9(6)	2.7(5)
C18	30.6(6)	37.6(7)	75.5(10)	-10.6(6)	17.5(6)	-3.8(5)
C19	31.2(6)	39.2(7)	51.2(8)	-7.3(5)	14.8(5)	-2.3(5)
C20	38.4(8)	35.1(8)	120.0(16)	-10.9(9)	-17.4(9)	-1.0(6)
C21A	22.9(9)	37.9(5)	32.1(5)	-2.8(4)	6.0(6)	-5.6(5)
C21B	22.9(9)	37.9(5)	32.1(5)	-2.8(4)	6.0(6)	-5.6(5)
C22	47.8(7)	39.4(5)	34.7(5)	-4.7(3)	8.7(4)	-6.0(4)
C23	47.6(7)	38.8(4)	37.6(5)	-4.7(4)	11.2(5)	-5.7(4)
C24A	85(2)	39.3(8)	38.4(10)	0.4(7)	9.7(10)	1.0(11)
C24B	39(6)	38.8(10)	38.1(6)	-3.1(5)	10.9(10)	-3.7(14)
C25A	148(4)	46.4(9)	31.5(8)	2.9(7)	-5.1(12)	-3.2(12)
C25B	63(9)	38.1(10)	37.2(8)	-0.7(6)	17(2)	-1.1(15)

C26A	102(2)	41.8(8)	31.1(7)	-3.1(6)	0.1(9)	-7.0(10)
C26B	47(8)	38.2(10)	33.2(5)	-1.4(6)	10.4(14)	-2.3(14)
C27A	163(4)	41.5(10)	45.0(13)	6.0(9)	7.9(16)	1.1(14)
C27B	84(11)	38.2(11)	41(2)	-3.5(10)	22(3)	-3.7(18)
B1	25.2(6)	34.5(7)	33.9(6)	-2.1(5)	9.2(5)	0.2(5)
B2	28.3(6)	36.7(7)	28.3(6)	-4.3(5)	7.5(5)	-2.5(5)
B3	28.6(6)	34.2(7)	30.1(6)	-4.8(5)	4.9(5)	-2.5(5)
B4	27.0(6)	30.1(6)	36.1(7)	-2.9(5)	6.9(5)	-0.5(5)
B5	32.4(7)	35.1(7)	38.7(7)	-9.0(5)	8.6(5)	-2.6(5)
B6	33.9(7)	39.5(7)	32.2(7)	-8.3(5)	8.9(5)	-3.3(5)
B7	30.7(6)	38.7(7)	34.9(7)	-6.0(5)	10.7(5)	-0.8(5)
B8	28.6(6)	35.8(7)	40.0(7)	-4.2(5)	12.1(5)	1.8(5)
B9	30.6(7)	32.6(7)	42.5(7)	-5.9(6)	10.6(6)	0.8(5)
B10	35.1(7)	37.8(7)	40.7(7)	-9.1(6)	12.7(6)	-0.4(6)

Bond Lengths for 0538_CG_0m.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C1	1.2238(15)	C21B	C22	1.243(18)
N1	C1	1.3478(15)	C21B	C26B	1.42(2)
N1	C10	1.4770(16)	C21B	B2	1.68(2)
N1	C12	1.4694(16)	C22	C23	1.385(2)
C1	C2	1.5417(15)	C23	C24A	1.353(3)
C2	C3	1.6932(16)	C23	C24B	1.52(2)
C2	B1	1.8076(17)	C24A	C25A	1.391(3)
C2	B2	1.7342(17)	C24A	C27A	1.506(3)
C2	B3	1.7160(17)	C24B	C25B	1.32(3)
C2	B4	1.7265(17)	C24B	C27B	1.59(3)
C3	C4	1.5108(17)	C25A	C26A	1.384(3)
C3	B1	1.7699(18)	C25B	C26B	1.385(19)
C3	B4	1.7403(17)	B1	B2	1.8243(19)
C3	B 8	1.7207(17)	B1	B7	1.7823(19)
C3	B9	1.7291(18)	B1	B8	1.7904(19)
C4	C5	1.3984(17)	B2	B3	1.8047(19)
C4	C9	1.3962(17)	B2	B6	1.8094(19)
C5	C6	1.3863(18)	B2	B7	1.7877(19)
C6	C7	1.3903(19)	B3	B4	1.776(2)
C7	C8	1.387(2)	B3	B5	1.772(2)
C8	C9	1.385(2)	B3	B6	1.7614(19)
C10	C11	1.514(2)	B4	B5	1.766(2)
C12	C13	1.5166(19)	B4	B9	1.7719(19)
C14	C15	1.3969(18)	B5	B6	1.788(2)
C14	C19	1.4023(18)	B5	B9	1.780(2)
C14	B1	1.5774(17)	B5	B10	1.778(2)

C15	C16	1.3900(19)	B6	B7	1.770(2)
C16	C17	1.390(2)	B6	B10	1.771(2)
C17	C18	1.384(2)	B7	B8	1.766(2)
C17	C20	1.5117(19)	B7	B10	1.785(2)
C18	C19	1.3926(19)	B8	B9	1.769(2)
C21A	C22	1.403(2)	B8	B10	1.775(2)
C21A	C26A	1.378(3)	B9	B10	1.771(2)
C21A	B2	1.563(3)			

Bond Angles for 0538_CG_0m.

Atom	Atom	Atom	<u></u> Angle/°	Atom	Atom	Atom	Anglo/°
	Atom		<u>Augit/</u>		Atom D2	D1	Angle/
CI	NI NI	C10	114.57(10)	C2IA	B2	BI	123.02(12)
CI	NI	C12	130.38(10)	C2IA	B2	B3	118.44(12)
C12	NI	C10	114.40(10)	C21A	B 2	B6	123.95(12)
01	C1	N1	121.75(11)	C21A	B2	B7	128.18(12)
01	C1	C2	116.12(10)	C21B	B2	C2	123.5(7)
N1	C1	C2	122.07(10)	C21B	B2	B1	113.6(6)
C1	C2	C3	117.70(9)	C21B	B2	B3	129.3(6)
C1	C2	B1	112.33(9)	C21B	B2	B6	128.4(7)
C1	C2	B2	117.91(9)	C21B	B2	B 7	119.9(6)
C1	C2	B3	125.05(9)	B3	B2	B1	108.50(9)
C1	C2	B4	122.11(9)	B3	B2	B6	58.33(7)
C3	C2	B1	60.63(7)	B6	B2	B1	107.09(10)
C3	C2	B2	110.50(8)	B7	B2	B1	59.12(7)
C3	C2	B3	110.43(9)	B7	B2	B3	105.37(10)
C3	C2	B4	61.17(7)	B7	B2	B6	58.96(8)
B2	C2	B1	61.97(7)	C2	B3	B2	58.96(7)
B3	C2	B1	113.39(9)	C2	B3	B4	59.22(7)
B3	C2	B2	63.08(7)	C2	B3	B5	106.23(10)
B3	C2	B4	62.13(8)	C2	B3	B6	106.08(9)
B4	C2	B1	113.03(9)	B4	B3	B2	108.49(9)
B4	C2	B2	114.24(9)	B5	B3	B2	109.96(10)
C2	C3	B1	62.88(7)	B5	B3	B4	59.68(8)
C2	C3	B4	60.36(7)	B6	B3	B2	60.97(8)
C2	C3	B 8	110.13(9)	B6	B3	B4	108.14(10)
C2	C3	B9	109.49(9)	B6	B3	B5	60.81(8)
C4	C3	C2	121.05(9)	C2	B4	C3	58.47(7)
C4	C3	B1	121.26(10)	C2	B4	B3	58.64(7)
C4	C3	B4	114.88(9)	C2	B4	B5	106.06(9)
C4	C3	B 8	122.56(10)	C2	B4	B9	106.04(9)
C4	C3	B9	117.16(10)	C3	B4	B3	105.54(9)
B4	C3	B1	114.24(9)	C3	B4	В5	106.25(9)
B8	C3	B1	61.70(8)	C3	B4	B9	58.98(7)

B 8	C3	B4	111.84(9)	B5	B4	B3	60.04(8)
B 8	C3	B9	61.72(8)	B5	B4	B9	60.44(8)
B9	C3	B1	113.46(9)	B9	B4	B3	107.94(10)
B9	C3	B4	61.42(7)	B3	B5	B6	59.29(8)
C5	C4	C3	122.50(10)	B3	B5	B9	107.74(10)
C9	C4	C3	118.96(11)	B3	B5	B10	107.21(10)
C9	C4	C5	118.50(11)	B4	B5	B3	60.28(8)
C6	C5	C4	120.89(11)	B4	B5	B6	107.41(9)
C5	C6	C7	120.17(12)	B4	B5	B9	59.95(8)
C8	C7	C6	119.13(13)	B4	B5	B10	107.68(10)
C9	C8	C7	120.96(13)	B9	B5	B6	107.08(10)
C8	C9	C4	120.30(12)	B10	B5	B6	59.57(8)
N1	C10	C11	112.38(12)	B10	B5	B9	59.70(8)
N1	C12	C13	113.55(12)	B3	B6	B2	60.70(7)
C15	C14	C19	116.44(12)	B3	B6	B5	59.89(8)
C15	C14	B1	125.83(11)	B3	B6	B7	108.01(9)
C19	C14	B1	117.34(11)	B3	B6	B10	107.97(10)
C16	C15	C14	121.52(14)	B5	B6	B2	109.01(9)
C17	C16	C15	121.60(15)	B7	B6	B2	59.91(8)
C16	C17	C20	120.22(17)	B7	B6	B5	108.28(10)
C18	C17	C16	117.42(13)	B7	B6	B10	60.51(8)
C18	C17	C20	122.36(17)	B10	B6	B2	108.94(10)
C17	C18	C19	121.34(14)	B10	B6	B5	59.92(8)
C18	C19	C14	121.64(14)	B1	B7	B2	61.46(7)
C22	C21A	B2	124.59(18)	B1	B 7	B10	109.99(10)
C26A	C21A	C22	115.63(18)	B6	B7	B1	110.72(9)
C26A	C21A	B2	119.77(16)	B6	B 7	B2	61.13(8)
C22	C21B	C26B	120.1(17)	B6	B 7	B10	59.78(8)
C22	C21B	B2	127.2(16)	B 8	B 7	B1	60.61(8)
C26B	C21B	B2	112.6(12)	B 8	B 7	B2	109.03(9)
C21B	C22	C23	122.4(10)	B8	B7	B6	108.01(10)
C23	C22	C21A	122.14(15)	B 8	B 7	B10	60.00(9)
C22	C23	C24B	118.5(9)	B10	B7	B2	109.34(10)
C24A	C23	C22	121.54(16)	C3	B 8	B1	60.50(7)
C23	C24A	C25A	117.2(2)	C3	B 8	B7	105.73(9)
C23	C24A	C27A	121.0(2)	C3	B 8	B9	59.37(7)
C25A	C24A	C27A	121.8(2)	C3	B 8	B10	106.04(10)
C23	C24B	C27B	124.0(16)	B7	B 8	B1	60.15(8)
C25B	C24B	C23	116.0(17)	B7	B 8	B9	108.35(10)
C25B	C24B	C27B	118.1(16)	B7	B 8	B10	60.52(8)
C26A	C25A	C24A	121.62(19)	B9	B 8	B1	110.53(9)
C24B	C25B	C26B	119.7(14)	B9	B 8	B10	59.95(8)
C21A	C26A	C25A	121.78(17)	B10	B 8	B1	110.04(10)
C25B	C26B	C21B	121.5(13)	C3	B9	B4	59.60(7)
C2	B1	B2	57.04(7)	C3	B9	B5	106.09(10)

C3	B1	C2	56.48(6)	C3	B9	B 8	58.91(7)
C3	B1	B2	103.16(9)	C3	B9	B10	105.87(10)
C3	B1	B7	102.99(9)	B4	B9	B5	59.61(8)
C3	B1	B 8	57.80(7)	B8	B9	B4	108.09(10)
C14	B1	C2	130.78(10)	B8	B9	B5	108.28(10)
C14	B1	C3	123.96(10)	B8	B9	B10	60.19(8)
C14	B1	B2	126.91(10)	B10	B9	B4	107.71(10)
C14	B1	B7	122.19(10)	B10	B9	B5	60.08(9)
C14	B1	B 8	118.23(10)	B5	B10	B7	108.11(10)
B7	B1	C2	101.71(9)	B6	B10	B5	60.51(8)
B7	B1	B2	59.42(8)	B6	B10	B7	59.71(8)
B7	B1	B 8	59.24(8)	B6	B10	B 8	107.53(10)
B8	B1	C2	102.13(9)	B8	B10	B5	108.14(10)
B 8	B1	B2	106.36(9)	B8	B10	B7	59.48(8)
C2	B2	B1	60.99(7)	B9	B10	B5	60.22(8)
C2	B2	B3	57.97(7)	B9	B10	B6	108.24(10)
C2	B2	B6	103.26(9)	B9	B10	B7	107.45(10)
C2	B2	B7	104.46(9)	B9	B10	B 8	59.86(8)
C21A	B2	C2	121.25(12)				

Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 0538_CG_0m.

Atom	x	у	Z	U(eq)
H5	8735.58	4508.79	4461.07	40
H6	8336.83	4699.46	3370.03	45
H7	6745.74	5189.25	2909.89	52
H8	5600.08	5511.08	3561.43	56
H9	5995.29	5326.87	4652.43	47
H10A	9226.22	2864.97	4796.4	52
H10B	10514.89	2951.7	4953.45	52
H11A	9851.61	3024.56	3849.28	77
H11B	10334.28	3623.4	4117.22	77
H11C	9049.38	3522.82	3955.42	77
H12A	10565.44	4250.09	5719.42	42
H12B	11143.31	3965.66	5201.17	42
H13A	11682.48	3195.6	5864.75	77
H13B	10994.33	3416.08	6364.47	77
H13C	12048.48	3755.76	6271.76	77
H15	6094.59	4036.69	4384.7	49
H16	4491.08	3608.09	3875.59	59
H18	3909.15	3126.6	5574.36	56
H19	5504.89	3561.11	6091.33	48
H20A	2622.83	2864.13	4631.14	104

H20B	3115.33	2793.67	4005.23	104
H20C	2475.5	3358.12	4109.82	104
H22	7479.29	2947.39	5728.05	49
H22A	7646.04	2948.74	5718.61	49
H23	7714.65	2022.91	6072.49	49
H23A	7925.76	2020.59	6077.11	49
H25A	8978.1	2561.37	7841.99	95
H25B	7822.03	2579.42	7865.17	54
H26A	8807.56	3488.26	7498.55	72
H26B	7978.79	3492.64	7483.88	47
H27A	7738.25	1460.67	7304.05	128
H27B	8999.83	1557.62	7603.71	128
H27C	8622.54	1347.45	6880.76	128
H27D	8587.6	1560.12	7775.51	80
H27E	8202.26	1304.21	7072.64	80
H27F	7320.34	1507.08	7464.08	80
Н3	9980(12)	4166(6)	6544(7)	36(4)
H4	9524(12)	4979(6)	5466(7)	34(4)
H5A	9548(14)	5385(7)	6803(8)	47(4)
H6A	8542(12)	4471(6)	7449(7)	37(4)
H7A	6297(13)	4316(6)	6729(7)	40(4)
H8A	5937(14)	5124(7)	5608(8)	42(4)
H9A	7870(12)	5744(6)	5639(7)	34(4)
H10	7234(14)	5472(7)	6886(8)	48(4)

Atomic Occupancy for 0538_CG_0m.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy	
C21A	0.887(7)	C21B	0.113(7)	H22	0.887(7)	
H22A	0.113(7)	H23	0.887(7)	H23A	0.113(7)	
C24A	0.887(7)	C24B	0.113(7)	C25A	0.887(7)	
H25A	0.887(7)	C25B	0.113(7)	H25B	0.113(7)	
C26A	0.887(7)	H26A	0.887(7)	C26B	0.113(7)	
H26B	0.113(7)	C27A	0.887(7)	H27A	0.887(7)	
H27B	0.887(7)	H27C	0.887(7)	C27B	0.113(7)	
H27D	0.113(7)	H27E	0.113(7)	H27F	0.113(7)	

Solvent masks information for 0538_CG_0m.

Solvent ma	forvent masks mormation for 0500_CO_om.								
Number	Χ	Y	Z	Volume	Electron count	Content			
1	0.000	0.186	0.250	195.3	49.9	0.5 Cl3HC			
2	0.000	-0.186	0.750	195.3	49.9	0.5 Cl3HC			
3	0.500	0.314	0.750	195.3	49.9	0.5 Cl3HC			

4 0.500 0	.686 0.2	250 195	5.3 49	0.9 0.5 (Cl3HC
-----------	----------	---------	--------	-----------	-------

Experimental

Single crystals of $C_{27}H_{37}B_{10}NO$ [0538_CG_0m] were recrystallised from a mixture of chloroform and hexane by slow evaporation. A suitable crystal was selected and the crystal was mounted on a MITIGEN holder oil on a 'Bruker APEX-II CCD' diffractometer. The crystal was kept at 100.03 K during data collection. Using Olex2^[2], the structure was solved with the XT^[3] structure solution program using Intrinsic Phasing and refined with the XL^[4] refinement package using Least Squares minimisation.

Crystal structure determination of 3aa

Crystal Data for C₂₇H₃₈B₁₀NO (M = 499.68 g/mol): monoclinic, space group C2/c (no. 15), a = 12.5994(11) Å, b = 23.669(2) Å, c = 21.4198(18) Å, $\beta = 102.169(3)^{\circ}$, V = 6244.2(9) Å³, Z = 8, T = 100.03 K, μ (CuK α) = 1.633 mm⁻¹, *Dcalc* = 1.190 g/cm³, 38084 reflections measured ($7.47^{\circ} \le 2\Theta \le 149.188^{\circ}$), 6321 unique ($R_{int} = 0.0376$, $R_{sigma} = 0.0261$) which were used in all calculations. The final R_1 was 0.0515 (I > 2 σ (I)) and wR_2 was 0.1455 (all data).

CCDC 1983600

Crystal data and structure refinement for 3ab.						
mo_0922_CG_0m						
1983600						
$C_{25}H_{33}B_{10}NO$						
471.62						
100.0						

Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	13.6114(6)
b/Å	13.9152(8)
c/Å	14.1817(8)
$\alpha/^{\circ}$	90
β/°	93.358(2)
$\gamma/^{\circ}$	90
Volume/Å ³	2681.5(2)
Ζ	4
$\rho_{calc}g/cm^3$	1.168
μ/mm^{-1}	0.064
F(000)	992.0
Crystal size/mm ³	$0.405 \times 0.28 \times 0.122$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	4.032 to 57.426
Index ranges	$-18 \le h \le 18, -18 \le k \le 18, -19 \le l \le 19$
Reflections collected	60954
Independent reflections	$6925 [R_{int} = 0.0319, R_{sigma} = 0.0183]$
Data/restraints/parameters	6925/0/368
Goodness-of-fit on F ²	1.084
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0425, wR_2 = 0.1089$
Final R indexes [all data]	$R_1 = 0.0471, wR_2 = 0.1132$
Largest diff. peak/hole / e Å ⁻³	0.64/-0.21

Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for mo_0922_CG_0m. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z	U(eq)
01	8016.6(5)	6425.9(6)	6714.1(5)	14.14(15)
N1	9458.3(6)	6888.7(6)	6174.7(6)	13.08(17)
C1	8524.9(7)	6572.4(7)	6044.0(7)	10.46(18)
C2	8029.1(7)	6388.6(7)	5048.2(7)	9.57(17)
C3	7517.6(7)	5288.4(7)	4869.4(7)	9.65(17)
C4	7706.9(7)	4469.4(7)	5562.1(7)	10.61(18)
C5	8580.6(7)	4390.0(7)	6119.5(7)	13.07(19)
C6	8756.6(8)	3589.2(8)	6698.1(7)	16.8(2)
C7	8067.1(9)	2854.7(8)	6718.4(8)	18.7(2)
C8	7198.2(8)	2929.3(8)	6160.3(8)	18.3(2)
C9	7014.3(8)	3728.1(7)	5584.6(7)	15.2(2)
C10	9787.5(8)	7080.1(8)	7170.0(7)	16.0(2)
C11	10073.6(9)	6163.0(9)	7705.3(8)	23.2(2)
C12	10206.1(7)	7070.8(8)	5492.5(7)	16.9(2)
C13	10324.2(10)	8138.0(9)	5283.7(9)	27.7(3)

C14	7317.6(7)	8329.2(7)	4927.1(7)	12.72(19)
C15	7264.2(8)	8543.3(8)	5888.8(8)	17.1(2)
C16	7346.8(9)	9484.7(8)	6220.0(8)	22.4(2)
C17	7482.0(10)	10235.2(8)	5594.9(9)	24.9(2)
C18	7526.7(9)	10044.0(8)	4637.3(9)	23.9(2)
C19	7448.2(8)	9103.3(8)	4308.1(8)	17.7(2)
C20	6044.8(7)	6325.4(7)	5957.2(7)	11.94(19)
C21	6072.7(7)	5680.6(7)	6719.9(7)	13.88(19)
C22	5392.3(8)	5733.0(8)	7414.2(8)	18.3(2)
C23	4664.1(8)	6433.5(9)	7363.4(8)	21.4(2)
C24	4626.3(8)	7085.5(8)	6623.8(9)	21.5(2)
C25	5308.9(8)	7031.9(8)	5927.4(8)	16.5(2)
B1	7285.4(8)	7272.2(8)	4517.7(7)	11.0(2)
B2	6286.1(8)	6622.8(8)	3940.2(8)	12.1(2)
B3	6435.8(8)	5383.6(8)	4187.7(8)	11.1(2)
B4	7528.0(8)	4986.6(8)	3686.6(8)	11.8(2)
B5	8534.0(8)	5616.5(8)	4252.1(8)	11.1(2)
B6	8372.8(8)	6855.1(8)	3994.5(8)	12.0(2)
B7	8064.9(8)	5980.5(8)	3120.4(8)	12.8(2)
B8	7284.5(8)	6993.5(8)	3275.6(8)	12.9(2)
B9	6764.1(8)	5841.0(8)	3074.6(8)	12.8(2)
B10	6717.2(8)	6256.3(8)	5089.4(7)	10.10(19)

Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for mo_0922_CG_0m. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

uispiac		і ехропені так	es the form		$2 \Pi K a D U 12^{+}$	••]•
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	12.1(3)	19.9(4)	10.5(3)	-0.4(3)	0.8(3)	-1.7(3)
N1	10.7(4)	17.4(4)	11.0(4)	-3.2(3)	-0.2(3)	-3.5(3)
C1	10.7(4)	10.8(4)	9.7(4)	-1.2(3)	-0.8(3)	0.4(3)
C2	9.6(4)	9.6(4)	9.4(4)	-0.2(3)	0.1(3)	-2.0(3)
C3	9.4(4)	9.6(4)	9.8(4)	-0.5(3)	-0.3(3)	-1.2(3)
C4	13.0(4)	9.2(4)	9.8(4)	0.1(3)	2.3(3)	1.4(3)
C5	13.6(4)	13.7(4)	12.0(4)	-0.3(3)	1.1(3)	1.9(3)
C6	19.8(5)	17.9(5)	12.7(5)	1.5(4)	1.0(4)	6.1(4)
C7	28.8(6)	13.4(5)	14.5(5)	3.5(4)	6.2(4)	6.0(4)
C8	24.1(5)	12.0(5)	19.5(5)	1.6(4)	6.2(4)	-1.6(4)
C9	16.8(5)	12.8(5)	16.0(5)	0.3(4)	1.8(4)	-1.9(4)
C10	13.7(4)	22.3(5)	11.6(4)	-4.8(4)	-2.4(3)	-3.9(4)
C11	24.5(5)	26.0(6)	18.0(5)	-1.6(4)	-7.6(4)	1.1(4)
C12	10.5(4)	24.9(5)	15.6(5)	-4.1(4)	2.4(3)	-5.3(4)
C13	33.9(6)	27.8(6)	21.8(6)	-3.7(5)	4.7(5)	-18.5(5)
C14	12.4(4)	10.5(4)	15.2(5)	-0.6(4)	0.3(3)	-1.4(3)
C15	22.1(5)	13.5(5)	15.7(5)	-0.5(4)	1.4(4)	-3.1(4)
C16	30.6(6)	17.4(5)	19.6(5)	-5.2(4)	3.5(4)	-4.7(4)

C17	34.2(6)	12.0(5)	28.6(6)	-5.2(4)	3.5(5)	-4.6(4)
C18	33.4(6)	12.2(5)	26.1(6)	2.9(4)	3.2(5)	-4.3(4)
C19	23.0(5)	13.9(5)	16.2(5)	1.1(4)	1.3(4)	-2.5(4)
C20	9.6(4)	13.1(4)	13.0(4)	-4.0(3)	-0.1(3)	-2.9(3)
C21	12.6(4)	16.1(5)	13.0(4)	-2.9(4)	0.7(3)	-3.5(3)
C22	18.8(5)	22.8(5)	13.7(5)	-5.1(4)	3.6(4)	-8.7(4)
C23	16.9(5)	27.4(6)	20.8(5)	-13.9(4)	7.8(4)	-7.1(4)
C24	14.4(5)	21.2(5)	28.9(6)	-13.1(4)	2.6(4)	0.5(4)
C25	14.4(4)	14.9(5)	20.1(5)	-5.0(4)	-0.8(4)	0.2(4)
B1	12.7(5)	9.6(5)	10.6(5)	1.0(4)	-0.5(4)	-0.6(4)
B2	13.2(5)	11.8(5)	11.1(5)	1.0(4)	-2.2(4)	-0.8(4)
B3	10.5(4)	12.0(5)	10.4(5)	-0.9(4)	-1.6(4)	-1.1(4)
B4	13.4(5)	12.5(5)	9.3(5)	-1.2(4)	0.4(4)	-1.0(4)
B5	11.6(5)	11.6(5)	10.1(5)	-0.4(4)	1.6(4)	-1.2(4)
B6	13.5(5)	12.5(5)	10.0(5)	1.1(4)	1.7(4)	-2.1(4)
B7	15.5(5)	13.0(5)	9.8(5)	0.0(4)	0.8(4)	-1.7(4)
B8	15.5(5)	13.2(5)	9.8(5)	1.5(4)	-0.8(4)	-1.9(4)
B9	14.8(5)	13.8(5)	9.7(5)	0.2(4)	-1.1(4)	-1.3(4)
B10	9.2(4)	10.5(5)	10.4(5)	-0.3(4)	-0.8(3)	-0.3(3)

Bond Lengths for mo 0922 CG 0m.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C1	1.2249(12)	C18	C19	1.3918(15)
N1	C1	1.3471(12)	C20	C21	1.4041(14)
N1	C10	1.4799(12)	C20	C25	1.4023(14)
N1	C12	1.4669(13)	C20	B10	1.5792(14)
C1	C2	1.5503(13)	C21	C22	1.3927(14)
C2	C3	1.6947(13)	C22	C23	1.3890(17)
C2	B1	1.7358(14)	C23	C24	1.3856(18)
C2	B5	1.7298(14)	C24	C25	1.3970(15)
C2	B6	1.7191(14)	B1	B2	1.7909(15)
C2	B10	1.7995(14)	B1	B6	1.7907(16)
C3	C4	1.5169(13)	B1	B 8	1.8037(16)
C3	В3	1.7187(14)	B1	B10	1.8240(15)
C3	B4	1.7300(14)	B2	B3	1.7691(16)
C3	B5	1.7409(14)	B2	B 8	1.7753(16)
C3	B10	1.7715(14)	B2	B9	1.7909(16)
C4	C5	1.3933(13)	B2	B10	1.7743(15)
C4	C9	1.3990(14)	B3	B4	1.7732(16)
C5	C6	1.3961(14)	B3	B9	1.7831(16)
C6	C7	1.3890(16)	B3	B10	1.7887(15)
C7	C8	1.3880(16)	B4	B5	1.7771(15)
C8	C9	1.3932(15)	B4	B7	1.7776(16)

C10	C11	1.5237(16)	B4	B9	1.7726(16)
C12	C13	1.5246(17)	B5	B6	1.7727(16)
C14	C15	1.4020(14)	B5	B7	1.7663(16)
C14	C19	1.4073(14)	B6	B7	1.7699(16)
C14	B1	1.5810(14)	B6	B 8	1.7590(16)
C15	C16	1.3939(15)	B7	B 8	1.7864(17)
C16	C17	1.3891(17)	B7	B9	1.7785(16)
C17	C18	1.3887(18)	B8	B9	1.7695(16)

Bond Angles for mo_0922_CG_0m.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C1	N1	C10	114.86(8)	B10	B2	B9	109.94(8)
C1	N1	C12	130.62(8)	C3	B3	B2	105.76(7)
C12	N1	C10	114.51(8)	C3	B3	B4	59.37(6)
01	C1	N1	121.25(9)	C3	B3	B9	105.93(7)
01	C1	C2	116.34(8)	C3	B3	B10	60.63(6)
N1	C1	C2	122.40(8)	B2	B3	B4	108.28(8)
C1	C2	C3	116.00(7)	B2	B3	B9	60.55(6)
C1	C2	B1	119.32(8)	B2	B3	B10	59.83(6)
C1	C2	B5	121.91(8)	B4	B3	B9	59.79(6)
C1	C2	B6	127.12(8)	B4	B3	B10	110.40(7)
C1	C2	B10	111.54(7)	B9	B3	B10	109.65(8)
C3	C2	B1	110.55(7)	C3	B4	B3	58.75(6)
C3	C2	B5	61.10(6)	C3	B4	B5	59.51(6)
C3	C2	B6	109.96(7)	C3	B4	B7	106.02(7)
C3	C2	B10	60.84(6)	C3	B4	B9	105.90(7)
B1	C2	B10	62.09(6)	B3	B4	B5	107.91(7)
B5	C2	B1	113.64(7)	B3	B4	B7	108.37(8)
B5	C2	B10	112.99(7)	B5	B4	B7	59.59(6)
B6	C2	B1	62.44(6)	B9	B4	B3	60.38(6)
B6	C2	B5	61.86(6)	B9	B4	B5	107.73(8)
B6	C2	B10	112.82(7)	B9	B4	B7	60.13(6)
C2	C3	B3	110.22(7)	C2	B5	C3	58.46(6)
C2	C3	B4	109.74(7)	C2	B5	B4	106.01(7)
C2	C3	B5	60.45(6)	C2	B5	B6	58.77(6)
C2	C3	B10	62.51(6)	C2	B5	B7	106.18(8)
C4	C3	C2	121.95(7)	C3	B5	B4	58.90(6)
C4	C3	B3	121.98(8)	C3	B5	B6	105.44(7)
C4	C3	B4	115.77(8)	C3	B5	B7	106.05(7)
C4	C3	B5	114.39(7)	B6	B5	B4	107.68(8)
C4	C3	B10	122.69(8)	B7	B5	B4	60.22(6)
B3	C3	B4	61.88(6)	B7	B5	B6	60.01(6)
B3	C3	B5	112.14(7)	C2	B6	B1	59.24(6)

B3	C3	B10	61.64(6)	C2	B6	B5	59.37(6)
B4	C3	B5	61.59(6)	C2	B6	B7	106.49(7)
B4	C3	B10	113.29(7)	C2	B6	B 8	106.40(7)
B5	C3	B10	113.84(7)	B5	B6	B1	108.97(7)
C5	C4	C3	122.27(9)	B7	B6	B1	110.21(8)
C5	C4	C9	118.85(9)	B7	B6	B5	59.81(6)
C9	C4	C3	118.66(9)	B8	B6	B1	61.07(6)
C4	C5	C6	120.53(10)	B8	B6	B5	108.41(8)
C7	C6	C5	120.44(10)	B 8	B6	B7	60.82(6)
C8	C7	C6	119.17(10)	B4	B7	B 8	107.17(8)
C7	C8	C9	120.78(10)	B4	B7	B9	59.80(6)
C8	C9	C4	120.23(10)	B5	B7	B4	60.19(6)
N1	C10	C11	112.26(9)	B5	B7	B6	60.17(6)
N1	C12	C13	112.43(9)	B5	B7	B 8	107.47(8)
C15	C14	C19	117.38(9)	B5	B7	B9	107.94(8)
C15	C14	B1	123.57(9)	B6	B7	B4	107.78(8)
C19	C14	B1	119.00(9)	B6	B7	B 8	59.29(6)
C16	C15	C14	121.31(10)	B6	B7	B9	107.16(8)
C17	C16	C15	120.17(11)	B9	B7	B 8	59.52(6)
C18	C17	C16	119.68(11)	B2	B 8	B1	60.05(6)
C17	C18	C19	120.09(11)	B2	B 8	B7	108.38(8)
C18	C19	C14	121.37(10)	B6	B 8	B1	60.33(6)
C21	C20	B10	124.80(9)	B6	B 8	B2	107.78(7)
C25	C20	C21	117.28(9)	B6	B 8	B7	59.89(6)
C25	C20	B10	117.69(9)	B6	B8	B9	108.04(8)
C22	C21	C20	121.47(10)	B7	B8	B1	108.88(8)
C23	C22	C21	120.14(11)	B9	B 8	B1	109.24(8)
C24	C23	C22	119.57(10)	B9	B 8	B2	60.69(6)
C23	C24	C25	120.23(10)	B9	B 8	B7	60.02(6)
C24	C25	C20	121.30(11)	B3	B9	B2	59.34(6)
C2	B1	B2	104.41(7)	B4	B9	B2	107.34(7)
C2	B1	B6	58.32(6)	B4	B9	B3	59.83(6)
C2	B1	B8	103.77(7)	B4	B9	B7	60.08(6)
C2	B1	B10	60.67(6)	B7	B9	B2	108.03(8)
C14	B1	C2	119.80(8)	B7	B9	B3	107.89(7)
C14	B1	B2	129.89(8)	B8	B9	B2	59.81(6)
C14	B1	B6	116.61(8)	B8	B9	B3	107.44(8)
C14	B1	B8	123.85(8)	B8	B9	B4	108.13(8)
C14	B1	B10	124.14(8)	B8	B9	B7	60.46(6)
B2	B1	B8	59.19(6)	C2	B10	B1	57.24(6)
B2	B1	B10	58.78(6)	C3	B10	C2	56.66(5)
B6	B1	B2	105.73(7)	C3	B10	B1	103.28(7)
B6	B1	B8	58.60(6)	C3	B10	B2	103.32(7)
B6	B1	B10	108.38(7)	C3	B10	B3	57.73(6)
B 8	B1	B10	106.94(7)	C20	B10	C2	129.84(8)

B1	B2	B9	108.86(8)	C20	B10	C3	125.03(8)
B3	B2	B1	109.00(7)	C20	B10	B1	125.41(8)
B3	B2	B 8	107.80(8)	C20	B10	B2	121.52(8)
B3	B2	B9	60.11(6)	C20	B10	B3	119.27(8)
B3	B2	B10	60.64(6)	B2	B10	C2	102.49(7)
B8	B2	B1	60.77(6)	B2	B10	B1	59.68(6)
B8	B2	B9	59.50(6)	B2	B10	B3	59.54(6)
B10	B2	B1	61.54(6)	B3	B10	C2	102.57(7)
B10	B2	B8	110.42(8)	B3	B10	B1	106.68(7)

Torsion Angles for mo_0922_CG_0m.

A	B	C	D	Angle/°	A	В	С	D	Angle/°
01	C1	C2	C3	-53.90(11)	B3	C3	B10	B2	-40.03(7)
01	C1	C2	B1	82.30(11)	B3	B2	B 8	B1	-102.24(8)
01	C1	C2	B5	-124.65(10)	B3	B2	B 8	B6	-63.94(9)
01	C1	C2	B6	158.38(9)	B3	B2	B 8	B7	-0.59(10)
01	C1	C2	B10	13.12(12)	B3	B2	B 8	B9	37.19(7)
N1	C1	C2	C3	127.00(9)	B3	B2	B9	B4	-37.13(7)
N1	C1	C2	B1	-96.80(11)	B3	B2	B9	B7	-100.52(8)
N1	C1	C2	B5	56.25(13)	B3	B2	B9	B 8	-138.41(8)
N1	C1	C2	B6	-20.72(15)	B3	B2	B10	C2	97.37(7)
N1	C1	C2	B10	-165.98(9)	B3	B2	B10	C3	39.11(7)
C1	N1	C10	C11	79.51(11)	B3	B2	B10	C20	-107.73(10)
C1	N1	C12	C13	102.55(13)	B3	B2	B10	B1	136.87(8)
C1	C2	C3	C4	-11.86(12)	B3	B4	B5	C2	-1.43(10)
C1	C2	C3	B3	141.61(8)	B3	B4	B5	C3	34.60(7)
C1	C2	C3	B4	-152.06(8)	B3	B4	B5	B6	-63.10(9)
C1	C2	C3	B5	-113.74(9)	B3	B4	B5	B7	-101.21(8)
C1	C2	C3	B10	101.28(8)	B3	B4	B7	B5	100.42(8)
C1	C2	B1	C14	14.52(12)	B3	B4	B7	B6	62.21(9)
C1	C2	B1	B2	-141.01(8)	B3	B4	B7	B 8	-0.26(10)
C1	C2	B1	B6	119.18(9)	B3	B4	B7	B9	-37.69(7)
C1	C2	B1	B 8	157.77(8)	B3	B4	B9	B2	36.92(7)
C1	C2	B1	B10	-100.31(9)	B3	B4	B9	B 7	138.13(8)
C1	C2	B5	C3	104.25(9)	B3	B4	B9	B 8	100.04(8)
C1	C2	B5	B4	140.48(8)	B4	C3	C4	C5	108.65(10)
C1	C2	B5	B6	-118.24(9)	B4	C3	C4	C9	-65.98(11)
C1	C2	B5	B7	-156.57(8)	B4	C3	B3	B2	-102.22(8)
C1	C2	B6	B1	-107.32(10)	B4	C3	B3	B9	-39.01(7)
C1	C2	B6	B5	110.31(10)	B4	C3	B3	B10	-142.93(8)
C1	C2	B6	B7	148.61(9)	B4	C3	B5	C2	138.43(8)
C1	C2	B6	B 8	-147.68(9)	B4	C3	B5	B6	101.62(8)
C1	C2	B10	C3	-108.63(8)	B4	C3	B5	B7	39.01(7)

C1	C2 B10	C20	1.61(13)	B4	C3	B10	C2	-100.99(8)
C1	C2 B10	B1	112.74(8)	B4	C3	B10	C20	140.64(9)
C1	C2 B10	B2	153.51(8)	B4	C3	B10	B1	-66.16(9)
C1	C2 B10	B3	-145.35(8)	B4	C3	B10	B2	-4.66(9)
C2	C3 C4	C5	-29.35(13)	B4	C3	B10	B3	35.37(7)
C2	C3 C4	C9	156.02(9)	B4	B3	B9	B2	-138.20(8)
C2	C3 B3	B2	-0.02(9)	B4	B3	B9	B7	-37.44(7)
C2	C3 B3	B4	102.20(8)	B4	B3	B9	B8	-101.23(8)
C2	C3 B3	B9	63.19(9)	B4	B3	B10	C2	2.61(9)
C2	C3 B3	B10	-40.72(7)	B4	B3	B10	C3	-33.60(7)
C2	C3 B4	B3	-102.97(8)	B4	B3	B10	C20	-148.71(8)
C2	C3 B4	B5	37.82(7)	B4	B3	B10	B1	61.81(9)
C2	C3 B4	B 7	-0.89(9)	B4	B3	B10	B2	99.84(8)
C2	C3 B4	B9	-63.70(9)	B4	B5	B6	C2	98.35(8)
C2	C3 B5	B4	-138.43(8)	B4	B5	B6	B1	64.66(9)
C2	C3 B5	B6	-36.81(7)	B4	B5	B6	B7	-38.21(7)
C2	C3 B5	B 7	-99.42(8)	B4	B5	B6	B8	-0.21(10)
C2	C3 B10	C20	-118.37(10)	B4	B5	B7	B6	137.24(8)
C2	C3 B10	B1	34.83(6)	B4	B5	B7	B8	100.15(8)
C2	C3 B10	B2	96.33(7)	B4	B5	B7	B9	37.35(7)
C2	C3 B10	B3	136.35(7)	B4	B 7	B8	B1	64.26(9)
C2	B1 B2	B3	2.60(10)	B4	B7	B8	B2	0.52(10)
C2	B1 B2	B 8	-97.64(8)	B4	B7	B8	B6	100.85(8)
C2	B1 B2	B9	-61.33(9)	B4	B7	B8	B9	-37.55(7)
C2	B1 B2	B10	41.66(7)	B4	B7	B9	B2	100.04(8)
C2	B1 B6	B5	33.74(7)	B4	B7	B9	B3	37.32(7)
C2	B1 B6	B7	97.63(8)	B4	B7	B9	B8	137.64(8)
C2	B1 B6	B 8	134.78(8)	B5	C2	C3	C4	101.88(9)
C2	B1 B8	B2	98.75(8)	B5	C2	C3	B3	-104.65(8)
C2	B1 B8	B6	-38.46(7)	B5	C2	C3	B4	-38.32(7)
C2	B1 B8	B 7	-2.06(9)	B5	C2	C3	B10	-144.98(7)
C2	B1 B8	B9	61.84(9)	B5	C2	B1	C14	-140.65(9)
C2	B1 B10	C3	-34.57(6)	B5	C2	B1	B2	63.82(9)
C2	B1 B10	C20	118.50(10)	B5	C2	B1	B6	-35.99(7)
C2	B1 B10	B2	-132.40(8)	B5	C2	B1	B 8	2.60(10)
C2	B1 B10	B3	-94.44(7)	B5	C2	B1	B10	104.51(8)
C2	B5 B6	B1	-33.69(7)	B5	C2	B6	B1	142.38(8)
C2	B5 B6	B 7	-136.56(8)	B5	C2	B6	B7	38.31(7)
C2	B5 B6	B 8	-98.56(8)	B5	C2	B6	B 8	102.02(8)
C2	B5 B7	B4	-99.49(8)	B5	C2	B10	C3	33.07(7)
C2	B5 B7	B6	37.75(7)	B5	C2	B10	C20	143.31(10)
C2	B5 B7	B8	0.66(10)	B5	C2	B10	B1	-105.55(8)
C2	B5 B7	B9	-62.14(9)	B5	C2	B10	B2	-64.79(9)
C2	B6 B7	B4	0.12(10)	B5	C2	B10	B3	-3.65(9)
C2	B6 B7	B5	-38.10(7)	B5	C3	C4	C5	39.82(12)

C2	B6	B7	B 8	99.91(8)	B5	C3	C4	C9	-134.81(9)
C2	B6	B7	B9	63.12(9)	B5	C3	B3	B2	-65.33(9)
C2	B6	B8	B1	39.48(7)	B5	C3	B3	B4	36.89(7)
C2	B6	B 8	B2	1.30(10)	B5	C3	B3	B9	-2.12(10)
C2	B6	B8	B7	-100.05(8)	B5	C3	B3	B10	-106.04(8)
C2	B6	B8	B9	-62.84(9)	B5	C3	B4	B3	-140.79(8)
C3	C2	B1	C14	152.89(8)	B5	C3	B4	B7	-38.71(7)
C3	C2	B1	B2	-2.64(9)	B5	C3	B4	B9	-101.52(8)
C3	C2	B1	B6	-102.45(8)	B5	C3	B10	C2	-33.08(7)
C3	C2	B1	B 8	-63.86(9)	B5	C3	B10	C20	-151.45(8)
C3	C2	B1	B10	38.05(7)	B5	C3	B10	B1	1.75(9)
C3	C2	B5	B4	36.23(7)	B5	C3	B10	B2	63.25(9)
C3	C2	B5	B6	137.51(7)	B5	C3	B10	B3	103.28(8)
C3	C2	B5	B7	99.18(8)	B5	B4	B7	B6	-38.21(7)
C3	C2	B6	B1	103.39(8)	B5	B4	B7	B 8	-100.67(8)
C3	C2	B6	B5	-38.98(7)	B5	B4	B7	B9	-138.10(8)
C3	C2	B6	B7	-0.68(10)	В5	B4	B9	B2	-64.01(9)
C3	C2	B6	B 8	63.04(9)	В5	B4	B9	B3	-100.93(8)
C3	C2	B10	C20	110.24(11)	В5	B4	B9	B7	37.20(7)
C3	C2	B10	B1	-138.62(7)	В5	B4	B9	B 8	-0.89(10)
C3	C2	B10	B2	-97.86(7)	В5	B6	B7	B4	38.22(7)
C3	C2	B10	B3	-36.72(6)	В5	B6	B7	B 8	138.01(8)
C3	C4	C5	C6	-175.31(9)	В5	B6	B7	B9	101.22(8)
C3	C4	C9	C8	175.18(9)	В5	B6	B 8	B1	101.97(8)
C3	B3	B4	B5	-34.92(7)	B5	B6	B 8	B2	63.79(10)
C3	B3	B4	B7	-97.97(8)	B5	B6	B 8	B7	-37.55(7)
C3	B3	B4	B9	-135.54(8)	B5	B6	B 8	B9	-0.34(10)
C3	B3	B9	B2	-99.39(8)	B5	B7	B 8	B1	0.89(10)
C3	B3	B9	B4	38.81(7)	B5	B7	B 8	B2	-62.84(9)
C3	B3	B9	B7	1.38(10)	B5	B7	B 8	B6	37.48(7)
C3	B3	B9	B 8	-62.42(9)	B5	B 7	B8	B9	-100.92(8)
C3	B3	B10	C2	36.21(6)	B5	B 7	B9	B2	62.52(10)
C3	B3	B10	C20	-115.11(9)	B5	B 7	B9	B3	-0.20(10)
C3	B3	B10	B1	95.42(7)	B5	B7	B9	B4	-37.52(7)
C3	B3	B10	B2	133.44(8)	B5	B7	B9	B 8	100.12(8)
C3	B4	B5	C2	-36.03(7)	B6	C2	C3	C4	141.20(8)
C3	B4	B5	B6	-97.70(8)	B6	C2	C3	B3	-65.33(9)
C3	B4	B5	B 7	-135.81(8)	B6	C2	C3	B4	1.00(9)
C3	B4	B7	B5	38.67(7)	B6	C2	C3	B5	39.32(7)
C3	B4	B7	B6	0.46(10)	B6	C2	C3	B10	-105.66(8)
C3	B4	B7	B 8	-62.00(9)	B6	C2	B1	C14	-104.67(9)
C3	B4	B7	B9	-99.43(8)	B6	C2	B1	B2	99.80(8)
C3	B4	B9	B2	-1.59(10)	B6	C2	B1	B 8	38.59(7)
C3	B4	B9	B3	-38.50(7)	B6	C2	B1	B10	140.50(7)
C3	B4	B9	B 7	99.63(8)	B6	C2	B5	C3	-137.51(7)

C3	B4	B9	B 8	61.54(9)	B6	C2	B5	B4	-101.28(8)
C3	B5	B6	C2	36.67(6)	B6	C2	B5	B7	-38.33(7)
C3	B5	B6	B1	2.98(9)	B6	C2	B10	C3	100.91(8)
C3	B5	B6	B7	-99.89(8)	B6	C2	B10	C20	-148.85(10)
C3	B5	B6	B8	-61.89(9)	B6	C2	B10	B1	-37.72(7)
C3	B5	B7	B4	-38.39(7)	B6	C2	B10	B2	3.04(10)
C3	B5	B7	B6	98.85(8)	B6	C2	B10	B3	64.19(9)
C3	B5	B7	B8	61.76(9)	B6	B1	B2	B3	63.20(9)
C3	B5	B7	B9	-1.05(10)	B6	B1	B2	B 8	-37.04(7)
C4	C3	B3	B2	153.45(8)	B6	B1	B2	B9	-0.73(10)
C4	C3	B3	B4	-104.33(9)	B6	B1	B2	B10	102.26(8)
C4	C3	B3	B9	-143.34(8)	B6	B1	B8	B2	137.21(8)
C4	C3	B3	B10	112.74(9)	B6	B1	B 8	B7	36.40(7)
C4	C3	B4	B3	114.13(9)	B6	B1	B 8	B9	100.29(8)
C4	C3	B4	B5	-105.08(9)	B6	B1	B10	C2	34.78(7)
C4	C3	B4	B7	-143.79(8)	B6	B1	B10	C3	0.21(9)
C4	C3	B4	B9	153.41(8)	B6	B1	B10	C20	153.28(9)
C4	C3	B5	C2	-114.26(8)	B6	B1	B10	B2	-97.62(8)
C4	C3	B5	B4	107.31(9)	B6	B1	B10	B3	-59.66(9)
C4	C3	B5	B6	-151.07(8)	B6	B5	B7	B4	-137.24(8)
C4	C3	B5	B7	146.32(8)	B6	B5	B7	B 8	-37.09(7)
C4	C3	B10	C2	112.01(9)	B6	B5	B7	B9	-99.89(8)
C4	C3	B10	C20	-6.36(13)	B6	B7	B8	B1	-36.59(7)
C4	C3	B10	B1	146.84(8)	B6	B7	B8	B2	-100.33(8)
C4	C3	B10	B2	-151.66(8)	B6	B7	B8	B9	-138.40(8)
C4	C3	B10	B3	-111.63(9)	B6	B7	B9	B2	-0.92(10)
C4	C5	C6	C7	0.71(15)	B6	B7	B9	B3	-63.63(9)
C5	C4	C9	C8	0.36(15)	B6	B7	B9	B4	-100.96(8)
C5	C6	C7	C8	-0.37(16)	B6	B7	B9	B 8	36.68(7)
C6	C7	C8	С9	0.04(16)	B6	B 8	B9	B2	100.68(8)
C7	C8	C9	C4	-0.04(16)	B6	B 8	B9	B3	63.92(9)
C9	C4	C5	C6	-0.70(14)	B6	B 8	B9	B4	0.76(10)
C10	N1	C1	01	-2.63(14)	B6	B 8	B9	B7	-37.16(7)
C10	N1	C1	C2	176.42(9)	B7	B4	B5	C2	99.78(8)
C10	N1	C12	C13	-77.80(12)	B7	B4	B5	C3	135.81(8)
C12	N1	C1	01	177.02(10)	B7	B4	B5	B6	38.11(7)
C12	N1	C1	C2	-3.92(16)	B7	B4	B9	B2	-101.21(8)
C12	N1	C10	C11	-100.20(11)	B7	B4	B9	B3	-138.13(8)
C14	C15	C16	C17	0.19(18)	B7	B4	B9	B8	-38.09(7)
C14	Bl	B2	B3	-149.46(10)	B7	B5	B6	C2	136.56(8)
CI4	BI	B2	B8	110.30(11)	B7	В5 Б-	B6	BI	102.87(8)
CI4	BI	B2	B10	146.60(10)	B7	B5	B6	B8	38.00(7)
CI4	BI	В2 В2	BI0	-110.40(11)	B'/	B6	B8	BI	139.53(8)
C14	BI	В6 В6	C2	110.12(9)	B'/	В6	B8	B2	101.35(8)
C14	B 1	B6	B5	143.86(8)	B 7	B6	B 8	B9	37.21(7)

C14	B1	B6	B 7	-152.25(8)	B7	B 8	B9	B2	137.84(8)
C14	B1	B6	B 8	-115.10(9)	B7	B8	B9	B3	101.08(8)
C14	B1	B 8	B2	-119.94(10)	B7	B 8	B9	B4	37.92(7)
C14	B1	B8	B6	102.85(10)	B 8	B1	B2	B3	100.24(8)
C14	B1	B8	B7	139.25(9)	B 8	B1	B2	B9	36.31(7)
C14	B1	B 8	B9	-156.86(9)	B 8	B1	B2	B10	139.30(8)
C14	B1	B10	C2	-107.92(10)	B8	B1	B6	C2	-134.78(8)
C14	B1	B10	C3	-142.49(9)	B8	B1	B6	B5	-101.04(8)
C14	B1	B10	C20	10.58(14)	B 8	B1	B6	B7	-37.15(7)
C14	B1	B10	B2	119.68(10)	B 8	B1	B10	C2	96.56(8)
C14	B1	B10	B3	157.64(8)	B 8	B1	B10	C3	62.00(8)
C15	C14	C19	C18	0.33(16)	B 8	B1	B10	C20	-144.94(9)
C15	C14	B1	C2	-48.00(13)	B 8	B1	B10	B2	-35.84(7)
C15	C14	B 1	B2	100.47(13)	B 8	B1	B10	B3	2.13(9)
C15	C14	B 1	B6	-115.05(11)	B 8	B2	B3	C3	62.77(9)
C15	C14	B 1	B 8	176.40(9)	B 8	B2	B3	B4	0.43(10)
C15	C14	B 1	B10	24.92(14)	B 8	B2	B3	B9	-36.92(7)
C15	C16	C17	C18	0.51(19)	B 8	B2	B3	B10	103.87(8)
C16	C17	C18	C19	-0.8(2)	B 8	B2	B9	B3	138.41(8)
C17	C18	C19	C14	0.35(18)	B8	B2	B9	B4	101.28(8)
C19	C14	C15	C16	-0.60(16)	B8	B2	B9	B7	37.89(7)
C19	C14	B1	C2	129.20(10)	B8	B2	B10	C2	-2.11(10)
C19	C14	B1	B2	-82.32(13)	B8	B2	B10	C3	-60.37(9)
C19	C14	B1	B6	62.15(12)	B8	B2	B10	C20	152.78(9)
C19	C14	B1	B 8	-6.40(14)	B8	B2	B10	B1	37.39(7)
C19	C14	B1	B10	-157.88(9)	B8	B2	B10	B3	-99.49(8)
C20	C21	C22	C23	0.02(15)	B8	B6	B7	B4	-99.79(8)
C21	C20	C25	C24	-0.59(15)	B 8	B6	B7	B5	-138.01(8)
C21	C20	B10	C2	-65.91(14)	B 8	B6	B7	B9	-36.78(7)
C21	C20	B10	C3	7.27(14)	B 8	B7	B9	B2	-37.60(7)
C21	C20	B10	B1	-140.15(10)	B 8	B7	B9	B3	-100.31(8)
C21	C20	B10	B2	146.74(9)	B8	B7	B9	B4	-137.64(8)
C21	C20	B10	B3	76.50(12)	B9	B2	B3	C3	99.69(8)
C21	C22	C23	C24	-0.72(16)	B9	B2	B3	B4	37.35(7)
C22	C23	C24	C25	0.75(16)	B9	B2	B3	B10	140.79(8)
C23	C24	C25	C20	-0.09(16)	B9	B2	B 8	B1	-139.43(8)
C25	C20	C21	C22	0.62(14)	B9	B2	B 8	B6	-101.12(8)
C25	C20	B10	C2	119.81(11)	B9	B2	B 8	B7	-37.78(7)
C25	C20	B10	C3	-167.01(9)	B9	B2	B10	C2	61.71(9)
C25	C20	B10	B1	45.56(13)	B9	B2	B10	C3	3.45(9)
C25	C20	B10	B2	-27.54(13)	B9	B2	B10	C20	-143.40(9)
C25	C20	B10	B3	-97.78(11)	B9	B2	B10	B1	101.21(8)
B1	C2	C3	C4	-151.73(8)	B9	B2	B10	B3	-35.66(7)
B1	C2	C3	B3	1.74(10)	B9	B3	B4	C3	135.54(8)
B1	C2	C3	B4	68.07(9)	B9	B3	B4	B5	100.63(8)

B1	C2 C3	B5	106.39(8)	B9	B3	B4	B7	37.58(7)
B1	C2 C3	B10	-38.59(7)	B9	B3	B10	C2	-61.47(9)
B1	C2 B5	C3	-101.30(8)	B9	B3	B10	C3	-97.68(8)
B1	C2 B5	B4	-65.07(9)	B9	B3	B10	C20	147.21(8)
B1	C2 B5	B6	36.21(7)	B9	B3	B10	B1	-2.26(10)
B1	C2 B5	B7	-2.12(10)	B9	B3	B10	B2	35.77(7)
B1	C2 B6	B5	-142.38(7)	B9	B4	B5	C2	62.34(9)
B1	C2 B6	B7	-104.07(8)	B9	B4	B5	C3	98.37(8)
B1	C2 B6	B 8	-40.36(7)	B9	B4	B5	B6	0.67(10)
B1	C2 B10	C3	138.62(7)	B9	B4	B5	B7	-37.44(7)
B1	C2 B10	C20	-111.13(11)	B9	B4	B7	B5	138.10(8)
B1	C2 B10	B2	40.76(7)	B9	B4	B7	B6	99.89(8)
B1	C2 B10	B3	101.90(8)	B9	B4	B7	B8	37.43(7)
B1	C14 C15	C16	176.64(10)	B9	B7	B 8	B1	101.82(8)
B1	C14 C19	C18	-177.04(10)	B9	B7	B 8	B2	38.08(7)
B1	B2 B3	C3	-1.64(10)	B9	B7	B 8	B6	138.40(8)
B1	B2 B3	B4	-63.98(9)	B10	C2	C3	C4	-113.14(9)
B1	B2 B3	B9	-101.33(8)	B10	C2	C3	B3	40.33(7)
B1	B2 B3	B10	39.46(7)	B10	C2	C3	B4	106.66(8)
B1	B2 B8	B6	38.31(7)	B10	C2	C3	B5	144.98(7)
B1	B2 B8	B7	101.65(8)	B10	C2	B1	C14	114.83(10)
B1	B2 B8	B9	139.43(8)	B10	C2	B1	B2	-40.70(7)
B1	B2 B9	B3	101.56(8)	B10	C2	B1	B6	-140.50(7)
B1	B2 B9	B4	64.43(9)	B10	C2	B1	B8	-101.91(7)
B1	B2 B9	B7	1.04(10)	B10	C2	B5	C3	-32.98(7)
B1	B2 B9	B 8	-36.85(7)	B10	C2	B5	B4	3.25(10)
B1	B2 B10	C2	-39.50(6)	B10	C2	B5	B6	104.53(8)
B1	B2 B10	C3	-97.76(7)	B10	C2	B5	B7	66.21(9)
B1	B2 B10	C20	115.39(10)	B10	C2	B6	B1	37.58(7)
B1	B2 B10	B3	-136.87(8)	B10	C2	B6	B5	-104.80(8)
B1	B6 B7	B4	-62.53(10)	B10	C2	B6	B7	-66.49(9)
B1	B6 B7	B5	-100.75(8)	B10	C2	B6	B8	-2.78(10)
B1	B6 B7	B 8	37.26(7)	B10	C3	C4	C5	-105.09(11)
B1	B6 B7	B9	0.47(10)	B10	C3	C4	C9	80.28(11)
B1	B6 B8	B2	-38.18(7)	B10	C3	B3	B2	40.71(7)
B1	B6 B8	B7	-139.53(8)	B10	C3	B3	B4	142.93(8)
B1	B6 B8	B9	-102.32(8)	B10	C3	B3	B9	103.92(8)
B1	B8 B9	B2	36.64(7)	B10	C3	B4	B3	-35.28(7)
B1	B8 B9	B3	-0.12(10)	B10	C3	B4	B5	105.52(8)
B1	B8 B9	B4	-63.28(10)	B10	C3	B4	B7	66.80(9)
B1	B8 B9	B7	-101.20(8)	B10	C3	B4	B9	4.00(10)
B2	B1 B6	C2	-97.47(8)	B10	C3	B5	C2	33.82(7)
B2	B1 B6	B5	-63.73(9)	B10	C3	B5	B4	-104.62(8)
B2	B1 B6	B7	0.16(10)	B10	C3	В5	B6	-3.00(10)
B2	B1 B6	B8	37.31(7)	B10	C3	B5	B7	-65.60(9)

B2	B1	B 8	B6	-137.21(8)	B10	C20	C21	C22	-173.69(9)
B2	B1	B 8	B7	-100.81(8)	B10	C20	C25	C24	174.13(9)
B2	B1	B 8	B9	-36.91(7)	B10	B1	B2	B3	-39.06(7)
B2	B1	B10	C2	132.40(8)	B10	B1	B2	B8	-139.30(8)
B2	B1	B10	C3	97.83(7)	B10	B1	B2	B9	-102.99(8)
B2	B1	B10	C20	-109.10(10)	B10	B1	B6	C2	-35.76(7)
B2	B1	B10	B3	37.96(7)	B10	B1	B6	B5	-2.01(10)
B2	B3	B4	C3	97.86(8)	B10	B1	B6	B7	61.88(9)
B2	B3	B4	B5	62.95(9)	B10	B1	B6	B8	99.03(8)
B2	B3	B4	B7	-0.10(10)	B10	B1	B 8	B2	35.66(7)
B2	B3	B4	B9	-37.68(7)	B10	B1	B8	B6	-101.55(8)
B2	B3	B9	B4	138.20(8)	B10	B1	B8	B7	-65.15(9)
B2	B3	B9	B7	100.76(8)	B10	B1	B8	B9	-1.26(10)
B2	B3	B9	B 8	36.97(7)	B10	B2	B3	C3	-41.11(7)
B2	B3	B10	C2	-97.23(7)	B10	B2	B3	B4	-103.44(8)
B2	B3	B10	C3	-133.44(8)	B10	B2	B3	B9	-140.79(8)
B2	B3	B10	C20	111.45(9)	B10	B2	B 8	B1	-37.71(7)
B2	B3	B10	B1	-38.03(7)	B10	B2	B8	B6	0.60(11)
B2	B 8	B9	B3	-36.76(7)	B10	B2	B 8	B7	63.94(10)
B2	B 8	B9	B4	-99.92(8)	B10	B2	B8	B9	101.72(8)
B2	B 8	B9	B7	-137.84(8)	B10	B2	B9	B3	35.88(7)
B3	C3	C4	C5	-179.74(9)	B10	B2	B9	B4	-1.25(10)
B3	C3	C4	C9	5.63(13)	B10	B2	B9	B7	-64.64(10)
B3	C3	B4	B5	140.79(8)	B10	B2	B9	B8	-102.53(8)
B3	C3	B4	B7	102.08(8)	B10	B3	B4	C3	34.09(7)
B3	C3	B4	B9	39.28(7)	B10	B3	B4	B5	-0.83(10)
B3	C3	B5	C2	101.43(8)	B10	B3	B4	B7	-63.88(9)
B3	C3	B5	B4	-37.01(7)	B10	B3	B4	B9	-101.45(8)
B3	C3	B5	B6	64.62(9)	B10	B3	B9	B2	-35.47(7)
B3	C3	B5	B7	2.01(10)	B10	B3	B9	B4	102.73(8)
B3	C3	B10	C2	-136.35(7)	B10	B3	B9	B7	65.30(9)
B3	C3	B10	C20	105.27(10)	B10	B3	B9	B8	1.50(10)
B3	C3	B10	B1	-101.53(7)					

Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for mo_0922_CG_0m.

Atom	x	у	Z	U(eq)
H5	9060.51	4884.74	6105.74	16
H6	9351.84	3546.46	7080.44	20
H7	8188.81	2308.18	7109.4	22
H8	6723.22	2429.78	6171.04	22
H9	6416.56	3769.61	5205.92	18
H10A	9251.47	7404.75	7489.17	19
H10B	10359.92	7519.99	7186.77	19

H11A	10578.22	5820.22	7372.25	35
H11B	9492.81	5751.92	7744.09	35
H11C	10333.9	6327.13	8344.01	35
H12A	10020.35	6728.48	4896.55	20
H12B	10845.19	6809.55	5744.46	20
H13A	10810.19	8222.14	4807.15	42
H13B	10547.75	8474.56	5864.23	42
H13C	9690.46	8403.39	5045.44	42
H15	7169.87	8036.67	6323.35	21
H16	7310.53	9613.28	6874.96	27
H17	7543.55	10876.13	5821.43	30
H18	7610.97	10556.02	4206.34	29
H19	7483.62	8981.09	3651.91	21
H21	6566.77	5197.79	6763.17	17
H22	5426.27	5288.76	7923.72	22
H23	4195	6465.32	7832.79	26
H24	4134.48	7570.62	6590.03	26
H25	5273.92	7482.96	5423.75	20
H2	5567(11)	6942(11)	3856(10)	21(4)
H3	5850(10)	4907(10)	4318(10)	15(3)
H4	7636(11)	4241(11)	3543(10)	21(4)
H5A	9216(10)	5266(10)	4470(10)	16(3)
H6A	9001(10)	7316(10)	4010(10)	17(3)
H7A	8509(11)	5872(11)	2506(10)	21(4)
H8A	7230(10)	7575(11)	2751(10)	19(3)
H9A	6343(10)	5651(10)	2413(10)	19(3)

Experimental

Single crystals of C₂₅H₃₃B₁₀NO [mo_0922_CG_0m] were recrystallised from a mixture of chloroform and hexane by slow evaporation. A suitable crystal was selected and the crystal was mounted on a MITIGEN holder oil on a Bruker D8 Venture AgMo Dual Source diffractometer. The crystal was kept at 100.03 K during data collection. Using Olex2^[2], the structure was solved with the XT^[3] structure solution program using Intrinsic Phasing and refined with the XL^[4] refinement package using Least Squares minimisation.

Crystal structure determination of 3ab

Crystal Data for C₂₅H₃₃B₁₀NO (M =471.62 g/mol): monoclinic, space group P2₁/n (no. 14), a = 13.6114(6) Å, b = 13.9152(8) Å, c = 14.1817(8) Å, $\beta = 93.358(2)^{\circ}$, V = 2681.5(2) Å³, Z = 4, T = 100.0 K, μ (MoK α) = 0.064 mm⁻¹, *Dcalc* = 1.168 g/cm³, 60954 reflections measured (4.032° $\leq 2\Theta \leq 57.426^{\circ}$), 6925 unique ($R_{int} = 0.0319$, $R_{sigma} = 0.0183$) which were used in all calculations. The final R_1 was 0.0425 (I > 2 σ (I)) and wR_2 was 0.1132 (all data).

CCDC 1983612

Crystal data and structure refinement for 3dd.							
Identification code	mo_0830_CG_0m						
CCDC number	1983612						
Empirical formula	$C_{27}H_{35}B_{10}Cl_2NO$						
Formula weight	568.56						
Temperature/K	100.0						
Crystal system	triclinic						
Space group	P-1						
a/Å	10.8615(14)						
b/Å	10.9215(14)						
c/Å	13.8510(18)						
α/\circ	105.147(4)						
β/°	105.960(4)						
$\gamma/^{\circ}$	99.055(4)						
Volume/Å ³	1477.6(3)						
Ζ	2						
$\rho_{calc}g/cm^3$	1.278						
μ/mm^{-1}	0.245						
F(000)	592.0						
Crystal size/mm ³	0.18 imes 0.15 imes 0.04						
Radiation	MoKa ($\lambda = 0.71073$)						
2Θ range for data collection/°	4.244 to 59.328						
Index ranges	$-15 \le h \le 15, -15 \le k \le 15, -19 \le l \le 19$						
Reflections collected	77051						
Independent reflections	8309 [$R_{int} = 0.0303$, $R_{sigma} = 0.0150$]						
Data/restraints/parameters	8309/0/398						
Goodness-of-fit on F ²	1.049						

Final R indexes [I>= 2σ (I)]	$R_1 = 0.0310, wR_2 = 0.0792$
Final R indexes [all data]	$R_1 = 0.0349, wR_2 = 0.0823$
Largest diff. peak/hole / e Å ⁻³	0.39/-0.30

Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for mo_0830_CG_0m. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Shansea elj tensor:			
x	У	Z	U(eq)
1720.0(2)	991.8(2)	1399.7(2)	25.04(6)
9244.9(3)	2662.9(3)	-321.5(2)	26.52(6)
5234.1(7)	6365.7(6)	1759.1(5)	17.10(13)
6567.2(8)	8214.5(7)	1822.7(6)	14.08(14)
6225.8(9)	7258.9(8)	2229.3(7)	12.76(15)
7073.1(8)	7211.4(8)	3319.9(7)	12.14(15)
6358.9(9)	7393.5(8)	4290.8(7)	12.93(15)
5043.5(9)	7741.5(9)	4110.3(7)	14.38(16)
4679.0(10)	8541.0(9)	3501.4(8)	17.75(17)
3433.8(11)	8791.8(11)	3304.4(9)	23.1(2)
2556.9(11)	8287.4(11)	3746.3(10)	26.5(2)
2931.8(11)	7531.4(11)	4385.5(10)	27.6(2)
4160.9(10)	7247.5(10)	4561.4(8)	21.18(19)
5673.3(10)	8108.3(9)	748.6(7)	18.63(18)
4335.2(11)	8345.2(11)	776.9(9)	25.1(2)
5551.4(13)	6849.6(11)	-107.6(8)	27.9(2)
7708.7(9)	9374.3(9)	2310.6(7)	15.77(16)
7267.6(10)	10654.7(9)	2481.8(8)	22.22(19)
8663.3(11)	9321.8(11)	1679.6(9)	25.3(2)
5155.2(9)	4614.6(8)	2982.8(7)	13.32(15)
3854.1(9)	4708.0(9)	2556.3(7)	15.81(16)
2794.7(9)	3608.9(9)	2082.6(7)	17.69(17)
3028.3(9)	2382.6(9)	2018.3(7)	17.81(17)
4291.2(10)	2241.1(9)	2423.4(8)	18.26(17)
5339.6(9)	3353.4(9)	2900.6(7)	16.01(16)
8201.7(9)	5148.9(9)	2378.8(7)	15.19(16)
8058.6(11)	5448.4(10)	1439.5(8)	21.85(19)
8368.8(11)	4694.8(10)	605.3(8)	23.5(2)
8843.9(9)	3617.9(9)	712.6(8)	18.98(18)
9002.2(10)	3280.5(10)	1627.4(8)	20.72(19)
8681.6(10)	4049.7(9)	2451.3(8)	19.02(18)
6410.2(10)	5795.9(9)	3633.8(8)	12.93(17)
6810.4(10)	6415.5(10)	5044.2(8)	15.07(18)
7850.2(10)	5582.2(10)	4503.9(8)	15.30(18)
9265.6(10)	6756.0(11)	4647.0(8)	17.15(19)
	x1720.0(2)9244.9(3)5234.1(7) $6567.2(8)$ $6225.8(9)$ 7073.1(8) $6358.9(9)$ 5043.5(9)4679.0(10)3433.8(11)2556.9(11)2931.8(11)4160.9(10)5673.3(10)4335.2(11)5551.4(13)7708.7(9)7267.6(10)8663.3(11)5155.2(9)3854.1(9)2794.7(9)3028.3(9)4291.2(10)5339.6(9)8201.7(9)8058.6(11)8368.8(11)843.9(9)9002.2(10)8681.6(10)6410.2(10)6810.4(10)7850.2(10)9265.6(10)	xy1720.0(2)991.8(2)9244.9(3)2662.9(3)5234.1(7)6365.7(6)6567.2(8)8214.5(7)6225.8(9)7258.9(8)7073.1(8)7211.4(8)6358.9(9)7393.5(8)5043.5(9)7741.5(9)4679.0(10)8541.0(9)3433.8(11)8791.8(11)2556.9(11)8287.4(11)2931.8(11)7531.4(11)4160.9(10)7247.5(10)5673.3(10)8108.3(9)4335.2(11)8345.2(11)5551.4(13)6849.6(11)7708.7(9)9374.3(9)7267.6(10)10654.7(9)8663.3(11)9321.8(11)5155.2(9)4614.6(8)3854.1(9)4708.0(9)2794.7(9)3608.9(9)3028.3(9)2382.6(9)4291.2(10)2241.1(9)5339.6(9)3353.4(9)8058.6(11)5448.4(10)8368.8(11)4694.8(10)843.9(9)3617.9(9)9002.2(10)3280.5(10)8681.6(10)4049.7(9)6410.2(10)5795.9(9)6810.4(10)6415.5(10)7850.2(10)5582.2(10)9265.6(10)6756.0(11)	xyz1720.0(2)991.8(2)1399.7(2)9244.9(3)2662.9(3)-321.5(2)5234.1(7)6365.7(6)1759.1(5)6567.2(8)8214.5(7)1822.7(6)6225.8(9)7258.9(8)2229.3(7)7073.1(8)7211.4(8)3319.9(7)6358.9(9)7393.5(8)4290.8(7)5043.5(9)7741.5(9)4110.3(7)4679.0(10)8541.0(9)3501.4(8)3433.8(11)8791.8(11)3304.4(9)2556.9(11)8287.4(11)3746.3(10)2931.8(11)7531.4(11)4385.5(10)4160.9(10)7247.5(10)4561.4(8)5673.3(10)8108.3(9)748.6(7)4335.2(11)8345.2(11)776.9(9)5551.4(13)6849.6(11)-107.6(8)7708.7(9)9374.3(9)2310.6(7)7267.6(10)10654.7(9)2481.8(8)8663.3(11)9321.8(11)1679.6(9)5155.2(9)4614.6(8)2982.8(7)3854.1(9)4708.0(9)2556.3(7)2794.7(9)3608.9(9)2082.6(7)3028.3(9)2382.6(9)2018.3(7)4291.2(10)2241.1(9)2423.4(8)5339.6(9)3353.4(9)2378.8(7)8058.6(11)5448.4(10)1439.5(8)8368.8(11)4694.8(10)605.3(8)843.9(9)3617.9(9)712.6(8)9002.2(10)3280.5(10)1627.4(8)8681.6(10)4049.7(9)2451.3(8)6410.2(10)5795.9(9)3633.8(8)6410.2(10)

B5	8547.1(10)	6984.7(11)	5662.4(8)	17.60(19)
B6	9090.8(10)	8340.8(11)	5269.9(8)	17.66(19)
B7	8751.9(10)	7754.3(10)	3881.8(8)	15.11(18)
B8	7972.6(10)	6039.8(10)	3379.5(8)	14.12(17)
B9	7692.3(10)	8600.5(10)	4414.9(8)	14.69(18)
B10	7564.1(11)	8113.7(10)	5516.4(8)	16.60(18)

Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for mo_0830_CG_0m. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

anspiac		сяронене саке				•]•
Atom	U ₁₁	U_{22}	U33	U ₂₃	U ₁₃	U ₁₂
C11	23.18(12)	18.95(11)	24.67(12)	4.06(9)	4.58(9)	-6.81(9)
Cl2	29.71(13)	24.73(12)	25.23(12)	0.81(9)	14.95(10)	8.72(10)
01	17.5(3)	15.0(3)	15.2(3)	5.1(2)	2.5(2)	-1.0(2)
N1	15.9(3)	12.9(3)	12.8(3)	5.2(3)	4.1(3)	1.3(3)
C1	14.2(4)	12.8(4)	12.0(4)	3.9(3)	5.1(3)	3.8(3)
C2	11.9(4)	12.2(4)	12.6(4)	4.1(3)	5.0(3)	2.2(3)
C3	14.0(4)	13.2(4)	12.4(4)	4.3(3)	5.8(3)	2.9(3)
C4	15.0(4)	13.5(4)	15.0(4)	3.3(3)	6.6(3)	4.0(3)
C5	19.7(4)	17.6(4)	20.7(4)	8.2(3)	10.6(3)	7.3(3)
C6	24.0(5)	25.0(5)	28.4(5)	13.4(4)	12.6(4)	13.2(4)
C7	20.1(5)	29.6(5)	37.8(6)	14.8(5)	14.5(4)	12.7(4)
C8	23.3(5)	30.9(5)	41.9(6)	19.7(5)	21.0(5)	11.3(4)
C9	21.3(5)	23.0(5)	27.6(5)	13.7(4)	14.0(4)	8.6(4)
C10	22.8(4)	17.0(4)	13.6(4)	7.0(3)	2.5(3)	0.9(3)
C11	22.1(5)	25.2(5)	23.4(5)	9.7(4)	-0.7(4)	4.9(4)
C12	44.1(6)	23.8(5)	13.5(4)	4.9(4)	8.5(4)	5.5(5)
C13	15.9(4)	13.4(4)	17.3(4)	5.9(3)	5.3(3)	0.1(3)
C14	24.3(5)	13.4(4)	25.8(5)	7.0(4)	4.6(4)	1.6(3)
C15	23.6(5)	28.4(5)	27.0(5)	11.2(4)	14.0(4)	1.5(4)
C16	14.5(4)	13.4(4)	12.4(4)	4.1(3)	5.9(3)	1.9(3)
C17	15.6(4)	15.1(4)	16.8(4)	5.5(3)	5.9(3)	2.7(3)
C18	14.9(4)	19.4(4)	17.4(4)	5.7(3)	5.1(3)	1.1(3)
C19	18.4(4)	16.0(4)	15.8(4)	3.3(3)	6.2(3)	-2.7(3)
C20	22.1(4)	12.7(4)	19.3(4)	4.8(3)	7.4(4)	2.1(3)
C21	17.0(4)	14.6(4)	16.9(4)	5.6(3)	6.1(3)	3.3(3)
C22	12.9(4)	14.7(4)	18.6(4)	5.0(3)	6.7(3)	3.1(3)
C23	30.2(5)	19.7(4)	23.2(5)	9.8(4)	14.2(4)	12.6(4)
C24	31.8(5)	23.4(5)	21.4(5)	9.0(4)	14.1(4)	11.3(4)
C25	17.4(4)	17.5(4)	20.3(4)	1.1(3)	9.0(3)	3.1(3)
C26	22.1(5)	17.6(4)	24.3(5)	5.8(4)	9.5(4)	8.5(4)
C27	21.0(4)	18.3(4)	21.0(4)	7.8(3)	9.0(4)	7.6(3)
B1	13.6(4)	12.4(4)	13.8(4)	4.9(3)	5.3(3)	3.4(3)
B2	17.1(4)	15.5(4)	13.3(4)	5.9(3)	4.8(3)	4.1(3)
B3	14.4(4)	16.3(4)	15.9(4)	6.9(4)	4.5(3)	3.8(3)

B4	13.5(4)	18.4(5)	18.7(5)	7.2(4)	3.4(4)	3.1(4)
B5	16.6(4)	18.5(5)	15.1(4)	5.9(4)	1.8(4)	2.3(4)
B6	15.6(4)	17.9(5)	15.7(4)	4.9(4)	1.8(4)	0.7(4)
B7	12.4(4)	14.9(4)	16.8(4)	5.3(4)	4.0(3)	1.3(3)
B8	13.4(4)	13.9(4)	16.4(4)	5.9(3)	5.7(3)	3.9(3)
B9	15.0(4)	13.4(4)	13.6(4)	2.9(3)	4.4(3)	0.8(3)
B10	18.6(5)	16.2(4)	12.9(4)	4.0(3)	3.8(4)	2.1(4)

Bond Lengths for mo_0830_CG_0m.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C11	C19	1.7411(10)	C18	C19	1.3869(14)
Cl2	C25	1.7420(10)	C19	C20	1.3816(14)
01	C1	1.2196(11)	C20	C21	1.3930(13)
N1	C1	1.3580(11)	C22	C23	1.3969(13)
N1	C10	1.4997(12)	C22	C27	1.3980(13)
N1	C13	1.4819(11)	C22	B8	1.5783(13)
C1	C2	1.5565(12)	C23	C24	1.3893(14)
C2	C3	1.7124(12)	C24	C25	1.3827(14)
C2	B1	1.8085(13)	C25	C26	1.3838(14)
C2	B7	1.7089(13)	C26	C27	1.3924(13)
C2	B8	1.7329(13)	B1	B2	1.7924(14)
C2	B9	1.7232(13)	B1	B3	1.7828(14)
C3	C4	1.5075(12)	B1	B8	1.8194(14)
C3	B1	1.7619(13)	B2	B3	1.7595(15)
C3	B2	1.7136(13)	B2	B5	1.7727(15)
C3	B9	1.7345(13)	B2	B10	1.7697(15)
C3	B10	1.7234(14)	B3	B4	1.7678(15)
C4	C5	1.3930(13)	B3	B5	1.7823(15)
C4	C9	1.3941(13)	B3	B 8	1.7867(14)
C5	C6	1.3897(13)	B4	B5	1.7693(16)
C6	C7	1.3845(15)	B4	B6	1.7859(16)
C7	C8	1.3859(16)	B4	B7	1.7589(15)
C8	C9	1.3888(14)	B4	B8	1.8019(15)
C10	C11	1.5249(15)	B5	B6	1.7775(15)
C10	C12	1.5226(14)	B5	B10	1.7684(15)
C13	C14	1.5301(13)	B6	B7	1.7707(15)
C13	C15	1.5275(13)	B6	B9	1.7642(15)
C16	C17	1.4051(12)	B6	B10	1.7759(16)
C16	C21	1.4027(12)	B7	B8	1.7898(15)
C16	B1	1.5806(13)	B7	B9	1.7802(15)
C17	C18	1.3906(13)	B9	B10	1.7740(15)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C1	N1	C10	116.63(7)	B3	B2	B5	60.61(6)
C1	N1	C13	128.35(7)	B3	B2	B10	108.38(7)
C13	N1	C10	115.01(7)	B5	B2	B1	109.98(7)
O1	C1	N1	122.22(8)	B10	B2	B1	110.18(7)
01	C1	C2	115.04(7)	B10	B2	B5	59.90(6)
N1	C1	C2	122.73(8)	B1	B3	B8	61.29(6)
C1	C2	C3	116.61(7)	B2	B3	B1	60.79(6)
C1	C2	B1	112.95(7)	B2	B3	B4	108.10(7)
C1	C2	B7	126.28(7)	B2	B3	B5	60.06(6)
C1	C2	B8	120.35(7)	B2	B3	B 8	109.11(7)
C1	C2	B9	120.86(7)	B4	B3	B1	110.41(7)
C3	C2	B1	59.98(5)	B4	B3	B5	59.78(6)
C3	C2	B 8	109.41(6)	B4	B3	B 8	60.92(6)
C3	C2	B9	60.64(5)	B5	B3	B1	109.98(7)
B7	C2	C3	109.81(7)	B5	B3	B 8	109.16(7)
B7	C2	B1	112.79(6)	B3	B4	B5	60.52(6)
B7	C2	B8	62.66(6)	B3	B4	B6	108.17(7)
B7	C2	B9	62.49(6)	B3	B4	B 8	60.06(6)
B 8	C2	B1	61.78(5)	B5	B4	B6	60.00(6)
B9	C2	B1	112.14(6)	B5	B4	B 8	109.06(7)
B9	C2	B 8	113.80(7)	B6	B4	B 8	108.68(7)
C2	C3	B1	62.72(5)	B7	B4	В3	107.90(7)
C2	C3	B2	110.49(7)	B7	B4	B5	108.16(7)
C2	C3	B9	59.99(5)	B7	B4	B6	59.93(6)
C2	C3	B10	109.65(7)	B7	B4	B 8	60.33(6)
C4	C3	C2	120.06(7)	B2	B5	В3	59.33(6)
C4	C3	B1	119.01(7)	B2	B5	B6	107.96(7)
C4	C3	B2	121.95(7)	B4	B5	B2	107.45(7)
C4	C3	B9	116.46(7)	B4	B5	В3	59.70(6)
C4	C3	B10	118.95(7)	B4	B5	B6	60.46(6)
B2	C3	B1	62.07(6)	B6	B5	В3	107.90(7)
B2	C3	B9	112.28(7)	B10	B5	B2	59.97(6)
B2	C3	B10	61.98(6)	B10	B5	В3	107.42(7)
B9	C3	B1	113.90(7)	B10	B5	B4	108.25(7)
B10	C3	B1	113.88(7)	B10	B5	B6	60.11(6)
B10	C3	B9	61.73(6)	B5	B6	B4	59.54(6)
C5	C4	C3	121.93(8)	B7	B6	B4	59.28(6)
C5	C4	C9	118.83(9)	B7	B6	B5	107.28(7)
C9	C4	C3	119.24(8)	B7	B6	B10	108.12(7)
C6	C5	C4	120.65(9)	B9	B6	B4	107.55(7)
C7	C6	C5	120.18(9)	B9	B6	B5	107.80(7)

Bond Angles for mo_0830_CG_0m.

C6	C7	C8	119.44(10)	B9	B6	B7	60.48(6)
C7	C8	C9	120.64(10)	B9	B6	B10	60.15(6)
C8	C9	C4	120.19(9)	B10	B6	B4	107.18(7)
N1	C10	C11	111.92(8)	B10	B6	B5	59.69(6)
N1	C10	C12	113.18(8)	C2	B7	B4	106.69(7)
C12	C10	C11	112.73(9)	C2	B7	B6	106.48(7)
N1	C13	C14	111.82(8)	C2	B7	B 8	59.33(5)
N1	C13	C15	111.55(8)	C2	B7	B9	59.15(5)
C15	C13	C14	112.03(8)	B4	B7	B6	60.79(6)
C17	C16	B1	126.32(8)	B4	B7	B 8	61.02(6)
C21	C16	C17	116.75(8)	B4	B7	B9	108.03(7)
C21	C16	B1	116.70(8)	B6	B7	B 8	109.92(7)
C18	C17	C16	121.92(9)	B6	B7	B9	59.58(6)
C19	C18	C17	119.15(9)	B9	B7	B 8	108.39(7)
C18	C19	C11	119.83(8)	C2	B8	B1	61.15(5)
C20	C19	C11	119.14(7)	C2	B8	B3	105.06(7)
C20	C19	C18	121.03(9)	C2	B8	B4	103.81(7)
C19	C20	C21	119.04(9)	C2	B 8	B7	58.01(5)
C20	C21	C16	122.11(9)	C22	B8	C2	123.20(7)
C23	C22	C27	116.99(9)	C22	B8	B1	123.35(7)
C23	C22	B 8	123.83(8)	C22	B8	B3	125.77(8)
C27	C22	B 8	118.95(8)	C22	B8	B4	122.21(8)
C24	C23	C22	122.21(9)	C22	B8	B7	119.46(7)
C25	C24	C23	118.83(9)	B3	B8	B1	59.25(5)
C24	C25	Cl2	119.60(8)	B3	B8	B4	59.02(6)
C24	C25	C26	121.13(9)	B3	B 8	B7	105.74(7)
C26	C25	Cl2	119.28(8)	B4	B 8	B1	107.25(7)
C25	C26	C27	118.95(9)	B7	B 8	B1	108.55(7)
C26	C27	C22	121.88(9)	B7	B 8	B4	58.64(6)
C2	B1	B 8	57.07(5)	C2	B9	C3	59.37(5)
C3	B1	C2	57.30(5)	C2	B9	B6	106.15(7)
C3	B1	B2	57.64(5)	C2	B9	B7	58.36(5)
C3	B1	B3	102.80(7)	C2	B9	B10	106.83(7)
C3	B1	B 8	103.47(6)	C3	B9	B6	105.94(7)
C16	B1	C2	130.94(7)	C3	B9	B7	105.58(7)
C16	B1	C3	124.76(7)	C3	B9	B10	58.83(6)
C16	B1	B2	118.13(7)	B6	B9	B7	59.94(6)
C16	B1	B3	121.19(7)	B6	B9	B10	60.25(6)
C16	B1	B 8	126.36(7)	B10	B9	B7	107.79(7)
B2	B1	C2	102.83(6)	C3	B10	B2	58.74(5)
B2	B1	B 8	106.24(7)	C3	B10	В5	105.75(7)
B3	B1	C2	102.13(6)	C3	B10	B6	105.91(7)
B3	B1	B2	58.96(6)	C3	B10	B9	59.44(5)
B3	B1	B 8	59.46(6)	B2	B10	B6	108.17(7)
C3	B2	B1	60.29(5)	B2	B10	B9	107.81(7)

C3	B2	B3	105.80(7)	B5	B10	B2	60.14(6)
C3	B2	B5	105.98(7)	B5	B10	B6	60.20(6)
C3	B2	B10	59.28(6)	B5	B10	B9	107.77(7)
B3	B2	B1	60.25(6)	B9	B10	B6	59.60(6)

Torsion Angles for mo 0830 CG 0m.

А	В	C	D	Angle/°	Α	В	С	D	Angle/°
C11	C19	C20	C21	178.83(7)	B2	B5	B10	B6	-138.00(7)
Cl2	C25	C26	C27	179.90(8)	B2	B5	B10	B9	-100.74(8)
01	C1	C2	C3	-65.10(10)	B3	B1	B2	C3	133.43(7)
01	C1	C2	B1	1.60(10)	B3	B1	B2	B5	35.97(7)
01	C1	C2	B7	147.98(8)	B3	B1	B2	B10	100.18(8)
01	C1	C2	B8	71.30(10)	B3	B1	B 8	C2	-132.29(7)
01	C1	C2	B9	-135.25(8)	B3	B1	B 8	C22	115.01(9)
N1	C1	C2	C3	115.51(9)	B3	B1	B 8	B4	-35.73(7)
N1	C1	C2	B1	-177.79(7)	B3	B1	B 8	B 7	-97.66(8)
N1	C1	C2	B7	-31.41(13)	B3	B2	B5	B4	36.75(7)
N1	C1	C2	B8	-108.10(9)	B3	B2	B5	B6	100.56(8)
N1	C1	C2	B9	45.35(12)	B3	B2	B5	B10	138.14(7)
C1	N1	C10	C11	69.00(10)	B3	B2	B10	C3	97.84(7)
C1	N1	C10	C12	-59.70(11)	B3	B2	B10	В5	-37.78(7)
C1	N1	C13	C14	-117.94(10)	B3	B2	B10	B6	-0.11(9)
C1	N1	C13	C15	115.72(10)	B3	B2	B10	B9	62.89(9)
C1	C2	C3	C4	-7.02(11)	B3	B4	B5	B2	-36.59(7)
C1	C2	C3	B1	102.37(8)	B3	B4	B5	B6	-137.75(7)
C1	C2	C3	B2	143.32(7)	B3	B4	B5	B10	-99.93(8)
C1	C2	C3	B9	-112.11(8)	B3	B4	B6	В5	38.03(7)
C1	C2	C3	B10	-150.20(7)	B3	B4	B6	B7	-100.59(8)
C1	C2	B1	C3	-108.49(7)	B3	B4	B6	B9	-62.69(9)
C1	C2	B1	C16	1.39(12)	B3	B4	B6	B10	0.66(9)
C1	C2	B1	B2	-145.50(7)	B3	B4	B7	C2	1.17(9)
C1	C2	B1	B3	153.97(7)	B3	B4	B7	B6	101.05(8)
C1	C2	B1	B8	113.30(8)	B3	B4	B7	B8	-38.04(7)
C1	C2	B7	B4	-149.05(8)	B3	B4	B7	B9	63.43(9)
C1	C2	B7	B6	147.22(8)	B3	B4	B 8	C2	99.47(7)
C1	C2	B7	B8	-109.03(9)	B3	B4	B 8	C22	-115.32(9)
C1	C2	B7	B9	109.57(9)	B3	B4	B 8	B1	35.83(7)
C1	C2	B8	C22	11.47(12)	B3	B4	B 8	B7	137.41(7)
C1	C2	B8	B1	-101.45(8)	B3	B5	B6	B4	-37.59(7)
C1	C2	B8	B3	-142.63(7)	B3	B5	B6	B7	-1.06(10)
C1	C2	B8	B4	156.24(7)	B3	B5	B6	B9	62.69(9)
C1	C2	B8	B7	117.99(8)	B3	B5	B6	B10	100.21(8)
C1	C2	B9	C3	105.22(8)	B3	B5	B10	C3	-1.42(9)

C1	C2	B9	B6	-155.52(7)	B3	B5	B10	B2	36.98(7)
C1	C2	B9	B7	-117.78(8)	B3	B5	B10	B6	-101.02(8)
C1	C2	B9	B10	141.36(8)	B3	B5	B10	B9	-63.76(9)
C2	C3	C4	C5	-33.38(12)	B4	B3	B5	B2	138.61(7)
C2	C3	C4	C9	146.40(9)	B4	B3	B5	B6	37.93(7)
C2	C3	B1	C16	-120.15(9)	B4	B3	B5	B10	101.35(8)
C2	C3	B1	B2	135.98(7)	B4	B3	B8	C2	-97.28(7)
C2	C3	B1	B3	96.33(7)	B4	B3	B8	C22	109.49(10)
C2	C3	B1	B 8	35.11(6)	B4	B3	B8	B1	-139.42(7)
C2	C3	B2	B1	-41.24(6)	B4	B3	B8	B7	-36.90(7)
C2	C3	B2	B3	-0.30(9)	B4	B5	B6	B7	36.53(7)
C2	C3	B2	B5	62.98(8)	B4	B5	B6	B9	100.29(8)
C2	C3	B2	B10	101.99(7)	B4	B5	B6	B10	137.80(7)
C2	C3	B9	B6	-99.61(7)	B4	B5	B10	C3	61.62(9)
C2	C3	B9	B7	-37.07(6)	B4	B5	B10	B2	100.02(8)
C2	C3	B9	B10	-138.72(7)	B4	B5	B10	B6	-37.98(7)
C2	C3	B10	B2	-103.36(7)	B4	B5	B10	B9	-0.71(10)
C2	C3	B10	B5	-64.29(8)	B4	B6	B7	C2	100.24(7)
C2	C3	B10	B6	-1.46(9)	B4	B6	B7	B 8	37.54(7)
C2	C3	B10	B9	37.34(6)	B4	B6	B7	B9	137.69(7)
C2	B1	B2	C3	36.85(6)	B4	B6	B9	C2	-0.35(9)
C2	B1	B2	B3	-96.58(7)	B4	B6	B9	C3	61.69(9)
C2	B1	B2	B5	-60.61(8)	B4	B6	B9	B7	-37.36(7)
C2	B1	B2	B10	3.61(9)	B4	B6	B9	B10	100.12(8)
C2	B1	B3	B2	97.80(7)	B4	B6	B10	C3	-62.02(9)
C2	B1	B3	B4	-2.08(9)	B4	B6	B10	B2	-0.34(9)
C2	B1	B3	B5	62.06(8)	B4	B6	B10	B5	37.30(7)
C2	B1	B3	B8	-39.42(6)	B4	B6	B10	B9	-100.74(8)
C2	B1	B8	C22	-112.70(9)	B4	B 7	B8	C2	135.25(7)
C2	B1	B8	B3	132.29(7)	B4	B 7	B8	C22	-111.88(9)
C2	B1	B8	B4	96.56(7)	B4	B 7	B 8	B1	99.31(8)
C2	B1	B8	B7	34.64(6)	B4	B 7	B 8	B3	37.07(7)
C2	B7	B8	C22	112.87(9)	B4	B7	B9	C2	-99.06(7)
C2	B7	B8	B1	-35.94(6)	B4	B 7	B9	C3	-61.52(8)
C2	B7	B8	B3	-98.18(7)	B4	B7	B9	B6	38.16(7)
C2	B7	B8	B4	-135.25(7)	B4	B7	B9	B10	0.12(9)
C2	B7	B9	C3	37.53(6)	B5	B2	B3	B1	-140.69(7)
C2	B7	B9	B6	137.22(7)	B5	B2	B3	B4	-36.95(7)
C2	B7	B9	B10	99.18(7)	B5	B2	B3	B 8	-101.61(8)
C2	B9	B10	C3	-36.37(6)	B5	B2	B10	C3	135.62(7)
C2	B9	B10	B2	-1.72(9)	B5	B2	B10	B6	37.67(7)
C2	B9	B10	B5	61.78(9)	B5	B2	B10	B9	100.67(8)
C2	B9	B10	B6	99.31(8)	B5	B3	B4	B6	-37.80(7)
C3	C2	B1	C16	109.88(10)	B5	B3	B4	B7	-101.17(8)
C3	C2	B1	B2	-37.01(6)	B5	B3	B4	B8	-139.33(7)

C3	C2	B1	B3	-97.55(7)	B5	B3	B 8	C2	-60.69(8)
C3	C2	B1	B8	-138.21(7)	B5	B3	B8	C22	146.09(9)
C3	C2	B7	B4	62.20(8)	B5	B3	B8	B1	-102.83(8)
C3	C2	B7	B6	-1.54(9)	B5	B3	B8	B4	36.59(7)
C3	C2	B7	B8	102.21(7)	B5	B3	B8	B 7	-0.30(9)
C3	C2	B7	B9	-39.18(6)	B5	B4	B6	B 7	-138.61(7)
C3	C2	B8	C22	150.64(8)	B5	B4	B6	B9	-100.71(8)
C3	C2	B8	B1	37.72(6)	B5	B4	B6	B10	-37.37(7)
C3	C2	B8	B3	-3.46(8)	B5	B4	B7	C2	-62.83(9)
C3	C2	B8	B4	-64.59(8)	B5	B4	B7	B6	37.05(7)
C3	C2	B8	B7	-102.84(7)	B5	B4	B7	B 8	-102.04(8)
C3	C2	B9	B6	99.26(7)	B5	B4	B7	B9	-0.57(9)
C3	C2	B9	B7	137.00(7)	B5	B4	B8	C2	62.59(8)
C3	C2	B9	B10	36.14(6)	B5	B4	B8	C22	-152.20(8)
C3	C4	C5	C6	176.74(9)	B5	B4	B8	B1	-1.05(9)
C3	C4	C9	C8	-178.54(10)	B5	B4	B8	B3	-36.88(7)
C3	B1	B2	B3	-133.43(7)	B5	B4	B8	B 7	100.53(8)
C3	B1	B2	B5	-97.46(8)	B5	B6	B7	C2	63.60(9)
C3	B1	B2	B10	-33.24(7)	B5	B6	B7	B4	-36.64(7)
C3	B1	B3	B2	38.99(6)	B5	B6	B7	B 8	0.90(10)
C3	B1	B3	B4	-60.90(8)	B5	B6	B7	B9	101.05(8)
C3	B1	B3	B5	3.24(9)	B5	B6	B9	C2	-63.16(9)
C3	B1	B3	B8	-98.24(7)	B5	B6	B9	C3	-1.13(9)
C3	B1	B8	C2	-35.21(6)	B5	B6	B9	B7	-100.18(8)
C3	B1	B8	C22	-147.91(8)	B5	B6	B9	B10	37.31(7)
C3	B1	B8	B3	97.08(7)	B5	B6	B10	C3	-99.32(8)
C3	B1	B8	B4	61.35(8)	B5	B6	B10	B2	-37.64(7)
C3	B1	B8	B7	-0.58(8)	B5	B6	B10	B9	-138.05(7)
C3	B2	B3	B1	-40.96(6)	B6	B4	B5	B2	101.15(8)
C3	B2	B3	B4	62.78(9)	B6	B4	B5	B3	137.75(7)
C3	B2	B3	B5	99.73(8)	B6	B4	B5	B10	37.82(7)
C3	B2	B3	B8	-1.88(9)	B6	B4	B7	C2	-99.89(8)
C3	B2	B5	B3	-99.43(7)	B6	B4	B7	B 8	-139.09(7)
C3	B2	B5	B4	-62.67(9)	B6	B4	B7	B9	-37.62(7)
C3	B2	B5	B6	1.14(9)	B6	B4	B8	C2	-1.20(9)
C3	B2	B5	B10	38.72(7)	B6	B4	B8	C22	144.01(8)
C3	B2	B10	B5	-135.62(7)	B6	B4	B8	B1	-64.84(9)
C3	B2	B10	B6	-97.95(7)	B6	B4	B8	B3	-100.67(8)
C3	B2	B10	B9	-34.95(7)	B6	B4	B8	B 7	36.74(7)
C3	B9	B10	B2	34.66(7)	B6	B5	B10	C3	99.60(7)
C3	B9	B10	B5	98.15(8)	B6	B5	B10	B2	138.00(7)
C3	B9	B10	B6	135.68(7)	B6	B5	B10	B9	37.26(7)
C4	C3	B1	C2	111.01(8)	B6	B7	B8	C2	97.81(8)
C4	C3	B1	C16	-9.14(12)	B6	B7	B8	C22	-149.32(8)
C4	C3	B1	B2	-113.01(8)	B6	B 7	B8	B1	61.87(9)

C4	C3	B1	B3	-152.66(7)	B6	B7	B 8	B3	-0.37(9)
C4	C3	B1	B8	146.11(7)	B6	B7	B8	B4	-37.44(7)
C4	C3	B2	B1	108.44(9)	B6	B7	B9	C2	-137.22(7)
C4	C3	B2	B3	149.38(8)	B6	B7	B9	C3	-99.68(7)
C4	C3	B2	B5	-147.33(8)	B6	B7	B9	B10	-38.04(7)
C4	C3	B2	B10	-108.32(9)	B6	B9	B10	C3	-135.68(7)
C4	C3	B9	C2	-111.02(8)	B6	B9	B10	B2	-101.02(8)
C4	C3	B9	B6	149.37(7)	B6	B9	B10	B5	-37.53(7)
C4	C3	B9	B7	-148.09(7)	B7	C2	C3	C4	145.10(8)
C4	C3	B9	B10	110.26(8)	B7	C2	C3	B1	-105.51(7)
C4	C3	B10	B2	113.00(9)	B7	C2	C3	B2	-64.56(8)
C4	C3	B10	B5	152.06(8)	B7	C2	C3	B9	40.01(7)
C4	C3	B10	B6	-145.10(8)	B7	C2	C3	B10	1.92(9)
C4	C3	B10	B9	-106.31(8)	B7	C2	B1	C3	100.47(7)
C4	C5	C6	C7	2.45(16)	B7	C2	B1	C16	-149.65(9)
C5	C4	C9	C8	1.25(15)	B7	C2	B1	B2	63.46(8)
C5	C6	C7	C8	-0.02(17)	B7	C2	B1	B3	2.92(9)
C6	C7	C8	C9	-1.78(18)	B7	C2	B1	B 8	-37.74(7)
C7	C8	C9	C4	1.15(18)	B7	C2	B 8	C22	-106.52(9)
C9	C4	C5	C6	-3.04(15)	B7	C2	B8	B1	140.56(7)
C10	N1	C1	01	-1.08(13)	B7	C2	B 8	B3	99.39(7)
C10	N1	C1	C2	178.27(8)	B7	C2	B 8	B4	38.25(6)
C10	N1	C13	C14	61.08(10)	B7	C2	B9	C3	-137.00(7)
C10	N1	C13	C15	-65.26(10)	B7	C2	B9	B6	-37.74(7)
C13	N1	C1	01	177.92(8)	B7	C2	B9	B10	-100.86(8)
C13	N1	C1	C2	-2.73(14)	B 7	B4	B5	B2	64.13(9)
C13	N1	C10	C11	-110.14(9)	B 7	B4	B5	B3	100.72(8)
C13	N1	C10	C12	121.16(9)	B 7	B4	B5	B6	-37.03(7)
C16	C17	C18	C19	-0.69(14)	B7	B4	B5	B10	0.79(10)
C16	B1	B2	C3	-115.25(8)	B7	B4	B6	B5	138.61(7)
C16	B1	B2	B3	111.32(9)	B7	B4	B6	B9	37.90(7)
C16	B1	B2	B5	147.29(8)	B7	B4	B6	B10	101.24(8)
C16	B1	B2	B10	-148.49(8)	B7	B4	B8	C2	-37.94(6)
C16	B1	B3	B2	-106.20(9)	B7	B4	B8	C22	107.27(9)
C16	B1	B3	B4	153.92(8)	B7	B4	B8	B1	-101.59(7)
C16	B1	B3	B5	-141.94(8)	B7	B4	B8	B3	-137.41(7)
C16	B1	B3	B8	116.58(9)	B7	B6	B9	C2	37.02(6)
C16	B1	B8	C2	119.51(9)	B7	B6	B9	C3	99.05(7)
C16	B1	B8	C22	6.81(13)	B7	B6	B9	B10	137.49(7)
C16	B1	B8	B3	-108.20(9)	B7	B6	B10	C3	0.50(9)
C16	B1	B8	B4	-143.93(8)	B7	B6	B10	B2	62.18(9)
C16	B1	B 8	B7	154.14(8)	B7	B6	B10	B5	99.83(8)
C17	C16	C21	C20	-0.15(13)	B7	B6	B10	B9	-38.22(7)
C17	C16	B1	C2	-53.79(13)	B7	B9	B10	C3	-97.79(7)
C17	C16	B1	C3	20.63(13)	B7	B9	B10	B2	-63.13(9)

C17	C16	B1	B2	89.06(11)	B7	B9	B10	B5	0.36(9)
C17	C16	B1	B3	157.97(8)	B7	B9	B10	B6	37.89(7)
C17	C16	B1	B8	-129.00(10)	B 8	C2	C3	C4	-147.90(8)
C17	C18	C19	C11	-178.46(7)	B 8	C2	C3	B1	-38.50(6)
C17	C18	C19	C20	0.48(14)	B8	C2	C3	B2	2.45(9)
C18	C19	C20	C21	-0.11(14)	B 8	C2	C3	B9	107.02(7)
C19	C20	C21	C16	-0.05(14)	B8	C2	C3	B10	68.92(8)
C21	C16	C17	C18	0.52(13)	B8	C2	B1	C3	138.21(7)
C21	C16	B1	C2	132.00(9)	B 8	C2	B1	C16	-111.91(10)
C21	C16	B1	C3	-153.58(8)	B 8	C2	B1	B2	101.20(7)
C21	C16	B1	B2	-85.16(10)	B 8	C2	B1	B3	40.67(6)
C21	C16	B1	B3	-16.24(12)	B 8	C2	B7	B4	-40.01(7)
C21	C16	B1	B8	56.78(12)	B 8	C2	B7	B6	-103.74(7)
C22	C23	C24	C25	-0.47(17)	B 8	C2	B7	B9	-141.39(7)
C23	C22	C27	C26	-0.15(14)	B 8	C2	B9	C3	-99.71(7)
C23	C22	B8	C2	19.47(14)	B 8	C2	B9	B6	-0.45(9)
C23	C22	B8	B1	94.42(11)	B 8	C2	B9	B7	37.29(7)
C23	C22	B8	B3	168.14(9)	B 8	C2	B9	B10	-63.58(9)
C23	C22	B8	B4	-119.07(10)	B 8	C22	C23	C24	174.82(10)
C23	C22	B8	B7	-49.59(13)	B 8	C22	C27	C26	-174.95(9)
C23	C24	C25	C12	-179.76(8)	B 8	B1	B2	C3	95.89(7)
C23	C24	C25	C26	0.50(16)	B 8	B1	B2	B3	-37.54(6)
C24	C25	C26	C27	-0.36(15)	B 8	B1	B2	В5	-1.57(9)
C25	C26	C27	C22	0.19(15)	B 8	B1	B2	B10	62.65(9)
C27	C22	C23	C24	0.30(15)	B8	B1	B3	B2	137.22(7)
C27	C22	B8	C2	-166.11(8)	B8	B1	B3	B4	37.34(7)
C27	C22	B8	B1	-91.16(11)	B8	B1	B3	B5	101.48(8)
C27	C22	B8	B3	-17.43(13)	B8	B3	B4	B5	139.33(7)
C27	C22	B 8	B4	55.36(12)	B8	B3	B4	B6	101.54(8)
C27	C22	B 8	B7	124.84(9)	B8	B3	B4	B7	38.17(7)
B1	C2	C3	C4	-109.39(8)	B8	B3	B5	B2	101.53(8)
B1	C2	C3	B2	40.95(6)	B 8	B3	B5	B4	-37.08(7)
B1	C2	C3	B9	145.52(7)	B8	B3	B5	B6	0.86(10)
B1	C2	C3	B10	107.43(7)	B8	B3	B5	B10	64.27(9)
B1	C2	B7	B4	-2.62(9)	B 8	B4	B5	B2	0.09(10)
B1	C2	B7	B6	-66.36(8)	B 8	B4	B5	B3	36.69(7)
B1	C2	B7	B8	37.39(7)	B 8	B4	B5	B6	-101.06(8)
B1	C2	B7	B9	-104.01(7)	B 8	B4	B5	B10	-63.24(9)
B1	C2	B8	C22	112.93(9)	B 8	B4	B6	B5	101.70(8)
B1	C2	B8	B3	-41.17(6)	B 8	B4	B6	B7	-36.92(7)
B1	C2	B8	B4	-102.31(7)	B8	B4	B6	B9	0.98(10)
B1	C2	B 8	B7	-140.56(7)	B 8	B4	B6	B10	64.33(9)
B1	C2	B9	C3	-31.95(6)	B8	B4	B7	C2	39.21(6)
B1	C2	B9	B6	67.31(8)	B8	B4	B7	B6	139.09(7)
B1	C2	B9	B7	105.05(7)	B8	B4	B 7	B9	101.47(7)

B1	C2	B9	B10	4.19(9)	B8	B 7	B9	C2	-34.44(6)
B1	C3	C4	C5	-106.85(10)	B 8	B7	B9	C3	3.09(9)
B1	C3	C4	C9	72.93(11)	B 8	B7	B9	B6	102.78(8)
B1	C3	B2	B3	40.94(6)	B 8	B7	B9	B10	64.74(9)
B1	C3	B2	B5	104.23(7)	B9	C2	C3	C4	105.09(8)
B1	C3	B2	B10	143.23(7)	B9	C2	C3	B1	-145.52(7)
B1	C3	B9	C2	33.39(7)	B9	C2	C3	B2	-104.57(7)
B1	C3	B9	B6	-66.22(9)	B9	C2	C3	B10	-38.09(7)
B1	C3	B9	B7	-3.68(9)	B9	C2	B1	C3	32.19(6)
B1	C3	B9	B10	-105.33(8)	B9	C2	B1	C16	142.06(9)
B1	C3	B10	B2	-35.33(7)	B9	C2	B1	B2	-4.83(9)
B1	C3	B10	B5	3.73(9)	B9	C2	B1	B3	-65.36(8)
B1	C3	B10	B6	66.57(9)	B9	C2	B1	B 8	-106.03(7)
B1	C3	B10	B9	105.36(7)	B9	C2	B7	B4	101.38(8)
B1	C16	C17	C18	-173.69(8)	B9	C2	B7	B6	37.65(7)
B1	C16	C21	C20	174.63(8)	B9	C2	B7	B 8	141.39(7)
B1	B2	B3	B4	103.74(8)	B9	C2	B8	C22	-143.73(8)
B1	B2	B3	B5	140.69(7)	B9	C2	B8	B1	103.34(7)
B1	B2	B3	B8	39.08(7)	B9	C2	B8	B3	62.17(8)
B1	B2	B5	B3	-35.82(7)	B9	C2	B8	B4	1.03(9)
B1	B2	B5	B4	0.94(10)	B9	C2	B8	B 7	-37.22(7)
B1	B2	B5	B6	64.75(9)	B9	C3	C4	C5	35.67(12)
B1	B2	B5	B10	102.32(8)	B9	C3	C4	C9	-144.55(9)
B1	B2	B10	C3	33.63(7)	B9	C3	B1	C2	-32.42(6)
B1	B2	B10	B5	-101.99(8)	B9	C3	B1	C16	-152.57(8)
B1	B2	B10	B6	-64.32(9)	B9	C3	B1	B2	103.56(8)
B1	B2	B10	B9	-1.32(10)	B9	C3	B1	B3	63.91(8)
B1	B3	B4	B5	101.84(8)	B9	C3	B1	B 8	2.68(9)
B1	B3	B4	B6	64.04(9)	B9	C3	B2	B1	-106.16(7)
B1	B3	B4	B7	0.67(10)	B9	C3	B2	B3	-65.22(9)
B1	B3	B4	B8	-37.49(7)	B9	C3	B2	B5	-1.93(9)
B1	B3	B5	B2	36.04(7)	B9	C3	B2	B10	37.07(7)
B1	B3	B5	B4	-102.57(8)	B9	C3	B10	B2	-140.70(7)
B1	B3	B5	B6	-64.64(9)	B9	C3	B10	B5	-101.63(8)
B1	B3	B5	B10	-1.22(10)	B9	C3	B10	B6	-38.80(7)
B1	B3	B 8	C2	42.14(6)	B9	B6	B7	C2	-37.45(6)
B1	B3	B 8	C22	-111.08(10)	B9	B6	B7	B4	-137.69(7)
B1	B3	B 8	B4	139.42(7)	B9	B6	B7	B 8	-100.16(8)
B1	B3	B 8	B7	102.53(7)	B9	B6	B10	C3	38.72(7)
B2	C3	C4	C5	179.73(8)	B9	B6	B10	B2	100.41(8)
B2	C3	C4	C9	-0.49(13)	B9	B6	B10	B5	138.05(7)
B2	C3	B1	C2	-135.98(7)	B9	B7	B 8	C2	34.37(6)
B2	C3	B1	C16	103.87(9)	B9	B7	B8	C22	147.24(8)
B2	C3	B1	B3	-39.65(6)	B9	B7	B8	B1	-1.57(9)
B2	C3	B1	B8	-100.88(7)	B9	B7	B8	B3	-63.81(8)

B2	C3	B9	C2	101.55(7)	B9	B7	B 8	B4	-100.88(8)
B2	C3	B9	B6	1.94(9)	B10	C3	C4	C5	106.45(10)
B2	C3	B9	B7	64.48(8)	B10	C3	C4	C9	-73.77(11)
B2	C3	B9	B10	-37.18(7)	B10	C3	B1	C2	-100.69(7)
B2	C3	B10	B5	39.06(7)	B10	C3	B1	C16	139.17(8)
B2	C3	B10	B6	101.90(8)	B10	C3	B1	B2	35.30(7)
B2	C3	B10	B9	140.70(7)	B10	C3	B1	B3	-4.36(9)
B2	B1	B3	B4	-99.89(8)	B10	C3	B1	B8	-65.58(8)
B2	B1	B3	B5	-35.74(7)	B10	C3	B2	B1	-143.23(7)
B2	B1	B3	B8	-137.22(7)	B10	C3	B2	B3	-102.29(8)
B2	B1	B8	C2	-94.98(7)	B10	C3	B2	B5	-39.01(7)
B2	B1	B8	C22	152.32(8)	B10	C3	B9	C2	138.72(7)
B2	B1	B8	B3	37.31(6)	B10	C3	B9	B6	39.11(7)
B2	B1	B8	B4	1.58(9)	B10	C3	B9	B 7	101.65(8)
B2	B1	B8	B7	-60.35(8)	B10	B2	B3	B 1	-103.22(7)
B2	B3	B4	B5	37.07(7)	B10	B2	B3	B4	0.52(9)
B2	B3	B4	B6	-0.73(9)	B10	B2	B3	B5	37.47(7)
B2	B3	B4	B7	-64.10(9)	B10	B2	B3	B 8	-64.14(9)
B2	B3	B4	B8	-102.27(7)	B10	B2	B5	B3	-138.14(7)
B2	B3	B5	B4	-138.61(7)	B10	B2	B5	B4	-101.39(8)
B2	B3	B5	B6	-100.68(8)	B10	B2	B5	B6	-37.58(7)
B2	B3	B5	B10	-37.26(7)	B10	B5	B6	B4	-137.80(7)
B2	B3	B8	C2	3.28(9)	B10	B5	B6	B 7	-101.27(8)
B2	B3	B8	C22	-149.94(8)	B10	B5	B6	B9	-37.51(7)
B2	B3	B8	B1	-38.86(7)	B10	B6	B7	C2	0.62(9)
B2	B3	B8	B4	100.57(8)	B10	B6	B7	B4	-99.62(8)
B2	B3	B8	B7	63.67(9)	B10	B6	B7	B 8	-62.08(9)
B2	B5	B6	B4	-100.29(8)	B10	B6	B7	B9	38.07(7)
B2	B5	B6	B7	-63.76(9)	B10	B6	B9	C2	-100.47(7)
B2	B5	B6	B9	0.00(10)	B10	B6	B9	C3	-38.44(6)
B2	B5	B6	B10	37.52(7)	B10	B6	B9	B7	-137.49(7)
B2	B5	B10	C3	-38.40(6)					

Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for mo_0830_CG_0m.

x	у	Z	U(eq)
5287.57	8918.58	3218.02	21
3183.63	9310.61	2865.33	28
1705.43	8458.16	3612.59	32
2342.28	7204.36	4706.33	33
4400.9	6714.95	4990.45	25
6102.19	8838.75	548.45	22
3871.61	7653.76	973.06	38
3807.17	8336.97	75.38	38
	x 5287.57 3183.63 1705.43 2342.28 4400.9 6102.19 3871.61 3807.17	x y 5287.57 8918.58 3183.63 9310.61 1705.43 8458.16 2342.28 7204.36 4400.9 6714.95 6102.19 8838.75 3871.61 7653.76 3807.17 8336.97	x y z 5287.578918.583218.023183.639310.612865.331705.438458.163612.592342.287204.364706.334400.96714.954990.456102.198838.75548.453871.617653.76973.063807.178336.9775.38

11110		0107 11	1200.2	20
HIIC	4466.69	9197.11	1300.3	38
H12A	6435.02	6752.77	-101.61	42
H12B	5051	6884.71	-802.08	42
H12C	5089.68	6101.17	29.63	42
H13	8201.11	9346.59	3026.75	19
H14A	6801.31	10729.97	1793.67	33
H14B	8043.7	11395.57	2858.49	33
H14C	6675.17	10658.49	2903.04	33
H15A	8925.5	8491.73	1591.29	38
H15B	9448.97	10051.52	2061.21	38
H15C	8228.05	9388.55	981.32	38
H17	3693.41	5546.41	2592.59	19
H18	1922.01	3697.06	1806.54	21
H20	4442.33	1397.46	2377.14	22
H21	6207.27	3254.7	3179.31	19
H23	7738.49	6192.32	1368.62	26
H24	8256.48	4915.57	-27.68	28
H26	9324.5	2535.9	1692.28	25
H27	8792.27	3820.9	3080.69	23
H2	6109(13)	6011(12)	5362(10)	18
H3	7914(13)	4606(12)	4534(10)	18
H4	10219(13)	6521(13)	4738(10)	21
H5A	8999(13)	6894(13)	6445(10)	21
H6A	9923(13)	9159(13)	5770(10)	21
H7A	9286(13)	8151(12)	3458(10)	18
H9A	7468(13)	9498(12)	4323(10)	18
H10A	7293(13)	8787(13)	6115(10)	20

Experimental

Single crystals of $C_{27}H_{35}B_{10}Cl_2NO$ [mo_0830_CG_0m] were recrystallised from a mixture of chloroform and hexane by slow evaporation. A suitable crystal was selected and the crystal was mounted on a MITIGEN holder oil on a Bruker D8 Venture MoCu Dual Source diffractometer. The crystal was kept at 100.03 K during data collection. Using Olex2^[2], the structure was solved with the XT^[3] structure solution program using Intrinsic Phasing and refined with the XL^[4] refinement package using Least Squares minimisation.

Crystal structure determination of 3dd

Crystal Data for C₂₇H₃₅B₁₀Cl₂NO (M =568.56 g/mol): triclinic, space group P-1 (no. 2), a = 10.8615(14) Å, b = 10.9215(14) Å, c = 13.8510(18) Å, $a = 105.147(4)^{\circ}$, $\beta = 105.960(4)^{\circ}$, $\gamma = 99.055(4)^{\circ}$, V = 1477.6(3) Å³, Z = 2, T = 100.0 K, μ (MoK α) = 0.245 mm⁻¹, *Dcalc* = 1.278 g/cm³, 77051 reflections measured ($4.244^{\circ} \le 2\Theta \le 59.328^{\circ}$), 8309 unique ($R_{int} = 0.0303$, $R_{sigma} = 0.0150$) which were used in all calculations. The final R_1 was 0.0310 (I > 2 σ (I)) and wR_2 was 0.0823 (all data).

CCDC 1983607

Crystal data and structure refinement for 3ea.					
Identification code	mo_0804_CG_0m				
CCDC number	1983607				
Empirical formula	$C_{27}H_{35}B_{10}NO_2$				
Formula weight	513.66				
Temperature/K	100.0				
Crystal system	triclinic				
Space group	P-1				
a/Å	11.7623(18)				
b/Å	11.821(2)				
c/Å	12.371(2)				
α/°	108.419(5)				
β/°	100.884(5)				
$\gamma/^{o}$	113.869(6)				
Volume/Å ³	1389.5(4)				
Z	2				
$\rho_{calc}g/cm^3$	1.228				
μ/mm^{-1}	0.070				
F(000)	540.0				
Crystal size/mm ³	0.215 imes 0.134 imes 0.074				
Radiation	MoKα ($\lambda = 0.71073$)				
2Θ range for data collection/°	4.068 to 57.416				
Index ranges	$-15 \le h \le 15, -15 \le k \le 15, -16 \le l \le 16$				
Reflections collected	29979				
Independent reflections	7064 [$R_{int} = 0.0456$, $R_{sigma} = 0.0388$]				
Data/restraints/parameters	7064/0/388				
Goodness-of-fit on F ²	1.073				

Final R indexes [I>= 2σ (I)]	$R_1 = 0.0538, wR_2 = 0.1248$
Final R indexes [all data]	$R_1 = 0.0744, wR_2 = 0.1431$
Largest diff. peak/hole / e Å ⁻³	0.95/-0.36

Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for mo_0804_CG_0m. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
01	3473.3(12)	8449.0(12)	4205.3(10)	22.9(3)
O2	4263.2(13)	8504.8(13)	8148.6(11)	28.7(3)
N1	4162.0(13)	7923.9(14)	5706.9(12)	19.1(3)
C1	3603.6(15)	7616.0(16)	4517.9(14)	17.5(3)
C2	3075.7(15)	6180.9(15)	3480.2(14)	17.1(3)
C3	1387.5(15)	5238.9(15)	2701.8(14)	17.9(3)
C4	488.1(15)	5740.7(15)	3127.6(14)	17.8(3)
C5	-607.9(16)	5545.8(16)	2257.6(15)	20.8(3)
C6	-1469.4(17)	5971.4(18)	2626.1(16)	24.8(3)
C7	-1249.6(18)	6600.9(18)	3857.5(17)	26.1(4)
C8	-167.7(17)	6789.9(18)	4721.8(16)	25.0(3)
C9	689.6(16)	6353.3(16)	4361.6(15)	21.2(3)
C10	4619.7(17)	9329.2(17)	6614.7(14)	23.2(3)
C11	3963.3(18)	9254.6(18)	7544.8(16)	26.0(4)
C12	4428.5(17)	7124.9(18)	6315.8(15)	22.8(3)
C13	3803.9(18)	7146.1(18)	7282.2(16)	26.3(4)
C14	2352.4(15)	7178.6(15)	1594.4(13)	16.4(3)
C15	1768.1(15)	7979.9(15)	1995.6(14)	17.5(3)
C16	1720.5(16)	8884.4(16)	1522.5(14)	19.8(3)
C17	2266.0(16)	9051.3(16)	639.0(14)	20.3(3)
C18	2854.3(17)	8275.1(16)	238.8(14)	21.1(3)
C19	2891.9(16)	7360.2(16)	705.1(14)	18.6(3)
C20	2231.7(19)	10056.2(18)	146.3(16)	27.5(4)
C21	5311.5(16)	7067.6(16)	2661.6(14)	19.7(3)
C22	6240.3(17)	8160.0(18)	3786.2(15)	24.1(3)
C23	7518.6(17)	9064.5(18)	3914.0(16)	26.6(4)
C24	7930.3(17)	8896.1(18)	2920.1(17)	26.1(4)
C25	7005.6(17)	7822.9(18)	1784.6(16)	24.6(3)
C26	5730.8(17)	6926.2(17)	1661.4(15)	22.2(3)
C27	9341(2)	9802(2)	3059(2)	37.1(5)
B1	2390.1(17)	6041.5(18)	1975.9(15)	17.3(3)
B2	1027.0(19)	4295.6(18)	1188.8(16)	19.8(3)
B3	2583.5(18)	4692.3(18)	1029.6(16)	20.1(3)
B4	1644(2)	3143.0(19)	1142.0(17)	23.2(4)
B5	3400.0(19)	4141.2(19)	1924.7(17)	22.2(4)
B6	3723.4(19)	5116.2(19)	3475.8(17)	21.2(4)
B7	2164.2(19)	4729.4(18)	3646.1(17)	21.5(4)
-----	------------	------------	------------	---------
B8	874.4(19)	3509.8(18)	2201.8(17)	22.0(4)
B9	2341(2)	3410(2)	2666.9(18)	24.4(4)
B10	3894.6(18)	5939.4(18)	2473.2(16)	18.9(3)

Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for mo_0804_CG_0m. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

uispiacen		ponent takes	11011112π		$\mathbf{K} \mathbf{a} \mathbf{D} \mathbf{U} 1 2^{\dagger} \cdots$]•
Atom	U11	U22	U33	U23	U13	U12
01	29.8(6)	19.1(5)	18.5(5)	7.8(4)	5.6(5)	13.0(5)
02	34.6(7)	30.0(6)	20.1(6)	10.3(5)	12.7(5)	14.3(6)
N1	21.4(6)	19.5(6)	14.5(6)	7.6(5)	5.1(5)	9.0(5)
C1	17.4(7)	18.5(7)	16.4(7)	7.6(6)	6.0(5)	9.0(6)
C2	18.3(7)	17.7(7)	16.8(7)	8.2(6)	6.1(6)	10.1(6)
C3	19.8(7)	17.2(7)	18.2(7)	8.4(6)	6.4(6)	10.1(6)
C4	19.5(7)	15.5(7)	20.4(7)	9.0(6)	8.9(6)	8.9(6)
C5	22.9(8)	20.5(7)	19.7(7)	8.9(6)	7.3(6)	11.7(6)
C6	24.5(8)	27.8(8)	29.0(9)	14.8(7)	10.8(7)	16.6(7)
C7	26.8(8)	25.8(8)	33.0(9)	13.6(7)	15.8(7)	16.6(7)
C8	27.5(8)	25.2(8)	22.8(8)	9.5(7)	13.0(7)	12.7(7)
C9	21.2(8)	22.5(7)	19.7(7)	10.0(6)	8.9(6)	9.5(6)
C10	24.2(8)	19.5(7)	15.5(7)	3.8(6)	3.8(6)	6.3(6)
C11	28.0(9)	25.3(8)	22.7(8)	8.3(7)	9.8(7)	12.9(7)
C12	25.5(8)	26.8(8)	18.7(7)	11.4(6)	6.4(6)	14.9(7)
C13	29.6(9)	26.1(8)	22.7(8)	12.7(7)	10.0(7)	11.7(7)
C14	17.2(7)	16.0(7)	14.2(6)	4.8(5)	4.7(5)	8.3(6)
C15	18.6(7)	16.1(7)	17.3(7)	6.1(6)	6.8(6)	8.8(6)
C16	22.1(7)	18.3(7)	21.2(7)	8.1(6)	8.0(6)	12.2(6)
C17	22.5(8)	17.6(7)	18.3(7)	7.4(6)	4.9(6)	9.3(6)
C18	25.9(8)	21.3(7)	17.9(7)	9.5(6)	9.1(6)	12.0(6)
C19	20.8(7)	18.7(7)	16.2(7)	5.8(6)	6.3(6)	11.3(6)
C20	36.1(10)	24.0(8)	27.5(9)	14.8(7)	11.4(7)	16.7(7)
C21	21.7(7)	22.3(7)	21.2(7)	10.4(6)	9.2(6)	15.1(6)
C22	22.9(8)	28.4(8)	21.5(8)	8.4(7)	9.5(6)	14.5(7)
C23	22.3(8)	27.5(8)	26.2(8)	7.0(7)	8.3(7)	12.8(7)
C24	23.9(8)	27.2(8)	32.7(9)	12.9(7)	13.1(7)	16.4(7)
C25	27.6(8)	28.8(8)	27.0(8)	13.9(7)	14.9(7)	18.9(7)
C26	24.1(8)	24.3(8)	21.7(8)	9.3(6)	9.5(6)	15.3(7)
C27	28.3(10)	34.3(10)	47.1(12)	14.5(9)	20.0(9)	14.1(8)
B1	19.6(8)	18.2(8)	13.7(7)	5.3(6)	5.5(6)	10.7(7)
B2	24.3(9)	15.1(7)	18.3(8)	5.8(6)	5.7(7)	10.3(7)
B3	23.7(9)	18.3(8)	18.3(8)	5.9(6)	6.1(7)	12.7(7)
B4	26.8(9)	18.4(8)	22.6(9)	6.5(7)	5.0(7)	13.2(7)
B5	26.9(9)	20.6(8)	21.4(8)	7.9(7)	6.9(7)	15.4(7)
B6	23.7(9)	21.9(8)	22.7(8)	11.3(7)	7.5(7)	14.6(7)

B7	25.0(9)	18.9(8)	21.7(8)	10.8(7)	7.3(7)	11.0(7)
B 8	23.8(9)	17.2(8)	22.6(9)	8.5(7)	5.2(7)	9.8(7)
B9	29.9(10)	21.1(8)	25.7(9)	11.7(7)	7.9(8)	15.5(8)
B10	22.0(8)	21.4(8)	16.9(8)	7.9(7)	7.4(6)	14.1(7)

Bond Lengths for mo_0804_CG_0m.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C1	1.2177(19)	C17	C20	1.507(2)
02	C11	1.428(2)	C18	C19	1.388(2)
02	C13	1.418(2)	C21	C22	1.395(2)
N1	C1	1.3532(19)	C21	C26	1.403(2)
N1	C10	1.476(2)	C21	B10	1.571(2)
N1	C12	1.469(2)	C22	C23	1.390(2)
C1	C2	1.543(2)	C23	C24	1.391(2)
C2	C3	1.709(2)	C24	C25	1.395(3)
C2	B1	1.809(2)	C24	C27	1.506(3)
C2	B6	1.714(2)	C25	C26	1.386(2)
C2	B7	1.718(2)	B1	B2	1.800(3)
C2	B10	1.736(2)	B1	B3	1.783(2)
C3	C4	1.506(2)	B1	B10	1.826(2)
C3	B1	1.769(2)	B2	B3	1.764(3)
C3	B2	1.710(2)	B2	B4	1.776(3)
C3	B7	1.746(2)	B2	B 8	1.775(3)
C3	B8	1.728(2)	B3	B4	1.782(3)
C4	C5	1.397(2)	B3	B5	1.770(3)
C4	C9	1.392(2)	B3	B10	1.788(3)
C5	C6	1.389(2)	B4	B5	1.774(3)
C6	C7	1.386(2)	B4	B 8	1.770(3)
C7	C8	1.385(3)	B4	B9	1.778(3)
C8	C9	1.388(2)	B5	B6	1.768(3)
C10	C11	1.507(2)	B5	B9	1.790(3)
C12	C13	1.516(2)	B5	B10	1.804(3)
C14	C15	1.405(2)	B6	B7	1.773(3)
C14	C19	1.401(2)	B6	B9	1.780(3)
C14	B1	1.573(2)	B6	B10	1.796(3)
C15	C16	1.386(2)	B7	B8	1.775(3)
C16	C17	1.394(2)	B7	B9	1.763(3)
C17	C18	1.386(2)	B 8	B9	1.776(3)

Bond Angles for mo_0804_CG_0m.

Dona	1 Migic	, IOI IIIO					
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C13	O2	C11	110.04(13)	B3	B2	B8	108.09(13)

C1	N1	C10	116.75(13)	B4	B2	B1	109.86(13)
C1	N1	C12	132.66(14)	B 8	B2	B1	110.32(12)
C12	N1	C10	110.59(12)	B 8	B2	B4	59.80(11)
01	C1	N1	121.99(14)	B1	B3	B10	61.49(10)
01	C1	C2	116.11(13)	B2	B3	B1	61.00(10)
N1	C1	C2	121.90(13)	B2	B3	B4	60.11(10)
C1	C2	C3	115.93(12)	B2	B3	B5	108.36(13)
C1	C2	B1	113.12(12)	B2	B3	B10	109.36(12)
C1	C2	B6	125.78(13)	B4	B3	B1	110.34(13)
C1	C2	B7	119.96(12)	B4	B3	B10	109.29(13)
C1	C2	B10	120.98(12)	B5	B3	B1	110.83(12)
C3	C2	B1	60.30(9)	B5	B3	B4	59.91(11)
C3	C2	B6	110.42(12)	B5	B3	B10	60.94(10)
C3	C2	B7	61.25(10)	B2	B4	В3	59.43(10)
C3	C2	B10	109.86(11)	B2	B4	B9	108.15(13)
B6	C2	B1	113.37(12)	B5	B4	B2	107.66(13)
B6	C2	B7	62.22(10)	B5	B4	В3	59.71(10)
B6	C2	B10	62.73(10)	B5	B4	B9	60.52(11)
B7	C2	B1	112.90(12)	B8	B4	B2	60.08(10)
B7	C2	B10	113.72(12)	B 8	B4	B3	107.50(13)
B10	C2	B1	61.96(9)	B8	B4	В5	108.30(13)
C2	C3	B1	62.65(9)	B 8	B4	B9	60.08(11)
C2	C3	B2	110.47(12)	B9	B4	B3	107.96(13)
C2	C3	B7	59.63(9)	B3	B5	B4	60.38(11)
C2	C3	B 8	109.27(12)	B3	B5	B9	107.96(13)
C4	C3	C2	120.42(12)	B3	B5	B10	60.02(10)
C4	C3	B1	119.71(12)	B4	B5	B9	59.86(11)
C4	C3	B2	122.11(13)	B4	B5	B10	108.93(12)
C4	C3	B7	116.22(13)	B6	B5	B3	107.78(12)
C4	C3	B 8	118.38(13)	B6	B5	B4	108.07(13)
B2	C3	B1	62.28(10)	B6	B5	B9	60.04(11)
B2	C3	B7	112.06(12)	B6	B5	B10	60.33(10)
B2	C3	B8	62.16(10)	B9	B5	B10	108.73(13)
B7	C3	B1	113.52(12)	C2	B6	B5	106.16(12)
B 8	C3	B1	114.08(12)	C2	B6	B7	59.01(10)
B 8	C3	B7	61.45(10)	C2	B6	B9	105.99(13)
C5	C4	C3	119.13(14)	C2	B6	B10	59.22(9)
C9	C4	C3	121.99(14)	B5	B6	B7	107.73(13)
C9	C4	C5	118.85(15)	B5	B6	B9	60.58(11)
C6	C5	C4	120.23(15)	B5	B6	B10	60.83(10)
C7	C6	C5	120.57(16)	B7	B6	B9	59.48(11)
C8	C7	C6	119.34(16)	B7	B6	B10	108.26(12)
C7	C8	C9	120.49(16)	B9	B6	B10	109.55(13)
C8	C9	C4	120.51(15)	C2	B7	C3	59.12(9)
N1	C10	C11	109.48(13)	C2	B7	B6	58.77(10)

O2	C11	C10	111.14(14)	C2	B7	B 8	106.71(12)
N1	C12	C13	109.61(14)	C2	B7	B9	106.56(13)
O2	C13	C12	112.09(14)	C3	B7	B6	106.03(12)
C15	C14	B1	127.12(14)	C3	B7	B 8	58.78(10)
C19	C14	C15	116.20(14)	C3	B7	B9	106.03(13)
C19	C14	B1	116.56(13)	B6	B7	B 8	108.40(13)
C16	C15	C14	121.46(14)	B9	B7	B6	60.45(11)
C15	C16	C17	121.40(14)	B9	B7	B 8	60.26(11)
C16	C17	C20	121.03(15)	C3	B 8	B2	58.43(10)
C18	C17	C16	117.88(14)	C3	B 8	B4	105.52(13)
C18	C17	C20	121.09(15)	C3	B 8	B7	59.77(10)
C17	C18	C19	120.73(15)	C3	B 8	B9	106.23(13)
C18	C19	C14	122.33(14)	B2	B 8	B9	108.26(14)
C22	C21	C26	116.67(15)	B4	B 8	B2	60.12(11)
C22	C21	B10	124.44(14)	B4	B 8	B7	107.49(14)
C26	C21	B10	118.70(14)	B4	B 8	B9	60.18(11)
C23	C22	C21	121.84(16)	B7	B 8	B2	107.69(13)
C22	C23	C24	120.90(16)	B7	B 8	B9	59.53(11)
C23	C24	C25	117.93(16)	B4	B9	B5	59.62(11)
C23	C24	C27	121.66(17)	B4	B9	B6	107.36(13)
C25	C24	C27	120.37(16)	B6	B9	B5	59.39(11)
C26	C25	C24	120.91(16)	B7	B9	B4	107.68(13)
C25	C26	C21	121.72(16)	B7	B9	В5	107.25(13)
C2	B 1	B10	57.04(9)	B7	B9	B6	60.07(11)
C3	B1	C2	57.05(9)	B7	B9	B 8	60.21(11)
C3	B1	B2	57.25(9)	B8	B9	B4	59.75(11)
C3	B1	B3	102.41(12)	B8	B9	B5	107.33(13)
C3	B1	B10	103.29(11)	B 8	B9	B6	108.06(13)
C14	B1	C2	129.42(13)	C2	B10	B1	60.99(9)
C14	B1	C3	126.19(13)	C2	B10	B3	104.51(12)
C14	B1	B2	120.90(13)	C2	B10	В5	103.70(12)
C14	B1	B3	121.95(13)	C2	B10	B6	58.04(9)
C14	B1	B10	124.16(13)	C21	B10	C2	123.43(13)
B2	B1	C2	102.21(11)	C21	B10	B1	122.37(13)
B2	B1	B10	106.11(12)	C21	B10	B3	125.59(14)
B3	B1	C2	101.73(11)	C21	B10	B5	122.75(13)
B3	B1	B2	58.96(10)	C21	B10	B6	120.03(13)
B3	B1	B10	59.38(10)	B3	B10	B1	59.13(10)
C3	B2	B1	60.46(9)	B3	B10	B5	59.04(10)
C3	B2	B3	105.68(12)	B3	B10	B6	105.82(13)
C3	B2	B4	106.04(12)	B5	B10	B1	107.39(12)
C3	B2	B 8	59.41(10)	B6	B10	B1	108.80(12)
B3	B2	B1	60.04(10)	B6	B10	B5	58.84(10)
B3	B2	B4	60.46(11)				

А	В	С	D	Angle/°	Α	В	С	D	Angle/°
01	C1	C2	C3	-65.63(18)	B2	B3	B4	B8	-37.48(12)
01	C1	C2	B1	1.33(19)	B2	B3	B4	B9	-100.89(14)
01	C1	C2	B6	148.40(15)	B2	B3	B5	B4	36.94(12)
01	C1	C2	B7	-135.94(15)	B2	B3	B5	B6	-64.15(16)
01	C1	C2	B10	71.47(18)	B2	B3	В5	B9	-0.73(16)
N1	C1	C2	C3	113.49(15)	B2	B3	B5	B10	-102.42(13)
N1	C1	C2	B1	-179.55(13)	B2	B3	B10	C2	3.28(16)
N1	C1	C2	B6	-32.5(2)	B2	B3	B10	C21	-148.97(14)
N1	C1	C2	B7	43.2(2)	B2	B3	B10	B1	-39.13(12)
N1	C1	C2	B10	-109.41(16)	B2	B3	B10	B5	100.76(14)
N1	C10	C11	O2	58.47(18)	B2	B3	B10	B6	63.62(15)
N1	C12	C13	O2	-56.52(18)	B2	B4	B5	B3	-36.48(12)
C1	N1	C10	C11	124.18(15)	B2	B4	B5	B6	64.12(16)
C1	N1	C12	C13	-125.60(18)	B2	B4	B5	B9	101.28(14)
C1	C2	C3	C4	-7.05(19)	B2	B4	B5	B10	0.13(17)
C1	C2	C3	B1	103.02(13)	B2	B4	B 8	C3	-38.15(11)
C1	C2	C3	B2	144.25(12)	B2	B4	B 8	B7	-100.75(13)
C1	C2	C3	B7	-111.51(14)	B2	B4	B 8	B9	-138.24(13)
C1	C2	C3	B8	-149.17(13)	B2	B4	B9	B5	-100.45(14)
C1	C2	B1	C3	-107.69(13)	B2	B4	B9	B6	-63.75(17)
C1	C2	B1	C14	4.5(2)	B2	B4	B9	B7	-0.44(18)
C1	C2	B1	B2	-144.57(12)	B2	B4	B9	B8	37.41(13)
C1	C2	B1	B3	155.02(12)	B2	B 8	B9	B4	-37.45(12)
C1	C2	B1	B10	114.00(14)	B2	B 8	B9	B5	-0.13(17)
C1	C2	B6	B5	-150.27(14)	B2	B 8	B9	B6	62.52(16)
C1	C2	B6	B7	108.43(16)	B2	B 8	B9	B 7	100.21(14)
C1	C2	B6	B9	146.41(14)	B3	B1	B2	C3	133.25(12)
C1	C2	B6	B10	-110.02(16)	B3	B1	B2	B4	35.60(12)
C1	C2	B7	C3	105.04(14)	B3	B1	B2	B8	99.71(14)
C1	C2	B7	B6	-117.33(15)	B3	B1	B10	C2	-131.70(13)
C1	C2	B7	B8	140.93(14)	B3	B1	B10	C21	115.07(16)
C1	C2	B7	B9	-155.88(13)	B3	B1	B10	B5	-35.38(12)
C1	C2	B10	C21	10.1(2)	B3	B1	B10	B6	-97.59(14)
C1	C2	B10	B1	-101.49(14)	B3	B2	B4	B5	36.60(12)
C1	C2	B10	B3	-142.94(13)	B3	B2	B4	B 8	137.96(13)
C1	C2	B10	B5	156.00(13)	B3	B2	B4	B9	100.56(14)
C1	C2	B10	B6	117.24(15)	B3	B2	B 8	C3	97.89(13)
C2	C3	C4	C5	141.68(14)	B3	B2	B8	B4	-37.80(12)
C2	C3	C4	C9	-40.5(2)	B3	B2	B8	B7	62.60(16)
C2	C3	B1	C14	-117.61(16)	B3	B2	B8	B9	-0.32(16)
C2	C3	B1	B2	135.78(12)	B3	B4	B5	B6	100.60(13)

Torsion Angles for mo_0804_CG_0m.

C2	C3	B1	B3	96.05(12)	B3	B4	B5	B9	137.76(13)
C2	C3	B1	B10	34.99(10)	B3	B4	В5	B10	36.61(12)
C2	C3	B2	B1	-41.40(11)	B3	B4	B 8	C3	-0.96(16)
C2	C3	B2	B3	-0.44(15)	B3	B4	B 8	B2	37.19(12)
C2	C3	B2	B4	62.68(15)	B3	B4	B 8	B 7	-63.55(15)
C2	C3	B2	B8	101.61(13)	B3	B4	B 8	B9	-101.05(14)
C2	C3	B7	B6	-36.84(11)	B3	B4	B9	B5	-37.61(12)
C2	C3	B7	B8	-138.96(13)	B3	B4	B9	B6	-0.90(17)
C2	C3	B7	B9	-100.00(14)	B3	B4	B9	B7	62.41(17)
C2	C3	B8	B2	-103.55(13)	B3	B4	B9	B 8	100.26(14)
C2	C3	B8	B4	-64.60(15)	B3	B5	B6	C2	1.35(17)
C2	C3	B8	B7	36.88(12)	B3	B5	B6	B 7	63.30(16)
C2	C3	B8	B9	-1.78(16)	B3	B5	B6	B9	100.89(14)
C2	B1	B2	C3	36.79(10)	B3	B5	B6	B10	-38.13(12)
C2	B1	B2	B3	-96.46(12)	B3	B5	B9	B4	37.90(12)
C2	B1	B2	B4	-60.86(15)	B3	B5	B9	B6	-100.58(13)
C2	B1	B2	B8	3.25(16)	B3	B5	B9	B7	-62.85(16)
C2	B1	B3	B2	97.31(12)	B3	B5	B9	B 8	0.52(17)
C2	B1	B3	B4	61.73(15)	B3	B5	B10	C2	98.88(13)
C2	B1	B3	B5	-2.73(16)	B3	B5	B10	C21	-114.90(17)
C2	B1	B3	B10	-39.78(11)	B3	B5	B10	B1	35.41(12)
C2	B1	B10	C21	-113.23(16)	B3	B5	B10	B6	137.25(14)
C2	B1	B10	B3	131.70(13)	B4	B2	B3	B1	-141.00(13)
C2	B1	B10	B5	96.32(13)	B4	B2	B3	B5	-36.86(12)
C2	B1	B10	B6	34.11(11)	B4	B2	B3	B10	-101.65(14)
C2	B6	B7	C3	36.99(11)	B4	B2	B 8	C3	135.68(13)
C2	B6	B7	B8	98.77(13)	B4	B2	B 8	B7	100.40(14)
C2	B6	B7	B9	136.63(13)	B4	B2	B 8	B9	37.48(12)
C2	B6	B9	B4	63.03(16)	B4	B3	B5	B6	-101.09(15)
C2	B6	B9	B5	99.83(13)	B4	B3	B5	B9	-37.67(12)
C2	B6	B9	B7	-37.76(12)	B4	B3	B5	B10	-139.37(13)
C2	B6	B9	B8	-0.02(17)	B4	B3	B10	C2	-60.82(15)
C2	B6	B10	C21	112.92(16)	B4	B3	B10	C21	146.93(15)
C2	B6	B10	B1	-35.31(11)	B4	B3	B10	B1	-103.24(14)
C2	B6	B10	B3	-97.47(13)	B4	B3	B10	B5	36.65(12)
C2	B6	B10	B5	-134.70(13)	B4	B3	B10	B6	-0.49(16)
C2	B7	B8	C3	-36.04(11)	B4	B5	B6	C2	-62.46(15)
C2	B7	B8	B2	-1.32(17)	B4	B5	B6	B7	-0.51(16)
C2	B7	B8	B4	62.08(15)	B4	B5	B6	B9	37.08(12)
C2	B7	B8	B9	99.86(14)	B4	B5	B6	B10	-101.94(13)
C2	B7	B9	B4	-62.47(16)	B4	B5	B9	B6	-138.49(13)
C2	B7	B9	B5	0.35(17)	B4	B5	B9	B7	-100.76(14)
C2	B7	B9	B6	37.78(12)	B4	B5	B9	B8	-37.38(12)
C2	B7	B9	B8	-100.11(13)	B4	B5	B10	C2	62.12(15)
C3	C2	B1	C14	112.22(17)	B4	B5	B10	C21	-151.66(15)

C3	C2	B1	B2	-36.89(10)	B4	B5	B10	B1	-1.35(17)
C3	C2	B1	B3	-97.29(12)	B4	B5	B10	B3	-36.76(12)
C3	C2	B1	B10	-138.31(12)	B4	B5	B10	B6	100.49(14)
C3	C2	B6	B5	62.22(15)	B4	B 8	B9	B5	37.32(12)
C3	C2	B6	B7	-39.08(12)	B4	B 8	B9	B6	99.97(14)
C3	C2	B6	B9	-1.10(16)	B4	B 8	B9	B7	137.66(14)
C3	C2	B6	B10	102.47(13)	B5	B3	B4	B2	138.85(13)
C3	C2	B7	B6	137.63(13)	B5	B3	B4	B 8	101.37(14)
C3	C2	B7	B8	35.89(11)	B5	B3	B4	B9	37.96(12)
C3	C2	B7	B9	99.08(13)	B5	B3	B10	C2	-97.48(13)
C3	C2	B10	C21	149.47(14)	B5	B3	B10	C21	110.27(17)
C3	C2	B10	B1	37.90(11)	B5	B3	B10	B1	-139.89(13)
C3	C2	B10	B3	-3.55(15)	B5	B3	B10	B6	-37.14(12)
C3	C2	B10	B5	-64.61(14)	B5	B4	B 8	C3	62.12(15)
C3	C2	B10	B6	-103.37(13)	B5	B4	B 8	B2	100.28(14)
C3	C4	C5	C6	178.55(14)	B5	B4	B 8	B7	-0.47(16)
C3	C4	C9	C8	-179.25(15)	B5	B4	B 8	B9	-37.96(12)
C3	B1	B2	B3	-133.25(12)	B5	B4	B9	B6	36.70(12)
C3	B1	B2	B4	-97.65(13)	B5	B4	B9	B7	100.02(14)
C3	B1	B2	B8	-33.53(12)	B5	B4	B9	B 8	137.86(13)
C3	B1	B3	B2	38.85(11)	B5	B6	B7	C2	-98.56(13)
C3	B1	B3	B4	3.27(16)	B5	B6	B7	C3	-61.56(15)
C3	B1	B3	B5	-61.19(15)	B5	B6	B7	B 8	0.22(16)
C3	B1	B3	B10	-98.24(12)	B5	B6	B 7	B9	38.08(12)
C3	B 1	B10	C2	-34.99(10)	B5	B6	B9	B4	-36.81(12)
C3	B 1	B10	C21	-148.22(14)	B5	B6	B9	B 7	-137.59(13)
C3	B1	B10	B3	96.71(12)	B5	B6	B9	B 8	-99.85(14)
C3	B1	B10	B5	61.33(14)	B5	B6	B10	C2	134.70(13)
C3	B1	B10	B6	-0.89(15)	B5	B6	B10	C21	-112.38(16)
C3	B2	B3	B1	-41.17(11)	B5	B6	B10	B1	99.39(13)
C3	B2	B3	B4	99.84(13)	B5	B6	B10	B3	37.23(12)
C3	B2	B3	B5	62.98(15)	B6	C2	C3	C4	143.96(13)
C3	B2	B3	B10	-1.81(16)	B6	C2	C3	B1	-105.96(13)
C3	B2	B4	B3	-99.23(13)	B6	C2	C3	B2	-64.73(15)
C3	B2	B4	B5	-62.62(16)	B6	C2	C3	B7	39.51(12)
C3	B2	B4	B8	38.74(12)	B6	C2	C3	B 8	1.85(16)
C3	B2	B4	B9	1.33(17)	B6	C2	B1	C3	101.02(13)
C3	B2	B8	B4	-135.68(13)	B6	C2	B1	C14	-146.76(15)
C3	B2	B8	B7	-35.29(12)	B6	C2	B1	B2	64.13(15)
C3	B2	B8	B9	-98.20(14)	B6	C2	B1	B3	3.73(16)
C3	B7	B8	B2	34.72(12)	B6	C2	B1	B10	-37.29(12)
C3	B7	B8	B4	98.12(13)	B6	C2	B7	C3	-137.63(12)
C3	B7	B8	B9	135.90(13)	B6	C2	B7	B8	-101.74(14)
C3	B7	B9	B4	-0.62(17)	B6	C2	B7	B9	-38.55(12)
C3	B7	B9	B5	62.21(16)	B6	C2	B10	C21	-107.16(16)

C3	B7	B9	B6	99.63(13)	B6	C2	B10	B1	141.27(13)
C3	B7	B9	B8	-38.25(12)	B6	C2	B10	B3	99.82(13)
C3	B8	B9	B4	-98.88(14)	B6	C2	B10	B5	38.76(12)
C3	B 8	B9	B5	-61.56(16)	B6	B5	B9	B4	138.49(13)
C3	B 8	B9	B6	1.09(17)	B6	B5	B9	B7	37.73(12)
C3	B 8	B9	B7	38.77(12)	B6	B5	B9	B 8	101.11(14)
C4	C3	B1	C2	111.18(15)	B6	B5	B10	C2	-38.37(11)
C4	C3	B1	C14	-6.4(2)	B6	B5	B10	C21	107.85(16)
C4	C3	B1	B2	-113.05(15)	B6	B5	B10	B1	-101.84(13)
C4	C3	B1	B3	-152.77(13)	B6	B5	B10	B3	-137.25(14)
C4	C3	B1	B10	146.17(13)	B6	B7	B 8	C3	-97.96(13)
C4	C3	B2	B1	109.34(15)	B6	B7	B 8	B2	-63.24(16)
C4	C3	B2	B3	150.30(13)	B6	B7	B 8	B4	0.15(16)
C4	C3	B2	B4	-146.58(14)	B6	B7	B 8	B9	37.94(12)
C4	C3	B2	B8	-107.65(16)	B6	B7	B9	B4	-100.25(14)
C4	C3	B7	C2	-111.45(14)	B6	B7	B9	B5	-37.43(12)
C4	C3	B7	B6	-148.29(13)	B6	B7	B9	B 8	-137.89(13)
C4	C3	B7	B8	109.59(15)	B7	C2	C3	C4	104.46(15)
C4	C3	B7	B9	148.54(14)	B7	C2	C3	B1	-145.47(12)
C4	C3	B8	B2	113.45(15)	B7	C2	C3	B2	-104.24(13)
C4	C3	B8	B4	152.40(13)	B7	C2	C3	B 8	-37.66(12)
C4	C3	B8	B7	-106.12(15)	B7	C2	B1	C3	32.65(12)
C4	C3	B 8	B9	-144.78(14)	B7	C2	B1	C14	144.87(15)
C4	C5	C6	C7	0.4(2)	B7	C2	B1	B2	-4.23(15)
C5	C4	C9	C8	-1.4(2)	B7	C2	B 1	B3	-64.64(15)
C5	C6	C7	C8	-0.7(3)	B7	C2	B1	B10	-105.66(14)
C6	C7	C8	C9	-0.1(3)	B7	C2	B6	B5	101.30(14)
C7	C8	C9	C4	1.1(3)	B7	C2	B6	B9	37.98(12)
С9	C4	C5	C6	0.6(2)	B7	C2	B6	B10	141.55(13)
C10	N1	C1	01	-0.5(2)	B7	C2	B10	C21	-144.10(15)
C10	N1	C1	C2	-179.56(13)	B7	C2	B10	B1	104.33(13)
C10	N1	C12	C13	54.74(17)	B7	C2	B10	B3	62.88(15)
C11	02	C13	C12	58.79(18)	B7	C2	B10	B5	1.82(16)
C12	N1	C1	01	179.87(16)	B7	C2	B10	B6	-36.94(12)
C12	N1	C1	C2	0.8(3)	B7	C3	C4	C5	-149.68(14)
CI2	NI	CIO	CII	-56.10(17)	B7	C3	C4	C9	28.2(2)
C13	02	C11	C10	-59.72(18)	B7	C3	B1	C2	-32.24(11)
C14	C15	C16	C17	-0.8(2)	B7	C3	B1	C14	-149.85(14)
CI4	BI	B2	C3	-115.68(15)	B7	C3	BI	B2	103.54(13)
C14	Bl	B2	B3	111.07(16)	B7	C3	B1	B3	63.82(15)
CI4	BI	B2	B4	146.67(14)	B7	C3	BI	BIO	2.75(15)
CI4	Bl	B2	B8	-149.21(14)	B7	C3	B2	BI	-105.87(13)
CI4	BI	B3	B2	-109.33(16)	B7	C3	B2	B3	-64.91(15)
C14	B1	B3	B4	-144.91(14)	B7	C3	B2	B4	-1.79(17)
C14	B1	B3	B5	150.62(14)	B7	C3	B2	B 8	37.14(13)

C14	B1	B3	B10	113.58(16)	B7	C3	B8	B2	-140.43(14)
C14	B1	B10	C2	118.34(16)	B7	C3	B 8	B4	-101.48(14)
C14	B1	B10	C21	5.1(2)	B7	C3	B 8	B9	-38.66(12)
C14	B1	B10	B3	-109.96(16)	B7	B6	B9	B4	100.79(14)
C14	B1	B10	B5	-145.34(14)	B7	B6	B9	B5	137.59(13)
C14	B1	B10	B6	152.44(14)	B7	B6	B9	B 8	37.74(12)
C15	C14	C19	C18	-0.1(2)	B7	B6	B10	C2	34.15(12)
C15	C14	B1	C2	-58.4(2)	B7	B6	B10	C21	147.07(14)
C15	C14	B1	C3	15.9(2)	B7	B6	B10	B1	-1.16(16)
C15	C14	B1	B2	85.78(19)	B7	B6	B10	B3	-63.32(15)
C15	C14	B1	B3	156.21(15)	B7	B6	B10	B5	-100.55(14)
C15	C14	B1	B10	-131.38(16)	B7	B 8	B9	B4	-137.66(14)
C15	C16	C17	C18	0.4(2)	B7	B 8	B9	B5	-100.33(14)
C15	C16	C17	C20	-178.89(15)	B7	B 8	B9	B6	-37.68(12)
C16	C17	C18	C19	0.2(2)	B8	C3	C4	C5	-79.53(18)
C17	C18	C19	C14	-0.3(2)	B8	C3	C4	C9	98.33(18)
C19	C14	C15	C16	0.7(2)	B8	C3	B1	C2	-100.12(13)
C19	C14	B1	C2	125.54(16)	B8	C3	B1	C14	142.27(15)
C19	C14	B1	C3	-160.18(14)	B8	C3	B1	B2	35.65(12)
C19	C14	B1	B2	-90.26(17)	B8	C3	B1	B3	-4.07(16)
C19	C14	B1	B3	-19.8(2)	B8	C3	B1	B10	-65.13(15)
C19	C14	B1	B10	52.6(2)	B8	C3	B2	B1	-143.00(13)
C20	C17	C18	C19	179.45(15)	B 8	C3	B2	B3	-102.05(13)
C21	C22	C23	C24	-1.2(3)	B 8	C3	B2	B4	-38.92(12)
C22	C21	C26	C25	0.3(2)	B 8	C3	B 7	C2	138.96(13)
C22	C21	B10	C2	22.1(2)	B 8	C3	B 7	B6	102.12(14)
C22	C21	B10	B1	96.51(19)	B 8	C3	B 7	B9	38.95(13)
C22	C21	B10	B3	169.44(15)	B 8	B2	B3	B1	-103.50(13)
C22	C21	B10	B5	-117.52(18)	B 8	B2	B3	B4	37.50(12)
C22	C21	B10	B6	-47.3(2)	B 8	B2	B3	B5	0.65(16)
C22	C23	C24	C25	2.3(3)	B 8	B2	B3	B10	-64.14(15)
C22	C23	C24	C27	-175.49(17)	B 8	B2	B4	B3	-137.96(13)
C23	C24	C25	C26	-2.1(3)	B 8	B2	B4	B5	-101.36(14)
C24	C25	C26	C21	0.8(3)	B8	B2	B4	B9	-37.41(13)
C26	C21	C22	C23	-0.1(2)	B8	B4	B5	B3	-99.99(14)
C26	C21	B10	C2	-163.12(14)	B8	B4	B5	B6	0.61(17)
C26	C21	B10	B1	-88.75(18)	B8	B4	B5	B9	37.77(12)
C26	C21	B10	B3	-15.8(2)	B8	B4	B5	B10	-63.38(16)
C26	C21	B10	B5	57.2(2)	B8	B4	B9	B5	-137.86(13)
C26	C21	B10	B6	127.42(16)	B8	B4	B9	B6	-101.16(14)
C27	C24	C25	C26	175.70(17)	B8	B4	B9	B7	-37.85(13)
B1	C2	C3	C4	-110.08(14)	B8	B7	B9	B4	37.64(13)
B1	C2	C3	B2	41.23(11)	B 8	B7	B9	B5	100.46(14)
B1	C2	C3	B7	145.47(12)	B8	B7	B9	B6	137.89(13)
B1	C2	C3	B8	107.80(13)	B9	B4	B5	B3	-137.76(13)

B1	C2	B6	B5	-3.27(17)	B9	B4	B5	B6	-37.16(12)
B1	C2	B6	B7	-104.56(13)	B9	B4	В5	B10	-101.15(14)
B1	C2	B6	B9	-66.58(15)	B9	B4	B 8	C3	100.09(13)
B1	C2	B6	B10	36.98(12)	B9	B4	B 8	B2	138.24(13)
B1	C2	B7	C3	-32.32(11)	B9	B4	B 8	B 7	37.49(12)
B1	C2	B7	B6	105.32(13)	B9	B5	B6	C2	-99.54(14)
B1	C2	B7	B8	3.58(17)	B9	B5	B6	B 7	-37.59(12)
B1	C2	B7	B9	66.77(15)	B9	B5	B6	B10	-139.02(13)
B1	C2	B10	C21	111.57(16)	B9	B5	B10	C2	-1.50(16)
B1	C2	B10	B3	-41.45(11)	B9	B5	B10	C21	144.71(15)
B1	C2	B10	B5	-102.51(13)	B9	B5	B10	B1	-64.98(15)
B1	C2	B10	B6	-141.27(13)	B9	B5	B10	B3	-100.39(14)
B1	C3	C4	C5	67.85(19)	B9	B5	B10	B6	36.86(12)
B1	C3	C4	C9	-114.30(16)	B9	B6	B 7	C2	-136.63(13)
B1	C3	B2	B3	40.96(11)	B9	B6	B 7	C3	-99.64(13)
B1	C3	B2	B4	104.08(14)	B9	B6	B7	B 8	-37.86(12)
B1	C3	B2	B 8	143.00(13)	B9	B6	B10	C2	97.39(14)
B1	C3	B7	C2	33.31(12)	B9	B6	B10	C21	-149.69(14)
B1	C3	B7	B6	-3.53(16)	B9	B6	B10	B1	62.08(16)
B1	C3	B7	B 8	-105.65(14)	B9	B6	B10	B3	-0.08(17)
B1	C3	B7	B9	-66.70(15)	B9	B6	B10	B5	-37.31(13)
B1	C3	B8	B2	-35.70(12)	B9	B7	B 8	C3	-135.90(13)
B1	C3	B8	B4	3.26(17)	B9	B7	B 8	B2	-101.18(14)
B1	C3	B8	B7	104.74(14)	B9	B7	B 8	B4	-37.79(12)
B 1	C3	B8	B9	66.08(16)	B10	C2	C3	C4	-148.70(13)
B1	C14	C15	C16	-175.37(15)	B10	C2	C3	B1	-38.62(11)
B1	C14	C19	C18	176.36(14)	B10	C2	C3	B2	2.61(15)
B1	B2	B3	B4	141.00(13)	B10	C2	C3	B7	106.84(13)
B1	B2	B3	B5	104.15(13)	B10	C2	C3	B8	69.18(14)
B1	B2	B3	B10	39.36(11)	B10	C2	B1	C3	138.31(12)
B1	B2	B4	B3	-35.43(12)	B10	C2	B1	C14	-109.47(17)
B1	B2	B4	B5	1.18(17)	B10	C2	B1	B2	101.42(12)
B1	B2	B4	B8	102.54(14)	B10	C2	B1	B3	41.02(11)
B1	B2	B4	B9	65.13(16)	B10	C2	B6	B5	-40.25(12)
B1	B2	B8	C3	33.94(12)	B10	C2	B6	B7	-141.55(13)
B1	B2	B8	B4	-101.74(14)	B10	C2	B6	B9	-103.57(14)
B1	B2	B8	B7	-1.35(17)	B10	C2	B7	C3	-100.49(13)
B1	B2	B 8	B9	-64.26(16)	B10	C2	B7	B6	37.14(12)
B1	B3	B4	B2	35.94(12)	B10	C2	B7	B8	-64.60(16)
B1	B3	B4	B5	-102.91(14)	B10	C2	B7	B9	-1.41(17)
B1	B3	B4	B8	-1.54(17)	B10	C21	C22	C23	174.77(16)
B1	B3	B4	B9	-64.95(16)	B10	C21	C26	C25	-174.89(15)
B1	B3	B5	B4	102.09(14)	B10	B1	B2	C3	95.66(12)
B1	B3	B5	B6	0.99(18)	B10	B1	B2	B3	-37.58(11)
B 1	B3	B5	B9	64.42(16)	B10	B1	B2	B4	-1.99(16)

B1	B3	B5	B10	-37.28(12)	B10	B1	B2	B8	62.13(15)
B1	B3	B10	C2	42.42(11)	B10	B1	B3	B2	137.09(13)
B1	B3	B10	C21	-109.83(17)	B10	B 1	B3	B4	101.51(14)
B1	B3	B10	B5	139.89(13)	B10	B1	B3	B5	37.05(12)
B1	B3	B10	B6	102.75(13)	B10	B3	B4	B2	101.76(13)
B2	C3	C4	C5	-6.2(2)	B10	B3	B4	B5	-37.09(12)
B2	C3	C4	C9	171.62(14)	B10	B3	B4	B8	64.28(16)
B2	C3	B1	C2	-135.78(12)	B10	B3	B4	B9	0.87(17)
B2	C3	B1	C14	106.62(16)	B10	B3	B5	B4	139.37(13)
B2	C3	B1	B3	-39.72(11)	B10	B3	B5	B6	38.27(12)
B2	C3	B1	B10	-100.78(12)	B10	B3	B5	B9	101.70(14)
B2	C3	B7	C2	101.53(13)	B10	B5	B6	C2	39.48(12)
B2	C3	B7	B6	64.70(16)	B10	B5	B6	B7	101.43(13)
B2	C3	B7	B8	-37.43(13)	B10	B5	B6	B9	139.02(13)
B2	C3	B7	B9	1.53(17)	B10	B5	B9	B4	101.50(14)
B2	C3	B8	B4	38.95(12)	B10	B5	B9	B6	-36.99(12)
B2	C3	B8	B7	140.43(14)	B10	B5	B9	B7	0.74(17)
B2	C3	B8	B9	101.78(14)	B10	B5	B9	B8	64.12(16)
B2	B1	B3	B4	-35.58(12)	B10	B6	B 7	C2	-34.24(11)
B2	B1	B3	B5	-100.04(14)	B10	B6	B 7	C3	2.75(16)
B2	B1	B3	B10	-137.09(13)	B10	B6	B 7	B8	64.54(15)
B2	B1	B10	C2	-94.31(12)	B10	B6	B 7	B9	102.39(14)
B2	B1	B10	C21	152.46(14)	B10	B6	B9	B4	0.61(17)
B2	B1	B10	B3	37.39(11)	B10	B6	B9	B5	37.42(12)
B2	B1	B10	B5	2.01(15)	B10	B6	B9	B7	-100.17(14)
B2	B1	B10	B6	-60.20(15)	B10	B6	B9	B 8	-62.43(17)
B2	B3	B4	B5	-138.85(13)					

Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for mo_0804_CG_0m.

Atom	x	У	Z	U(eq)
H5	-764.46	5120.91	1411.28	25
H6	-2215.72	5829.67	2028.76	30
H7	-1835.23	6899.87	4106.31	31
H8	-10.94	7221.46	5567.42	30
H9	1419.39	6473.6	4962.05	25
H10A	4386.4	9838.66	6198.06	28
H10B	5602.21	9826.4	7029.24	28
H11A	4278.33	10197.27	8157.97	31
H11B	2984.05	8801.03	7131.38	31
H12A	5404.12	7523.65	6701.47	27
H12B	4050.44	6164.25	5705.42	27
H13A	2820.89	6668.41	6879.85	32
H13B	4019.19	6639.07	7712.37	32

H15	1397.47	7899.74	2604.67	21
H16	1307.45	9401.77	1806.2	24
H18	3235.9	8370.21	-361.06	25
H19	3297.79	6838.85	410.48	22
H20A	2562.72	9955.9	-528.63	41
H20B	2798.07	10995.74	798.57	41
H20C	1311.89	9870.3	-151.51	41
H22	5992.04	8289.4	4484.34	29
H23	8119.43	9807.85	4690.8	32
H25	7253.14	7705.08	1086.23	30
H26	5125.02	6196.74	879.39	27
H27A	9335.73	10302.57	2561.26	56
H27B	9741.6	9233.81	2785.75	56
H27C	9864.68	10460.57	3920.25	56
H2	150(20)	4120(20)	496(18)	24
H3	2720(20)	4680(20)	164(18)	24
H4	1120(20)	2130(20)	331(19)	28
H5A	4190(20)	3810(20)	1639(18)	27
H6A	4610(20)	5490(20)	4253(18)	25
H7A	2000(20)	4870(20)	4503(19)	26
H8A	-110(20)	2870(20)	2200(18)	26
H9A	2330(20)	2600(20)	2921(19)	29

Experimental

Single crystals of C₂₇H₃₅B₁₀NO₂ [mo_0804_CG_0m] were recrystallised from a mixture of chloroform and hexane by slow evaporation. A suitable crystal was selected and the crystal was mounted on a MITIGEN holder oil on a Bruker D8 Venture Source diffractometer. The crystal was kept at 100.03 K during data collection. Using Olex2^[2], the structure was solved with the XT^[3] structure solution program using Intrinsic Phasing and refined with the XL^[4] refinement package using Least Squares minimisation.

Crystal structure determination of 3ea

Crystal Data for C₂₇H₃₅B₁₀NO₂ (M = 513.66 g/mol): triclinic, space group P-1 (no. 2), a = 11.7623(18) Å, b = 11.821(2) Å, c = 12.371(2) Å, $a = 108.419(5)^{\circ}$, $\beta = 100.884(5)^{\circ}$, $\gamma = 113.869(6)^{\circ}$, V = 1389.5(4) Å³, Z = 2, T = 100.0 K, μ (MoK α) = 0.070 mm⁻¹, *Dcalc* = 1.228 g/cm³, 29979 reflections measured ($4.068^{\circ} \le 2\Theta \le 57.416^{\circ}$), 7064 unique ($R_{int} = 0.0456$, $R_{sigma} = 0.0388$) which were used in all calculations. The final R_1 was 0.0538 (I > 2 σ (I)) and wR_2 was 0.1431 (all data).

CCDC 1983615

Crystal data and structure refinement	10f 51a.
Identification code	mo_0848_CG_0m_4
CCDC number	1983615
Empirical formula	$C_{25}H_{41}B_{10}NO$
Formula weight	479.69
Temperature/K	100.0
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	12.2842(10)
b/Å	12.2978(10)
c/Å	19.8427(15)
α/°	90
β/°	106.783(2)
$\gamma^{/\circ}$	90
Volume/Å ³	2869.9(4)
Ζ	4
$\rho_{calc}g/cm^3$	1.110
μ/mm^{-1}	0.060
F(000)	1024.0
Crystal size/mm ³	$0.188 \times 0.185 \times 0.142$
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	3.946 to 52.818
Index ranges	$-15 \le h \le 14, 0 \le k \le 15, 0 \le l \le 24$
Reflections collected	11362
Independent reflections	11362 [$R_{int} = ?, R_{sigma} = 0.0660$]
Data/restraints/parameters	11362/0/343
Goodness-of-fit on F ²	1.138
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0861, wR_2 = 0.1800$
Final R indexes [all data]	$R_1 = 0.1194, WR_2 = 0.1966$

Crystal data and structure refinement for 3fa

Largest diff. peak/hole / e Å⁻³ 0.31/-0.34

Fractional	Atomic	Coordinates	(×10 ⁴)	and	Equivalent	Isotropic	Displacement
Parameters	(Å ² ×10 ³)	for mo_0848_	CG_0m	4. Uec	is defined as	s 1/3 of of t	he trace of the
orthogonali	sed U _{IJ} te	nsor.					

Atom	x	У	Ζ	U(eq)
01	3691(2)	8136(2)	6392.6(15)	23.9(7)
N1	2207(3)	8638(3)	6767.4(19)	21.9(8)
C1	2842(4)	7885(3)	6559(2)	20.3(9)
C2	2560(3)	6655(3)	6536(2)	17.3(8)
C3	2503(3)	6074(3)	5764(2)	18.9(9)
C4	2701(3)	6766(3)	5167(2)	22.3(9)
C5	1797(4)	7618(3)	4835(2)	23.8(10)
C6	2183(4)	8349(4)	4330(2)	31.2(11)
C7	1272(5)	9169(4)	3959(3)	42.3(13)
C8	2642(4)	9770(3)	6800(3)	31.2(11)
C9	2209(5)	10343(4)	6092(3)	44.5(14)
C11	1075(4)	8562(3)	6874(2)	25.7(10)
C12	1114(4)	8654(4)	7650(2)	34.7(12)
C13	4964(3)	6115(3)	6512(2)	19.5(9)
C14	5509(4)	5635(3)	6055(2)	20.2(9)
C15	6640(4)	5845(3)	6107(2)	22.9(9)
C16	7281(3)	6547(3)	6613(2)	22.9(9)
C17	6759(4)	7013(3)	7081(2)	22.0(9)
C18	5633(4)	6803(3)	7027(2)	21.7(9)
C19	8505(4)	6814(4)	6660(3)	33.4(11)
C20	3873(3)	6080(3)	7985(2)	18.0(9)
C21	4396(4)	5250(3)	8445(2)	21.1(9)
C22	5090(4)	5467(4)	9118(2)	25.7(10)
C23	5315(4)	6529(3)	9363(2)	25.0(10)
C24	4789(4)	7360(3)	8911(2)	23.5(9)
C25	4086(3)	7148(3)	8240(2)	21.4(9)
C26	6094(4)	6770(4)	10085(2)	34.6(11)
B1	3712(4)	5784(4)	6479(2)	17.7(9)
B2	3138(4)	5756(4)	7226(2)	18.1(10)
B3	1645(4)	6012(4)	6915(2)	19.3(10)
B4	1246(4)	6257(4)	5995(3)	20.9(10)
B5	1513(4)	5057(4)	5580(3)	21.0(10)
B6	2034(4)	4052(4)	6242(3)	22.8(11)
B7	3366(4)	4528(4)	6795(2)	18.6(10)
B 8	2118(4)	4665(4)	7067(3)	19.5(10)
B9	958(4)	4983(4)	6313(2)	20.7(10)
B10	2976(4)	4769(4)	5880(2)	19.6(10)

Anisotro	pic Displac	cement Para	ameters (Å	² ×10 ³) for	mo_0848_C	G_0m_4. The
Anisotro $2\pi^2 [h^2 \alpha^3]$	pic aisp ∗²i∐+2bko*i	hacement	lactor	exponent	takes	the form:
$\frac{-2\pi \ln a}{\Lambda tom}$		J U <u>12</u> 1j.	Um	Uaa	Ula	U
	$\frac{011}{213(16)}$	10.3(15)	$\frac{0.33}{34.1(18)}$	$\frac{023}{1.2(13)}$	$\frac{013}{12.7(14)}$	$\frac{0.012}{0.2(12)}$
N1	10 A(18)	19.3(13) 16.8(18)	34.1(18)	1.2(13) 1.5(15)	12.7(14) 12.8(16)	-0.2(12)
C1	21(2)	20(2)	33(2) 21(2)	-1.3(13)	71(17)	-1.9(17)
C1	16(2)	20(2)	21(2) 18(2)	-0.4(17)	7.1(17) 7.2(16)	-1.9(17)
C_2	10(2) 15(2)	20(2) 24(2)	10(2)	-0.7(17)	7.2(10) 7 8(17)	1.0(10) 1.3(16)
C_{J}	13(2) 20(2)	24(2) 26(2)	20(2) 23(2)	-1.4(17) 0.2(18)	7.3(17) 0.7(18)	1.5(10) 3 5(18)
C4 C5	20(2) 19(2)	20(2)	25(2)	0.2(18) 3 0(10)	9.7(10) 0.3(18)	3.3(18)
C5 C6	19(2) 30(3)	29(2) 38(3)	23(2) 30(3)	3.9(19)	$\frac{9.3(10)}{16(2)}$	4.7(10)
C0	30(3)	38(3)	30(3)	10(2) 10(2)	10(2) 10(2)	11(2) 17(3)
	42(3)	49(3)	41(3) 52(3)	19(3)	19(3)	17(3) 1 5(10)
	33(3)	$\frac{1}{(2)}$	52(3)	-3(2)	25(2)	-1.3(19)
C9	40(3)	28(3)	71(4)	11(3)	20(3)	4(2)
C12	21(2) 37(3)	23(2)	33(3)	0(2) 12(2)	14(2) 24(2)	4.3(10)
C12	$\frac{37(3)}{20(2)}$	$\frac{33(3)}{18(2)}$	42(3)	-12(2) 2 $4(17)$	24(2) 8 8(17)	-0(2)
C13	20(2)	10(2)	22(2) 10(2)	3.4(17)	0.0(17)	1.0(17)
C14	23(2)	20(2) 23(2)	19(2)	-1.3(17)	9.3(17)	0.0(17)
C15	23(2) 17(2)	23(2)	20(2)	1.1(19)	14.3(19)	2.2(10)
C10	$\frac{1}{2}$	23(2) 21(2)	30(2)	1.0(19)	9.9(19)	-0.0(17)
C17	20(2)	21(2) 22(2)	20(2)	-5.0(18)	0.3(18)	-1.1(18)
C18	21(2) 25(2)	23(2) 24(2)	24(2)	-4.3(18)	11.0(10)	0.0(18)
C19	23(3)	34(3)	44(3)	I(2)	10(2)	-2(2)
C20	10(2)	18(2) 10(2)	22(2)	-1.3(17)	10.0(17)	0.4(10)
C21 C22	23(2)	19(2)	23(2)	-2.9(17)	8.3(18)	-1.4(1/)
C22	28(2)	29(2)	23(2)	0.9(19)	10.4(19)	0.3(19)
C25	23(2)	32(2)	22(2)	-5.7(19)	8.0(18)	-4.0(19)
C24	24(2)	23(2)	20(2)	-3.9(19)	10.8(19)	-3.4(18)
C25	20(2)	22(2)	20(2)	-0.1(18)	12.0(18)	1.0(17)
C20	38(3)	33(3)	$\frac{27(3)}{10(2)}$	-4(2)	4(2)	-3(2)
	16(2)	18(2)	19(2)	-2.0(19)	0.9(19) 8 7(10)	2.3(19)
D2 D2	10(2) 14(2)	10(2)	23(2)	-0.1(19)	$\frac{0.7(19)}{7.2(10)}$	-0.0(18)
D3 D4	14(2) 12(2)	22(2)	24(2)	-1(2)	7.3(19)	-2.3(10)
B4	13(2)	20(3)	20(3)	-4(2)	9.3(19)	-2.2(19)
B) D(19(2)	23(3)	21(2)	-0(2)	0(2)	-3(2)
B0 D7	21(3)	22(3)	20(3)	-2(2)	7(2)	0(2)
D0 Д	$1\delta(2)$ 17(2)	10(2) 17(2)	23(2)	-1.4(19)	/./(19)	-0.3(18)
	$\frac{1}{(2)}$	$\frac{1}{20}$	23(3)	U(2)	0(2)	-2.0(19)
עם 10	$\frac{1}{(2)}$	20(2)	20(3)	1(2) 2(2)	0(2) 7 0(10)	-1.2(19)
B10	19(2)	21(2)	20(2)	-3(2)	7.0(19)	-0.3(19)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C1	1.221(4)	C20	C25	1.405(5)
N1	C1	1.349(5)	C20	B2	1.568(6)
N1	C8	1.486(5)	C21	C22	1.387(6)
N1	C11	1.470(5)	C22	C23	1.393(6)
C1	C2	1.550(5)	C23	C24	1.390(6)
C2	C3	1.673(5)	C23	C26	1.505(6)
C2	B1	1.804(6)	C24	C25	1.386(6)
C2	B2	1.742(6)	B1	B2	1.815(6)
C2	B3	1.715(6)	B1	B7	1.764(6)
C2	B4	1.731(6)	B1	B10	1.781(6)
C3	C4	1.535(5)	B2	B3	1.786(7)
C3	B1	1.769(6)	B2	B7	1.796(6)
C3	B4	1.747(6)	B2	B 8	1.801(6)
C3	B5	1.708(6)	B3	B4	1.774(7)
C3	B10	1.699(6)	B3	B 8	1.753(6)
C4	C5	1.530(5)	B3	B9	1.778(7)
C5	C6	1.521(5)	B4	B5	1.767(6)
C6	C7	1.529(6)	B4	B9	1.762(7)
C8	С9	1.524(7)	В5	B6	1.783(7)
C11	C12	1.532(6)	В5	B9	1.778(6)
C13	C14	1.404(5)	В5	B10	1.758(7)
C13	C18	1.398(6)	B6	B7	1.785(7)
C13	B1	1.574(6)	B6	B 8	1.779(6)
C14	C15	1.386(6)	B6	B9	1.785(7)
C15	C16	1.384(6)	B6	B10	1.764(6)
C16	C17	1.394(5)	B7	B 8	1.774(6)
C16	C19	1.516(6)	B7	B10	1.765(6)
C17	C18	1.380(6)	B 8	B9	1.788(7)
C20	C21	1.397(5)			

Bond Lengths for mo_0848_CG_0m_4.

Bond Angles for mo_0848_CG_0m_4.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C1	N1	C8	115.1(3)	B3	B2	B7	105.6(3)
C1	N1	C11	130.9(3)	B3	B2	B 8	58.5(2)
C11	N1	C8	113.4(3)	B7	B2	B1	58.5(2)
O1	C1	N1	121.6(4)	B7	B2	B 8	59.1(2)
01	C1	C2	116.1(3)	B8	B2	B1	106.6(3)
N1	C1	C2	122.3(3)	C2	B3	B2	59.6(2)
C1	C2	C3	113.2(3)	C2	B3	B4	59.5(2)
C1	C2	B1	114.1(3)	C2	B3	B8	106.5(3)
C1	C2	B2	124.0(3)	C2	B3	B9	106.1(3)

C1	C2	B3	127.3(3)	B4	B3	B2	109.6(3)
C1	C2	B4	117.0(3)	B4	B3	B9	59.5(3)
C3	C2	B1	61.0(2)	B 8	B3	B2	61.2(3)
C3	C2	B2	110.4(3)	B 8	B3	B4	108.5(3)
C3	C2	B3	110.2(3)	B 8	B3	B9	60.8(3)
C3	C2	B4	61.7(2)	B9	B3	B2	110.3(3)
B2	C2	B1	61.6(2)	C2	B4	C3	57.5(2)
B3	C2	B1	112.3(3)	C2	B4	B3	58.6(2)
B3	C2	B2	62.2(2)	C2	B4	B5	105.1(3)
B3	C2	B4	62.0(3)	C2	B4	B9	106.1(3)
B4	C2	B1	113.7(3)	C3	B4	B3	104.2(3)
B4	C2	B2	113.8(3)	C3	B4	B5	58.2(2)
C2	C3	B1	63.1(2)	C3	B4	B9	105.2(3)
C2	C3	B4	60.8(2)	B5	B4	B3	107.8(3)
C2	C3	B5	110.4(3)	B9	B4	B3	60.4(3)
C2	C3	B10	111.0(3)	B9	B4	B5	60.5(3)
C4	C3	C2	119.8(3)	C3	B5	B4	60.3(2)
C4	C3	B1	116.6(3)	C3	B5	B6	105.5(3)
C4	C3	B4	118.7(3)	C3	B5	B9	106.2(3)
C4	C3	B5	120.1(3)	C3	B5	B10	58.7(2)
C4	C3	B10	120.2(3)	B4	B5	B6	108.1(3)
B4	C3	B1	114.6(3)	B4	B5	B9	59.6(2)
B5	C3	B1	113.9(3)	B9	B5	B6	60.2(3)
B5	C3	B4	61.5(3)	B10	B5	B4	108.6(3)
B10	C3	B1	61.7(3)	B10	B5	B6	59.8(3)
B10	C3	B4	112.4(3)	B10	B5	B9	108.0(3)
B10	C3	B5	62.1(3)	B5	B6	B7	107.2(3)
C5	C4	C3	117.0(3)	B5	B6	B9	59.8(3)
C6	C5	C4	111.2(3)	B7	B6	B9	108.0(3)
C5	C6	C7	112.5(4)	B 8	B6	B5	107.3(3)
N1	C8	C9	111.6(4)	B8	B6	B7	59.7(3)
N1	C11	C12	112.6(4)	B8	B6	B9	60.2(3)
C14	C13	B1	120.5(4)	B10	B6	B5	59.4(3)
C18	C13	C14	116.0(4)	B10	B6	B7	59.6(3)
C18	C13	B1	123.2(3)	B10	B6	B 8	107.0(3)
C15	C14	C13	121.9(4)	B10	B6	B9	107.4(3)
C16	C15	C14	121.2(4)	B1	B7	B2	61.3(2)
C15	C16	C17	117.7(4)	B1	B7	B6	109.9(3)
C15	C16	C19	121.7(4)	B1	B7	B 8	110.1(3)
C17	C16	C19	120.6(4)	B1	B7	B10	60.6(3)
C18	C17	C16	121.0(4)	B6	B7	B2	109.1(3)
C17	C18	C13	122.3(4)	B8	B7	B2	60.6(2)
C21	C20	C25	116.5(4)	B8	B7	B6	60.0(3)
C21	C20	B2	118.1(3)	B10	B7	B2	108.4(3)
C25	C20	B2	125.4(4)	B10	B 7	B6	59.6(3)

C22	C21	C20	121.8(4)	B10	B7	B 8	107.2(3)
C21	C22	C23	121.4(4)	B3	B 8	B2	60.3(3)
C22	C23	C26	121.6(4)	B3	B 8	B6	108.3(3)
C24	C23	C22	117.1(4)	B3	B 8	B7	108.0(3)
C24	C23	C26	121.3(4)	B3	B 8	B9	60.3(3)
C25	C24	C23	121.8(4)	B6	B 8	B2	109.2(3)
C24	C25	C20	121.4(4)	B6	B 8	B9	60.1(3)
C2	B1	B2	57.5(2)	B7	B 8	B2	60.3(2)
C3	B1	C2	55.8(2)	B7	B8	B6	60.3(3)
C3	B1	B2	102.9(3)	B7	B8	B9	108.4(3)
C3	B1	B10	57.2(2)	B9	B8	B2	109.2(3)
C13	B1	C2	128.2(3)	B3	B9	B5	107.1(3)
C13	B1	C3	124.4(3)	B3	B9	B6	106.9(3)
C13	B1	B2	125.2(4)	B3	B9	B 8	58.9(3)
C13	B1	B7	123.0(3)	B4	B9	B3	60.1(3)
C13	B1	B10	120.7(3)	B4	B9	B5	59.9(3)
B7	B1	C2	102.9(3)	B4	B9	B6	108.2(3)
B7	B1	C3	103.2(3)	B4	B9	B 8	107.5(3)
B 7	B1	B2	60.2(2)	B5	B9	B6	60.1(3)
B 7	B1	B10	59.7(3)	B5	B9	B 8	107.2(3)
B10	B1	C2	101.6(3)	B6	B9	B 8	59.7(3)
B10	B1	B2	106.9(3)	C3	B10	B1	61.0(2)
C2	B2	B1	60.9(2)	C3	B10	B5	59.2(3)
C2	B2	B3	58.2(2)	C3	B10	B6	106.7(3)
C2	B2	B7	104.1(3)	C3	B10	B7	106.1(3)
C2	B2	B 8	103.3(3)	B5	B10	B1	110.9(3)
C20	B2	C2	125.8(3)	B5	B10	B6	60.8(3)
C20	B2	B1	121.9(3)	B5	B10	B7	109.2(3)
C20	B2	B3	122.4(3)	B6	B10	B1	110.1(3)
C20	B2	B7	123.0(4)	B6	B10	B7	60.8(3)
C20	B2	B 8	122.4(3)	B7	B10	B1	59.7(3)
B3	B2	B1	108.5(3)				

Torsion Angles for mo_0848_CG_0m_4.

А	В	С	D	Angle/°	A	В	С	D	Angle/°
01	C1	C2	C3	-52.8(5)	B2	C2	B4	C3	-101.2(3)
01	C1	C2	B1	14.5(5)	B2	C2	B4	B3	35.7(3)
01	C1	C2	B2	85.4(5)	B2	C2	B4	B5	-66.2(4)
01	C1	C2	B3	164.3(4)	B2	C2	B4	B9	-3.1(4)
01	C1	C2	B4	-121.7(4)	B2	C20	C21	C22	177.9(4)
N1	C1	C2	C3	128.9(4)	B2	C20	C25	C24	-177.1(4)
N1	C1	C2	B1	-163.8(4)	B2	B1	B7	B6	101.5(3)
N1	C1	C2	B2	-92.9(5)	B2	B1	B7	B8	37.2(3)

N1	C1	C2	B3	-14.0(6)	B2	B1	B 7	B10	136.1(3)
N1	C1	C2	B4	60.0(5)	B2	B1	B10	C3	94.8(3)
C1	N1	C8	C9	87.1(5)	B2	B1	B10	B5	61.7(4)
C1	N1	C11	C12	111.3(5)	B2	B1	B10	B6	-3.7(4)
C1	C2	C3	C4	-1.0(5)	B2	B1	B10	B7	-38.9(3)
C1	C2	C3	B1	105.8(3)	B2	B3	B4	C2	-33.5(3)
C1	C2	C3	B4	-109.3(4)	B2	B3	B4	C3	2.9(4)
C1	C2	C3	B5	-147.0(3)	B2	B3	B4	B5	63.6(4)
C1	C2	C3	B10	146.1(3)	B2	B3	B4	B9	102.6(4)
C1	C2	B1	C3	-104.1(3)	B2	B3	B 8	B6	-102.1(3)
C1	C2	B1	C13	5.4(6)	B2	B3	B 8	B7	-38.3(3)
C1	C2	B1	B2	117.1(4)	B2	B3	B 8	B9	-139.6(3)
C1	C2	B1	B7	158.5(3)	B2	B3	B9	B4	-101.4(3)
C1	C2	B1	B10	-140.2(3)	B2	B3	B9	B5	-62.8(4)
C1	C2	B2	C20	8.8(6)	B2	B3	B9	B6	0.3(4)
C1	C2	B2	B1	-101.3(4)	B2	B3	B9	B8	37.3(3)
C1	C2	B2	B3	118.1(4)	B2	B7	B8	B3	38.3(3)
C1	C2	B2	B7	-142.1(3)	B2	B7	B8	B6	139.5(3)
C1	C2	B2	B 8	156.9(3)	B2	B7	B8	B9	102.1(3)
C1	C2	B3	B2	-113.2(4)	B2	B7	B10	C3	-1.4(4)
C1	C2	B3	B4	103.9(4)	B2	B7	B10	B1	39.8(3)
C1	C2	B3	B 8	-154.0(4)	B2	B7	B10	B5	-63.7(4)
C1	C2	B3	B9	142.3(4)	B2	B7	B10	B6	-101.9(4)
C1	C2	B4	C3	103.1(3)	B2	B8	B9	B3	-36.6(3)
C1	C2	B4	B3	-120.0(4)	B2	B 8	B9	B4	0.3(4)
C1	C2	B4	B5	138.1(3)	B2	B 8	B9	B5	63.4(4)
C1	C2	B4	B9	-158.8(3)	B2	B 8	B9	B6	101.6(3)
C2	C3	C4	C5	-67.9(5)	B3	C2	C3	C4	148.3(3)
C2	C3	B1	C13	-116.2(4)	B3	C2	C3	B1	-105.0(3)
C2	C3	B1	B2	34.8(3)	B3	C2	C3	B4	40.0(3)
C2	C3	B1	B7	96.8(3)	B3	C2	C3	B5	2.3(4)
C2	C3	B1	B10	136.7(3)	B3	C2	C3	B10	-64.6(4)
C2	C3	B4	B3	-37.0(3)	B3	C2	B1	C3	101.5(3)
C2	C3	B4	B5	-139.3(3)	B3	C2	B1	C13	-148.9(4)
C2	C3	B4	B9	-99.6(3)	B3	C2	B1	B2	-37.3(3)
C2	C3	B5	B4	37.4(3)	B3	C2	B1	B7	4.1(4)
C2	C3	B5	B6	-64.9(4)	B3	C2	B1	B10	65.4(4)
C2	C3	B5	B9	-2.1(4)	B3	C2	B2	C20	-109.3(4)
C2	C3	B5	B10	-103.6(3)	B3	C2	B2	B1	140.6(3)
C2	C3	B10	B1	-41.0(3)	B3	C2	B2	B7	99.8(3)
C2	C3	B10	B5	102.7(3)	B3	C2	B2	B 8	38.8(3)
C2	C3	B10	B6	63.2(4)	B3	C2	B4	C3	-136.9(3)
C2	C3	B10	B7	-0.4(4)	B3	C2	B4	B5	-101.9(3)
C2	B1	B2	C20	-116.2(4)	B3	C2	B4	B9	-38.8(3)
C2	B1	B2	B3	34.6(3)	B3	B2	B7	B1	102.4(3)

C2	B1	B2	B7	132.0(3)	B3	B2	B7	B6	-0.4(4)
C2	B1	B2	B 8	96.3(3)	B3	B2	B7	B8	-36.9(3)
C2	B1	B7	B2	-40.1(3)	B3	B2	B7	B10	62.9(4)
C2	B1	B7	B6	61.4(4)	B3	B2	B 8	B6	100.6(4)
C2	B1	B7	B 8	-2.9(4)	B3	B2	B 8	B7	137.3(3)
C2	B1	B7	B10	96.1(3)	B3	B2	B 8	B9	36.6(3)
C2	B1	B10	C3	35.4(3)	B3	B4	B5	C3	-96.0(3)
C2	B1	B10	B5	2.4(4)	B3	B4	B5	B6	1.9(4)
C2	B1	B10	B6	-63.1(4)	B3	B4	B5	B9	39.0(3)
C2	B1	B10	B7	-98.3(3)	B3	B4	B5	B10	-61.4(4)
C2	B2	B3	B4	33.5(3)	B3	B4	B9	B5	-136.5(3)
C2	B2	B3	B 8	134.3(3)	B3	B4	B9	B6	-99.4(4)
C2	B2	B3	B9	97.2(3)	B3	B4	B9	B8	-36.4(3)
C2	B2	B 7	B1	42.1(3)	B3	B8	B9	B4	36.9(3)
C2	B2	B7	B6	-60.7(4)	B3	B8	B9	B5	100.0(3)
C2	B2	B7	B 8	-97.3(3)	B3	B8	B9	B6	138.2(3)
C2	B2	B7	B10	2.6(4)	B4	C2	C3	C4	108.3(4)
C2	B2	B 8	B3	-38.7(3)	B4	C2	C3	B1	-145.0(3)
C2	B2	B 8	B6	61.9(4)	B4	C2	C3	B5	-37.7(3)
C2	B2	B 8	B7	98.6(3)	B4	C2	C3	B10	-104.6(3)
C2	B2	B 8	B9	-2.1(4)	B4	C2	B1	C3	33.5(3)
C2	B3	B4	C3	36.5(3)	B4	C2	B1	C13	143.1(4)
C2	B3	B4	B5	97.1(3)	B4	C2	B1	B2	-105.3(3)
C2	B3	B4	B9	136.1(3)	B4	C2	B1	B7	-63.8(4)
C2	B3	B 8	B2	40.1(3)	B4	C2	B1	B10	-2.6(4)
C2	B3	B 8	B6	-62.1(4)	B4	C2	B2	C20	-144.8(4)
C2	B3	B 8	B7	1.8(4)	B4	C2	B2	B1	105.1(3)
C2	B3	B 8	B9	-99.5(3)	B4	C2	B2	B3	-35.6(3)
C2	B3	B9	B4	-38.4(3)	B4	C2	B2	B7	64.3(4)
C2	B3	B9	B5	0.2(4)	B4	C2	B2	B8	3.2(4)
C2	B3	B9	B6	63.3(4)	B4	C2	B3	B2	142.9(3)
C2	B3	B9	B 8	100.3(3)	B4	C2	B3	B8	102.1(3)
C2	B4	B5	C3	-34.7(3)	B4	C2	B3	B9	38.4(3)
C2	B4	B5	B6	63.2(4)	B4	C3	C4	C5	3.0(5)
C2	B4	B5	B9	100.2(3)	B4	C3	B1	C2	-33.5(3)
C2	B4	B5	B10	-0.1(4)	B4	C3	B1	C13	-149.7(4)
C2	B4	B9	B3	38.0(3)	B4	C3	B1	B2	1.3(4)
C2	B4	B9	B5	-98.5(3)	B4	C3	B1	B7	63.3(4)
C2	B4	B9	B6	-61.5(4)	B4	C3	B1	B10	103.2(3)
C2	B4	B9	B 8	1.6(4)	B4	C3	B5	B6	-102.3(3)
C3	C2	B1	C13	109.6(4)	B4	C3	B5	B9	-39.5(3)
C3	C2	B1	B2	-138.8(3)	B4	C3	B5	B10	-141.0(3)
C3	C2	B1	B7	-97.3(3)	B4	C3	B10	B1	-106.9(3)
C3	C2	B1	B10	-36.1(3)	B4	C3	B10	B5	36.7(3)
C3	C2	B2	C20	148.0(4)	B4	C3	B10	B6	-2.7(4)

C3	C2	B2	B1	37.9(3)	B4	C3	B10	B 7	-66.4(4)
C3	C2	B2	B3	-102.7(3)	B4	B3	B 8	B2	102.7(3)
C3	C2	B2	B7	-2.9(4)	B4	B3	B 8	B6	0.6(4)
C3	C2	B2	B 8	-63.9(4)	B4	B3	B 8	B 7	64.4(4)
C3	C2	B3	B2	103.0(3)	B4	B3	B 8	B9	-36.9(3)
C3	C2	B3	B4	-39.9(3)	B4	B3	B9	B5	38.6(3)
C3	C2	B3	B 8	62.2(4)	B4	B3	B9	B6	101.7(3)
C3	C2	B3	B9	-1.5(4)	B4	B3	B9	B 8	138.7(3)
C3	C2	B4	B3	136.9(3)	B4	B5	B6	B7	-64.4(4)
C3	C2	B4	B5	35.0(3)	B4	B5	B6	B 8	-1.6(4)
C3	C2	B4	B9	98.1(3)	B4	B5	B6	B9	36.8(3)
C3	C4	C5	C6	171.7(4)	B4	B5	B6	B10	-101.5(3)
C3	B1	B2	C2	-34.0(3)	B4	B5	B9	B3	-38.7(3)
C3	B1	B2	C20	-150.2(4)	B4	B5	B9	B6	-138.7(4)
C3	B1	B2	B3	0.6(4)	B4	B5	B9	B 8	-100.6(4)
C3	B1	B2	B7	98.0(3)	B4	B5	B10	C3	-35.3(3)
C3	B1	B2	B 8	62.3(4)	B4	B5	B10	B1	-1.5(4)
C3	B1	B7	B2	-97.5(3)	B4	B5	B10	B6	100.5(4)
C3	B1	B7	B6	3.9(4)	B4	B5	B10	B 7	62.4(4)
C3	B1	B7	B 8	-60.3(4)	B5	C3	C4	C5	74.8(5)
C3	B1	B7	B10	38.6(3)	B5	C3	B1	C2	-101.7(3)
C3	B1	B10	B5	-33.1(3)	B5	C3	B1	C13	142.1(4)
C3	B1	B10	B6	-98.5(3)	B5	C3	B1	B2	-66.9(4)
C3	B1	B10	B7	-133.7(3)	B5	C3	B1	B 7	-4.9(4)
C3	B4	B5	B6	97.9(3)	B5	C3	B1	B10	35.0(3)
C3	B4	B5	B9	135.0(3)	B5	C3	B4	C2	139.3(3)
C3	B4	B5	B10	34.6(3)	B5	C3	B4	B3	102.3(3)
C3	B4	B9	B3	97.9(3)	B5	C3	B4	B9	39.7(3)
C3	B4	B9	B5	-38.5(3)	B5	C3	B10	B1	-143.6(3)
C3	B4	B9	B6	-1.5(4)	B5	C3	B10	B6	-39.5(3)
C3	B4	B9	B 8	61.5(4)	B5	C3	B10	B7	-103.1(3)
C3	B5	B6	B7	-1.1(4)	B5	B4	B9	B3	136.5(3)
C3	B5	B6	B 8	61.7(4)	B5	B4	B9	B6	37.0(3)
C3	B5	B6	B9	100.1(3)	B5	B4	B9	B 8	100.1(3)
C3	B5	B6	B10	-38.2(3)	B5	B6	B7	B1	-1.9(4)
C3	B5	B9	B3	1.1(4)	B5	B6	B7	B2	63.6(4)
C3	B5	B9	B4	39.8(3)	B5	B6	B7	B 8	100.4(3)
C3	B5	B9	B6	-98.9(3)	B5	B6	B7	B10	-37.0(3)
C3	B5	B9	B8	-60.8(4)	B5	B6	B 8	B2	-63.5(4)
C3	B5	B10	B1	33.8(3)	B5	B6	B 8	B3	0.6(4)
C3	B5	B10	B6	135.8(3)	B5	B6	B 8	B7	-100.2(3)
C3	B5	B10	B7	97.7(3)	B5	B6	B 8	B9	38.2(3)
C4	C3	B1	C2	111.6(4)	B5	B6	B9	B3	-100.3(3)
C4	C3	B1	C13	-4.6(5)	B5	B6	B9	B4	-36.9(3)
C4	C3	B1	B2	146.4(3)	B5	B6	B9	B 8	-137.0(3)

C4	C3	B 1	B7	-151.6(3)	B5	B6	B10	C3	38.7(3)
C4	C3	B1	B10	-111.7(4)	B5	B6	B10	B1	103.4(4)
C4	C3	B4	C2	-110.0(4)	B5	B6	B10	B 7	138.1(3)
C4	C3	B4	B3	-147.0(3)	B6	B5	B9	B3	100.0(4)
C4	C3	B4	B5	110.7(4)	B6	B5	B9	B4	138.7(4)
C4	C3	B4	B9	150.4(4)	B6	B5	B9	B 8	38.1(3)
C4	C3	B5	B4	-108.5(4)	B6	B5	B10	C3	-135.8(3)
C4	C3	B5	B6	149.2(3)	B6	B5	B10	B1	-102.0(4)
C4	C3	B5	B9	-148.0(3)	B6	B5	B10	B7	-38.1(3)
C4	C3	B5	B10	110.5(4)	B6	B7	B 8	B2	-139.5(3)
C4	C3	B10	B1	106.0(4)	B6	B7	B 8	B3	-101.2(4)
C4	C3	B10	B5	-110.4(4)	B6	B7	B 8	B9	-37.4(3)
C4	C3	B10	B6	-149.9(4)	B6	B7	B10	C3	100.5(3)
C4	C3	B10	B7	146.5(4)	B6	B7	B10	B1	141.7(3)
C4	C5	C6	C7	176.8(4)	B6	B7	B10	B5	38.1(3)
C8	N1	C1	01	-1.9(6)	B6	B8	B9	B3	-138.2(3)
C8	N1	C1	C2	176.3(4)	B6	B8	B9	B4	-101.3(3)
C8	N1	C11	C12	-78.4(5)	B6	B8	B9	B5	-38.2(3)
C11	N1	C1	01	168.3(4)	B7	B1	B2	C2	-132.0(3)
C11	N1	C1	C2	-13.6(7)	B7	B1	B2	C20	111.8(4)
C11	N1	C8	C9	-84.8(4)	B7	B1	B2	B3	-97.4(3)
C13	C14	C15	C16	-0.4(6)	B7	B1	B2	B 8	-35.7(3)
C13	B1	B2	C2	116.7(4)	B7	B1	B10	C3	133.7(3)
C13	B1	B2	C20	0.5(6)	B7	B1	B10	B5	100.6(4)
C13	B1	B2	B3	151.3(4)	B7	B1	B10	B6	35.2(3)
C13	B1	B2	B7	-111.3(4)	B7	B2	B3	C2	-97.2(3)
C13	B1	B2	B 8	-147.0(4)	B7	B2	B3	B4	-63.7(4)
C13	B1	B7	B2	114.9(4)	B7	B2	B3	B 8	37.2(3)
C13	B1	B7	B6	-143.7(4)	B7	B2	B3	B9	0.1(4)
C13	B1	B7	B 8	152.0(4)	B7	B2	B 8	B3	-137.3(3)
C13	B1	B7	B10	-109.0(4)	B7	B2	B 8	B6	-36.7(3)
C13	B1	B10	C3	-113.6(4)	B7	B2	B8	B9	-100.7(3)
C13	B1	B10	B5	-146.6(4)	B7	B6	B8	B2	36.7(3)
C13	B1	B10	B6	147.9(4)	B7	B6	B8	B3	100.8(3)
C13	B1	B10	B7	112.7(4)	B7	B6	B8	B9	138.3(3)
C14	C13	C18	C17	0.8(6)	B7	B6	B9	B3	-0.5(4)
C14	C13	B1	C2	-138.3(4)	B7	B6	B9	B4	62.9(4)
C14	C13	B 1	C3	-67.3(5)	B7	B6	B9	B5	99.8(4)
C14	C13	B1	B2	148.0(4)	B7	B6	B9	B8	-37.1(3)
C14	C13	B1	B7	73.5(5)	B7	B6	B10	C3	-99.4(3)
C14	C13	B1	B10	1.8(6)	B7	B6	B10	B1	-34.8(3)
C14	C15	C16	C17	1.7(6)	B7	B6	B10	B5	-138.1(3)
C14	C15	C16	C19	-177.9(4)	B7	B8	B9	B3	-100.7(3)
C15	C16	C17	C18	-1.7(6)	B7	B8	B9	B4	-63.8(4)
C16	C17	C18	C13	0.5(6)	B7	B 8	B9	B5	-0.8(4)

C18	C13	C14	C15	-0.8(6)	B7	B8	B9	B6	37.5(3)
C18	C13	B1	C2	48.1(6)	B 8	B2	B3	C2	-134.3(3)
C18	C13	B 1	C3	119.1(4)	B 8	B2	B3	B4	-100.9(4)
C18	C13	B 1	B2	-25.6(6)	B 8	B2	B3	B9	-37.1(3)
C18	C13	B 1	B7	-100.1(5)	B 8	B2	B7	B1	139.3(3)
C18	C13	B 1	B10	-171.8(4)	B 8	B2	B7	B6	36.5(3)
C19	C16	C17	C18	177.8(4)	B 8	B2	B7	B10	99.8(4)
C20	C21	C22	C23	-1.3(6)	B 8	B3	B4	C2	-98.7(3)
C20	B2	B3	C2	114.9(4)	B8	B3	B4	C3	-62.2(4)
C20	B2	B3	B4	148.4(4)	B8	B3	B4	B5	-1.6(4)
C20	B2	B3	B 8	-110.8(4)	B8	B3	B4	B9	37.5(3)
C20	B2	B3	B9	-147.9(4)	B 8	B3	B9	B4	-138.7(3)
C20	B2	B 7	B1	-109.9(4)	B 8	B3	B9	B5	-100.1(3)
C20	B2	B7	B6	147.3(4)	B8	B3	B9	B6	-37.0(3)
C20	B2	B 7	B 8	110.8(4)	B8	B6	B7	B1	-102.3(3)
C20	B2	B7	B10	-149.4(4)	B8	B6	B7	B2	-36.8(3)
C20	B2	B 8	B3	110.8(4)	B8	B6	B7	B10	-137.3(3)
C20	B2	B 8	B6	-148.6(4)	B8	B6	B9	B3	36.6(3)
C20	B2	B 8	B7	-111.9(4)	B8	B6	B9	B4	100.0(4)
C20	B2	B 8	B9	147.4(4)	B8	B6	B9	B5	137.0(3)
C21	C20	C25	C24	0.7(5)	B8	B6	B10	C3	-61.7(4)
C21	C20	B2	C2	-171.5(3)	B8	B6	B10	B1	3.0(4)
C21	C20	B2	B1	-96.5(4)	B8	B6	B10	B5	-100.4(3)
C21	C20	B2	B3	116.7(4)	B8	B6	B10	B7	37.7(3)
C21	C20	B2	B7	-25.7(5)	B8	B7	B10	C3	62.6(4)
C21	C20	B2	B 8	46.0(5)	B8	B7	B10	B1	103.8(3)
C21	C22	C23	C24	1.9(6)	B8	B7	B10	В5	0.2(4)
C21	C22	C23	C26	-178.2(4)	B8	B7	B10	B6	-37.9(3)
C22	C23	C24	C25	-1.2(6)	B9	B3	B4	C2	-136.1(3)
C23	C24	C25	C20	0.0(6)	B9	B3	B4	C3	-99.7(3)
C25	C20	C21	C22	0.0(6)	B9	B3	B4	B5	-39.0(3)
C25	C20	B2	C2	6.2(6)	B9	B3	B 8	B2	139.6(3)
C25	C20	B2	B1	81.3(5)	B9	B3	B 8	B6	37.5(3)
C25	C20	B2	B3	-65.5(5)	B9	B3	B 8	B 7	101.3(3)
C25	C20	B2	B7	152.0(4)	B9	B4	B5	C3	-135.0(3)
C25	C20	B2	B 8	-136.3(4)	B9	B4	B5	B6	-37.0(3)
C26	C23	C24	C25	178.9(4)	B9	B4	B5	B10	-100.4(4)
B1	C2	C3	C4	-106.8(4)	B9	B5	B6	B 7	-101.2(3)
B1	C2	C3	B4	145.0(3)	B9	B5	B6	B 8	-38.3(3)
B1	C2	C3	B5	107.3(3)	B9	B5	B6	B10	-138.3(3)
B1	C2	C3	B10	40.3(3)	B9	B5	B10	C3	-98.4(3)
B1	C2	B2	C20	110.1(4)	B9	B5	B10	B1	-64.6(4)
B1	C2	B2	B3	-140.6(3)	B9	B5	B10	B6	37.4(3)
B1	C2	B2	B7	-40.8(3)	B9	B5	B10	B7	-0.7(4)
B1	C2	B2	B 8	-101.8(3)	B9	B6	B7	B1	-64.9(4)

B1	C2	B3	B2	37.1(3)	B9	B6	B7	B2	0.5(4)
B1	C2	B3	B4	-105.8(3)	B9	B6	B 7	B8	37.3(3)
B1	C2	B3	B 8	-3.8(4)	B9	B6	B7	B10	-100.0(4)
B1	C2	B3	B9	-67.4(4)	B9	B6	B 8	B2	-101.6(3)
B1	C2	B4	C3	-33.3(3)	B9	B6	B 8	B3	-37.6(3)
B1	C2	B4	B3	103.6(3)	B9	B6	B 8	B 7	-138.3(3)
B1	C2	B4	B5	1.8(4)	B9	B6	B10	C3	1.6(4)
B 1	C2	B4	B9	64.8(4)	B9	B6	B10	B1	66.3(4)
B1	C3	C4	C5	-140.7(4)	B9	B6	B10	B5	-37.1(3)
B1	C3	B4	C2	34.3(3)	B9	B6	B10	B7	101.1(4)
B1	C3	B4	B3	-2.7(4)	B10	C3	C4	C5	148.1(4)
B1	C3	B4	B5	-105.0(4)	B10	C3	B1	C2	-136.7(3)
B1	C3	B4	B9	-65.3(4)	B10	C3	B1	C13	107.1(4)
B 1	C3	B5	B4	106.1(3)	B10	C3	B1	B2	-101.9(3)
B1	C3	B5	B6	3.8(4)	B10	C3	B1	B7	-39.9(3)
B1	C3	B5	B9	66.6(4)	B10	C3	B4	C2	102.3(3)
B 1	C3	B5	B10	-34.9(3)	B10	C3	B4	B3	65.3(4)
B 1	C3	B10	B5	143.6(3)	B10	C3	B4	B5	-37.0(3)
B1	C3	B10	B6	104.1(3)	B10	C3	B4	B9	2.7(4)
B1	C3	B10	B7	40.5(3)	B10	C3	B5	B4	141.0(3)
B1	C13	C14	C15	-174.9(4)	B10	C3	B5	B6	38.7(3)
B1	C13	C18	C17	174.6(4)	B10	C3	B5	B9	101.5(3)
B1	B2	B3	C2	-35.8(3)	B10	B1	B2	C2	-93.3(3)
B1	B2	B3	B4	-2.3(4)	B10	B1	B2	C20	150.5(4)
B1	B2	B3	B 8	98.6(3)	B10	B1	B2	B3	-58.7(4)
B1	B2	B3	B9	61.5(4)	B10	B1	B2	B7	38.7(3)
B1	B2	B 7	B6	-102.8(4)	B10	B1	B2	B 8	3.0(4)
B1	B2	B 7	B 8	-139.3(3)	B10	B1	B7	B2	-136.1(3)
B1	B2	B7	B10	-39.5(3)	B10	B1	B7	B6	-34.7(3)
B1	B2	B 8	B3	-101.9(3)	B10	B1	B7	B 8	-99.0(4)
B1	B2	B 8	B6	-1.3(4)	B10	B5	B6	B7	37.1(3)
B1	B2	B 8	B7	35.4(3)	B10	B5	B6	B 8	99.9(4)
B1	B2	B 8	B9	-65.3(4)	B10	B5	B6	B9	138.3(3)
B1	B 7	B 8	B2	-37.5(3)	B10	B5	B9	B3	62.8(4)
B1	B 7	B 8	B3	0.8(4)	B10	B5	B9	B4	101.5(4)
B1	B 7	B 8	B6	102.0(4)	B10	B5	B9	B6	-37.2(3)
B1	B 7	B 8	B9	64.6(4)	B10	B5	B9	B8	0.9(4)
B1	B 7	B10	C3	-41.2(3)	B10	B6	B7	B1	35.1(3)
B1	B 7	B10	B5	-103.5(3)	B10	B6	B7	B2	100.5(3)
B1	B 7	B10	B6	-141.7(3)	B10	B6	B7	B8	137.3(3)
B2	C2	C3	C4	-144.9(3)	B10	B6	B 8	B2	-1.0(4)
B2	C2	C3	B1	-38.2(3)	B10	B6	B 8	B3	63.1(4)
B2	C2	C3	B4	106.8(3)	B10	B6	B 8	B7	-37.7(3)
B2	C2	C3	B5	69.1(4)	B10	B6	B 8	B9	100.6(4)
B2	C2	C3	B10	2.2(4)	B10	B6	B9	B3	-63.4(4)

B2	C2	B 1	C3	138.8(3)	B10	B6	B9	B4	0.0(4)
B2	C2	B1	C13	-111.6(5)	B10	B6	B9	B5	36.9(3)
B2	C2	B1	B7	41.5(3)	B10	B6	B9	B8	-100.0(4)
B2	C2	B1	B10	102.7(3)	B10	B7	B8	B2	-101.8(3)
B2	C2	B3	B4	-142.9(3)	B10	B7	B8	B3	-63.5(4)
B2	C2	B3	B 8	-40.8(3)	B10	B7	B8	B6	37.7(3)
B2	C2	B3	B9	-104.5(3)	B10	B7	B 8	B9	0.3(4)

Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for mo_0848_CG_0m_4.

Atom	x	у	Z	U(eq)
H4A	3438.8	7144.07	5349.5	27
H4B	2771.38	6268.1	4789.27	27
H5A	1081.63	7247.77	4578.66	29
H5B	1641.83	8067.21	5211.34	29
H6A	2382.52	7892.1	3971.77	37
H6B	2876.23	8745.94	4593.65	37
H7A	1560.01	9621.47	3642.01	63
H7B	1079.93	9630.89	4310.82	63
H7C	590.22	8779.32	3686.93	63
H8A	3484.06	9756.83	6943.07	37
H8B	2399.21	10181.36	7159.81	37
H9A	2518.01	11082.77	6130.2	67
H9B	1376.45	10376.11	5954.99	67
H9C	2452.91	9939.98	5734.73	67
H11A	725.06	7858.53	6686.21	31
H11B	587.33	9149.8	6605.26	31
H12A	337.1	8662.42	7690.3	52
H12B	1503.64	9327.27	7847.65	52
H12C	1526.01	8029.58	7910.34	52
H14	5092.17	5153.33	5699.78	24
H15	6980.23	5501.34	5789.71	27
H17	7184.43	7481.88	7441.65	26
H18	5301.96	7138.75	7352.28	26
H19A	8575.94	7595.66	6585.22	50
H19B	8733.63	6407.16	6298.51	50
H19C	8996.62	6612.8	7126.5	50
H21	4273.73	4515.82	8292.84	25
H22	5417.56	4878.92	9418.55	31
H24	4913.86	8092.38	9065.74	28
H25	3740.13	7738.11	7946.75	26
H26A	5651.59	7076.56	10378.77	52
H26B	6675.13	7293.1	10047.52	52
H26C	6461.99	6095.92	10299.22	52

H3	1205.5	6430.25	7265.09	23
H4	552	6838.36	5731.14	25
H5	990.87	4844.53	5033.13	25
H6	1852.61	3164.31	6142.01	27
H7	4058.64	3947.21	7061.35	22
H8	1987.47	4177.52	7514.71	23
H9	66.29	4711.67	6258.06	25
H10	3410.67	4356.29	5525.16	23

Experimental

Single crystals of C₂₅H₄₁B₁₀NO [mo_0848_CG_0m_4] were recrystallised from a mixture of chloroform and hexane by slow evaporation. A suitable crystal was selected and the crystal was mounted on a MITIGEN holder oil on a Bruker D8 Venture AgCu Dual Source diffractometer. The crystal was kept at 100.03 K during data collection. Using Olex2^[2], the structure was solved with the XT^[3] structure solution program using Intrinsic Phasing and refined with the XL^[4] refinement package using Least Squares minimisation.

Crystal structure determination of 3fa

Crystal Data for C₂₅H₄₁B₁₀NO (M =479.69 g/mol): monoclinic, space group P2₁/c (no. 14), a = 12.2842(10) Å, b = 12.2978(10) Å, c = 19.8427(15) Å, $\beta = 106.783(2)^{\circ}$, V = 2869.9(4) Å³, Z = 4, T = 100.0 K, μ (MoK α) = 0.060 mm⁻¹, *Dcalc* = 1.110 g/cm³, 11362 reflections measured ($3.946^{\circ} \le 2\Theta \le 52.818^{\circ}$), 11362 unique ($R_{int} = ?$, $R_{sigma} = 0.0660$) which were used in all calculations. The final R_1 was 0.0861 (I > 2σ (I)) and wR_2 was 0.1966 (all data).

CCDC 1893313

Crystal data and	l structure refinement for 4aa.
Identification code	0544_CG_0m
CCDC number	1893305
Empirical formula	$C_{20}H_{31}B_{10}NO$
Formula weight	409.56
Temperature/K	100.02
Crystal system	monoclinic
Space group	P21/c
a/Å	9.9001(6)
b/Å	10.5092(9)
c/Å	21.5172(15)
$\alpha/^{\circ}$	90
β/°	90.643(3)
γ/°	90
Volume/Å ³	2238.6(3)
Ζ	4
$\rho_{calc}g/cm^3$	1.215
μ/mm^{-1}	0.066
F(000)	864.0
Crystal size/mm ³	$0.601 \times 0.531 \times 0.45$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.314 to 61.04
Index ranges	$-14 \le h \le 11, -15 \le k \le 15, -30 \le 1 \le 30$
Reflections collected	42852
Independent reflections	$6725 [R_{int} = 0.0241, R_{sigma} = 0.0168]$
Data/restraints/parameters	6725/0/328
Goodness-of-fit on F ²	1.048
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0380, wR_2 = 0.1027$
Final R indexes [all data]	$R_1 = 0.0401, wR_2 = 0.1045$
Largest diff. peak/hole / e Å ⁻³	0.41/-0.20

Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 0544_CG_0m. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z	U(eq)
01	4102.8(6)	8491.8(6)	5408.1(3)	17.17(13)
N1	5820.9(7)	8610.4(6)	6100.3(3)	12.73(13)
C1	4505.6(8)	8448.2(7)	5948.5(4)	12.26(14)
C2	3415.3(7)	8262.8(7)	6449.3(4)	11.79(14)
C3	1825.9(7)	7836.8(7)	6137.2(4)	12.27(14)
C4	1530.0(7)	7547.0(8)	5460.4(4)	13.20(14)
C5	1502.1(8)	6293.7(8)	5247.3(4)	16.61(15)
C6	1101.7(9)	6023.3(9)	4638.1(4)	19.94(17)
C7	703.2(9)	6993.1(9)	4238.2(4)	20.42(17)

C8	714.4(9)	8241.0(9)	4450.9(4)	19.81(17)
C9	1123.7(8)	8520.2(8)	5055.4(4)	16.78(15)
C10	6717.8(8)	8879.9(8)	5570.3(4)	16.00(15)
C11	7187.7(10)	7699.3(10)	5224.3(4)	23.65(18)
C12	6477.8(8)	8538.0(8)	6715.2(4)	15.21(15)
C13	7102.9(9)	7240.0(9)	6846.1(4)	20.46(17)
C14	3425.4(8)	5481.2(7)	6391.2(4)	12.78(14)
C15	4528.6(8)	5398.7(8)	5992.4(4)	17.32(16)
C16	5174.0(9)	4245.5(8)	5880.0(4)	17.96(16)
C17	4735.7(9)	3124.2(8)	6154.9(4)	15.98(15)
C18	3592.8(10)	3185.4(8)	6528.5(4)	19.80(17)
C19	2959.7(9)	4337.8(8)	6648.3(4)	17.73(16)
C20	5461.9(10)	1883.5(8)	6055.8(4)	21.19(17)
B1	2753.1(9)	6758.9(8)	6605.0(4)	12.55(15)
B2	2007.1(9)	6952.4(9)	7359.1(4)	14.64(16)
B3	3548.5(9)	7719.9(9)	7195.7(4)	13.85(16)
B4	2297.1(9)	8546.9(9)	7621.7(4)	16.35(17)
B5	1433.8(9)	9591.2(9)	7095.6(4)	16.49(17)
B6	602.7(9)	8639.4(9)	6530.1(4)	15.07(16)
B7	966.5(9)	7014.1(8)	6687.0(4)	13.87(16)
B8	697.7(9)	8105.3(9)	7310.8(4)	16.05(17)
B9	2155.2(9)	9396.0(8)	6352.7(4)	14.20(16)
B10	3204.6(9)	9346.7(8)	7032.2(4)	14.58(16)

Anisotropic Displacement Parameters (Å²×10³) for 0544_CG_0m. The Anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U₁₁+2hka*b*U₁₂+...].

		- pontent tun				·]·
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	14.1(3)	23.2(3)	14.2(3)	3.9(2)	-0.7(2)	-1.5(2)
N1	10.9(3)	13.4(3)	13.9(3)	1.6(2)	0.4(2)	-0.6(2)
C1	11.6(3)	10.4(3)	14.8(3)	1.5(2)	1.4(2)	0.0(2)
C2	10.3(3)	11.3(3)	13.7(3)	0.6(2)	0.3(2)	-0.1(2)
C3	10.4(3)	11.4(3)	14.9(3)	0.9(3)	-0.2(2)	0.5(2)
C4	10.5(3)	15.0(3)	14.0(3)	0.9(3)	-0.4(2)	-0.6(3)
C5	17.0(3)	15.6(4)	17.2(4)	-0.4(3)	-1.8(3)	-0.2(3)
C6	20.0(4)	21.2(4)	18.6(4)	-4.0(3)	-1.0(3)	-1.1(3)
C7	17.4(4)	28.8(4)	15.1(4)	-0.7(3)	-0.6(3)	-1.7(3)
C8	18.2(4)	24.1(4)	17.1(4)	5.2(3)	-2.1(3)	-0.1(3)
C9	15.8(3)	16.4(4)	18.1(4)	2.7(3)	-1.5(3)	0.1(3)
C10	12.2(3)	18.7(4)	17.2(3)	3.2(3)	2.7(3)	-2.0(3)
C11	24.6(4)	27.0(4)	19.5(4)	0.1(3)	6.2(3)	5.4(3)
C12	12.0(3)	18.2(4)	15.4(3)	-0.2(3)	-1.9(3)	-1.7(3)
C13	17.6(4)	25.2(4)	18.5(4)	3.7(3)	-1.0(3)	6.0(3)
C14	12.7(3)	11.9(3)	13.7(3)	1.3(2)	-0.1(2)	0.6(3)
C15	17.5(3)	12.6(3)	22.0(4)	1.0(3)	5.6(3)	-0.5(3)

C16	16.4(3)	15.3(4)	22.3(4)	-1.9(3)	4.7(3)	0.6(3)
C17	20.1(4)	13.5(3)	14.3(3)	-1.2(3)	-1.0(3)	2.9(3)
C18	28.2(4)	12.0(3)	19.4(4)	2.7(3)	6.7(3)	1.1(3)
C19	20.6(4)	13.7(3)	19.0(4)	2.3(3)	6.5(3)	0.2(3)
C20	29.0(4)	14.9(4)	19.7(4)	-1.4(3)	1.6(3)	7.2(3)
B1	11.9(3)	11.6(3)	14.2(4)	1.8(3)	1.2(3)	0.2(3)
B2	14.0(4)	15.5(4)	14.5(4)	1.0(3)	2.8(3)	0.1(3)
B3	13.7(3)	14.9(4)	13.0(3)	0.7(3)	0.9(3)	0.2(3)
B4	15.8(4)	17.1(4)	16.1(4)	-1.7(3)	2.6(3)	0.1(3)
B5	14.6(4)	15.1(4)	19.9(4)	-2.6(3)	2.3(3)	1.4(3)
B6	12.0(3)	13.9(4)	19.4(4)	-0.5(3)	1.5(3)	1.7(3)
B7	11.8(3)	13.6(4)	16.2(4)	0.9(3)	2.3(3)	-0.2(3)
B8	14.0(4)	16.3(4)	18.0(4)	-1.1(3)	3.5(3)	0.5(3)
B9	12.6(3)	11.8(4)	18.2(4)	0.2(3)	0.2(3)	1.2(3)
B10	14.3(4)	13.1(4)	16.4(4)	-1.9(3)	1.0(3)	0.1(3)

Bond Lengths for 0544_CG_0m.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C1	1.2259(10)	C15	C16	1.3924(11)
N1	C1	1.3497(10)	C16	C17	1.3902(12)
N1	C10	1.4804(10)	C17	C18	1.3968(12)
N1	C12	1.4698(10)	C17	C20	1.5052(12)
C1	C2	1.5461(10)	C18	C19	1.3891(12)
C2	C3	1.7617(11)	B1	B2	1.8018(12)
C2	B1	1.7449(12)	B1	B3	1.7981(13)
C2	B3	1.7080(12)	B1	B7	1.7996(12)
C2	B9	1.7355(12)	B2	B3	1.7649(13)
C2	B10	1.7088(12)	B2	B4	1.7905(13)
C3	C4	1.5132(11)	B2	B7	1.7673(13)
C3	B1	1.7659(12)	B2	B 8	1.7766(13)
C3	B6	1.7075(12)	B3	B4	1.7764(13)
C3	B7	1.7010(12)	B3	B10	1.7775(13)
C3	B9	1.7329(12)	B4	B5	1.7873(14)
C4	C5	1.3947(11)	B4	B8	1.7738(13)
C4	C9	1.3997(11)	B4	B10	1.7743(13)
C5	C6	1.3945(11)	B5	B6	1.7709(13)
C6	C7	1.3882(13)	B5	B8	1.7865(14)
C7	C8	1.3890(13)	B5	B9	1.7701(13)
C8	C9	1.3894(12)	B5	B10	1.7787(13)
C10	C11	1.5225(13)	B6	B7	1.7772(13)
C12	C13	1.5229(12)	B6	B8	1.7726(14)
C14	C15	1.3992(11)	B6	B9	1.7758(13)
C14	C19	1.4029(11)	B7	B 8	1.7876(13)

C14 B1 1.5699(12) B9	B10	1.7849(13)
----------------------	-----	------------

Bond Angles for 0544 CG 0m.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C1	N1	C10	115.04(7)	C2	В3	B1	59.63(5)
C1	N1	C12	128.84(7)	C2	B3	B2	106.38(6)
C12	N1	C10	116.12(6)	C2	B3	B4	105.95(6)
01	C1	N1	121.83(7)	C2	B3	B10	58.67(5)
01	C1	C2	116.33(7)	B2	B3	B1	60.75(5)
N1	C1	C2	121.78(7)	B2	B3	B4	60.74(5)
C1	C2	C3	113.20(6)	B2	B3	B10	108.35(6)
C1	C2	B1	120.97(6)	B4	B3	B1	109.70(6)
C1	C2	B3	130.56(6)	B4	B3	B10	59.90(5)
C1	C2	B9	109.67(6)	B10	B3	B1	108.60(6)
C1	C2	B10	121.29(6)	B3	B4	B2	59.31(5)
B1	C2	C3	60.47(5)	B3	B4	B5	107.76(6)
B3	C2	C3	109.44(6)	B5	B4	B2	107.52(6)
B3	C2	B1	62.75(5)	B8	B4	B2	59.79(5)
B3	C2	B9	112.93(6)	B 8	B4	B3	107.59(6)
B3	C2	B10	62.69(5)	B8	B4	B5	60.22(5)
B9	C2	C3	59.40(5)	B8	B4	B10	108.14(6)
B9	C2	B1	111.93(6)	B10	B4	B2	107.37(6)
B10	C2	C3	109.48(6)	B10	B4	B3	60.08(5)
B10	C2	B1	114.44(6)	B10	B4	B5	59.92(5)
B10	C2	B9	62.42(5)	B6	B5	B4	107.67(7)
C2	C3	B1	59.29(4)	B6	B5	B8	59.77(5)
C4	C3	C2	125.49(6)	B6	B5	B10	108.45(6)
C4	C3	B1	120.88(6)	B8	B5	B4	59.52(5)
C4	C3	B6	116.44(6)	B9	B5	B4	107.81(6)
C4	C3	B7	118.30(6)	B9	B5	B6	60.20(5)
C4	C3	B9	118.80(6)	B9	B5	B8	107.61(6)
B6	C3	C2	108.73(6)	B9	B5	B10	60.39(5)
B6	C3	B1	113.68(6)	B10	B5	B4	59.68(5)
B6	C3	B9	62.15(5)	B10	B5	B8	107.39(6)
B7	C3	C2	108.39(6)	C3	B6	B5	107.02(6)
B7	C3	B1	62.51(5)	C3	B6	B7	58.40(5)
B7	C3	B6	62.85(5)	C3	B6	B8	106.40(6)
B7	C3	B9	112.86(6)	C3	B6	B9	59.63(5)
B9	C3	C2	59.54(5)	B5	B6	B7	108.71(6)
B9	C3	B1	111.04(6)	B5	B6	B 8	60.55(5)
C5	C4	C3	120.62(7)	B5	B6	B9	59.88(5)
C5	C4	C9	118.75(7)	B 8	B6	B7	60.47(5)
C9	C4	C3	120.21(7)	B 8	B6	B9	107.97(6)

C6	C5	C4	120.38(8)	B9	B6	B7	107.28(6)
C7	C6	C5	120.59(8)	C3	B7	B1	60.51(5)
C6	C7	C8	119.19(8)	C3	B7	B2	107.23(6)
C7	C8	С9	120.60(8)	C3	B7	B6	58.75(5)
C8	C9	C4	120.48(8)	C3	B7	B 8	106.02(6)
N1	C10	C11	114.20(7)	B2	B7	B1	60.67(5)
N1	C12	C13	112.81(7)	B2	B7	B6	107.80(6)
C15	C14	C19	116.81(7)	B2	B7	B8	59.97(5)
C15	C14	B1	124.69(7)	B6	B7	B1	108.78(6)
C19	C14	B1	118.35(7)	B6	B7	B8	59.64(5)
C16	C15	C14	121.56(8)	B8	B7	B1	108.91(6)
C17	C16	C15	121.19(8)	B2	B8	B5	108.17(6)
C16	C17	C18	117.68(8)	B2	B8	B7	59.45(5)
C16	C17	C20	121.48(8)	B4	B8	B2	60.57(5)
C18	C17	C20	120.84(8)	B4	B8	B5	60.27(5)
C19	C18	C17	121.14(8)	B4	B8	B7	108.13(6)
C18	C19	C14	121.50(8)	B5	B8	B7	107.55(6)
C2	B1	C3	60.23(4)	B6	B 8	B2	107.59(6)
C2	B1	B2	103.26(6)	B6	B8	B4	108.19(6)
C2	B1	B3	57.62(5)	B6	B 8	B5	59.68(5)
C2	B1	B7	104.81(6)	B6	B 8	B7	59.89(5)
C3	B1	B2	103.02(6)	C2	B9	B5	105.55(6)
C3	B1	B3	105.27(6)	C2	B9	B6	106.84(6)
C3	B1	B7	56.98(5)	C2	B9	B10	58.06(5)
C14	B1	C2	123.85(6)	C3	B9	C2	61.05(5)
C14	B1	C3	126.95(7)	C3	B9	B5	105.94(6)
C14	B1	B2	122.67(6)	C3	B9	B6	58.22(5)
C14	B1	B3	120.25(6)	C3	B9	B10	107.33(6)
C14	B1	B7	125.21(7)	B5	B9	B6	59.92(5)
B3	B1	B2	58.72(5)	B5	B9	B10	60.04(5)
B3	B1	B7	105.67(6)	B6	B9	B10	107.95(6)
B7	B1	B2	58.78(5)	C2	B10	B3	58.63(5)
B3	B2	B1	60.54(5)	C2	B10	B4	106.01(6)
B3	B2	B4	59.95(5)	C2	B10	В5	106.33(6)
B3	B2	B7	108.52(6)	C2	B10	B9	59.52(5)
B3	B2	B8	107.98(6)	B3	B10	B5	108.09(6)
B4	B2	B1	108.90(6)	B3	B10	B9	107.37(6)
B7	B2	B1	60.55(5)	B4	B10	B3	60.02(5)
B7	B2	B4	108.29(6)	B4	B10	B5	60.40(5)
B7	B2	B8	60.58(5)	B4	B10	B9	107.73(6)
B 8	B2	B1	109.30(6)	B5	B10	B9	59.57(5)
B 8	B2	B4	59.64(5)				

_

Atom	x	<i>y</i>	Ζ	U(eq)
Н5	1757.48	5620.4	5518.81	20
H6	1101.62	5167.86	4495.47	24
H7	426.16	6805.57	3824.13	25
H8	439.69	8909.68	4180.64	24
H9	1127.96	9377.85	5194.95	20
H10A	7521.43	9346.87	5726.1	19
H10B	6234.07	9443.43	5273.87	19
H11A	7729.81	7954.75	4867.05	35
H11B	6399.88	7214.18	5079.16	35
H11C	7736.03	7168.88	5504.13	35
H12A	5802.23	8726.85	7038.19	18
H12B	7191.85	9195.8	6742.69	18
H13A	7784.33	7053.27	6532.13	31
H13B	6396.89	6586.71	6831.2	31
H13C	7529.57	7244.8	7259.29	31
H15	4844.83	6147.12	5793.69	21
H16	5927.34	4224.71	5610.54	22
H18	3242.42	2425.81	6703.59	24
H19	2193.99	4351.96	6910.38	21
H20A	4820.69	1244.24	5901.09	32
H20B	5858.35	1594.18	6450.54	32
H20C	6179.4	2004.35	5751.34	32
H2	2010(13)	6141(13)	7678(6)	25(3)
H3	4479(12)	7391(12)	7364(6)	20(3)
H4	2466(14)	8783(13)	8106(6)	26(3)
H5A	1012(13)	10514(13)	7217(6)	26(3)
H6A	-281(12)	8886(12)	6259(6)	20(3)
H7A	292(13)	6263(12)	6524(6)	21(3)
H8A	-224(13)	8031(12)	7604(6)	24(3)
H9A	2292(12)	10088(12)	6002(6)	20(3)
H10	3960(13)	10055(13)	7077(6)	24(3)

Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 0544 CG 0m.

Experimental

Single crystals of $C_{20}H_{31}B_{10}NO$ [0544_CG_0m] were recrystallised from a mixture of Chloroform and hexane by slow evaporation. A suitable crystal was selected and the crystal was mounted on a MITIGEN holder oil on a 'Bruker APEX-II CCD' diffractometer. The crystal was kept at 100.02 K during data collection. Using Olex2^[2], the structure was solved with the XT^[3] structure solution program using Intrinsic Phasing and refined with the XL^[4] refinement package using Least Squares minimisation.

Crystal structure determination of 4aa

Crystal Data for C₂₀H₃₁B₁₀NO (M =409.56 g/mol): monoclinic, space group P2₁/c (no. 14), a = 9.9001(6) Å, b = 10.5092(9) Å, c = 21.5172(15) Å, $\beta = 90.643(3)^{\circ}$, V = 2238.6(3) Å³, Z = 4, T = 100.02 K, μ (MoK α) = 0.066 mm⁻¹, *Dcalc* = 1.215 g/cm³, 42852 reflections measured ($4.314^{\circ} \le 2\Theta \le 61.04^{\circ}$), 6725 unique ($R_{int} = 0.0241$, $R_{sigma} = 0.0168$) which were used in all calculations. The final R_1 was 0.0380 (I > 2 σ (I)) and wR_2 was 0.1045 (all data).

CCDC 1983611

Trystal data and structure refinement for 4ai.					
Identification code	mo_0828_CG_0m				
CCDC number	1983611				
Empirical formula	$C_{19}H_{28}B_{10}BrNO$				
Formula weight	474.43				
Temperature/K	100.0				
Crystal system	monoclinic				
Space group	$P2_1/n$				
a/Å	11.5021(12)				
b/Å	11.2242(12)				
c/Å	17.6391(19)				
$\alpha^{\prime \circ}$	90				
β/°	97.227(3)				
$\gamma^{\prime \circ}$	90				
Volume/Å ³	2259.1(4)				
Z	4				

$\rho_{calc}g/cm^3$	1.395
μ/mm^{-1}	1.833
F(000)	968.0
Crystal size/mm ³	0.3 imes 0.25 imes 0.25
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	4.312 to 59.356
Index ranges	$-15 \le h \le 15, -15 \le k \le 15, -23 \le l \le 24$
Reflections collected	69892
Independent reflections	$6364 [R_{int} = 0.0329, R_{sigma} = 0.0179]$
Data/restraints/parameters	6364/0/318
Goodness-of-fit on F ²	1.055
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0276, wR_2 = 0.0735$
Final R indexes [all data]	$R_1 = 0.0306, wR_2 = 0.0749$
Largest diff. peak/hole / e Å ⁻³	0.84/-0.59

Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for mo_0828_CG_0m. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z	U(eq)
Br1	5976.2(2)	2014.7(2)	3329.9(2)	22.78(5)
01	6018.8(9)	9339.2(10)	3282.3(6)	20.6(2)
N1	6859.0(11)	8446.1(12)	4355.0(7)	18.7(2)
C1	5957.7(13)	8630.1(13)	3805.1(8)	17.1(3)
C2	4753.3(13)	8017.0(13)	3822.6(8)	16.4(3)
C3	3984.4(13)	7749.4(13)	2921.7(8)	17.1(3)
C4	4469.8(13)	7930.0(13)	2171.0(8)	17.9(3)
C5	4810.6(14)	6951.1(14)	1763.2(9)	20.4(3)
C6	5146.6(14)	7106.5(15)	1037.4(9)	23.1(3)
C7	5110.3(14)	8222.3(16)	702.9(9)	24.0(3)
C8	4739.5(14)	9194.7(15)	1096.8(9)	23.5(3)
C9	4428.7(14)	9053.3(14)	1827.4(9)	20.5(3)
C10	7045.3(14)	7465.7(14)	4911.7(9)	21.0(3)
C11	6865.0(16)	7854.7(16)	5711.2(9)	26.5(3)
C12	7898.2(14)	9211.6(15)	4330.5(9)	22.7(3)
C13	8777.5(15)	8667.3(17)	3853.6(10)	28.4(3)
C14	5516.6(13)	5699.6(13)	3378.0(8)	17.5(3)
C15	6602.4(13)	6092.6(14)	3189.4(9)	19.5(3)
C16	7491.5(14)	5304.2(14)	3086.5(9)	21.3(3)
C17	7316.5(14)	4081.6(14)	3147.1(9)	20.6(3)
C18	6236.4(14)	3680.0(13)	3310.4(8)	19.1(3)
C19	5345.9(13)	4466.5(13)	3435.5(8)	18.4(3)
B1	4486.7(15)	6556.7(15)	3532.0(10)	17.8(3)
B2	4281.1(15)	7048.8(15)	4477.1(10)	19.1(3)

B3	3205.8(15)	6149.4(16)	3956.2(10)	20.1(3)
B4	3049.1(15)	6590.1(15)	2987.0(10)	19.2(3)
B5	2534.7(15)	8090.3(16)	2932.8(10)	19.7(3)
B6	3644.1(15)	8983.0(15)	3439.9(10)	18.3(3)
B7	3805.1(15)	8550.3(16)	4418.9(10)	19.3(3)
B8	2396.3(15)	8580.4(16)	3869.1(10)	20.1(3)
B9	2015.4(15)	7088.3(16)	3592.6(11)	21.0(3)
B10	2789.9(15)	7380.6(16)	4507.6(10)	20.6(3)

Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for mo_0828_CG_0m. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U ₂₂	U33	U ₂₃	U13	U ₁₂
Br1	29.49(9)	14.46(7)	25.50(8)	0.02(5)	7.82(6)	1.09(6)
O1	21.4(5)	19.3(5)	21.1(5)	4.1(4)	2.5(4)	-2.5(4)
N1	18.0(6)	18.9(6)	19.2(6)	1.0(5)	1.6(5)	-1.8(5)
C1	17.3(6)	15.6(6)	18.9(6)	-2.2(5)	4.5(5)	-0.7(5)
C2	17.1(6)	15.7(6)	16.6(6)	-0.3(5)	2.6(5)	-0.8(5)
C3	17.5(6)	16.1(6)	17.7(6)	-0.5(5)	2.2(5)	-0.2(5)
C4	16.7(6)	20.1(7)	16.9(6)	-0.1(5)	1.9(5)	0.4(5)
C5	21.0(7)	20.4(7)	19.5(7)	-0.9(5)	1.7(5)	2.2(6)
C6	22.8(7)	26.6(8)	20.1(7)	-3.0(6)	3.4(6)	3.1(6)
C7	21.3(7)	32.8(8)	18.2(7)	0.9(6)	3.5(6)	1.1(6)
C8	24.7(7)	24.0(8)	21.9(7)	4.4(6)	3.6(6)	1.3(6)
C9	21.0(7)	19.9(7)	20.7(7)	0.8(6)	3.7(5)	1.3(6)
C10	20.1(7)	21.9(7)	20.6(7)	3.4(6)	1.8(5)	1.1(6)
C11	27.5(8)	32.2(9)	19.8(7)	1.1(6)	2.6(6)	-3.0(7)
C12	18.8(7)	23.7(7)	25.2(7)	0.5(6)	1.3(6)	-4.6(6)
C13	21.5(7)	36.4(9)	28.3(8)	2.5(7)	6.4(6)	-2.2(7)
C14	18.7(6)	16.6(6)	17.3(6)	0.3(5)	2.7(5)	0.8(5)
C15	21.3(7)	16.2(6)	21.4(7)	0.3(5)	4.5(5)	-0.9(5)
C16	20.5(7)	20.9(7)	23.3(7)	0.2(6)	5.8(6)	-0.5(6)
C17	22.1(7)	19.2(7)	20.7(7)	0.3(5)	4.0(5)	3.4(6)
C18	25.5(7)	14.7(6)	17.4(6)	-0.7(5)	3.5(5)	2.1(5)
C19	19.2(7)	16.9(6)	19.5(6)	0.5(5)	4.3(5)	0.3(5)
B1	18.5(7)	15.2(7)	20.2(7)	0.2(6)	3.9(6)	-0.6(6)
B2	20.0(7)	18.7(7)	19.3(7)	1.0(6)	4.9(6)	-1.0(6)
B3	19.7(8)	18.2(7)	23.3(8)	0.1(6)	5.4(6)	-2.4(6)
B4	18.3(7)	17.0(7)	22.6(8)	-2.4(6)	3.3(6)	-1.5(6)
B5	17.4(7)	19.2(7)	22.3(8)	-2.0(6)	2.1(6)	1.4(6)
B6	18.6(7)	16.6(7)	19.8(7)	-1.5(6)	2.5(6)	1.6(6)
B7	19.8(7)	18.8(7)	20.0(7)	-2.2(6)	5.8(6)	-0.8(6)
B8	18.4(7)	19.5(8)	22.9(8)	-2.9(6)	4.8(6)	0.2(6)

B9	17.7(7)	20.8(8)	24.9(8)	-2.7(6)	4.6(6)	-2.0(6)
B10	19.2(8)	21.6(8)	22.2(8)	-0.8(6)	6.8(6)	-2.0(6)

Bond Lengths for mo_0828_CG_0m.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Br1	C18	1.8940(15)	C14	B1	1.576(2)
01	C1	1.2267(18)	C15	C16	1.382(2)
N1	C1	1.3437(19)	C16	C17	1.393(2)
N1	C10	1.472(2)	C17	C18	1.386(2)
N1	C12	1.4771(19)	C18	C19	1.391(2)
C1	C2	1.551(2)	B1	B2	1.800(2)
C2	C3	1.745(2)	B1	B3	1.794(2)
C2	B1	1.733(2)	B1	B4	1.806(2)
C2	B2	1.722(2)	B2	B3	1.763(2)
C2	B6	1.744(2)	B2	B7	1.771(2)
C2	B7	1.715(2)	B2	B10	1.763(2)
C3	C4	1.514(2)	B3	B4	1.767(3)
C3	B1	1.769(2)	B3	B9	1.782(3)
C3	B4	1.701(2)	B3	B10	1.789(3)
C3	В5	1.713(2)	B4	B5	1.783(2)
C3	B6	1.731(2)	B4	B9	1.785(2)
C4	C5	1.396(2)	B5	B6	1.773(2)
C4	C9	1.397(2)	B5	B 8	1.767(2)
C5	C6	1.394(2)	B5	B9	1.775(3)
C6	C7	1.383(2)	B6	B7	1.781(2)
C7	C8	1.389(2)	B6	B8	1.764(2)
C8	C9	1.389(2)	B7	B 8	1.781(3)
C10	C11	1.515(2)	B7	B10	1.777(3)
C12	C13	1.522(2)	B8	B9	1.784(3)
C14	C15	1.403(2)	B8	B10	1.777(3)
C14	C19	1.403(2)	B9	B10	1.773(3)

Bond Angles for mo_0828_CG_0m.

Dunu	Angles	, 101 III0					
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C1	N1	C10	129.10(13)	B2	B3	B1	60.80(10)
C1	N1	C12	116.31(13)	B2	B3	B4	108.87(12)
C10	N1	C12	113.82(12)	B2	B3	B9	107.81(12)
O1	C1	N1	122.03(14)	B2	B3	B10	59.49(10)
O1	C1	C2	116.02(13)	B4	B3	B1	60.93(10)
N1	C1	C2	121.84(13)	B4	B3	B9	60.40(10)
C1	C2	C3	114.20(11)	B4	B3	B10	107.94(12)
C1	C2	B1	122.62(12)	B9	B3	B1	109.47(12)
C1	C2	B2	130.63(12)	B9	B3	B10	59.54(10)
-----	-----	-----	------------	------------	------------	-----	------------
C1	C2	B6	109.16(11)	B10	B3	B1	108.64(12)
C1	C2	B7	119.73(12)	C3	B4	B1	60.49(9)
B1	C2	C3	61.14(9)	C3	B4	B3	106.93(12)
B1	C2	B6	112.33(11)	C3	B4	B5	58.84(9)
B2	C2	C3	109.60(11)	C3	B4	B9	105.98(12)
B2	C2	B1	62.78(9)	B3	B4	B1	60.26(10)
B2	C2	B6	112.01(11)	B3	B4	B5	107.99(12)
B6	C2	C3	59.49(9)	B3	B4	B9	60.22(10)
B7	C2	C3	109.27(11)	B5	B4	B1	108.88(12)
B7	C2	B1	114.13(11)	B5	B4	B9	59.66(10)
B7	C2	B2	62.01(10)	B9	B4	B1	108.79(12)
B7	C2	B6	61.96(10)	C3	B5	B4	58.19(9)
C2	C3	B1	59.11(9)	C3	B5	B6	59.50(9)
C4	C3	C2	124.97(12)	C3	B5	B8	106.41(12)
C4	C3	B1	120.37(12)	C3	B5	B9	105.92(12)
C4	C3	B4	117.87(12)	B6	B5	B4	107.08(12)
C4	C3	B5	116.53(12)	B6	B5	B9	107.91(12)
C4	C3	B6	119.18(12)	B 8	B5	B4	108.20(12)
B4	C3	C2	108.81(11)	B 8	B5	B6	59.76(10)
B4	C3	B1	62.67(10)	B 8	B5	B9	60.47(10)
B4	C3	B5	62.96(10)	B9	B5	B4	60.23(10)
B4	C3	B6	112.90(12)	C2	B6	B5	106.79(11)
B5	C3	C2	109.49(11)	C2	B6	B7	58.23(9)
B5	C3	B1	113.95(11)	C2	B6	B8	105.65(12)
B5	C3	B6	61.98(10)	C3	B6	C2	60.27(9)
B6	C3	C2	60.24(9)	C3	B6	B5	58.52(9)
B6	C3	B1	111.24(11)	C3	B6	B7	106.92(12)
C5	C4	C3	120.23(13)	C3	B6	B8	105.78(12)
C5	C4	C9	118.89(14)	B5	B6	B7	108.38(12)
C9	C4	C3	120.28(13)	B 8	B6	B5	59.93(10)
C6	C5	C4	120.19(15)	B 8	B6	B7	60.32(10)
C7	C6	C5	120.55(15)	C2	B7	B2	59.19(9)
C6	C7	C8	119.52(15)	C2	B7	B6	59.81(9)
C9	C8	C7	120.34(15)	C2	B7	B8	106.13(12)
C8	C9	C4	120.46(15)	C2	B7	B10	105.76(12)
N1	C10	C11	112.32(14)	B2	B7	B6	108.02(12)
N1	C12	C13	112.27(14)	B2	B7	B8	107.65(12)
C15	C14	B1	124.03(13)	B2	B7	B10	59.58(10)
C19	C14	C15	117.63(14)	B6	B7	B8	59.36(10)
C19	C14	B1	118.34(13)	B10	B7	B6	107.31(12)
C16	C15	C14	121.70(14)	B10	B7	B8	59.94(10)
C15	C16	C17	120.29(15)	B5	B 8	B7	108.68(12)
C18	C17	C16	118.58(14)	B5	B 8	B9	59.99(10)
C17	C18	Br1	118.21(11)	B5	B 8	B10	108.10(12)

C17	C18	C19	121.60(14)	B6	B8	B5	60.31(10)
C19	C18	Br1	120.16(12)	B6	B8	B7	60.32(10)
C18	C19	C14	120.14(14)	B6	B8	B9	107.96(12)
C2	B1	C3	59.75(9)	B6	B8	B10	108.06(12)
C2	B1	B2	58.32(9)	B7	B8	B9	107.85(12)
C2	B1	B3	103.99(11)	B10	B8	B7	59.92(10)
C2	B1	B4	104.71(11)	B10	B8	B9	59.74(10)
C3	B1	B2	105.10(11)	B3	B9	B4	59.38(10)
C3	B1	B3	102.96(11)	B3	B9	B8	107.80(12)
C3	B1	B4	56.84(9)	B5	B9	B3	107.70(12)
C14	B1	C2	121.30(12)	B5	B9	B4	60.12(10)
C14	B1	C3	123.52(12)	B5	B9	B8	59.54(10)
C14	B1	B2	122.43(13)	B8	B9	B4	107.37(12)
C14	B1	B3	126.23(13)	B10	B9	B3	60.43(10)
C14	B1	B4	125.36(13)	B10	B9	B4	107.84(12)
B2	B1	B4	105.58(12)	B10	B9	B5	107.91(12)
B3	B1	B2	58.75(10)	B10	B9	B 8	59.96(10)
B3	B1	B4	58.81(10)	B2	B10	B3	59.50(10)
C2	B2	B1	58.90(9)	B2	B10	B7	60.04(10)
C2	B2	B3	105.76(12)	B2	B10	B 8	108.18(12)
C2	B2	B7	58.80(9)	B2	B10	B9	108.21(12)
C2	B2	B10	106.10(12)	B7	B10	B3	107.41(12)
B3	B2	B1	60.45(10)	B7	B10	B 8	60.15(10)
B3	B2	B7	108.86(12)	B8	B10	B3	107.76(12)
B7	B2	B1	108.30(12)	B9	B10	B3	60.03(10)
B10	B2	B1	109.56(12)	B9	B10	B7	108.48(12)
B10	B2	B3	61.00(10)	B9	B10	B8	60.31(10)
B10	B2	B7	60.38(10)				

Torsion Angles for mo_0828_CG_0m.

Α	B	С	D	Angle/°	Α	В	С	D	Angle/°
Br1	C18	C19	C14	-176.36(11)	B2	C2	B6	C3	-100.48(12)
01	C1	C2	C3	33.64(17)	B2	C2	B6	B5	-63.64(14)
01	C1	C2	B1	103.72(16)	B2	C2	B6	B7	37.94(12)
01	C1	C2	B2	-175.86(14)	B2	C2	B6	B 8	-0.96(15)
01	C1	C2	B6	-30.70(17)	B2	C2	B7	B6	-139.80(12)
01	C1	C2	B7	-98.69(16)	B2	C2	B7	B 8	-101.24(13)
N1	C1	C2	C3	-150.06(13)	B2	C2	B7	B10	-38.64(11)
N1	C1	C2	B1	-79.98(18)	B2	B1	B3	B4	137.27(12)
N1	C1	C2	B2	0.4(2)	B2	B1	B3	B9	100.02(13)
N1	C1	C2	B6	145.61(13)	B2	B1	B3	B10	36.65(12)
N1	C1	C2	B7	77.61(18)	B2	B1	B4	C3	98.10(12)
C1	N1	C10	C11	-106.55(18)	B2	B1	B4	B3	-37.03(11)

C1	N1	C12	C13	-90.05(17)	B2	B1	B4	B5	63.38(14)
C1	C2	C3	C4	7.80(19)	B2	B1	B4	B9	-0.03(15)
C1	C2	C3	B 1	115.28(13)	B2	B3	B4	C3	-1.17(16)
C1	C2	C3	B4	155.02(12)	B2	B3	B4	B1	38.75(11)
C1	C2	C3	В5	-137.86(12)	B2	B3	B4	B5	-63.15(15)
C1	C2	C3	B6	-98.78(13)	B2	B3	B4	B9	-100.23(13)
C1	C2	B1	C3	-101.71(14)	B2	B3	B9	B4	102.02(13)
C1	C2	B1	C14	11.5(2)	B2	B3	B9	B5	64.81(15)
C1	C2	B1	B2	122.70(15)	B2	B3	B9	B 8	1.97(16)
C1	C2	B1	B3	161.26(13)	B2	B3	B9	B10	-36.15(11)
C1	C2	B1	B4	-137.84(13)	B2	B3	B10	B7	37.63(12)
C1	C2	B2	B1	-110.94(16)	B2	B3	B10	B 8	101.05(13)
C1	C2	B2	B3	-150.70(14)	B2	B3	B10	B9	139.32(13)
C1	C2	B2	B7	106.49(16)	B2	B7	B 8	B5	-63.50(15)
C1	C2	B2	B10	145.59(14)	B2	B7	B 8	B6	-100.89(13)
C1	C2	B6	C3	107.40(12)	B2	B7	B8	B9	0.02(16)
C1	C2	B6	В5	144.24(12)	B2	B7	B8	B10	37.05(11)
C1	C2	B6	B7	-114.19(13)	B2	B7	B10	B3	-37.39(12)
C1	C2	B6	B 8	-153.08(12)	B2	B7	B10	B 8	-138.25(12)
C1	C2	B7	B2	-123.08(14)	B2	B7	B10	B9	-100.82(13)
C1	C2	B7	B6	97.13(14)	B3	B1	B2	C2	-134.97(12)
C1	C2	B7	B 8	135.68(13)	B3	B1	B2	B7	-101.76(13)
C1	C2	B7	B10	-161.72(13)	B3	B1	B2	B10	-37.54(12)
C2	C3	C4	C5	104.15(17)	B3	B1	B4	C3	135.13(12)
C2	C3	C4	C9	-84.84(18)	B3	B1	B4	B5	100.40(13)
C2	C3	B1	C14	-109.58(15)	B3	B1	B4	B9	37.00(12)
C2	C3	B1	B2	38.09(10)	B3	B2	B 7	C2	-97.40(13)
C2	C3	B1	B3	98.80(12)	B3	B2	B 7	B6	-61.47(15)
C2	C3	B1	B4	137.06(12)	B3	B2	B7	B 8	1.21(16)
C2	C3	B4	B 1	-38.14(10)	B3	B2	B7	B10	38.42(12)
C2	C3	B4	B3	1.68(15)	B3	B2	B10	B 7	-137.75(13)
C2	C3	B4	В5	102.82(12)	B3	B2	B10	B 8	-100.32(13)
C2	C3	B4	B9	64.75(14)	B3	B2	B10	B9	-36.47(12)
C2	C3	B5	B4	-101.73(12)	B3	B4	B5	C3	99.29(13)
C2	C3	B5	B6	38.30(11)	B3	B4	B5	B6	63.91(15)
C2	C3	B5	B 8	-0.17(15)	B3	B4	B5	B 8	0.89(16)
C2	C3	B5	B9	-63.41(14)	B3	B4	B5	B9	-37.32(11)
C2	C3	B6	B5	-137.70(12)	B3	B4	B9	B5	138.36(12)
C2	C3	B6	B7	-36.14(10)	B3	B4	B9	B 8	100.78(13)
C2	C3	B6	B 8	-99.28(12)	B3	B4	B9	B10	37.55(12)
C2	B1	B2	B3	134.97(12)	B3	B9	B10	B2	36.25(12)
C2	B1	B2	B7	33.21(11)	B3	B9	B10	B7	99.87(13)
C2	B1	B2	B10	97.43(13)	B3	B9	B10	B8	137.23(12)
C2	B1	B3	B2	-38.35(11)	B4	C3	C4	C5	-40.4(2)
C2	B1	B3	B4	98.92(12)	B4	C3	C4	C9	130.59(15)

C2	B1	B3	B9	61.67(14)	B4	C3	B1	C2	-137.06(12)
C2	B1	B3	B10	-1.70(15)	B4	C3	B1	C14	113.36(16)
C2	B1	B4	C3	37.48(10)	B4	C3	B1	B2	-98.98(12)
C2	B1	B4	B3	-97.66(12)	B4	C3	B1	B3	-38.26(11)
C2	B1	B4	B5	2.75(15)	B4	C3	B5	B6	140.04(12)
C2	B1	B4	B9	-60.66(14)	B4	C3	B5	B 8	101.56(13)
C2	B2	B3	B1	39.01(11)	B4	C3	B5	B9	38.32(11)
C2	B2	B3	B4	0.20(16)	B4	C3	B6	C2	99.30(12)
C2	B2	B3	B9	-63.79(14)	B4	C3	B6	B5	-38.39(12)
C2	B2	B3	B10	-99.96(13)	B4	C3	B6	B 7	63.16(15)
C2	B2	B7	B6	35.93(11)	B4	C3	B6	B8	0.02(16)
C2	B2	B7	B 8	98.61(12)	B4	B1	B2	C2	-97.91(12)
C2	B2	B7	B10	135.82(12)	B4	B1	B2	B3	37.05(11)
C2	B2	B10	B3	99.40(13)	B4	B1	B2	B 7	-64.71(14)
C2	B2	B10	B 7	-38.35(11)	B4	B1	B2	B10	-0.49(15)
C2	B2	B10	B 8	-0.92(16)	B4	B1	B3	B2	-137.27(12)
C2	B2	B10	B9	62.92(15)	B4	B1	B3	B9	-37.25(12)
C2	B6	B7	B2	-35.66(11)	B4	B1	B3	B10	-100.62(13)
C2	B6	B7	B8	-135.90(12)	B4	B3	B9	B5	-37.21(11)
C2	B6	B7	B10	-98.51(13)	B4	B3	B9	B 8	-100.05(13)
C2	B6	B8	B5	-100.63(12)	B4	B3	B9	B10	-138.17(12)
C2	B6	B8	B 7	37.91(11)	B4	B3	B10	B2	-101.76(13)
C2	B6	B8	B9	-62.82(14)	B4	B3	B10	B7	-64.14(15)
C2	B6	B8	B10	0.34(15)	B4	B3	B10	B 8	-0.71(16)
C2	B7	B8	B5	-1.38(16)	B4	B3	B10	B9	37.55(11)
C2	B7	B8	B6	-38.77(11)	B4	B5	B6	C2	-2.80(15)
C2	B7	B8	B9	62.15(15)	B4	B5	B6	C3	34.82(11)
C2	B7	B8	B10	99.17(13)	B4	B5	B6	B7	-64.16(15)
C2	B7	B10	B2	38.46(11)	B4	B5	B6	B 8	-101.48(13)
C2	B7	B10	B3	1.07(16)	B4	B5	B 8	B6	99.57(13)
C2	B7	B10	B 8	-99.79(13)	B4	B5	B 8	B7	62.17(15)
C2	B7	B10	B9	-62.36(15)	B4	B5	B 8	B9	-38.10(11)
C3	C2	B1	C14	113.18(15)	B4	B5	B 8	B10	-1.33(16)
C3	C2	B1	B2	-135.59(11)	B4	B5	B9	B3	36.88(11)
C3	C2	B1	B3	-97.02(12)	B4	B5	B9	B8	137.52(13)
C3	C2	B1	B4	-36.13(10)	B4	B5	B9	B10	100.70(13)
C3	C2	B2	B1	40.59(11)	B4	B9	B10	B2	-0.83(16)
C3	C2	B2	B3	0.83(15)	B4	B9	B10	B3	-37.08(11)
C3	C2	B2	B 7	-101.98(12)	B4	B9	B10	B 7	62.79(15)
C3	C2	B2	B10	-62.88(14)	B4	B9	B10	B 8	100.15(13)
C3	C2	B6	B5	36.84(10)	B5	C3	C4	C5	-112.32(16)
C3	C2	B6	B7	138.41(12)	B5	C3	C4	C9	58.69(19)
C3	C2	B6	B8	99.52(12)	B5	C3	B1	C2	-99.19(12)
C3	C2	B7	B2	102.51(12)	B5	C3	B1	C14	151.23(14)
C3	C2	B7	B6	-37.28(11)	B5	C3	B1	B2	-61.10(14)

C3	C2	B7	B8	1.27(15)	B5	C3	B1	B3	-0.39(15)
C3	C2	B7	B10	63.87(14)	B5	C3	B1	B4	37.87(12)
C3	C4	C5	C6	173.58(14)	B5	C3	B4	B1	-140.96(12)
C3	C4	C9	C8	-172.10(14)	B5	C3	B4	B3	-101.15(13)
C3	B1	B2	C2	-38.77(10)	B5	C3	B4	B9	-38.08(11)
C3	B1	B2	B3	96.20(12)	B5	C3	B6	C2	137.70(12)
C3	B1	B2	B7	-5.56(15)	B5	C3	B6	B 7	101.55(13)
C3	B1	B2	B10	58.66(14)	B5	C3	B6	B 8	38.41(11)
C3	B1	B3	B2	-99.97(12)	B5	B4	B9	B3	-138.36(12)
C3	B1	B3	B4	37.30(10)	B5	B4	B9	B 8	-37.58(12)
C3	B1	B3	B9	0.05(15)	B5	B4	B9	B10	-100.82(13)
C3	B1	B3	B10	-63.32(14)	B5	B6	B 7	C2	98.75(12)
C3	B1	B4	B3	-135.13(12)	B5	B6	B 7	B2	63.09(15)
C3	B1	B4	B5	-34.73(11)	B5	B6	B 7	B 8	-37.15(11)
C3	B1	B4	B9	-98.14(13)	B5	B6	B 7	B10	0.24(16)
C3	B4	B5	B6	-35.38(11)	B5	B6	B 8	B 7	138.53(12)
C3	B4	B5	B 8	-98.40(13)	B5	B6	B 8	B9	37.81(12)
C3	B4	B5	B9	-136.61(12)	B5	B6	B 8	B10	100.97(13)
C3	B4	B9	B3	-100.67(13)	B5	B8	B9	B3	100.46(13)
C3	B4	B9	B5	37.70(11)	B5	B8	B9	B4	37.85(12)
C3	B4	B9	B 8	0.11(16)	B5	B8	B9	B10	138.80(13)
C3	B4	B9	B10	-63.12(15)	B5	B8	B10	B2	64.15(15)
C3	B5	B6	C2	-37.63(11)	B5	B8	B10	B3	1.26(16)
C3	B5	B6	B7	-98.98(12)	B5	B8	B10	B 7	101.54(13)
C3	B5	B6	B 8	-136.30(12)	B5	B8	B10	B9	-36.88(11)
C3	B5	B 8	B6	38.35(11)	B5	B9	B10	B2	-64.35(15)
C3	B5	B 8	B7	0.96(16)	B5	B9	B10	B3	-100.60(13)
C3	B5	B 8	B9	-99.31(13)	B5	B9	B10	B 7	-0.73(16)
C3	B5	B8	B10	-62.54(15)	B5	B9	B10	B 8	36.64(11)
C3	B5	B9	B3	-0.50(16)	B6	C2	C3	C4	106.59(15)
C3	B5	B9	B4	-37.38(11)	B6	C2	C3	B1	-145.93(12)
C3	B5	B9	B8	100.14(13)	B6	C2	C3	B4	-106.19(13)
C3	B5	B9	B10	63.32(15)	B6	C2	C3	B5	-39.07(11)
C3	B6	B7	C2	37.05(10)	B6	C2	B1	C3	31.45(11)
C3	B6	B7	B2	1.39(15)	B6	C2	B1	C14	144.62(13)
C3	B6	B7	B8	-98.85(13)	B6	C2	B1	B2	-104.14(13)
C3	B6	B7	B10	-61.46(14)	B6	C2	B1	B3	-65.58(14)
C3	B6	B 8	B5	-37.76(11)	B6	C2	B1	B4	-4.68(15)
C3	B6	B 8	B7	100.78(12)	B6	C2	B2	B1	104.65(12)
C3	B6	B 8	B9	0.06(16)	B6	C2	B2	B3	64.90(14)
C3	B6	B 8	B10	63.21(14)	B6	C2	B2	B7	-37.91(11)
C4	C3	B1	C2	115.06(14)	B6	C2	B2	B10	1.18(15)
C4	C3	B1	C14	5.5(2)	B6	C2	B7	B2	139.80(12)
C4	C3	B1	B2	153.15(13)	B6	C2	B7	B8	38.56(11)
C4	C3	B1	B3	-146.14(13)	B6	C2	B7	B10	101.15(13)

C4	C3	B1	B4	-107.88(15)	B6	C3	C4	C5	176.50(13)
C4	C3	B4	B1	111.74(14)	B6	C3	C4	C9	-12.5(2)
C4	C3	B4	B3	151.56(13)	B6	C3	B1	C2	-31.45(11)
C4	C3	B4	B5	-107.30(14)	B6	C3	B1	C14	-141.03(14)
C4	C3	B4	B9	-145.37(13)	B6	C3	B1	B2	6.64(15)
C4	C3	B5	B4	109.38(14)	B6	C3	B1	B3	67.35(14)
C4	C3	B5	B6	-110.59(14)	B6	C3	B1	B4	105.61(13)
C4	C3	B5	B8	-149.06(13)	B6	C3	B4	B1	-102.97(13)
C4	C3	B5	B9	147.70(13)	B6	C3	B4	B3	-63.15(15)
C4	C3	B6	C2	-115.91(14)	B6	C3	B4	B5	37.99(12)
C4	C3	B6	B5	106.40(14)	B6	C3	B4	B9	-0.08(16)
C4	C3	B6	B7	-152.05(13)	B6	C3	B5	B4	-140.04(12)
C4	C3	B6	B8	144.81(13)	B6	C3	B5	B 8	-38.48(11)
C4	C5	C6	C7	-2.1(2)	B6	C3	B5	B9	-101.71(13)
C5	C4	C9	C8	-1.0(2)	B6	B5	B 8	B 7	-37.39(11)
C5	C6	C7	C8	0.2(2)	B6	B5	B 8	B9	-137.67(12)
C6	C7	C8	C9	1.2(2)	B6	B5	B 8	B10	-100.90(13)
C7	C8	C9	C4	-0.9(2)	B6	B5	B9	B3	-62.95(15)
C9	C4	C5	C6	2.4(2)	B6	B5	B9	B4	-99.83(13)
C10	N1	C1	01	-164.61(15)	B6	B5	B9	B 8	37.69(11)
C10	N1	C1	C2	19.3(2)	B6	B5	B9	B10	0.87(16)
C10	N1	C12	C13	80.79(17)	B6	B7	B 8	B5	37.39(12)
C12	N1	C1	01	4.6(2)	B6	B7	B 8	B9	100.92(13)
C12	N1	C1	C2	-171.51(13)	B6	B7	B 8	B10	137.94(12)
C12	N1	C10	C11	84.05(16)	B6	B7	B10	B2	101.12(13)
C14	C15	C16	C17	1.9(2)	B6	B7	B10	B3	63.73(15)
C14	B1	B2	C2	109.34(15)	B6	B7	B10	B 8	-37.14(11)
C14	B1	B2	B3	-115.69(16)	B6	B7	B10	B9	0.30(16)
C14	B1	B2	B7	142.55(14)	B6	B8	B9	B3	62.51(15)
C14	B1	B2	B10	-153.23(14)	B6	B8	B9	B4	-0.11(16)
C14	B1	B3	B2	109.45(17)	B6	B8	B9	B5	-37.95(11)
C14	B1	B3	B4	-113.27(17)	B6	B8	B9	B10	100.84(13)
C14	B1	B3	B9	-150.53(14)	B6	B8	B10	B2	0.36(16)
C14	B1	B3	B10	146.10(14)	B6	B8	B10	B3	-62.53(15)
C14	B1	B4	C3	-110.19(16)	B6	B8	B10	B 7	37.75(11)
C14	B1	B4	B3	114.68(16)	B6	B8	B10	B9	-100.68(13)
C14	B1	B4	B5	-144.92(14)	B7	C2	C3	C4	144.95(14)
C14	B1	B4	B9	151.67(14)	B7	C2	C3	B1	-107.57(12)
C15	C14	C19	C18	0.3(2)	B7	C2	C3	B4	-67.83(14)
C15	C14	B1	C2	-23.9(2)	B7	C2	C3	B5	-0.71(15)
C15	C14	B1	C3	48.4(2)	B7	C2	C3	B6	38.36(11)
C15	C14	B1	B2	-93.90(18)	B7	C2	B1	C3	99.56(12)
C15	C14	B1	B3	-166.66(15)	B7	C2	B1	C14	-147.27(13)
C15	C14	B1	B4	118.85(17)	B7	C2	B1	B2	-36.03(12)
C15	C16	C17	C18	0.1(2)	B7	C2	B1	B3	2.53(16)

C16	C17	C18	Br1	176.21(12)	B7	C2	B1	B4	63.43(14)
C16	C17	C18	C19	-1.9(2)	B7	C2	B2	B1	142.56(12)
C17	C18	C19	C14	1.7(2)	B7	C2	B2	B3	102.81(13)
C19	C14	C15	C16	-2.0(2)	B7	C2	B2	B10	39.09(11)
C19	C14	B1	C2	155.79(13)	B7	C2	B6	C3	-138.41(12)
C19	C14	B1	C3	-131.94(15)	B7	C2	B6	B5	-101.57(13)
C19	C14	B1	B2	85.78(18)	B7	C2	B6	B8	-38.90(11)
C19	C14	B1	В3	13.0(2)	B7	B2	B3	B1	100.82(13)
C19	C14	B1	B4	-61.5(2)	B7	B2	B3	B4	62.01(15)
B1	C2	C3	C4	-107.48(15)	B7	B2	B3	B9	-1.98(16)
B1	C2	C3	B4	39.74(11)	B7	B2	B3	B10	-38.15(12)
B1	C2	C3	B5	106.86(12)	B7	B2	B10	B3	137.75(13)
B1	C2	C3	B6	145.93(12)	B7	B2	B10	B8	37.43(12)
B1	C2	B2	B3	-39.75(11)	B7	B2	B10	B9	101.28(13)
B1	C2	B2	B7	-142.56(12)	B7	B6	B8	B5	-138.53(12)
B1	C2	B2	B10	-103.47(13)	B7	B6	B8	B9	-100.72(13)
B1	C2	B6	C3	-32.03(11)	B7	B6	B8	B10	-37.57(12)
B1	C2	B6	B5	4.81(15)	B7	B8	B9	B3	-1.23(16)
B1	C2	B6	B7	106.38(13)	B7	B 8	B9	B4	-63.84(15)
B1	C2	B6	B8	67.49(14)	B7	B 8	B9	B5	-101.69(13)
B1	C2	B7	B2	36.32(12)	B7	B 8	B9	B10	37.11(11)
B1	C2	B7	B6	-103.48(13)	B7	B 8	B10	B2	-37.39(11)
B1	C2	B7	B8	-64.92(15)	B7	B 8	B10	B3	-100.28(13)
B1	C2	B7	B10	-2.32(16)	B7	B 8	B10	B9	-138.42(12)
B1	C3	C4	C5	32.6(2)	B 8	B5	B6	C2	98.68(13)
B1	C3	C4	C9	-156.40(14)	B 8	B5	B6	C3	136.30(12)
B1	C3	B4	B3	39.81(11)	B 8	B5	B6	B7	37.32(11)
B1	C3	B4	B5	140.96(12)	B 8	B5	B9	B3	-100.64(13)
B1	C3	B4	B9	102.88(13)	B 8	B5	B9	B4	-137.52(13)
B1	C3	B5	B4	-37.75(12)	B 8	B5	B9	B10	-36.82(12)
B1	C3	B5	B6	102.28(13)	B8	B6	B7	C2	135.90(12)
B1	C3	B5	B8	63.80(15)	B8	B6	B7	B2	100.24(13)
B1	C3	B5	B9	0.57(16)	B8	B6	B7	B10	37.39(11)
B1	C3	B6	C2	31.05(11)	B8	B7	B10	B2	138.25(12)
B1	C3	B6	B5	-106.65(13)	B 8	B7	B10	B3	100.87(13)
B1	C3	B6	B7	-5.09(15)	B 8	B7	B10	B9	37.43(12)
B1	C3	B6	B8	-68.23(14)	B 8	B9	B10	B2	-100.98(13)
B1	C14	C15	C16	177.66(14)	B8	B9	B10	B3	-137.23(12)
B1	C14	C19	C18	-179.44(13)	B 8	B9	B10	B7	-37.36(12)
B1	B2	B3	B4	-38.81(11)	B9	B3	B4	C3	99.05(13)
B1	B2	B3	B9	-102.80(13)	B9	B3	B4	B1	138.98(12)
B1	B2	B3	B10	-138.97(13)	B9	B3	B4	B5	37.07(11)
B1	B2	B7	C2	-33.25(11)	B9	B3	B10	B2	-139.32(13)
B1	B2	B7	B6	2.68(16)	B9	B3	B10	B7	-101.69(13)
B 1	B2	B7	B 8	65.36(14)	B9	B3	B10	B 8	-38.27(11)

B1	B2	B7	B10	102.57(13)	B9	B4	B5	C3	136.61(12)
B1	B2	B10	B3	37.30(12)	B9	B4	B5	B6	101.23(13)
B1	B2	B10	B7	-100.45(13)	B9	B4	B5	B 8	38.21(12)
B1	B2	B10	B8	-63.02(15)	B9	B5	B6	C2	60.67(14)
B1	B2	B10	B9	0.83(16)	B9	B5	B6	C3	98.29(13)
B1	B3	B4	C3	-39.92(11)	B9	B5	B6	B7	-0.69(16)
B1	B3	B4	B5	-101.90(13)	B9	B5	B6	B 8	-38.01(12)
B1	B3	B4	B9	-138.98(12)	B9	B5	B 8	B6	137.67(12)
B1	B3	B9	B4	37.48(11)	B9	B5	B 8	B7	100.27(13)
B1	B3	B9	B5	0.28(16)	B9	B5	B 8	B10	36.77(12)
B1	B3	B9	B8	-62.56(15)	B9	B 8	B10	B2	101.03(13)
B1	B3	B9	B10	-100.69(13)	B9	B 8	B10	B3	38.14(11)
B1	B3	B10	B2	-37.21(12)	B9	B 8	B10	B 7	138.42(12)
B1	B3	B10	B 7	0.41(16)	B10	B2	B3	B1	138.97(13)
B1	B3	B10	B 8	63.84(15)	B10	B2	B3	B4	100.16(13)
B1	B3	B10	B9	102.11(13)	B10	B2	B3	B9	36.17(12)
B1	B4	B5	C3	35.40(11)	B10	B2	B7	C2	-135.82(12)
B1	B4	B5	B6	0.03(16)	B10	B2	B7	B6	-99.89(13)
B1	B4	B5	B 8	-63.00(15)	B10	B2	B7	B 8	-37.21(12)
B1	B4	B5	B9	-101.21(13)	B10	B3	B4	C3	61.88(15)
B1	B4	B9	B3	-37.01(11)	B10	B3	B4	B1	101.80(13)
B1	B4	B9	B5	101.35(13)	B10	B3	B4	B5	-0.10(15)
B1	B4	B9	B 8	63.77(15)	B10	B3	B4	B9	-37.18(11)
B1	B4	B9	B10	0.53(16)	B10	B3	B9	B4	138.17(12)
B2	C2	C3	C4	-148.83(13)	B10	B3	B9	B5	100.96(13)
B2	C2	C3	B1	-41.35(11)	B10	B3	B9	B 8	38.12(11)
B2	C2	C3	B4	-1.61(15)	B10	B7	B 8	B5	-100.55(13)
B2	C2	C3	B5	65.51(14)	B10	B7	B 8	B6	-137.94(12)
B2	C2	C3	B6	104.58(12)	B10	B7	B 8	B9	-37.03(12)
B2	C2	B1	C3	135.59(11)	B10	B 8	B9	B3	-38.34(12)
B2	C2	B1	C14	-111.24(15)	B10	B 8	B9	B4	-100.95(13)
B2	C2	B1	B3	38.56(11)	B10	B 8	B9	B5	-138.80(13)
B2	C2	B1	B4	99.46(12)					

Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for mo_0828_CG_0m.

Atom	x	у	Z	U(eq)
H5	4813.59	6176.88	1981.04	24
H6	5402.57	6440.38	770.38	28
H7	5337.21	8323.25	207.3	29
H8	4698.2	9960.29	865.32	28
H9	4186.68	9725.04	2095.35	25
H10A	7852.56	7156.22	4918.46	25
H10B	6495.09	6809.51	4748.35	25

H11A	6044.25	8083.32	5718.94	40
H11B	7372.63	8537.27	5863.22	40
H11C	7061.37	7195.17	6068.46	40
H12A	8284.39	9342.63	4857.78	27
H12B	7643.83	9996.45	4113.47	27
H13A	8424.71	8611.85	3319.32	43
H13B	8995.42	7868.96	4046.85	43
H13C	9478.32	9170.57	3887.6	43
H15	6729.22	6922.07	3130.99	23
H16	8225.52	5597.18	2973.92	26
H17	7924.76	3534.79	3077.92	25
H19	4620.55	4168.43	3560.04	22
H2	4865(18)	6714(18)	4942(12)	23
H3	3076(18)	5212(19)	4142(11)	24
H4	2866(17)	6042(19)	2502(11)	23
H5A	2095(17)	8469(19)	2401(12)	24
H6A	3891(17)	9881(18)	3258(11)	22
H7A	4157(17)	9175(18)	4847(12)	23
H8A	1758(18)	9247(19)	3946(12)	24
H9A	1120(18)	6813(19)	3505(12)	25
H10	2359(18)	7235(19)	5048(12)	25

Experimental

Single crystals of $C_{19}H_{28}B_{10}BrNO$ [mo_0828_CG_0m] were recrystallised from a mixture of chloroform and hexane by slow evaporation. A suitable crystal was selected and the crystal was mounted on a MITIGEN holder oil on a Bruker D8 Venture MoCu Dual Source diffractometer. The crystal was kept at 100.03 K during data collection. Using Olex2^[2], the structure was solved with the XT^[3] structure solution program using Intrinsic Phasing and refined with the XL^[4] refinement package using Least Squares minimisation.

Crystal structure determination of 4ai

Crystal Data for C₁₉H₂₈B₁₀BrNO (M = 474.43 g/mol): monoclinic, space group P2₁/n (no. 14), a = 11.5021(12) Å, b = 11.2242(12) Å, c = 17.6391(19) Å, $\beta = 97.227(3)^{\circ}$, V = 2259.1(4) Å³, Z = 4, T = 100.0 K, μ (MoK α) = 1.833 mm⁻¹, *Dcalc* = 1.395 g/cm³, 69892 reflections measured ($4.312^{\circ} \le 2\Theta \le 59.356^{\circ}$), 6364 unique ($R_{int} = 0.0329$, $R_{sigma} = 0.0179$) which were used in all calculations. The final R_1 was 0.0276 (I > 2 σ (I)) and wR_2 was 0.0749 (all data).

References

- A. Toppino, A. R. Genady, M. E. El-Zaria, J. Reeve, F. Mostofian, J. Kent and J. F. Valliant, *Inorg. Chem.*, 2013, 52, 8743–8749.
- [2] O.V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339–341.
- [3] G.M. Sheldrick, Acta Cryst., 2015, A71, 3–8.
- [4] G.M. Sheldrick, Acta Cryst., 2008, A64, 112–122.
- [5] Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc. Wallingford CT, 2016.
- [6] J. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, *Phys. Rev. Lett.*, 2003, 91, 46401.
- [7] a) S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456–1465; b) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104–154119.
- [8] a) F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297–3305; b) K. A. Peterson, D. Figgen, E. Goll, H. Stoll and M. Dolg, *J. Chem. Phys.*, 2003, 119, 11113–11123.
- [9] D. Andrae, U. Haeussermann, M. Dolg, H. Stoll and H. Preuss, *Theor. Chim. Acta.*, 1990, 77, 123–141.
- [10] Y. Zhao and D. G. Truhlar, J. Phys. Chem. A, 2005, 109, 5656–5667.
- [11] A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378–6396.
- [12] C. Y. Legault, CYLview, 1.0b, Université de Sherbrooke, 2009, http://www.cylview.org.

¹H, ¹³C, and ¹¹B NMR spectra

S-154

7,750 7,748 7,748 7,748 7,748 7,748 7,759

~0.65 ~-1.38 --3.61 ~6.20

10.58
10.58
10.58
15.98
19.67

S-163

S-167

(-0.49) (-0.59) (-1.73) (-1.73) (-1.73) (-1.73) (-1.73) (-1.73) (-1.63) (-1.63) (-1.63)

3bb (CDCI₃, 128 MHz)

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.! f1 (ppm)

$\int_{-1.54}^{0.00} 0.03$ $\int_{-1.54}^{0.43} 0.43$ $\int_{-3.74}^{-3.74} 0.43$ -.7.14 -.7.14 $\int_{-10.24}^{-10.24} 0.6$ — 2.26

S-175

 $\begin{array}{c} 7.44\\ 7.44\\ 7.44\\ 7.44\\ 7.42\\ 7.13\\ 7.12\\$

S-181

S-182

S-183

