SUPPPORTING INFORMATION

Revealing the Molecular Mechanisms of Proteolysis of SARS-CoV-2 Mpro from QM/MM Computational Methods.

Katarzyna Świderek, Vicent Moliner

Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain.

Swiderek@uji.es; moliner@uji.es

COMPUTATIONAL METHODS	S2
Models set up	S2
Analysis of classical non-accelerated NVT-MD simulations	S3
OM/MM simulations	S4
Potential Energy Surfaces	S5
Free Energy Surfaces	S5
Spline corrections	S6
Substrate-enzyme interactions	S7
Paramaters for ACC	S8
pKa values predicted for titratable residues	S10
RESULTS AND ANALYSIS	S10
M06-2X:AM1/MM Free energy surfaces	S10
Key distances of selected states along the most favourable reaction path	S11
Protein-substrate interactions	S12
COORDINATES OF TS STRUCTURES	
REFERENCES	S19

COMPUTATIONAL METHODS

Computational details of the molecular models set up. The coordinates of atoms of SARS-CoV-2 Mpro were adapted from the X-Ray structure of its complex with the N3 inhibitor, as available in Protein Data Bank (PDB ID 6LU7).¹ Biological assemble (homodimer) was build using Discovery Studio Visualizer 19. Inhibitor N3 was replaced by the polypeptide Ac-Val-Lys-Leu-Gln-ACC (ACC is the fluorescent tag 7-amino-4-carbamoylmethylcoumarin) covalently bound to Cys145 through Gln, the substrate used in the kinetic studies.² Missing force field parameters for ACC residue, the part of substrate were generated using the Antechamber³ program available in AmberTools package. Generated parameters are provided in Table S1. The protonation state of titratable residues was determined at pH 7 by estimating pKa shifts generated by the local environment on titratable groups using the empirical program PropKa ver. 3.0.3.^{4,5} · All residues were found in their standard protonation stage as shown in Table S2. After a detailed inspection of surrounding of each histidine residue, it was concluded that all should be neutral. However catalytically important His41 and His80 should be protonated in Nδ position, while remaining His64, His163, His164, His172, and His246 on Nε. Presence of S-S linkage between Cys residues was not detected. According to determine pKa values all Cys residues should be protonated.

After adding missing hydrogen atoms, the system was neutralized by addition of 7 sodium counter ions and placed in the box of 8.374 **R** 8.087 **R**10.786 nm³ of TIP3P⁶ water molecules. Such a prepared model was further optimized, heated up to 310 Kelvins and equilibrated using Molecular Dynamic (MD) simulations under NPT conditions with AMBER force field,⁷ as implemented in NAMD software.⁸ Subsequently, 10 ns NVT MD simulations were performed in the peptide-protein covalently bound complex. The constant temperature during MD simulation was controlled using the Langevin thermostat.⁹ Then we move backwards (though exploration QM/MM potential energy surfaces, as described below) to the reactants **E:S** non-covalent complex, and this structure was used for additional 42 ns of non-biased MD with time step of 1fs to observe the behavior of hydrogen bonds. It is important to point out that the calculations (and the system set up) were initiated from the conformation of the product of the acylation step (**E-I2** in Scheme 1 of the manuscript) in order to preliminarily avoid the debate on the protonation state of the catalytic dyad Cys145/His41 in the reactant state, **E:S**. Robustness of MD simulations was examined by monitoring time dependence of RMSD (Fig. S1). Analysis was done using cpptraj software.¹⁰ The structure of the MD simulation with the smallest deviation from average RMSD value was used to start the study of the molecular mechanism of the proteolysis. After optimization of the system, those residues located 20 Å beyond any atoms of the Gln5 of substrate were kept frozen in the remaining calculations. Potential energy surfaces, free energy surfaces and spline corrections have been performed using fDynamo¹¹ library together with implemented AMBER force field.¹² A Cut-off for nonbonding interactions was applied using a smooth switching function between 14.5 to 16 Å.

Figure S1. Analysis of classical non-accelerated 42 ns of NVT-MD simulations (T = 310 K) explored using AMBER force field implemented in NAMD software. A. Displacement of Backbone of the protein (top) along MD simulations and of the part of the substrate and residues involve in the catalysis (bottom). B. Time evolution of the Root Mean Square Deviation (RMSD) of C-C α -N atoms of protein backbone C. Time evolution of the RMSD for all atoms of substrate.

Computational details of the QM/MM simulations. In this work, an additive hybrid QM/MM scheme was employed for the construction of the total Hamiltonian where the total energy is obtained from the sum of each contribution to the energy.

$$E_{QM/MM} = E_{QM} + E_{QM/MM}^{elect} + E_{QM/MM}^{vdW} + E_{MM}$$
(S1)

Here, E_{QM} describes the atoms in the QM part, $E_{QM/MM}$ defines the interaction between the QM and MM region and E_{MM} describes the rest of the MM part. As shown in Figure S2, the QM subset of atoms includes ACC and Gln5 residues of the substrate, together with Cys145 and His41 residues of the protein. Four link atoms¹³ were inserted where the QM/MM boundary intersected covalent bonds in the positions indicated on Figure S2. It is important to point out that after acylation step, when ACC group is departing from the active site the definition of QM region slightly changes. Now ACC group realized after the acylation step is substituted by four water molecules, one of which was defined in QM subset. Thus, for acylation step QM part consisted of 77 atoms, while for diacylation step of 54. The Austin Model 1 (AM1)¹⁴ semiempirical and the Minnesota Functional M06-2X¹⁵ with the standard 6-31+G(d,p) basis set were used to treat the QM sub-set of atoms, as implemented in Gaussian09 program.¹⁶

Figure S2. Schematic representation of the active site of SARS-CoV-2 M^{pro} with atoms included in the QM region in QM/MM calculations. Four link atoms are indicated as black dots.

Contribution of each residue of the protein to the interaction energy with defined part of substrate was computer using the following expression:

$$E_{QM/MM}^{Int} = \sum \left\langle \Psi \left| \frac{q_{MM}}{r_{e,MM}} \right| \Psi \right\rangle + \sum \sum \frac{Z_{QM}q_{MM}}{r_{QM,MM}} + E_{QM/MM}^{vdW}$$
(S2)

This interaction energy can be exactly decomposed in a sum over residues provided that the polarized wave function (Ψ) is employed to evaluate this energy contribution. The global polarization effect can be obtained from the gas phase energy difference between the polarized, Ψ , and non-polarized, Ψ_0 , wave functions.

Potential Energy Surfaces. Potential energy surfaces (PESs) were obtained by grid scanning of distinguish reaction coordinates most suitable for describing each of the chemical step. A harmonic constraint was used to maintain the proper interatomic distances along the reaction coordinate, and a series of conjugate gradient optimizations and L-BFGS-B optimization algorithms were applied to obtain the final potential energy of the minimized constrained geometry. A micro-macro iteration optimization algorithm^{17,18} was used to localize, optimize, and characterize the key TS structures using a Hessian matrix containing all the coordinates of the QM subsystem at M06-2X/MM level of theory with the standard 6-31+G(d,p) basis set. The gradient norm of the remaining movable atoms was maintained less than 0.01 kcal·mol⁻¹·Å⁻¹. Intrinsic reaction coordinates (IRCs) were traced down from located TSs to the valleys of the reactants, intermediates and products in mass-weighted Cartesian coordinates.

Free Energy Surfaces. FESs were obtained, in terms of Potentials of Mean Force (2D-PMF), for every step of the reaction using the Umbrella Sampling approach¹⁹ combined with the Weighted Histogram Analysis Method (WHAM).²⁰ Series of MD simulations were performed adding a constraint along the selected reaction coordinates with an umbrella force constant of 2500 kJ·mol⁻¹·Å⁻². In every window QM/MM MD simulations were performed with a total of 5 ps of equilibration and 20 ps of production at 310 K with a time step of 1 fs. Structures obtained in previously computed PESs were used as starting points for the MD simulations in every window. The resulting Free Energy Surfaces are shown in Figures S3, S4 and S5 while key interatomic distances of every state involved in the reaction, optimized at M06-2X/MM are listed in Table S3.

Spline Corrections

The generation of PMFs requires a large number of structures that are generated from QM/MM MD calculations. Inevitably, we are restricted to the use of a semiempirical Hamiltonian, AM1 in this work. Then, in order to improve the quality of our free energy surfaces, based on the work of Truhlar and co-workers for reactions in solution^{21,22,23} a spline under tension²⁴,²⁵ is used to interpolate this correction term at any value of the reaction coordinate, ξ_1 and ξ_2 in the case of two dimensional PMFs, selected to generate the free energy surfaces.^{26,27} In this way we obtain a continuous function in a new energy function to obtain corrected PMFs:

$$E = E_{LL/MM} + S[\Delta E_{LL}^{HL}(\xi_1, \xi_2)]$$
(S3)

where S refers to the spline function, and its argument $\Delta E_{LL}^{HL}(\xi_1,\xi_2)$ is a correction term evaluated from the single-point energy difference between a high-level (HL) and a low-level (LL) calculation of the QM subsystem. Herein the hybrid M06-2X functional with the 6-31+G(d,p) basis set, as suggested by Truhlar and co-workers,^{28,29} has been employed as the HL method. As our simulations demonstrate, the corrections in the energy applied to any single chemical step, can be significant thus justifying our computational protocol, while the geometries generated from the sampling with LL calculations can be considered as representative of the HL geometries, thus giving credit to the selected technique. These calculations were carried out using the Gaussian09 program.³⁰

It is important to point out that this method can have some limitations when the LL is not capable of describing the electronic structures of the system subject of study.³¹ On the other side, even when the topology of the PESs are significantly different, spline corrections at high level have shown good results.³² In the present study, structures optimized at the selected LL/MM combination of potentials (AM1/AMBER) were qualitatively equivalents to those later optimized at HL/MM level (M06-2X/AMBER).

Atom name	Atom type	Charge	Parameters				
N	nh	-0.79555		NONBON		ANGLES	
H1	hn	0.437896	nh	1.8240 0.170	00 nh-ca-ca	69.340	120.130
C6	са	0.230216	hn	0.6000 0.015	57 hn-nh-ca	49.080	116.130
C5	ca	-0 21304	ca	1.9080 0.080	50 ca-ca-ca	67.180	119.970
0	00 00	0.03882	08	1.4590 0.013		40.400 65 000	120.010
04	Ca	-0.00002	03 C	1 9080 0 086	50 ca-ca-co 50 ca-ca-os	69 790	119 200
01	Ca	-0.20339	cc	1.9080 0.086	60 ca-cd-cc	68.230	113.510
	са	0.21284	cd	1.9080 0.086	60 ca-cd-c3	64.050	117.810
C2	ca	-0.22725	c3	1.9080 0.109	94 ca-os-c	63.750	120.870
H4	ha	0.170609	n	1.8240 0.170	00 os-c -cc	70.500	112.300
01	OS	-0.30981	0	1.6612 0.210	00 os-c -o	75.930	123.330
C9	С	0.760157	nc	1.4870 0.015/ RONDS:		65.230 46.000	121.510
C8	сс	-0.24827	nh.	<u>bonds.</u> .hn 401 20 1 0'		40.990 68 910	125 710
C7	cd	0.049076	nh	-ca 449.00 1.36	64 cc-cd-c3	64.810	119,450
C10	c3	-0.12423	ca	-ca 478.40 1.38	B7 cd-cc-ha	48.350	122.890
C11	С	0.694125	ca-	-ha 344.30 1.08	87 cd-c3-c	63.810	113.170
N2	n	-0 63345	ca	-cd 411.70 1.43	34 cd-c3-hc	47.200	110.860
H8	hn	0 333319	ca	-os 372.40 1.37	73 c3-c -n	67.860	115.150
Но	hn	0.335425	05	S-C 411.30 1.34	43 C3-C-O	68.030	123.110
02		0.535425		-0 648 00 1.40	14 c_{-n}	47.200	109.000
	0 ha	-0.57579	0 00	-cd 504 00 1.2	71 n-c-o	75 830	122 030
H0	nc	0.09236	CC-	-ha 347.20 1.08	35 hn-n -hn	39.730	117.850
H/	nc	0.102892	cd	-c3 337.30 1.49	99 hc-c3-hc	39.430	108.350
H5	ha	0.183246	c3	B-c 328.30 1.50	08		
O3	0	-0.53166	c3·	-hc 337.30 1.09	92		
H3	ha	0.149546	С	-n 478.20 1.34	45		
H2	ha	0.149546	n -	-nn 410.20 1.00	19		
Parameters							
	HEDRALS:			IM	IPROPERS:		
nh-ca-ca-ca 1	3.625 180.000	2.000		ca-ca-c	a-nh 1.1	180.0) 2.0
nn-ca-ca-na 1	3.625 180.000	2.000		ca-ca-c	a-ha 1.1	180.0	2.0
	1.000 100.000	2.000				100.0	2.0
	2 625 100.000	2.000			a-05 1.1	100.0	2.0
	3.025 100.000	2.000		- U-U	-05 10.0	180.0	2.0
	2 625 100.000	2.000			d oo 11	100.0	2.0
	2 550 180.000	2.000				180.0) <u>2.0</u>) 2.0
	2.550 180.000	2.000		c	10.0 10.0	180.0	2.0
	2.000 180.000	2.000		C -111-1	1-1111 1.1	100.0	2.0
	4 000 180.000	2.000					
	4.000 180.000	2.000					
ca-cd-c3 c = 1							
ca cd c2 bc 1							
	2 700 180 000						
	2 700 100.000						
	2.700 100.000						
0s-ca-ca-cd 1	3 625 180 000	2.000					
		2.000					

Table S1. Atom types, charges and parameters obtained for ACC residue of the substrate inhibitor generated using antenchamber package included in AmberTools.

os-c -cc-cd 1	2.875	180.000	2.000	hn、 _hn
os-c -cc-ha 1	2.875	180.000	2.000	n
c -cc-cd-c3 1	4.000	180.000	2.000	Ϊ hc
cc-cd-c3-c 1	0.000	0.000	3.000	$c \int bc$
cc-cd-c3-hc 1	0.000	0.000	3.000	
cd-ca-ca-ha 1	3.625	180.000	2.000	
cd-cc-c -o 1	2.875	180.000	2.000	
cd-c3-c -n 1	0.000	180.000	2.000	na co ca na
cd-c3-c -o 1	0.000	180.000	2.000	cc´ ca `ca
c3-cd-cc-ha 1	4.000	180.000	2.000	
c3-c -n -hn 1	2.500	180.000	2.000	, c'a , c'a , R
n -c -c3-hc 1	0.000	180.000	2.000	o oś ca nh
hn-n -c -o 1	2.500	180.000	-2.000	
hn-n -c -o 1	2.000	0.000	1.000	ha hn
o -c -c3-hc 1	0.800	0.000	-1.000	
o -c -c3-hc 1	0.080	180.000	3.000	
ha-cc-c -o 1	2.875	180.000	2.000	
ha-ca-ca-ha 1	3.625	180.000	2.000	

Resi	due	pKa ^{calc}	pKa ^{stand}	Resi	due	pKa ^{calc}	pKa ^{stand}	Resi	due	pKa ^{calc}	pKa ^{stand}
ASP	33	3.81	3.8	GLU	14	6.81	4.5	LYS	5	9.85	10.5
ASP	34	3.45	3.8	GLU	47	4.64	4.5	LYS	12	9.52	10.5
ASP	48	3.71	3.8	GLU	55	4.76	4.5	LYS	61	10.85	10.5
ASP	56	3.77	3.8	GLU	166	3.17	4.5	LYS	88	10.13	10.5
ASP	92	3.53	3.8	GLU	178	4.89	4.5	LYS	90	10.56	10.5
ASP	153	3.81	3.8	GLU	240	6.01	4.5	LYS	97	10.29	10.5
ASP	155	3.26	3.8	GLU	270	4.82	4.5	LYS	100	10.81	10.5
ASP	176	3.74	3.8	GLU	288	5.2	4.5	LYS	102	10.68	10.5
ASP	187	2.9	3.8	GLU	290	2.15	4.5	LYS	137	9.64	10.5
ASP	197	3.81	3.8	HIS	41	3.04	6.5	LYS	236	10.62	10.5
ASP	216	4.29	3.8	HIS	64	6.22	6.5	LYS	269	9.97	10.5
ASP	229	3.61	3.8	HIS	80	6.58	6.5	ARG	4	15.07	12.5
ASP	245	3.92	3.8	HIS	163	-0.11	6.5	ARG	40	14.28	12.5
ASP	248	4.15	3.8	HIS	164	4.62	6.5	ARG	60	12.62	12.5
ASP	263	3.68	3.8	HIS	172	4.04	6.5	ARG	76	12.82	12.5
ASP	289	4.08	3.8	HIS	246	5.43	6.5	ARG	105	12.98	12.5
ASP	295	4.46	3.8	TYR	37	11.92	10	ARG	131	15.58	12.5
CYS	16	11.72	9	TYR	54	15.43	10	ARG	188	12.28	12.5
CYS	22	10.3	9	TYR	101	12.69	10	ARG	217	12.23	12.5
CYS	38	12.87	9	TYR	118	13.08	10	ARG	222	12.29	12.5
CYS	44	11.8	9	TYR	126	15.03	10	ARG	279	12.02	12.5
CYS	85	11.93	9	TYR	154	10.12	10	ARG	298	10.79	12.5
CYS	117	12.98	9	TYR	161	15.62	10				
CYS	128	11.77	9	TYR	182	13.82	10				
CYS	145	16.67	9	TYR	209	12.75	10				
CYS	156	9.25	9	TYR	237	10.13	10				
CYS	160	12.98	9	TYR	239	12.75	10				
CYS	265	12.28	9								
CYS	300	11.81	9								

Table S2. pKa values predicted for titratable residues present in Protomer A and B of SARS-CoV-2 M^{pro} .

COMPUTATIONAL RESULTS

Figure S3. Free Energy Surfaces computed at M06-2X:AM1/MM level for acylation process catalyzed by SARS-CoV-2 M^{pro}. The values of energies are in kJ·mol⁻¹ and the distances defined on axes are given in Å.

Figure S4. Free Energy Surfaces computed at M06-2X:AM1/MM level for deacylation process catalyzed by SARS-CoV-2 M^{pro}. The values of energies are in kJ·mol⁻¹ and the distances defined on axes are given in Å.

Figure S5. Free Energy Surfaces computed at M06-2X:AM1/MM level for concerted process of acylation and deacylation process catalyzed by SARS-CoV-2 M^{pro}. The values of energies are in kJ·mol⁻¹ and the distances defined on axes are given in Å.

Distance	E:S	TS ^{E:S} →E-I1	E-I2	TS ^{E-I2→E-I3}	E:P
SG ^{Cys145} -HG ^{Cys145}	1.36	1.89	-	-	-
NE ^{His41} -HG ^{Cys145}	1.91	1.13	-	-	-
SG ^{Cys145} -C ^{Gln5}	3.10	2.35	1.76	1.88	2.99
HG ^{Cys145} -N ^{ACC}	3.30	2.98	-	-	-
N ^{ACC} -C ^{Gln5}	1.38	1.46	-	-	-
C ^{Gln5} -O ^{Gln5}	1.23	1.25	1.22	1.26	1.22
SG-H ^{wat}	-	-	3.07	2.95	1.35
NE ^{His41} -H ^{wat}	-	-	1.99	1.20	2.09
H ^{wat} -O ^{wat}	-	-	0.98	1.38	2.91
C ^{Gln5} -O ^{wat}	-	-	2.81	1.71	1.34
Oxyanion hole:					
O ^{Gln5} ····H ^{Cys145}	2.04	2.03	2.20	2.25	2.37
O ^{Gln5} ····H ^{Ser144}	2.81	2.88	3.25	3.52	3.01
O ^{Gln5} ····H ^{Gly143}	1.83	1.76	1.89	2.02	1.82
S1'-pocket:					
HG ^{Ser46} ····=Ox ^{ACC}	1.66	1.64	-	-	-
HE3 ^{Met49} ····=Ox ^{ACC}	3.64	3.68	-	-	-
HE1 ^{Met49} ····Oxx ^{ACC}	3.15	2.74	-	-	-
S1-pocket:					
HE2 ^{His163} ····OE1 ^{Gln5}	1.88	1.89	1.84	1.82	1.81
HB3 ^{Phe140} ····OE1 ^{Gln5}	2.84	2.87	3.07	3.12	2.98
O ^{Phe140} ····HE22 ^{Gln5}	2.59	2.69	3.24	3.33	3.15
O ^{Phe140} ····HE21 ^{Gln5}	4.10	3.45	4.46	4.51	4.33
OE1 ^{Glu166} ····HE22 ^{Gln5}	3.45	3.45	1.82	1.90	1.81
OE1 ^{Glu166} ····HE21 ^{Gln5}	3.65	3.80	3.28	5.41	3.23
ND2 ^{Asn142} ····HA ^{Gln5}	2.25	2.41	3.74	3.68	3.21
OD1 ^{Asn142} ····HE21 ^{Gln5}	4.10	3.95	2.87	2.79	3.02
O ^{His164} ····H ^{Gln5(backbone)}	2.24	2.11	1.91	1.95	2.04

Table S3. Key distances (in Å) of structures of **E:S**, rate limiting step of the acylation reaction, $TS^{E:S} \rightarrow E^{-11}$, intermediate **E-I2**, rate limiting step of the deacylation reaction, $TS^{E-I2 \rightarrow E-I3}$, and **E:P**, optimized at M06-2X/AMBER leve310 K l of theory.

Figure S6. Structural representation of each binding pocket for the **E:S** structure optimized at M06-2X/MM level (top) and schematic representation of the specific interactions (bottom).

Table S4. Non-bonding interaction energies (E_{int}) between substrate and its binding pockets, decomposed in the contribution from electrostatic (E_{elec}) and Lennard-Jones (E_{LJ}) interactions, obtained as an average over 1000 structures from the AM1/MM MD simulation. Only those residues interacting with the substrate with E_{int} higher than 3 kcal·mol⁻¹ are reported. All values in kcal·mol⁻¹.

Residue #	E _{int}	Eelec	E _{LJ}	Residue #	E _{int}	Eelec	E _{LJ}
ACC::: S1'				Leu4::: S2			
41	3.34 ± 0.48	4.12	-0.78	142	-5.60 ± 2.22	-4.99	-0.62
46	-3.94 ± 2.85	-2.72	-1.22	165	-6.54 ± 0.81	-4.25	-2.29
49	$\textbf{-4.30} \pm 0.83$	-2.63	-1.67	166	15.14 ± 1.69	15.55	-0.41
142	-19.09 ± 1.95	-14.72	-4.38	188	-4.68 ± 0.62	-3.13	-1.54
143	-5.79 ± 0.78	-4.80	-1.00				
144	-3.93 ± 0.73	-3.66	-0.27	Lys3::: S3			
145	-5.63 ± 2.11	-4.81	-0.82	165	-3.87 ± 0.65	-2.96	-0.9
164	4.57 ± 0.73	4.71	-0.14	166	-11.45 ± 1.96	-9.38	-2.1
166	7.44 ± 0.68	7.46	-0.03	189	-8.50 ± 1.17	-6.31	-2.2
187	4.70 ± 0.64	4.72	-0.02				
				Val2:::S4			
Gln5::: S1				166	8.59 ± 1.57	9.74	-1.1
27	-3.01 ± 0.26	-2.67	-0.34	167	-4.94 ± 0.86	-3.00	-1.9
41	4.49 ± 0.87	5.02	-0.52	168	-4.27 ± 0.55	-3.13	-1.1
140	-5.70 ± 0.90	-3.94	-1.77	188	-5.60 ± 0.76	-4.96	-0.6
142	-16.83 ± 1.49	-13.44	-3.39	189	-3.46 ± 1.46	-1.01	-2.5
143	-10.31 ± 0.89	-9.52	-0.79	190	6.47 ± 1.43	7.67	-1.2
144	-8.17 ± 1.78	-6.98	-1.19				
145	-5.47 ± 2.17	-5.25	-0.22				
163	-12.08 ± 1.12	-11.46	-0.62				
164	4.87 ± 0.80	6.00	-1.13				
165	-3.25 ± 1.37	-1.68	-1.57				
166	4.50 ± 1.97	6.71	-2.21				
172	-4.16 ± 0.61	-3.59	-0.57				
187	6.52 ± 0.96	6.55	-0.03				
189	3.84 ± 0.49	3.95	-0.12				

Figure S7. Non-bonding interaction energy between residues of Chain-A and each fragment of substrate, obtained as an average over 1000 structures of the AM1/MM MD simulations.

COORDINATES OF TS STRUCTURES

Table S5. Cartesian coordinates (in Å) of QM atoms for Transition State structures optimized at M06-2X/MM level for the rate limiting step of the acylation and deacylation reactions.

$TS^{E:S \to E-11} (v_i = -111.3 \text{ cm}^{-1})$				TS	$S^{E-I2 \rightarrow E-I3} (v_i)$	$= -695.4 \mathrm{cm}$	n-1)
Atoms	X	у	Z	Atoms	X	у	Z
С	4.038663	7.015889	25.21455	С	25.62189	7.18704	-3.24642
Н	3.331241	6.453941	25.83161	Н	25.9585	6.652549	-2.35282
Н	5.033165	6.776299	25.60086	Н	26.31448	6.891638	-4.04083
С	3.9481	6.559066	23.78876	С	24.24477	6.688861	-3.65688
Ν	2.825861	5.90821	23.29606	Ν	23.42177	5.984296	-2.79043
Н	1.978411	5.695413	23.81195	Н	23.59963	5.804492	-1.80886
С	3.063007	5.502348	22.0409	С	22.35365	5.514602	-3.45697
Н	2.387003	4.945744	21.40984	Н	21.55552	4.917151	-3.04048
Ν	4.281811	5.876163	21.70156	Ν	22.43157	5.882131	-4.72665
Н	4.644013	5.571002	20.67908	Н	21.60726	5.547813	-5.53707
С	4.858921	6.530869	22.76555	С	23.6026	6.609346	-4.87065
Н	5.871283	6.904469	22.72479	Н	23.91567	7.008036	-5.82231
С	4.635634	4.883631	14.24618	С	14.6899	5.117649	-4.51793
0	3.492918	4.928667	13.78504	0	14.26985	5.108881	-3.35792
Ν	4.835124	4.997355	15.57558	Ν	15.99875	5.361805	-4.74329
Н	5.772389	4.93461	15.96156	Н	16.37804	5.414149	-5.6834
С	3.798969	5.510856	16.45986	С	16.81662	5.857854	-3.65462
Н	3.044071	4.743376	16.66178	Н	16.81396	5.12517	-2.84231
С	4.446504	5.97909	17.77229	С	18.24672	6.092391	-4.11988
Н	3.83122	6.775049	18.19671	Н	18.7593	6.719555	-3.38872
Н	5.425942	6.413936	17.5356	Н	18.26311	6.595204	-5.09332
S	4.62024	4.679687	19.01415	S	19.15236	4.546278	-4.25003
С	3.150582	6.756443	15.84324	С	16.28503	7.194046	-3.12899
0	3.892842	7.656108	15.42515	0	15.87867	8.049782	-3.92444
Ν	1.82634	6.826331	15.89386	Ν	16.38593	7.357536	-1.81421
Н	1.31276	6.043972	16.29258	Н	16.69938	6.564237	-1.26065
С	1.062872	7.933632	15.28129	С	15.74783	8.494739	-1.12452
Н	1.683473	8.824475	15.35657	Н	15.87048	9.36594	-1.76722
Н	0.178117	8.090237	15.90134	Н	16.31164	8.672597	-0.20664
С	6.706643	1.954986	21.43024	С	21.71333	2.113192	-6.47977
0	7.929051	1.846056	21.56081	0	21.79872	2.250067	-7.70894
Ν	6.148741	2.535559	20.35125	Ν	20.62428	2.424839	-5.77877
Н	5.13253	2.5077	20.24784	Н	20.63405	2.304942	-4.76415
С	6.944356	2.808227	19.15798	С	19.42548	2.887435	-6.4414
Н	7.986481	2.618416	19.45567	Н	19.63447	2.838892	-7.51432
С	6.561301	1.848087	18.0263	С	18.23986	1.967716	-6.09073
Н	5.504499	1.989589	17.77634	Н	18.03967	2.009992	-5.01558
Н	7.122048	2.125517	17.12803	Н	17.34156	2.35152	-6.58892

С	6.834442	0.378575	18.37025	С	18.5153
Н	7.897394	0.215419	18.58695	Н	18.6697
С	6.39362	-0.52955	17.22947	С	17.4579
Ν	7.119079	-1.65448	17.01995	Ν	17.2309
Н	6.791665	-2.27297	16.28867	Н	16.7035
Н	7.751611	-2.05749	17.70388	Н	17.7287
0	5.440089	-0.24952	16.50573	0	16.8794
Н	6.280482	0.067659	19.26767	Н	19.4487
С	6.909562	4.279786	18.68721	С	19.1725
Ν	7.41898	5.260393	19.64072	0	18.2887
Н	7.368011	6.14312	19.13324	0	20.6826
С	8.774958	5.092503	20.10136	Н	20.3886
С	9.901314	5.302202	19.27964	Н	22.4568
С	11.18516	5.157512	19.79906	Н	14.7874
С	11.39715	4.814802	21.1481	Н	14.0745
С	10.25583	4.692223	21.95434	Н	25.7718
С	8.96577	4.795372	21.44231		
Н	8.119727	4.648796	22.10275		
0	10.33684	4.486814	23.29261		
С	11.53322	4.403305	23.932		
С	12.7343	4.36493	23.10857		
С	12.69539	4.559755	21.77185		
С	13.94579	4.399962	20.94691		
Н	14.82414	4.67954	21.53802		
С	14.15272	2.924671	20.58899		
Ν	14.39212	2.635359	19.29898		
Н	14.36432	3.324577	18.55507		
Н	14.66676	1.687352	19.07343		
0	14.12273	2.05524	21.45743		
Н	13.95581	5.040906	20.06409		
Н	13.66187	4.169027	23.63567		
0	11.49709	4.369492	25.14598		
Н	12.03599	5.32914	19.14722		
Н	9.772526	5.615352	18.24748		
0	7.068583	4.525456	17.47088		
Н	6.092275	1.607575	22.13866		
Н	0.78787	7.77105	14.33369		
Н	5.43296	4.82554	13.64543		
Н	3.856218	7.983317	25.39004		

,	18.51535	0.520709	-6.52008
[18.66976	0.445099	-7.60563
l ´	17.45794	-0.47625	-6.06488
[17.23091	-1.519	-6.89248
[16.70354	-2.32851	-6.5506
[17.72879	-1.60377	-7.76786
)	16.87946	-0.37315	-4.98299
[19.44871	0.169338	-6.05686
, ,	19.17256	4.371687	-6.12648
)	18.28878	4.969156	-6.7902
)	20.68269	5.095624	-6.4587
[20.38865	5.78843	-7.06781
[22.45687	1.729908	-5.93182
[14.78744	8.328946	-0.90055
[14.07455	4.977584	-5.29364
[25.77187	8.16235	-3.08433

TS	$E:S \rightarrow E-I2 (v_i =$	-1503.9 cr	m ⁻¹)	TS	$S^{E-I2 \rightarrow E:P} (v_i =$	= -1453.9 cn	n ⁻¹)
Atoms	X	у	Z	Atoms	X	у	Z
C	3.995381	7.050899	25.39507	С	25.80598	7.272366	-3.0572
Н	3.154854	6.513588	25.84346	Н	26.18773	6.772918	-2.16311
Н	4.87253	6.796992	25.99765	Н	26.46166	6.970456	-3.87888
С	4.23526	6.61029	23.98727	С	24.41075	6.811036	-3.36732
Ν	3.294112	5.934879	23.24173	Ν	23.61184	6.131248	-2.47207
Η	2.368722	5.66151	23.54511	Н	23.84119	5.884264	-1.51763
С	3.869554	5.592973	22.05846	С	22.46498	5.785872	-3.11958
Н	3.348576	5.034873	21.29383	Н	21.67419	5.225425	-2.64198
Ν	5.113516	6.015335	21.99026	Ν	22.46795	6.203987	-4.36549
Н	5.898964	5.175614	19.92482	Н	20.40664	5.172113	-5.57074
С	5.351005	6.648087	23.18808	С	23.67678	6.839905	-4.52853
Н	6.31149	7.087575	23.42203	Н	23.9716	7.278382	-5.47091
С	4.616913	4.915418	14.24536	С	14.7577	5.100952	-4.53093
Ο	3.479142	4.971294	13.78019	0	14.35337	5.066764	-3.36828
Ν	4.817173	5.010714	15.58197	Ν	16.06971	5.318901	-4.78328
Н	5.76443	4.964686	15.93917	Н	16.37531	5.426557	-5.74368
С	3.79607	5.532697	16.4848	С	16.93462	5.839136	-3.73638
Η	3.033582	4.772301	16.68844	Н	17.02845	5.099657	-2.93502
С	4.467234	5.979076	17.79458	С	18.31131	6.160956	-4.31363
Η	3.85283	6.745014	18.2721	Н	18.84262	6.833087	-3.63705
Η	5.433276	6.440058	17.55458	Н	18.21201	6.658509	-5.28554
S	4.66197	4.635136	19.00092	S	19.33772	4.68266	-4.45666
С	3.151969	6.788448	15.86656	С	16.36698	7.150242	-3.16696
Ο	3.910882	7.676483	15.45355	0	15.94987	8.007872	-3.95656
Ν	1.82766	6.8556	15.88024	Ν	16.43872	7.288558	-1.84983
Η	1.30657	6.083114	16.28914	Н	16.77795	6.500198	-1.30113
С	1.070964	7.960973	15.24711	С	15.80834	8.429009	-1.14786
Η	1.697123	8.847934	15.31799	Н	15.94553	9.307182	-1.77841
Η	0.188042	8.132336	15.86625	Н	16.3737	8.583468	-0.22675
С	6.705042	1.92804	21.41821	С	21.65289	2.143518	-6.52697
Ο	7.928196	1.855926	21.55028	0	21.77806	2.306974	-7.74641
Ν	6.127205	2.441367	20.30715	Ν	20.51214	2.40936	-5.87459
Н	5.108422	2.392621	20.22666	Н	20.4792	2.263892	-4.86218
С	6.905048	2.652398	19.09272	С	19.29997	2.737735	-6.59654
Н	7.954481	2.477072	19.37787	Н	19.52585	2.562092	-7.65658
С	6.498815	1.677835	17.98451	С	18.14355	1.840329	-6.15204
Н	5.436036	1.819803	17.75809	Н	17.96531	1.964861	-5.07771
Н	7.040703	1.947962	17.07245	Н	17.22992	2.161114	-6.66518
С	6.774577	0.210058	18.32914	С	18.46292	0.380999	-6.49404
Н	7.836319	0.051458	18.55435	Н	18.65865	0.279851	-7.57106

Table S6. Cartesian coordinates (in Å) of QM atoms for Transition State structures of the concerted acylation and deacylation reactions optimized at M06-2X/MM level.

С	6.354897	-0.67229	17.15886
Ν	7.082955	-1.78705	16.9246
Н	6.779373	-2.36707	16.1516
Н	7.706312	-2.21501	17.60405
0	5.416486	-0.3643	16.42568
Н	6.210658	-0.10954	19.21743
С	6.863598	4.094523	18.55682
N	7.219383	5.166752	19.56866
Н	7.207312	6.021934	19.00539
С	8.556856	5.08041	20.14674
С	9.669498	5.283419	19.31107
С	10.95346	5.170239	19.82705
С	11.1692	4.867467	21.18346
С	10.03476	4.761114	22.00621
С	8.730877	4.838028	21.49977
Н	7.881354	4.717762	22.16409
0	10.14683	4.589761	23.34814
С	11.36569	4.527422	23.96617
С	12.54901	4.47238	23.12072
С	12.4846	4.646899	21.78539
С	13.7314	4.517721	20.9503
Н	14.59054	4.901877	21.5126
С	14.05278	3.044183	20.67657
N	14.42332	2.724597	19.42625
Н	14.41478	3.382569	18.65516
Н	14.7896	1.794539	19.26657
0	13.99963	2.213058	21.57988
Н	13.69265	5.101756	20.03017
Н	13.48745	4.29701	23.63636
0	11.37518	4.532437	25.17833
Н	11.79899	5.340288	19.16916
Н	9.531526	5.5592	18.26992
0	7.131735	4.346159	17.37846
Н	6.095214	1.591237	22.13562
Н	0.795223	7.791622	14.30092
Н	5.415477	4.852096	13.64679
Н	3.815456	8.028248	25.5065

С	17 39036	-0 59918	-6 05125
N	17 16603	-1 63946	-6 87848
Н	16 63413	-2 44761	-6 53713
н	17 69389	-1 74499	-7 73347
$\hat{0}$	16 789/19	-0 47395	_/ 08380
U U	10.70747	-0.4/3/3	5 07069
п	19.3824	0.00002	-3.9/908
С	18.99031	4.23112	-6.50523
0	18.00365	4.757963	-7.02145
0	20.32361	4.976686	-6.81818
Н	20.05404	5.791046	-7.27701
Η	22.38715	1.773365	-5.95789
Η	14.84456	8.281252	-0.92585
Η	14.13481	5.006112	-5.30746
Η	25.91966	8.257568	-2.92892

REFERENCES

- (1) Z. Jin et al. Nature 2020 https://doi.org/10.1038/s41586-020-2223-y.
- (2) W. Rut, K. Groborz, L. Zhang, X. Sun, M. Zmudzinski, R. Hilgenfeld, M. Drag bioRxiv, 2020, preprint, DOI: https://doi.org/10.1101/2020.03.07.981928.
- (3) J. Wang, W. Wang, P. A. Kollman, D. A. Case, J. Mol. Graph. Model. 2020, 25, 247260.
- (4) M. H. M.Olsson, C. R. SØndergaard, M. Rostkowski, J. H. Jensen, J. Chem. Theory Comput. 2011, 7, 525–537.
- (5) C. R. Søndergaard, M. H. M. Olsson, M. Rostkowski, J. H. Jensen, J Chem Theory Comput. 2011, 7, 2284–2295.
- (6) W. L.Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, J. Chem. Phys. 1983, 79, 926-935.
- (7) W. E. I. Zhang, J. Comput. Chem. 2003, 24, 1999–2012.
- (8) J. C. Phillips, J. Comput. Chem. 2005, 26, 1781–1802.
- (9) G. S. Grest, K. Kremer, Phys. Rev. A, 1986, 33, 3628-3631.
- (10) D. R. Roe, T. E. Cheatham, III J. Chem. Theory Comput. 2013, 7, 3084-3095.
- (11) M. J.Field, M. Albe, C. Bret, M. F. Proust-De Martin, A. Thomas, J. Comput. Chem. 2000, 21, 1088-1100.
- (12) A. Krzeminska, P. Paneth, V. Moliner, K. Świderek, J. Phys. Chem. B. 2015, 119, 917-927.
- (13) M. J. Field, P. A. Bash, M. Karplus, M. J. Comput. Chem. 1990, 11, 700-733.
- (14) M.J.S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc. 1985, 107, 3902-3909.
- (15) Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215–241.
- (16) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.Gaussian 09, Gaussian, Inc.: Wallingford, CT, 2009.
- (17) A. Turner, V. Moliner, I. H. Williams, Phys. Chem. Chem. Phys. 1999, 1, 1323-1331.
- (18) S. Martí, V. Moliner, I. Tuñón, I. J. Chem. Theory Comput. 2005, 1, 1008-1016.
- (19) G. M. Torrie, J. P. Valleau, J. Comput. Phys. 1977, 23, 187-199.
- (20) S. Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, J. M. Rosenberg, J. Comput. Chem. 1992, 13, 1011-1021.
- (21) K. A. Nguyen, I. Rossi, D. G. Truhlar J. Chem. Phys. 1995, 103, 5522-5530.
- (22) J. C. Corchado, E. L. Coitiño, Y. Chuang, P. L. Fast, D. G. Truhlar J. Phys. Chem. A 1998, 102, 2424-2438.
- (23) Y. Y. Chuang, J. C. Corchado, D. G. Truhlar J. Phys. Chem. A 1999, 103, 1140-1149.
- (24) R. J. Renka, SIAM J. Stat. Comput. 1987, 8, 393-415.
- (25) R. J. Renka, ACM Trans. Math. Software 1993, 19, 81-94.
- (26) J. J. Ruiz-Pernia, E. Silla, I. Tuñón, S. Martí, V. Moliner J. Phys. Chem. B 2004, 108, 8427-8433.
- (27) J. J. Ruiz-Pernia, E. Silla, I. Tuñón, S. Martí, J. Phys. Chem. B. 2006, 110, 17663-17670.
- (28) Y. Zhao, D. G. Truhlar Theor. Chem. Acc. 2008, 120, 215-241.
- (29) B. J. Lynch, Y. Zhao, D. G. Truhlar J. Phys. Chem. A 2003, 107, 1384-1388.
- (30)Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
- Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P.
- Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
- Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta,
- F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K.

Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

(31) S. Martí, V. Moliner, K. Świderek Theor. Chem. Acc. 2019, 138:120.

(32) K. Świderek, I. Tuñón, S. Martí, V. Moliner ACS Catal., 2015, 5, 1172-1185.