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Part 1 The modified UCB1 without dynamic c tuning maintains a time-bounded regret  

In this part, we will demonstrate that by slightly modifying the UCB11 algorithm used in original UCT2-3, 
we are able to maintain the characteristic of a bounded expected cumulative regret that scales 
logarithmically with visiting time, while enhance the sampling efficiency of the MCTS based on the 
modified UCB1.  The proof here is based on the orginal proofs for the original UCB1 algorithm proposed 
by Auer, Cesa-Bianchi and Fischer1. The notations used are the same as Auer et al.’s original paper1. 

Problem formulation: 

MCTS is closely related with the so called multi-armed bandit problem. A K-armed bandit problem is 
defined as follows: 

We have K  gambling machines (or actions in Markov Decision Processes) with the payoffs expressed 

using random variables ,i nX  for 1 i K   and 1n  , where i denotes the index of a gambling machine, 

and n is the number of times machine i is visited. The random variables in the series of rewards, ,1iX , 

,2iX …, generated by playing machine i successively, are independent and follow the same distribution 

with expectation i . In addition, across different machines, ,i sX and ,j tX are also independent but 

usually not identically distributed, for each 1 i j K   and each , 1s t  . Here for UCB1 and the 

modified UCB1 that we will discuss later, , [0,1]i nX  . 
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We define the policy, or allocation strategy A  as an algorithm that chooses the next machine to play 
based on history. The target of the K-armed bandit problem is to wisely choose correct strategies to visit 
each machine in order to maximize the gained cumulated rewards. This goal requires exploration of 
unvisited machines and exploitation of the known best machine. In order to quantify the success of a 
policy, we will use the expected cumulative regret as the standard. The expected cumulative regret is 
defined as follows: 

Let ( )iT n be the number of times machine i has been played by A  during the first n plays. Then the 

expected cumulative regret of A after n plays is defined by  

1
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where ( )E  denotes expectation. We call optimal the machine with the least index i such that *
i   

The expected cumulative regret after n plays can also be written as: 
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  where *
i i    , where i is the reward expectation for machine i and * is any 

maximal element in the set 1{ ,..., }K  , , [0,1]i sX   

Thus the expected cumulative regret is the expected loss due to the fact that the policy does not always 
play the best machine. 

UCB1 algorithm1: 

To deal with the exploration vs. exploitation dilemma in the multi-armed bandit problem, in the classic 
MCTS algorithm called UCT (upper confidence bound applied to trees) proposed by Kocsis and 
Szepesvari2, the algorithm UCB1 is used to actively explore new actions while keep visiting the most 
promising action so far frequently. The UCB1 algorithm, proposed by Auer, Cesa-Bianchi and Fischer1 to 
solve the multi-armed bandit problem is described as follows:  

The algorithm is initialized by playing each machine once. Then we define an upper confidence bound 

(UCB) by ,

2 ln
jj n j

j
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n
   where jx is the average reward obtained from machine j , jn is the 

number of times machine j has been played so far, and n is the overall number of plays done so far. We 

play machine j  that maximizes , jj nUCB  

One can prove that 
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    when the rewards are bounded at [0,1]1. 

In this part, we will demonstrate that by slightly modifying the UCB1 algorithm, we are able to maintain 
the characteristic of a bounded expectation of regret, while enhance the sampling efficiency of the MCTS 
based on the modified UCB1.  Before we go into the analysis of the expected cumulative regret for 
modified UCB1, let’s first look at the notations used in the proof. We follow the notations in Auer et al.1 

Notations: 
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We follow the notations used by Auer et al. in their orginal paper about UCB1 algorithm. For each 

1 i K  , ,( )i n iE X   1n  and 
1

* max i
i K

 
 

 . Also, for any fixed policy, ( )iT n is the number of 

times machine i has been played in the first n times. As a result, 
1

( )
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 . We also define the 

random variables 1 2, ,...I I where tI denotes the machine played at time t. For each 1 i K  and 1n 
define: 

1
, ,
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We use * to refer any quantity related to the optimal machine, such as *( )T n and *
nX instead of ( )iT n and 

,i nX where i is the index of the optimal machine. Further, we have the indicator function { }( )x  of 

event ( )x : { 1( })x  when ( )x is true, and { 0( })x  if ( )x is false.} 

Therefore the upper confidence bound can be written as , ( 1),
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Modified UCB1 algorithm: 

In the modified UCB1 algorithm, we choose the upper confidence bound (UCB) of machine i at time t  
as: 

( 1),,

2 ln

1 ( 1)
ii Ti t t p

i

t
UCB X c

T t
 

 
  

let ,

2 ln

1t s p

t
c c

s



, *

i i     

Then 

*
1, , 1,

*
,

0

1

1 1

1

1

1 1

1
, ,

1

( ) { }

{ , ( 1) 1} { , ( 1) }

{ , ( 1) }

{min max }

{ }

i i
i

i i

i

i t

t i t i

t i

s t

n

t

n n

t t

n

t

n

s t l

s

s t
t

t t

t s s

t

l

s i s s

t s i s t s

T n I i

I i T t l I i T t l

l I i T t l

l X c X c

l X c X c



 



   






 

 





 

        

    

    

    



 







 



  4 

If *
, , ,{ } 1

i is t s i s t sX c X c    , or in other words, *
, , ,i is t s i s t sX c X c    is True, then at least one of the 

following must hold: 

* *
,s t sX c  (1) 

, ,i ii s i t sX c  (2) 

*
,2

ii t sc   (3) 

For (1), from the Chernoff-Hoeffding inequality, we know that  
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We need to note here that the reason why , ( 1),
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 (the modified UCB1 here) are called the “upper confidence bound” 

is that the probability of the UCB smaller than the true expectation i decays with t in the fashion of 4t

(the original UCB1) or 
2( 1)
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 (the modified UCB1 here) as a result of the Chernoff-Hoeffding 

inequality. 

Similarly, as a result of the Chernoff-Hoeffding inequality, for (2), the probability is bounded as below:
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By choosing appropriate l , we can make (3) false for all the time. 
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Hence, the expectation  
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Let 2 2pc  , then we are able to get the upper bound for the expectation of ( )iT n  

 

1

2 4

1

2

2 4
2

2 2
2

2
2

2

2

1 1 1

1

1

2

8ln
( ( )) 2

8ln
( 1) 2

8ln
( 1) 2

8ln
( 1)

3

16ln
( 2)

3

t t

t s s

t t

t s

i p
i

p
i

p
i

p

t

i

s

i

n
E T n c t

n
c t

n
c t

n
c

n







  



  











 
  
 

  

  

  












 





  

Then the expectation of regret is  
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Compared with the original bound for the UCB1 algorithm, the regret bound of the modified UCB1 only 
defers by the value of the coefficientss. The essence of a visit time n bounded expectation of regret does 

not change. When applied to MCTS, the coefficient pc  can be combined with the pc  in UCT to be 

modulated in order to account the effect of biased sampling2-3. In the MCTS search using the modified 
UCB1, the mandatory initialization step of visiting all available actions once in the original UCT (using 
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original UCB1) is not necessary, as a result of a non-zero denominator in the modified UCB1 equation 
even when the action is not visited. Similar strategy is used in the Alpha Go type PUCT MCTS4-6, which 
makes the sampling of fruitful actions in the search tree faster, when a policy network is used to give the 
prior probability distribution of the actions. In the modified UCT, a policy network is also used to give 
the ranking of the actions based on their prior probabilities(see the main text). 
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Table S1 The performance of the Round 2 RL value network in MCTS tree expansion for 30s on 1000 compounds (the 
same test set as in Fig 3 in the main text).   

MCTS variants 
mUCT-dc-V 

c initialized as 0.1 
mUCT-V 

PUCT-V 
c=1 

UCT-V 

Success rate on test 
set 

0.648 
c=0.1 0.515 

0.656 
c=0.1 0.548 

c=√2 0.55 c=1 0.51 
 

Table S2 Study of the effect of c values for UCT type MCTS variants, 30s test on 1000 compounds. Here the values of 
compounds are solely given by the value network without setting the values of the compounds in the buyable catalog to 1.  The 
value net used here is the Round 1 RL value network. 

MCTS variants c value 
Success rate 

test set training set 

UCT-V 
c = 0.1 0.53 0.569 
c = 1 0.509 0.55 

mUCT-V 
c = 0.1 0.548 0.576 
c = √2 0.56  0.597 

 

Table S3 The greenness of the synthetic routes generated by mUCT-dc-V using CSS value network when compared with 
mUCT-dc-V using Round 1 RL value network as the baseline method. 

Number of improved compounds 131 
Root CSS average improved by 0.052 

Number of unchanged compounds 15 
Number of worsened compounds 165 
Root CSS average worsened by  0.11 

Average root CSS score changed by -0.036 
 

Table S4 . The greenness of the synthetic routes generated by mUCT-dc-V using Round 1 RL value network when 
compared with PUCT-bootstrapping as the baseline method.  

 
Number of improved compounds 206 
Root CSS average improved by 0.41 

Number of unchanged compounds 15 
Number of worsened compounds 79 
Root CSS average worsened by  0.22 

Average root CSS score changed by 0.22 
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Figure S1 The success rate of finding buyable synthesis pathways by MCTS variants for 
30s on 1000 compounds from test set and training set respectively, where the values of 
compounds are solely given by the Round 1 RL value network (in the MCTS variants 
requiring a value network) without setting the values of the buyable compounds to 1. The line 
of 0.498 indicates the performance of a random value network with mUCT-dc-V method on 
the test set. The c values are the same as in Fig. 3 in the main text. 
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Figure S2 The mean squared error (MSE) vs. 
iteration curve during the training phase of 
(a)Round 1 RL value network, (b)Round 2 RL 
value network, and (c) the compound solvent score 
value network. The batch size for each iteration is 
1000 compounds.  
 


