Chiral Fe(II) Complex Catalyzed Enantioselective [1,3] O-to-C Rearrangement of Alkyl Vinyl Ethers and Synthesis of Chromanols and Beyond

Lifeng Wang, ^a Pengfei Zhou, ^a Qianchi Lin, ^a Shunxi Dong, ^a Xiaohua Liu, ^{*a} and Xiaoming Feng^{*a}

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China

E-mail: <u>liuxh@scu.edu.cn</u>, <u>xmfeng@scu.edu.cn</u>

Table of Contents

1. General information	2
2. General procedure for the synthesis of substrates	2
3. General procedure for the catalytic reactions	3
4. General procedure for the synthesis of chromanones	5
5. General procedure for the scale-up reaction	6
6. Synthetic transformation	6
7. The optimization of reaction conditions	8
8. Scope limitation	10
9. HRMS analysis	11
10. Spectral characterization data	12
11. Copies of NMR spectra for the substrates and the products	49
12. Copies of CD spectra in CH ₂ Cl ₂	127
13. References	135

1. General information

¹H NMR spectra were recorded on Bruker AMX-400 (400 MHz). Spectra were reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration and assignment. ¹³C{¹H} NMR spectra were collected on Bruker AMX-400 (100 MHz) with complete proton decoupling. ¹⁹F{¹H} NMR spectra were collected on Bruker AMX-400 (376 MHz) with complete proton decoupling. Chemical shifts are reported in δ (ppm) referenced to the residual peaks of CDCl₃ (δ = 7.26) for ¹H NMR or TMS ($\delta = 0.00$) for ¹H NMR and CDCl₃ ($\delta = 77.0$) for ¹³C{¹H} NMR. High resolution mass spectra (HRMS) were performed on Thermo Q-Exactive Focus (FTMS+c ESI) and data were reported as (m/z). Enantiomeric excesses (ee) were determined by HPLC analysis using the corresponding commercial chiralpak column as stated in the experimental procedures at 25 °C. Optical rotations were reported as follows: $[\alpha]^{T}$ (c g/100 mL, in solvent). IR spectra were recorded on BRUKER TENSOR II IR spectrophotometer. CD spectra were determined by Chirascan CD (DCM as the solvent) which was purchased from Applied photophysics Ltd. CH₂Cl₂ was purified by MB-SPS systeme. All other solvents were dried using standard protocol. Fe(OTf)₂ was purchased from Adamas Reagent, Fe(OTf)₃ was purchased from Alfa Reagent, PCC (Pyridinium chlorochromate) was purchased from Adamas Reagent, [Ir(cod)CI]2 was purchased from Adamas Reagent. Salicylaldehyde and Grignard reagent were commercially available. Chromatography: Qingdao Haiyangsilica gel, HG/T2354-92, H CP. The N,N'-dioxides were prepared according to the methods reported in the literature.¹

2. General procedure for the synthesis of substrates

To a solution of salicylaldehyde (6.10 g, 50 mmol) and imidazole (5.10 g, 75 mmol) in CH_2Cl_2 (100 mL) was added *tert*-butyldimethylsilyl chloride (11.25 g, 75 mmol), and the reaction was stirred overnight at room temperature. Saturated NH₄Cl (200 mL) was added, the two phases were separated, and the aqueous layer was extracted with CH_2Cl_2 (3 x 50 mL). The combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 and concentrated in vacuo. the residue was purified by flash chromatography on silica gel (Pet/EtOAc = 20:1) to afford the product **B** (11.11 g, 94% yield) as a pale yellow oil.

To a solution of compound **B** (3.54 g, 15 mmol) in dry THF (20 mL) at 0 °C, solution of phenyl magnesium bromide (18.0 mL, 1M in THF) was added dropwise under N₂ atmosphere. The reaction was stirred overnight at room temperature. Saturated NH₄Cl (100 mL) was added, the two phases were separated, and the aqueous layer was extracted with EtOAc (3 × 30 mL). The combined organic layers were dried over anhydrous Na₂SO₄

and concentrated in vacuo. the residue was purified by flash chromatography on silica gel (Pet/EtOAc = 20:1) to afford the product **C** (4.0 g, 85% yield) as a colorless oil.

A solution of compound **C** (4.0 g, 12.73 mmol), vinyl acetate (2.19 g, 25.46 mmol), $[Ir(cod)CI]_2$ (85 mg, 0.127 mmol) and Na₂CO₃ (0.81 g, 7.64 mmol) in toluene (30 mL) was heated at 100 °C for 6 h under N₂ atmosphere. After removing the solvent under vacuo, the residue was purified by flash chromatography on silica gel (Pet/EtOAc = 40:1) to afford the crude product of **D** (3.51 g) as a pale yellow oil. Vinyl ethers were prepared according to the literature procedure.²

To a solution of crude compound **D** (1.36 g) in THF (10 mL), solution of TBAF (6.0 mL, 1M in THF) was added dropwise. The reaction was stirred at room temperature for 1 h. Saturated NH₄Cl (50 mL) was added, the two phases were separated, and the aqueous layer was extracted with EtOAc (3×20 mL). The combined organic layers were washed several times with brine to remove *tert*-butyldimethylsilyl fluoride, dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (Pet/EtOAc = 20:1) to afford the product **1a** (0.86 g) as a colorless oil, the overall yield was 61% yield.

3. General procedure for the catalytic reactions

Preparation of the catalyst solution (5 x 10^{-3} M): To a 2.0 mL volumetric flask, **L-PiPr**₂ (6.5 mg, 0.01 mmol), Fe(OTf)₂ (3.5 mg, 0.01 mmol) and CH₂Cl₂ (2.0 mL) were added.

General Procedure A:

A dry reaction tube was charged with freshly prepared **L-PiPr**₂/Fe(OTf)₂ catalyst solution (0.1 mol% catalyst loading; 40µL, 5 x 10⁻³ M in CH₂Cl₂), followed by the addition of CH₂Cl₂ (1.6 mL). The mixture was stirred at 35 °C for 0.5 h followed by addition of the substrate solution (0.2 mmol, 400µL; 0.5 M in CH₂Cl₂). The reaction

mixture was stirred at 35 °C and detected by TLC. The residue was purified by flash chromatography on silica gel (Pet/EtOAc = 10:1 - 6:1) to afford the desired products.

General Procedure B:

A dry reaction tube was charged with freshly prepared **L-PiPr**₂/Fe(OTf)₂ catalyst solution (1 mol% catalyst loading; 400 μ L, 5 x 10⁻³ M in CH₂Cl₂), followed by the addition of CH₂Cl₂ (1.2 mL). The mixture was stirred at 35 °C for 0.5 h followed by addition of the substrate solution (0.2 mmol; 400 μ L, 0.5 M in CH₂Cl₂). The reaction mixture was stirred at 35 °C and detected by TLC. The residue was purified by flash chromatography on silica gel (Pet/EtOAc = 10:1 – 6:1) to afford the desired products.

General Procedure C:

A dry reaction tube was charged with **L-PiPr**₂ (6.5 mg, 5 mol%) and Fe(OTf)₂ (3.5 mg, 5 mol%) followed by the addition of CH_2CI_2 (1.6 mL). The mixture was stirred at 35 °C for 0.5 h followed by addition of the substrate solution (0.2 mmol, 400µL; 0.5 M in CH_2CI_2). The reaction mixture was stirred at 35 °C and detected by TLC. The residue was purified by flash chromatography on silica gel (Pet/EtOAc = 10:1 – 6:1) to afford the desired products.

General Procedure D:

A dry reaction tube was charged with **L-PiPr**₂ (6.5 mg, 5 mol%) and Sc(OTf)₃ (4.9 mg, 5 mol%) followed by the addition of CH_2Cl_2 (1.6 mL). The mixture was stirred at 35 °C for 0.5 h followed by addition of the substrate solution (0.2 mmol, 400µL; 0.5 M in CH_2Cl_2). The reaction mixture was stirred at 35 °C and detected by TLC. The residue was purified by flash chromatography on silica gel (Pet/EtOAc = 10:1 – 6:1) to afford the desired products.

General Procedure E:

A dry reaction tube was charged with **L-RaPr₂** (14.0 mg, 10 mol%), Fe(OTf)₂ (7.0 mg, 10 mol%) and CH₂Cl₂ (1.0 mL) and the resulting solution was stirred at 35 °C for 0.5 h. After removing the solvent under vacuo, **1u** (0.2 mmol) was weighted into the tube followed by adding CH₂ClCH₂Cl (2.0 mL). The reaction mixture was stirred at 35 °C for 11 h. The residue was purified by flash chromatography on silica gel (Pet/EtOAc = 15:1 – 10:1) to afford the desired products.

General Procedure F:

A dry reaction tube was charged with **L-RaPr**₂ (14.0 mg, 10 mol%), Fe(OTf)₂ (7.0 mg, 10 mol%) and CH₂Cl₂ (1.0 mL) and the resulting solution was stirred at 35 °C for 0.5 h. After removing the solvent under vacuo, 1v (0.2 mmol) was weighted into the tube followed by adding CHCl₃ (2.0 mL). The reaction mixture was stirred at 35 °C for 15 h. The residue was purified by flash chromatography on silica gel (Pet/EtOAc = 15:1 – 10:1) to afford the desired products.

General Procedure G:

A dry reaction tube was charged with **L-PiPr**₂ (6.5 mg, 10 mol%) and $Fe(OTf)_3$ (5.0 mg, 10 mol%) followed by the addition of CH₂Cl₂ (0.8 mL). The mixture was stirred at 35 °C for 0.5 h followed by addition of H₂O (5 µL) and then continued to stir at 35 °C for 5 minute, followed by addition of the substrate solution (0.1 mmol, 200µL; 0.5 M in CH₂Cl₂). The reaction mixture was stirred at 35 °C for 2 h. The residue was purified by flash chromatography on silica gel (Pet/EtOAc = 10:1 – 6:1) to afford the desired products.

4. General procedure for the synthesis of chromanones

To a solution of chromanols **2** (1 equiv) in CH_2CI_2 (0.1 M) was added PCC (3 equiv). The reaction mixture was stirred at 35 °C for 3 h. The residue was purified by flash chromatography on silica gel (Pet/EtOAc = 10:1) to afford the chromanones **3**. Isolated yield of chromanone **3** over two steps.

5. General procedure for the scale-up reaction

A round-bottomed flask was charged with **L-PiPr**₂ (29.3 mg, 0.045 mmol, 1 mol%) and Fe(OTf)₂ (15.8 mg, 0.045 mmol, 1 mol%) followed by the addition of CH_2Cl_2 (36.0 mL). The mixture was stirred at 35 °C for 0.5 h followed by addition of the substrate solution (4.5 mmol, 9.0 mL; 0.5 M in CH_2Cl_2). The reaction mixture was stirred at 35 °C for 4 h. After removing the solvent under vacuo, the residue was purified by flash chromatography on silica gel (Pet/EtOAc = 10:1 – 6:1) to afford the desired product **20** in 96% yield (1.04 g) with 96% ee.

6. Synthetic transformation

A dry reaction tube was charged with chromanol **2o** (35.8 mg, 0.149 mmol), diisopropylamine (0.053 mL, 0.372 mmol), CH₃CO₂H (0.017 mL, 0.30 mmol), NaCNBH₃ (23.4 mg, 0.372 mmol), and dry MeOH (0.36 mL). The reaction was stirred at 35 °C under N₂ atmosphere for 70 h. After removing the solvent under vacuo, the residue was purified by flash chromatography on silica gel (Et₃N/EtOAc/Pet = 1:30:70) to afford (*R*)-tolterodine in 72% yield (35.1 mg).

To a solution of 3u (20.2 mg, 0.074 mmol, 95% ee) in THF (3.7 mL) was added piperidine (0.4 mL, 4.05 mmol). The reaction mixture was stirred at 35 °C for 10 h. After removing the solvent under vacuo, the residue was purified by flash chromatography on silica gel (Pet/EtOAc = 4:1 - 2:1) to afford the desired product 4u in 99% yield (26.4 mg) with 95% ee.

To a solution of 3v (18.5 mg, 0.063 mmol, 95% ee) in THF (3.2 mL) was added piperidine (0.34 mL, 3.48 mmol). The reaction mixture was stirred at 35 °C for 10 h. After removing the solvent under vacuo, the residue was purified by flash chromatography on silica gel (Pet/EtOAc = 4:1 - 2:1) to afford the desired product 4v in 94% yield (22.4 mg) with 95% ee.

7. The optimization of reaction conditions

Table S1. Screening of metal salts.

	O OH M Ph (<u>t</u>)-1a	CH ₂ Cl ₂ , 35 °C, 2 h	
entryª	Metal salts	yield (%) ^b	ee (%) ^c
1	Fe(OTf) ₂	93	98
2	Sc(OTf) ₃	86	90
3	Zn(OTf) ₂	13	69
4	Fe(OTf) ₃	19	0

^a Unless otherwise stated, all reactions were performed with 1a (0.1 mmol) and L-PiPr₂/Metal salts (1/1, 10 mol%) in CH₂Cl₂ (0.1 M) at 35 °C for 2 h. ^b Isolated yields. ^c Determined by HPLC analysis on a chiral stationary phase.

Table S2. Screening of ligands.

A

 $\begin{array}{l} \textbf{L-PrPr}_2: Ar = 2,6\text{-}\textit{i}Pr_2C_6H_3, n = 1\\ \textbf{L-PiMe}_2: Ar = 2,6\text{-}\textit{Me}_2C_6H_3, n = 2\\ \textbf{L-PiPr}_2: Ar = 2,6\text{-}\textit{i}Pr_2C_6H_3, n = 2\\ \textbf{L-PiPr}_3: Ar = 2,4,6\text{-}\textit{i}Pr_3C_6H_2, n = 2\\ \end{array}$

L-RaPr₂ : Ar = 2,6- <i>i</i> Pr ₂ C ₆ H ₃
--

entry ^a	Ligand	yield (%) ^b	ee (%) ^c
1	L-PiPr ₂	93	98
2	L-RaPr ₂	80	94
3	L-PrPr ₂	80	91
4	L-PiMe ₂	86	96
5	L-PiPr ₃	79	96
6	Ph-Box	67	0
7 ^d	none	29	0

^a Unless otherwise stated, all reactions were performed with **1a** (0.1 mmol) and **Ligand**/Fe(OTf)₂ (1/1, 10 mol%) in CH₂Cl₂ (0.1 M) at 35 °C for 2 h. ^b Isolated yields of **2a**. ^c Determined by HPLC analysis on a chiral stationary phase. ^d Isolated yield of byproduct **2a'** was 63% yield.

Table S3. Screening of solvent.

	O OH Ph (±)-1a	L-PiPr ₂ (10 mol%) Fe(OTf) ₂ (10 mol%) solvent, 35 °C, 2 h	0
entry ^a	solvent	yield (%) ^b	ee (%) ^c
1	CH_2CI_2	93	98
2	PhCH₃	75	96
3	THF	90	98
4	EtOAc	87	96

^a Unless otherwise stated, all reactions were performed with **1a** (0.1 mmol) and **L-PiPr**₂/Fe(OTf)₂ (1/1, 10 mol%) in solvent (0.1 M) at 35 °C for 2 h. ^b Isolated yields. ^c Determined by HPLC analysis on a chiral stationary phase.

Table S4. Screening of catalyst loading.

	O OH Ph (±)-1a	L-PiPr2 (x mol%) OH Fe(OTf)2 (x mol%) Ph CH2Cl2, 35 °C, 2 h Ph 2a 2a	0
entry ^a	Х	yield (%) ^{<i>b</i>}	ee (%) ^c
1	10	93	98
2	5	93	98
3	1	93	99
4	0.1	84	98

^a Unless otherwise stated, all reactions were performed with **1a** (0.1 mmol) and **L-PiPr**₂/Fe(OTf)₂ (1/1, x mol%) in CH₂Cl₂ (0.1 M) at 35 °C for 2 h. ^b Isolated yields. ^c Determined by HPLC analysis on a chiral stationary phase.

Table S5. Screening of H_2O when $Fe(OTf)_3$ as metal salt.

entry ^a	×μL	yield (%) ^b	ee (%) ^c
1	0	19	0
2	1	44	92
3	5	71	99
4	10	72	98
5^d	0	63	98

^{*a*} Unless otherwise stated, all reactions were performed with **1a** (0.1 mmol), **L-PiPr**₂/Fe(OTf)₃ (1/1, 10 mol%) and H₂O (x μ L) in CH₂Cl₂ (0.1 M) at 35 °C for 2 h. ^{*b*} Isolated yields. ^{*c*} Determined by HPLC analysis on a chiral stationary phase. ^{*d*} 1 mol% catalyst loading.

Table S6. Screening of different counteranions with Fe(III) and HOTf.

entry ^a	variation from "standard conditions"	yield (%) ^b	ee (%) ^c
1	none	71	99
2	$Fe(CIO_4)_3 \cdot xH_2O$ instead of $Fe(OTf)_3$	46	98
3	FePO ₄ ·xH ₂ O instead of Fe(OTf) ₃	N.R.	-
4	$Fe(acac)_3$ instead of $Fe(OTf)_3$	0	-
5 ^d	HOTf	0	-
6 ^e	HOTf	N.R.	-

^{*a*} Unless otherwise stated, all reactions were performed with **1a** (0.1 mmol), **L-PiPr**₂/Fe(OTf)₃ (1/1, 10 mol%) and H₂O (5 μ L) in CH₂Cl₂ (0.1 M) at 35 °C for 2 h. ^{*b*} Isolated yields. ^{*c*} Determined by HPLC analysis on a chiral stationary phase. ^{*d*} HOTf (10 mol%) instead of H₂O (5 μ L). ^{*e*} HOTf (10 mol%) instead of Fe(OTf)₃ (10 mol%) and H₂O (5 μ L).

8. Scope limitation

9. HRMS analysis

The mixture of **L-PiPr**₂/Fe(OTf)₂ (1/1, 0.01 mmol) with D₂O (50 μ L) in CH₂Cl₂, and the mixture of **L-PiPr**₂/Fe(OTf)₃ (1/1, 0.01 mmol) with D₂O (50 μ L) in CH₂Cl₂ were monitored by HRMS (Figure S1 and Figure S2). The signals in response to the complexes of iron salt, chiral ligand and water showed that higher peaks was found from the system of Fe(OTf)₂ than Fe(OTf)₃. It might indicate that the ferrous catalyst is a slightly sensitive to moisture than the corresponding ferric catalyst.

10. Spectral characterization data

2-(Phenyl(vinyloxy)methyl)phenol (1a)

Colorless oil, 61% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.23 (m, 5H), 7.20 – 7.15 (m, 1H), 7.10 – 7.05 (m, 1H), 6.92 – 6.81 (m, 2H), 6.59 (s, 1H), 6.45 (dd, *J* = 14.1, 6.6 Hz, 1H), 6.03 (s, 1H), 4.50 (dd, *J* = 14.1, 2.1 Hz, 1H), 4.16 (dd, *J* = 6.6, 2.1 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 154.2, 149.5, 139.2, 129.5, 128.5, 128.46, 128.1, 126.9, 125.3, 120.4, 117.0, 91.8, 82.0. IR (film): ν (cm⁻¹) 3422, 3032, 1637, 1616, 1487, 1454, 1231, 1166, 1094, 1043, 939, 835, 751, 697. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₄O₂+Na⁺]: 249.0886, found 249.0887.

2-(o-tolyl(vinyloxy)methyl)phenol (1b)

Colorless oil, 53% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.15 – 7.05 (m, 5H), 6.83 – 6.71 (m, 3H), 6.57 (s, 1H), 6.34 (dd, *J* = 14.1, 6.6 Hz, 1H), 6.13 (s, 1H), 4.37 (dd, *J* = 14.1, 2.1 Hz, 1H), 4.06 (dd, *J* = 6.6, 2.1 Hz, 1H), 2.23 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 154.8, 149.6, 136.8, 136.5, 130.7, 129.6, 128.6, 128.4, 127.7, 126.1, 124.2, 120.4, 116.7, 91.6, 79.2, 19.2. IR (film): ν (cm⁻¹) 3424, 3026, 1612, 1487, 1457, 1281, 1233, 1094, 1040, 942, 818, 753. HRMS (FTMS+c ESI) calcd for [C₁₆H₁₆O₂+Na⁺]: 263.1043, found 263.1040.

2-(m-Tolyl(vinyloxy)methyl)phenol (1c)

Pale yellow oil, 11% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.07 (m, 6H), 6.92 – 6.87 (m, 2H), 6.67 – 6.59 (m, 1H), 6.47 (dd, *J* = 14.0, 6.6 Hz, 1H), 6.00 (s, 1H), 4.52 (dd, *J* = 14.0, 2.1 Hz, 1H), 4.19 (dd, *J* = 6.6, 2.1 Hz, 1H), 2.34 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 154.3, 149.5, 139.1, 138.3, 129.5, 129.0, 128.5, 128.5, 127.6, 125.3, 124.0, 120.3, 117.04, 91.8, 82.4, 21.5. IR (film): ν (cm⁻¹) 3411, 2920, 1613, 1487, 1455, 1322, 1283, 1228, 1159, 1040, 943, 821, 753, 698. HRMS (FTMS+c ESI) calcd for [C₁₆H₁₆O₂+Na⁺]: 263.1043, found 263.1044.

2-((3-Fluorophenyl)(vinyloxy)methyl)phenol (1d)

Pale yellow oil, 52% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.12 (m, 1H), 7.10 – 7.05 (m, 1H), 7.05 – 6.95 (m, 3H), 6.88 – 6.76 (m, 2H), 6.74 – 6.69 (m, 1H), 6.39 – 6.29 (m, 2H), 5.94 (s, 1H), 4.38 (dd, *J* = 14.1, 2.2 Hz, 1H), 4.07 (dd, *J* = 6.6, 2.2 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.8 (d, *J* = 244.8 Hz), 153.9, 149.4, 142.2 (d, *J* = 6.9 Hz), 130.0 (d, *J* = 8.1 Hz), 129. 7, 128.3, 125.2, 122.4 (d, *J* = 2.9 Hz), 120.6, 116.8, 114.9 (d, *J* = 21.0 Hz), 113.8 (d, *J* = 22.4 Hz), 91.8, 80.3. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ –112.37. IR (film): ν (cm⁻¹) 3411, 3063, 1619, 1591, 1516, 1485, 1442, 1400, 1261, 1217, 1152, 1033, 941, 815, 782, 744, 684. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₃FQ₂+Na⁺]: 267.0792, found 267.0798.

2-(p-Tolyl(vinyloxy)methyl)phenol (1e)

Pale yellow oil, 18% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.17 – 7.12 (m, 2H), 7.07 – 7.01 (m, 3H), 7.00 – 6.95 (m, 1H), 6.79 – 6.72 (m, 2H), 6.61 (s, 1H), 6.34 (dd, *J* = 14.1, 6.6 Hz, 1H), 5.91 (s, 1H), 4.39 (dd, *J* = 14.1, 2.1 Hz, 1H), 4.05 (dd, *J* = 6.6, 2.1 Hz, 1H), 2.20 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 154.2, 149.5, 137.8, 136.3, 129.3, 129.2, 128.3, 126.9, 125.5, 120.3, 116.9, 91.6, 81.8, 21.1. IR (film): ν (cm⁻¹) 3423, 3028, 1637, 1617, 1511, 1487, 1455, 1321, 1286, 1230, 1168, 1093, 1042, 942, 822, 753. HRMS (FTMS+c ESI) calcd for [C₁₆H₁₆O₂+Na⁺]: 263.1043, found 263.1036.

2-((4-Fluorophenyl)(vinyloxy)methyl)phenol (1f)

Pale yellow oil, 48% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.27 (m, 2H), 7.23 – 7.18 (m, 1H), 7.11 – 7.07 (m, 1H), 7.04 – 6.98 (m, 2H), 6.92 – 6.84 (m, 2H), 6.50 – 6.36 (m, 2H), 6.02 (s, 1H), 4.49 (dd, *J* = 14.1, 2.2 Hz, 1H), 4.18 (dd, *J* = 6.6, 2.2 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.4 (d, *J* = 245.4 Hz), 154.1, 149.4, 135.2 (d, *J* = 3.1 Hz), 129.7, 128.8 (d, *J* = 8.2 Hz), 128.3, 125.2, 120.5, 117.0, 115.4 (d, *J* = 21.5 Hz), 91.9, 81.1. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ –113.95. IR (film): ν (cm⁻¹) 3442, 3044, 1639, 1605, 1509, 1457, 1322, 1277, 1225, 1157, 1099, 1045, 943, 832, 755. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₃FO₂+Na⁺]: 267.0792, found 267.0799.

2-((4-Chlorophenyl)(vinyloxy)methyl)phenol (1g)

Pale yellow oil, 56% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.19 – 7.13 (m, 4H), 7.06 – 7.00 (m, 2H), 6.81 – 6.75 (m, 1H), 6.72 – 6.68 (m, 1H), 6.43 (s, 1H), 6.32 (dd, *J* = 14.1, 6.6 Hz, 1H), 5.93 (s, 1H), 4.37 (dd, *J* = 14.1, 2.2 Hz, 1H), 4.06 (dd, *J* = 6.6, 2.2 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 153.7, 149.4, 138.1, 133.7, 129.5, 128.6, 128.2, 128.2, 125.3, 120.6, 116.7, 91.7, 80.2. IR (film): ν (cm⁻¹) 3426, 3041, 1639, 1618, 1489, 1456, 1403, 1322, 1284, 1230, 1166, 1090, 1045, 1013, 942, 823, 754. HRMS (FTMS+c ESI) calcd for

 $[C_{15}H_{13}^{35}CIO_2+Na^+]$: 283.0496, found 283.0490; HRMS (FTMS+c ESI) calcd for $[C_{15}H_{13}^{37}CIO_2+Na^+]$: 285.0467, found 285.0462.

2-(1-(Vinyloxy)ethyl)phenol (1h)

Pale yellow oil, 48% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.15 (m, 1H), 7.12 – 7.05 (m, 1H), 6.93 – 6.84 (m, 2H), 6.83 – 6.76 (m, 1H), 6.36 (dd, *J* = 14.1, 6.6 Hz, 1H), 5.09 (q, *J* = 6.6 Hz, 1H), 4.45 (dd, *J* = 14.1, 2.0 Hz, 1H), 4.14 (dd, *J* = 6.6, 2.1 Hz, 1H), 1.60 (d, *J* = 6.6 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 154.1, 149.3, 129.1, 127.1, 126.7, 120.3, 116.9, 91.2, 78.0, 21.5. IR (film): ν (cm⁻¹) 3422, 2979, 1617, 1587, 1491, 1451, 1345, 1289, 1229, 1172, 1119, 1068, 1018, 961, 826, 751, 624, 568. HRMS (FTMS+c ESI) calcd for [C₁₀H₁₂O₂+Na⁺]: 187.0730, found 187.0733.

2-(1-(Vinyloxy)propyl)phenol (1i)

Yellow oil, 41% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.12 (m, 1H), 7.09 – 6.97 (m, 1H), 6.97 – 6.82 (m, 2H), 6.81 (s, 1H), 6.37 (dd, *J* = 14.1, 6.6 Hz, 1H), 4.79 (t, *J* = 6.9 Hz, 1H), 4.44 (dd, *J* = 14.1, 2.1 Hz, 1H), 4.12 (dd, *J* = 6.6, 2.1 Hz, 1H), 2.08 – 1.95 (m, 1H), 1.93 – 1.79 (m, 1H), 0.96 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 154.4, 149.7, 129.1, 127.9, 125.3, 120.0, 116.9, 91.1, 83.9, 28.6, 10.1. IR (film): *v* (cm⁻¹) 3432, 2931, 1618, 1491, 1455, 1350, 1228, 1172, 1082, 1039, 982, 835, 753. HRMS (FTMS+c ESI) calcd for [C₁₁H₁₄O₂+Na⁺]: 201.0886, found 201.0888.

2-(Cyclopropyl(vinyloxy)methyl)phenol (1j)

Yellow oil, 4% yield; ¹H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.14 (m, 1H), 7.08 – 6.99 (m, 1H), 6.93 – 6.82 (m, 3H), 6.34 (dd, *J* = 14.0, 6.5 Hz, 1H), 4.50 – 4.28 (m, 2H), 4.09 (dd, *J* = 6.5, 2.0 Hz, 1H), 1.43 – 1.34 (m, 1H), 0.69 – 0.61 (m, 1H), 0.56 – 0.48 (m, 1H), 0.45 – 0.31 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 154.4, 149.4, 129.3, 128.0, 124.5, 120.0, 116.8, 91.3, 85.9, 15.6, 3.9, 2.5. IR (film): ν (cm⁻¹) 3429, 2922, 2855, 1635, 1619, 1589, 1488, 1457, 1336, 1234, 1175, 1028, 975, 828, 754. HRMS (FTMS+c ESI) calcd for [C₁₂H₁₄O₂+Na⁺]: 213.0886, found 213.0886.

2-(Cyclohexyl(vinyloxy)methyl)phenol (1k)

Pale yellow oil, 15% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.13 (m, 1H), 7.00 – 6.93 (m, 1H), 6.92 – 6.78 (m, 3H), 6.34 (dd, *J* = 14.0, 6.5 Hz, 1H), 4.52 (d, *J* = 7.9 Hz, 1H), 4.42 (dd, *J* = 14.0, 2.0 Hz, 1H), 4.09 (dd, *J* = 6.5, 2.1 Hz, 1H), 2.10 – 2.02 (m, 1H), 1.91 – 1.81 (m, 1H), 1.81 – 1.74 (m, 1H), 1.71 – 1.58 (m, 2H), 1.43 – 1.35 (m, 1H), 1.30 – 0.87 (m, 5H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 154.7, 150.1, 129.1, 128.9, 124.0, 119.6, 117.0, 91.0, 88.0, 42.5, 29.3, 29.3, 26.2, 25.9, 25.8. IR (film): ν (cm⁻¹) 3448, 2924, 2852, 1637, 1617, 1588, 1488, 1452, 1347, 1230, 1170, 1083, 1027, 988, 941, 880, 835, 753. HRMS (FTMS+c ESI) calcd for [C₁₅H₂₀O₂+Na⁺]: 255.1356, found 255.1353.

2-Methoxy-6-(phenyl(vinyloxy)methyl)phenol (11)

Yellow oil, 22% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.52 (m, 2H), 7.46 – 7.37 (m, 2H), 7.37 – 7.29 (m, 1H), 7.11 (dd, *J* = 7.9, 1.1 Hz, 1H), 6.94 (t, *J* = 8.0 Hz, 1H), 6.83 (dd, *J* = 8.0, 1.3 Hz, 1H), 6.60 (dd, *J* = 14.2, 6.7 Hz, 1H), 6.43 (s, 1H), 6.06 (s, 1H), 4.51 (dd, *J* = 14.2, 1.8 Hz, 1H), 4.17 (dd, *J* = 6.7, 1.8 Hz, 1H), 3.88 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 150.4, 146.2, 142.6, 140.7, 128.2, 127.4, 126.9, 126.6, 119.8, 119.2, 109.6, 89.5, 76.2, 55.8. IR (film): ν (cm⁻¹) 3509, 3031, 1635, 1619, 1480, 1442, 1353, 1270, 1220, 1171, 1080, 1047, 1000, 827, 767, 731, 698. HRMS (FTMS+c ESI) calcd for [C₁₆H₁₆O₃+Na⁺]: 279.0992, found 279. 0980.

2-Chloro-6-(phenyl(vinyloxy)methyl)phenol (1m)

Pale yellow oil, 59% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.37 (m, 2H), 7.36 – 7.30 (m, 2H), 7.29 – 7.22 (m, 3H), 6.86 (t, *J* = 7.9 Hz, 1H), 6.45 (dd, *J* = 14.2, 6.7 Hz, 1H), 6.21 (s, 1H), 6.08 (s, 1H), 4.39 (dd, *J* = 14.2, 2.1 Hz, 1H), 4.10 (dd, *J* = 6.7, 2.1 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 150.1, 148.6, 139.8, 128.5, 128.5, 128.4, 127.9, 126.8, 126.4, 121.1, 120.3, 90.4, 77.7. IR (film): ν (cm⁻¹) 3511, 3032, 1618, 1452, 1322, 1242, 1165, 1130, 1051, 956, 828, 771, 733, 700, 636. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₃³⁵ClO₂+Na⁺]: 283.0496, found 283.0497; HRMS (FTMS+c ESI) calcd for [C₁₅H₁₃³⁷ClO₂+Na⁺]: 285.0467, found 285.0461.

5-Chloro-2-(phenyl(vinyloxy)methyl)phenol (1n)

Pale yellow oil, 65% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.27 (m, 5H), 6.98 (d, *J* = 8.1 Hz, 1H), 6.89 – 6.83 (m, 2H), 6.80 (s, 1H), 6.43 (dd, *J* = 14.0, 6.6 Hz, 1H), 5.98 (s, 1H), 4.50 (dd, *J* = 14.0, 2.3 Hz, 1H), 4.20 (dd, *J* = 6.6, 2.3 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.1, 149.2, 138.7, 134.7, 129.4, 128.7, 128.4, 126.9, 123.9, 120.6, 117.4, 92.2, 81.6. IR (film): ν (cm⁻¹) 3416, 3031, 1638, 1607, 1487, 1452, 1413, 1316, 1162, 1081, 1027, 998, 903, 841, 798, 742, 696, 638. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₃³⁵ClO₂+Na⁺]: 283.0496, found 283.0500; HRMS (FTMS+c ESI) calcd for [C₁₅H₁₃³⁷ClO₂+Na⁺]: 285.0467, found 285.0461.

4-Methyl-2-(phenyl(vinyloxy)methyl)phenol (10)

Colorless oil, 46% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.29 (m, 5H), 7.04 – 6.99 (m, 1H), 6.92 – 6.87 (m, 1H), 6.79 (d, *J* = 8.2 Hz, 1H), 6.48 (dd, *J* = 14.0, 6.6 Hz, 1H), 6.37 (s, 1H), 5.99 (s, 1H), 4.52 (dd, *J* = 14.0, 2.1 Hz, 1H), 4.19 (dd, *J* = 6.6, 2.1 Hz, 1H), 2.25 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 152.0, 149.6, 139.3, 130.1, 129.6, 128.9, 128.6, 128.1, 126.9, 124.8, 116.9, 91.8, 82.4, 20.5. IR (film): ν (cm⁻¹) 3414, 2919, 1620, 1499, 1452, 1323, 1253, 1167, 1043, 995, 945, 814, 726, 697. HRMS (FTMS+c ESI) calcd for [C₁₆H₁₆O₂+Na⁺]: 263.1043, found 263.1039.

4-Methoxy-2-(phenyl(vinyloxy)methyl)phenol (1p)

Pale yellow oil, 36% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.28 (m, 5H), 6.83 – 6.73 (m, 2H), 6.70 – 6.64 (m, 1H), 6.48 (dd, *J* = 14.1, 6.6 Hz, 1H), 6.11 (s, 1H), 6.00 (s, 1H), 4.51 (dd, *J* = 14.1, 2.1 Hz, 1H), 4.19 (dd, *J* = 6.6, 2.1 Hz, 1H), 3.73 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 153.3, 149.6, 148.0, 139.1, 128.6, 128.2, 127.0, 126.2, 117.7, 114.4, 113.9, 91.7, 81.8, 55.7. IR (film): ν (cm⁻¹) 3399, 3031, 1637, 1620, 1499, 1451, 1430, 1322, 1268, 1232, 1167, 1035, 997, 944, 816, 757, 732, 697. HRMS (FTMS+c ESI) calcd for [C₁₆H₁₆O₃+Na⁺]: 279.0992, found 279.0985.

4-Fluoro-2-(phenyl(vinyloxy)methyl)phenol (1q)

Pale yellow oil, 40% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.27 (m, 5H), 6.90 – 6.79 (m, 2H), 6.79 – 6.73 (m, 1H), 6.47 – 6.25 (m, 2H), 5.99 (s, 1H), 4.48 (dd, *J* = 14.1, 2.2 Hz, 1H), 4.18 (dd, *J* = 6.6, 2.2 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 156.7 (d, *J* = 237.0 Hz), 150.0 (d, *J* = 2.1 Hz), 149.4, 138.7, 128.7, 128.4, 126.9, 126.8, 117.8 (d, *J* = 7.9 Hz), 115.7 (d, *J* = 22.9 Hz), 114.7 (d, *J* = 24.0 Hz), 91.9, 80.8. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ –123.43. IR (film): ν (cm⁻¹) 3425, 3033,1639, 1623, 1494, 1437, 1322, 1261, 1230, 1163, 1046, 1001, 947, 816, 767, 732, 697. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₃FO₂+Na⁺]: 267.0792, found 267.0789.

4-Chloro-2-(phenyl(vinyloxy)methyl)phenol (1r)

Pale yellow oil, 78% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.25 (m, 5H), 7.14 – 7.06 (m, 2H), 6.74 (d, *J* = 8.5 Hz, 1H), 6.61 (s, 1H), 6.41 (dd, *J* = 14.1, 6.6 Hz, 1H), 5.96 (s, 1H), 4.48 (dd, *J* = 14.1, 2.3 Hz, 1H), 4.18 (dd, *J* = 6.6, 2.3 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 152.7, 149.3, 138.6, 129.2, 128.7, 128.4, 128.0, 127.1, 126.8, 125.2, 118.3, 92.1, 81.1. IR (film): ν (cm⁻¹) 3424, 3032, 1639, 1621, 1486, 1418, 1320, 1269, 1234, 1164, 1110, 1047, 999, 886, 817, 744, 698, 649. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₃³⁵ClO₂+Na⁺]: 283.0496, found 283.0487; HRMS (FTMS+c ESI) calcd for [C₁₅H₁₃³⁷ClO₂+Na⁺]: 285.0467, found 285.0460.

4-Bromo-2-(phenyl(vinyloxy)methyl)phenol (1s)

Colorless oil, 29% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.28 (m, 5H), 7.28 – 7.24 (m, 1H), 7.24 – 7.21 (m, 1H), 6.71 (d, *J* = 8.6 Hz, 1H), 6.64 (s, 1H), 6.42 (dd, *J* = 14.0, 6.6 Hz, 1H), 5.96 (s, 1H), 4.49 (dd, *J* = 14.0, 2.3 Hz, 1H), 4.19 (dd, *J* = 6.6, 2.3 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 153.2, 149.2, 138.6, 132.2, 130.9, 128.7, 128.4, 127.5, 126.8, 118.8, 112.4, 92.2, 81.2. IR (film): ν (cm⁻¹) 3419, 3031, 1638, 1620, 1480, 1414, 1397, 1319, 1269, 1234, 1162, 1103, 1045, 999, 936, 814, 752, 696, 623. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₃⁷⁹BrO₂+Na⁺]: 326.9991, found 326.9985; HRMS (FTMS+c ESI) calcd for [C₁₅H₁₃⁸¹BrO₂+Na⁺]: 328.9971, found 328.9974.

3-Fluoro-2-(phenyl(vinylox)methyl)phenol (1t)

Pale yellow oil, 44% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.35 (m, 3H), 7.35 – 7.23 (m, 3H), 7.17 – 7.08 (m, 1H), 6.73 – 6.66 (m, 1H), 6.66 – 6.57 (m, 1H), 6.46 (dd, *J* = 14.0, 6.6 Hz, 1H), 6.36 (s, 1H), 4.57 (dd, *J* =

14.0, 2.5 Hz, 1H), 4.24 (dd, J = 6.6, 2.5 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.1 (d, J = 243.2 Hz), 156.2 (d, J = 5.0 Hz), 149.0, 138.3, 130.0 (d, J = 10.8 Hz), 128.7, 128.4, 126.4, 113.3(d, J = 2.9 Hz), 113.0 (d, J = 16.0 Hz), 106.8 (d, J = 22.2 Hz), 92.3. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ –118.11. IR (film): ν (cm⁻¹) 3427, 3033, 1624, 1588, 1471, 1342, 1263, 1217, 1155, 1022, 940, 834, 781, 755, 697. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₃FO₂+Na⁺]: 267.0792, found 267.0793.

1-(Phenyl(vinyloxy)methyl)naphthalen-2-ol (1u)

Yellow oil, 47% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.80 – 7.69 (m, 3H), 7.44 – 7.32 (m, 3H), 7.32 – 7.20 (m, 4H), 7.18 – 7.13 (m, 1H), 6.78 (s, 1H), 6.51 (dd, *J* = 14.0, 6.6 Hz, 1H), 4.52 (dd, *J* = 14.0, 2.4 Hz, 1H), 4.16 (dd, *J* = 6.6, 2.4 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 153.6, 149.3, 138.2, 131.8, 130.6, 128.9, 128.8, 128.6, 128.5, 127.3, 127.1, 123.2, 121.2, 119.5, 114.4, 92.2, 80.1. IR (film): *v* (cm⁻¹) 3414, 3061, 1624, 1517, 1467, 1401, 1315, 1264, 1220, 1159, 1063, 1030, 816, 746, 701. HRMS (FTMS+c ESI) calcd for [C₁₉H₁₆O₂+Na⁺]: 299.1043, found 299.1046.

1-((3-Fluorophenyl)(vinyloxy)methyl)naphthalen-2-ol (1v)

Yellow oil, 39% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.69 (m, 3H), 7.62 (s, 1H), 7.47 – 7.36 (m, 1H), 7.34 – 7.27 (m, 1H), 7.24 – 7.07 (m, 4H), 6.99 – 6.88 (m, 1H), 6.77 (s, 1H), 6.49 (dd, *J* = 14.0, 6.6 Hz, 1H), 4.52 (dd, *J* = 14.0, 2.4 Hz, 1H), 4.17 (dd, *J* = 6.6, 2.4 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.9 (d, *J* = 244.9 Hz), 153.5, 149.2, 141.1 (d, *J* = 6.9 Hz), 131.8, 130.9, 130.1 (d, *J* = 8.2 Hz), 129.0, 128.9, 127.3, 123.4, 122.7 (d, *J* = 2.9 Hz), 121.2, 119.4, 115.3 (d, *J* = 21.0 Hz), 114.3 (d, *J* = 4.8 Hz), 114.1, 92.3, 78.7. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ –112.18. IR (film): *v* (cm⁻¹) 3423, 3066, 1621, 1593, 1517, 1486, 1443, 1264, 1220, 1163, 1065, 944, 819, 784, 747, 685. HRMS (FTMS+c ESI) calcd for [C₁₉H₁₅FO₂+Na⁺]: 317.0948, found 317.0957.

(4R)-4-phenylchroman-2-ol (2a)

2 h, **L-PiPr**₂/Fe(OTf)₂ (1/1, 1 mol% catalyst loading); colorless oil, 42.0 mg, 93% yield, 3.5:1 d.r., 99% ee; $[\alpha]^{20}$ = -165.9 (*c* = 0.79 in CH₂Cl₂, λ = 436 nm); HPLC (Daicel chiralcel IA, *n*-hexane/*i*-PrOH 90/10, 1.0 mL/min, 230 nm) *t*_{R(major)} = 7.17 min, *t*_{R(minor)} = 9.43 min; ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.06 (m, 6H), 6.94 – 6.63 (m, 3H), 5.74 – 5.59 (m, 1H), 4.33 (dd, *J* = 11.0, 5.8 Hz, 1H), 3.34 (dd, *J* = 3.8, 1.5 Hz, 1H), 2.36 – 2.2 (m, 1H), 2.20 – 2.09 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 151.8, 144.2, 129.6, 128.8, 128.6, 127.9, 126.7, 125.4, 121.0, 116.8, 91.3, 36.8, 36.01. IR (film): ν (cm⁻¹) 3420, 1582, 1488, 1452, 1272, 1224, 1092, 1054, 1015, 895, 754, 701. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₄O₂+Na⁺]: 249.0886, found 249.0892.

(R)-4-phenylchroman-2-one (3a)

White solid, Mp: 109–113 °C, 37.4 mg, 83% yield over two steps, 99% ee; $[\alpha]^{20} = -106.7$ (c = 0.73 in CH₂Cl₂, $\lambda = 436$ nm); HPLC (Daicel chiralcel IC, *n*-hexane/*i*-PrOH 95/5, 1.0 mL/min, 230 nm) $t_{R(minor)} = 19.51$ min, $t_{R(major)} = 20.33$ min; ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.23 (m, 4H), 7.21 – 7.01 (m, 4H), 7.01 – 6.93 (m, 1H), 4.34 (t, J = 6.9 Hz, 1H), 3.11 – 2.97 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.6, 151.7, 140.2, 129.1, 128.8, 128.3, 127.6, 127.5, 125.7, 124.6, 117.1, 40.6, 37.0. IR (film): ν (cm⁻¹) 1769, 1488, 1454, 1275, 1218, 1177, 1136, 920, 756, 700. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₂O₂+Na⁺]: 247.0730, found 247.0737.

	Retention Time	Area	% Area
1	19.512	11076	0.17
2	20.332	6433799	99.83

2-methyl-4-phenyl-4H-benzo[d][1,3]dioxine (2a')

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.33 (m, 5H), 7.19 – 7.13 (m, 1H), 6.93 – 6.86 (m, 1H), 6.85 – 6.76 (m, 1H), 6.68 – 6.58 (m, 1H), 5.98 (s, 1H), 5.47 (q, *J* = 5.1 Hz, 1H), 1.61 (d, *J* = 5.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 153.1, 140.3, 128.7, 128.6, 128.6, 128.3, 127.0, 124.7, 121.0, 116.5, 97.2, 79.7, 20.9. IR (film): ν (cm⁻¹) 1585, 1485, 1459, 1406, 1352, 1238, 1123, 1094, 931, 915, 752, 698. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₄O₂+H⁺]: 227.1067, found 227.1062.

(4R)-4-(o-tolyl)chroman-2-ol (2b)

3 h, **L-PiPr**₂/Fe(OTf)₂ (1/1, 1 mol% catalyst loading); colorless oil, 33.5 mg, 70% yield, 3.7:1 d.r.; $[\alpha]^{25} = -132.7$ (*c* = 0.54 in CH₂Cl₂, λ = 436 nm); ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.07 (m, 4H), 7.05 – 6.94 (m, 1H), 6.93 – 6.85 (m, 1H), 6.85 – 6.76 (m, 1H), 6.76 – 6.63 (m, 1H), 5.83 – 5.62 (m, 1H), 4.60 (dd, *J* = 10.7, 5.9 Hz, 1H), 3.41 – 3.17 (m, 1H), 2.40 (s, 3H), 2.30 – 2.00 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 152.1, 142.2, 136.4, 130.5, 129.3, 128.7, 127.7, 126.5, 126.4, 125.5, 121.1, 116.9, 91.5, 34.6, 32.8, 19.6. IR (film): ν (cm⁻¹) 3411, 2931, 1582, 1487, 1453, 1274, 1215, 1114, 1054, 1015, 939, 898, 754. HRMS (FTMS+c ESI) calcd for [C₁₆H₁₆O₂+Na⁺]: 263.1043, found 263.1039.

(R)-4-(o-tolyl)chroman-2-one (3b)

Colorless oil, 29.0 mg, 61% yield over two steps, 97% ee; $[\alpha]^{27} = -161.9$ (c = 0.40 in CH₂Cl₂, $\lambda = 436$ nm); HPLC (Daicel chiralcel ID, *n*-hexane/*i*·PrOH 98/2, 1.0 mL/min, 230 nm) $t_{R(minor)} = 17.14$ min, $t_{R(major)} = 18.13$ min; ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.11 (m, 5H), 7.10 – 7.01 (m, 1H), 6.95 – 6.87 (m, 1H), 6.87 – 6.80 (m, 1H), 4.59 (dd, J = 8.9, 6.0 Hz, 1H), 3.13 – 2.80 (m, 2H), 2.40 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.8, 152.0, 138.0, 135.9, 131.0, 128.7, 128.0, 127.5, 126.9, 126.8, 125.9, 124.7, 117.0, 36.5, 35.9, 19.5. IR (film): ν (cm⁻¹) 2922, 1770, 1609, 1587, 1487, 1454, 1279, 1215, 1175, 1143, 918, 755. HRMS (FTMS+c ESI) calcd for [C₁₆H₁₄O₂+Na⁺]: 261.0886, found 261.0882.

	Retention Time	Area	% Area
1	17.144	40703	1.33
2	18.127	3022177	98.67

(4R)-4-(m-tolyl)chroman-2-ol (2c)

3 h, **L-PiPr**₂/Fe(OTf)₂ (1/1, 1 mol% catalyst loading); colorless oil, 40.6 mg, 85% yield, 3.7:1 d.r.; $[\alpha]^{20} = -163.2$ (*c* = 0.79 in CH₂Cl₂, λ = 436 nm); ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.18 (m, 1H), 7.16 – 6.93 (m, 4H), 6.93 – 6.66 (m, 3H), 5.72 – 5.59 (m, 1H), 4.29 (dd, *J* = 11.0, 5.8 Hz, 1H), 3.39 – 3.24 (m, 1H), 2.32 (s, 3H), 2.29 – 2.23 (m, 1H), 2.21 – 2.10 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 151.8, 144.1, 138.2, 129.7, 129.5, 128.5, 127.8, 127.5, 125.9, 125.5, 121.0, 116.8, 91.4, 36.7, 36.1, 21.4. IR (film): ν (cm⁻¹) 3420, 2934, 1607, 1582, 1486, 1452, 1272, 1223, 1092, 1057, 1016, 913, 755. HRMS (FTMS+c ESI) calcd for [C₁₆H₁₆O₂+Na⁺]: 263.1043, found 263.1047.

(R)-4-(m-tolyl)chroman-2-one (3c)

Colorless oil, 38.9 mg, 82% yield over two steps, 99% ee; $[\alpha]^{20} = -107.4$ (c = 0.69 in CH₂Cl₂, $\lambda = 436$ nm); HPLC (Daicel chiralcel ODH, *n*-hexane/*i*-PrOH 90/10, 1.0 mL/min, 230 nm) $t_{R(minor)} = 10.44$ min, $t_{R(major)} = 12.27$ min; ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.20 (m, 2H), 7.17 – 7.02 (m, 3H), 7.01 – 6.88 (m, 3H), 4.30 (t, J = 7.0 Hz, 1H), 3.13 – 2.92 (m, 2H), 2.32 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.7, 151.7, 140.2, 138.8, 129.0, 128.7, 128.4, 128.3, 128.2, 125.9, 124.6, 124.6, 117.0, 40.6, 37.0, 21.4. IR (film): ν (cm⁻¹) 2918, 1771, 1608, 1586, 1486, 1454, 1278, 1216, 1165, 1133, 920, 757, 702. HRMS (FTMS+c ESI) calcd for [C₁₆H₁₄O₂+Na⁺]: 261.0886, found 261.0882.

	Retention Time	Area	% Area
1	10.370	959664	50.01
2	12.205	959291	49.99

	Retention Time	Area	% Area
1	10.448	15141	0.63
2	12.272	2405694	99.37

(4R)-4-(3-fluorophenyl)chroman-2-ol (2d)

8 h, **L-PiPr**₂/Fe(OTf)₂ (1/1, 1 mol% catalyst loading); colorless oil, 43.9 mg, 90% yield, 4:1 d.r.; $[\alpha]^{18} = -145.6$ (*c* = 0.86 in CH₂Cl₂, λ = 436 nm); ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.23 (m, 1H), 7.19 – 7.07 (m, 1H), 7.05 – 6.69 (m, 6H), 5.74 – 5.60 (m, 1H), 4.34 (dd, *J* = 11.1, 5.7 Hz, 1H), 3.42 (dd, *J* = 3.6, 1.5 Hz, 1H), 2.34 – 2.23 (m, 1H), 2.19 – 2.03 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.0 (d, *J* = 244.4 Hz), 151.7, 146.9 (d, *J* = 6.9 Hz), 130.1 (d, *J* = 8.2 Hz), 129.5, 128.1, 124.7, 124.5 (d, *J* = 2.6 Hz), 121.1, 117.0, 115.6 (d, *J* = 21.2 Hz), 113.7 (d, *J* = 21.0 Hz), 91.2, 36.6 (d, *J* = 1.3 Hz), 35.9. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ –112.85. IR (film): ν (cm⁻¹) 3417, 1586, 1486, 1450, 1270, 1223, 1138, 1056, 1017, 894, 756. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₃FO₂+Na⁺]: 267.0792, found 267.0792.

(R)-4-(3-fluorophenyl)chroman-2-one (3d)

Colorless oil, 40.8 mg, 84% yield over two steps, 99% ee; $[\alpha]^{19} = -61.8$ (c = 0.80 in CH₂Cl₂, $\lambda = 436$ nm); HPLC (Daicel chiralcel ODH, *n*-hexane/*i*-PrOH 90/10, 1.0 mL/min, 230 nm) $t_{R(minor)} = 12.87$ min, $t_{R(major)} = 16.21$ min; ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.26 (m, 2H), 7.21 – 7.06 (m, 2H), 7.06 – 6.88 (m, 3H), 6.87 – 6.78 (m, 1H), 4.35 (t, J = 6.7 Hz, 1H), 3.16 – 2.91 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.1, 163.1 (d, J = 245.7 Hz), 151.6, 142.8 (d, J = 6.7 Hz), 130.7 (d, J = 8.2 Hz), 129.1, 128.2, 124.9, 124.8, 123.2 (d, J = 2.8 Hz), 117.3, 114.7 (d, J = 7.0 Hz), 114.5 (d, J = 7.8 Hz), 40.4 (d, J = 1.7 Hz), 36.8. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -111.73. IR (film): ν (cm⁻¹) 1771, 1588, 1486, 1453, 1345, 1265, 1218, 1157, 919, 756. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₁FO₂+Na⁺]: 265.0635, found 265.0638.

	Retention Time	Area	% Area
1	12.867	12026	0.42
2	16.213	2879313	99.58

(4R)-4-(p-tolyl)chroman-2-ol (2e)

3 h, **L-PiPr**₂/Fe(OTf)₂ (1/1, 1 mol% catalyst loading); colorless oil, 36.7 mg, 76% yield, $3.5:1 \text{ d.r.}; [\alpha]^{23} = -168.2$ (*c* = 0.74 in CH₂Cl₂, λ = 436 nm); ¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.01 (m, 5H), 6.95 – 6.72 (m, 3H), 5.79 – 5.62 (m, 1H), 4.32 (dd, *J* = 11.0, 5.8 Hz, 1H), 3.43 – 3.18 (m, 1H), 2.37 (s, 3H), 2.32 – 2.23 (m, 1H), 2.22 – 2.11 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 151.8, 141.2, 136.3, 129.6, 129.3, 128.7, 127.8, 125.6, 121.0, 116.8, 91.4, 36.4, 36.1, 21.0. IR (film): ν (cm⁻¹) 3418, 2927, 1582, 1512, 1486, 1451, 1303, 1224, 1112, 1056, 1016, 938, 898, 815, 756. HRMS (FTMS+c ESI) calcd for [C₁₆H₁₆O₂+Na⁺]: 263.1043, found 263.1046.

(R)-4-(p-tolyl)chroman-2-one (3e)

White solid, Mp: 107–111 °C, 30.9 mg, 65% yield over two steps, 96% ee; $[\alpha]^{19} = -96.6$ (c = 0.39 in CH₂Cl₂, $\lambda = 436$ nm); HPLC (Daicel chiralcel ODH, *n*-hexane/*i*-PrOH 90/10, 1.0 mL/min, 230 nm) $t_{R(minor)} = 11.38$ min, $t_{R(major)}$

= 12.27 min; ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.27 (m, 1H), 7.22 – 7.01 (m, 6H), 7.01 – 6.96 (m, 1H), 4.31 (t, *J* = 7.1 Hz, 1H), 3.14 – 2.87 (m, 2H), 2.34 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.7, 151.7, 137.3, 137.2, 129.8, 128.7, 128.3, 127.4, 126.0, 124.6, 117.0, 40.3, 37.0, 21.0. IR (film): ν (cm⁻¹) 2921, 1769, 1513, 1486, 1454, 1279, 1218, 1177, 1136, 917, 882, 820, 759. HRMS (FTMS+c ESI) calcd for [C₁₆H₁₄O₂+Na⁺]: 261.0886, found 261.0881.

	Retention Time	Area	% Area
1	11.376	61749	1.86
2	12.270	3260516	98.14

(4R)-4-(4-fluorophenyl)chroman-2-ol (2f)

2 h, **L-PiPr**₂/Fe(OTf)₂ (1/1, 1 mol% catalyst loading); colorless oil, 46.1 mg, 94% yield, 4:1 d.r.; $[\alpha]^{21} = -117.5$ (*c* = 0.90 in CH₂Cl₂, λ = 436 nm); ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.11 (m, 3H), 7.08 – 6.97 (m, 2H), 6.93 – 6.79 (m, 2H), 6.79 – 6.68 (m, 1H), 5.72 – 5.62 (m, 1H), 4.34 (dd, *J* = 11.3, 5.7 Hz, 1H), 3.48 (dd, *J* = 3.7, 1.7 Hz, 1H), 2.36 – 2.20 (m, 1H), 2.18 – 2.06 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.7 (d, *J* = 243.4 Hz), 151.7, 139.8 (d, *J* = 3.2 Hz), 130.2 (d, *J* = 7.8 Hz), 129.4, 128.0, 125.2, 121.1, 116.9, 115.4 (d, *J* = 21.1 Hz), 91.2 (d, *J* = 2.5 Hz), 36.2, 36.0. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ –116.17. IR (film): ν (cm⁻¹) 3423, 1605, 1509, 1487, 1452, 1271, 1225, 1092, 1056, 1016, 899, 834, 756. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₃FO₂+Na⁺]: 267.0792, found 267.0787.

(R)-4-(4-fluorophenyl)chroman-2-one (3f)

Colorless oil, 39.7 mg, 82% yield over two steps, 98% ee; $[\alpha]^{22} = -70.3$ (c = 0.64 in CH₂Cl₂, $\lambda = 436$ nm); HPLC (Daicel chiralcel OJH, *n*-hexane/*i*-PrOH 90/10, 1.0 mL/min, 254 nm) $t_{R(minor)} = 21.70$ min, $t_{R(major)} = 23.51$ min; ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.28 (m, 1H), 7.22 – 6.88 (m, 7H), 4.34 (t, J = 6.8 Hz, 1H), 3.16 – 2.86 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.3, 162.1 (d, J = 245.1 Hz), 151.6, 136.0 (d, J = 3.2 Hz), 129.1 (d, J = 8.1 Hz), 128.9, 128.2, 125.5, 124.7, 117.2, 116.0 (d, J = 21.4 Hz), 40.0, 37.1. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ – 114.60. IR (film): ν (cm⁻¹) 1769, 1606, 1509, 1487, 1454, 1278, 1222, 1136, 918, 884, 837, 759. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₁FO₂+Na⁺]: 265.0635, found 265.0633.

	Retention Time	Area	% Area
1	21.697	15721	0.79
2	23.507	1979129	99.21

(4R)-4-(4-chlorophenyl)chroman-2-ol (2g)

2 h, **L-PiPr**₂/Fe(OTf)₂ (1/1, 1 mol% catalyst loading); colorless oil, 49.0 mg, 94% yield, 4:1 d.r.; $[\alpha]^{23} = -158.3$ (*c* = 0.97 in CH₂Cl₂, λ = 436 nm); ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.25 (m, 2H), 7.22 – 7.06 (m, 3H), 6.93 – 6.77 (m, 2H), 6.77 – 6.63 (m, 1H), 5.75 – 5.60 (m, 1H), 4.31 (dd, *J* = 11.3, 5.7 Hz, 1H), 3.49 (dd, *J* = 3.4, 1.4 Hz,

1H), 2.34 – 2.20 (m, 1H), 2.15 – 2.03 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 151.7, 142.7, 132.5, 130.1, 129.4, 128.8, 128.1, 124.9, 121.1, 117.0, 91.2, 36.2, 36.0. IR (film): ν (cm⁻¹) 3423, 1582, 1488, 1451, 1302, 1273, 1225, 1090, 1056, 1015, 939, 899, 826, 754. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₃³⁵ClO₂+Na⁺]: 283.0496, found 283.0490; HRMS (FTMS+c ESI) calcd for [C₁₅H₁₃³⁷ClO₂+Na⁺]: 285.0467, found 285.0460.

(R)-4-(4-chlorophenyl)chroman-2-one (3g)

White solid, Mp: 138–141 °C, 41.6 mg, 81% yield over two steps, 97% ee; $[\alpha]^{22} = -87.0$ (c = 0.69 in CH₂Cl₂, $\lambda = 436$ nm); HPLC (Daicel chiralcel OJH, *n*-hexane/*i*-PrOH 90/10, 1.0 mL/min, 254 nm) $t_{R(minor)} = 21.61$ min, $t_{R(major)} = 25.21$ min; ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.27 (m, 3H), 7.17 – 7.05 (m, 4H), 7.02 – 6.93 (m, 1H), 4.33 (t, J = 6.8 Hz, 1H), 3.13 – 2.93 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.2, 151.6, 138.8, 133.5, 129.3, 129.0, 128.9, 128.2, 125.2, 124.7, 117.2, 40.1, 36.9. IR (film): ν (cm⁻¹) 1768, 1586, 1489, 1454, 1411, 1280, 1219, 1176, 1134, 1092, 914, 882, 830, 756. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₁³⁵ClO₂+Na⁺]: 281.0340, found 281.0342; HRMS (FTMS+c ESI) calcd for [C₁₅H₁₁³⁷ClO₂+Na⁺]: 283.0310, found 283.0311.

	Retention Time	Area	% Area
1	21.607	18162	1.31
2	25.211	1373331	98.69

(4S)-4-methylchroman-2-ol (2h)

2 h, **L-PiPr**₂/Fe(OTf)₂ (1/1, 1 mol% catalyst loading); colorless oil, 27.7 mg, 84% yield, 2.6:1 d.r.; $[\alpha]^{21} = -79.0$ (*c* = 0.48 in CH₂Cl₂, λ = 436 nm); ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.18 (m, 1H), 7.17 – 7.08 (m, 1H), 6.97 – 6.89 (m, 1H), 6.87 – 6.78 (m, 1H), 5.65 – 5.58 (m, 1H), 3.46 – 3.35 (m, 1H), 3.24 – 3.09 (m, 1H), 2.13 – 2.01 (m, 1H), 1.77 – 1.65 (m, 1H), 1.37 (d, *J* = 7.0 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 151.3, 127.4, 127.3, 127.2, 121.0, 116.8, 91.4, 35.5, 24.2, 20.4. IR (film): ν (cm⁻¹) 3413, 2960, 1581, 1488, 1450, 1219, 1131, 1099, 1039, 978, 893, 754. HRMS (FTMS+c ESI) calcd for [C₁₀H₁₂O₂+Na⁺]: 187.0730, found 187.0731.

(S)-4-methylchroman-2-one (3h)

Colorless oil, 21.8 mg, 67% yield over two steps, 98% ee; $[\alpha]^{21} = -63.1$ (c = 0.21, CH₂Cl₂, $\lambda = 436$ nm); HPLC (Daicel chiralcel ID, *n*-hexane/*i*-PrOH 95/5, 1.0 mL/min, 230 nm) $t_{R(minor)} = 11.82$ min, $t_{R(major)} = 12.48$ min; ¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.15 (m, 2H), 7.09 – 7.02 (m, 1H), 7.01 – 6.95 (m, 1H), 3.18 – 3.04 (m, 1H), 2.78 (dd, J = 15.8, 5.5 Hz, 1H), 2.52 (dd, J = 15.8, 7.2 Hz, 1H), 1.27 (d, J = 7.0 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.3, 151.2, 128.3, 127.8, 126.5, 124.6, 117.0, 36.8, 29.5, 19.9. IR (film): ν (cm⁻¹) 2965, 1769, 1612, 1487, 1454, 1347, 1286, 1218, 1151, 1079, 909, 831, 760. HRMS (FTMS+c ESI) calcd for [C₁₀H₁₀O₂+Na⁺]: 185.0573, found 185.0573.

1	11.823	47223	0.78
2	12.480	6031330	99.22

(4S)-4-ethylchroman-2-ol (2i)

5 h, **L-PiPr**₂/Fe(OTf)₂ (1/1, 5 mol% catalyst loading); colorless oil, 32.1 mg, 90% yield, 2.7:1 d.r.; $[\alpha]^{23} = -57.8$ (*c* = 0.61 in CH₂Cl₂, λ = 436 nm); ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.16 (m, 1H), 7.16 – 7.05 (m, 1H), 6.97 – 6.87 (m, 1H), 6.87 – 6.73 (m, 1H), 5.70 – 5.55 (m, 1H), 3.39 (d, *J* = 4.7 Hz, 1H), 3.05 – 2.90 (m, 1H), 2.11 – 1.91 (m, 2H), 1.91 – 1.77 (m, 1H), 1.73 – 1.54 (m, 1H), 1.06 – 0.94 (m, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 151.8, 127.6, 127.4, 126.0, 120.9, 116.9, 91.6, 32.0, 31.4, 27.3, 10.9. IR (film): ν (cm⁻¹) 3417, 2963, 1580, 1487, 1453, 1270, 1219, 1132, 1008, 901, 754. HRMS (FTMS+c ESI) calcd for [C₁₁H₁₄O₂+Na⁺]: 201.0886, found 201.0883. **(S)-4-ethylchroman-2-one (3i)**

Colorless oil, 28.7 mg, 82% yield over two steps, 99% ee; $[\alpha]^{21} = -93.0$ (c = 0.53, CH₂Cl₂, $\lambda = 436$ nm); HPLC (Daicel chiralcel IA, *n*-hexane/*i*-PrOH 98/2, 1.0 mL/min, 230 nm) $t_{R(minor)} = 7.39$ min, $t_{R(major)} = 7.98$ min; ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.22 (m, 1H), 7.21 – 7.16 (m, 1H), 7.15 – 7.08 (m, 1H), 7. 08 – 7.01 (m, 1H), 2. 96 – 2.87 (m, 1H), 2. 87 – 2.80 (m, 1H), 2.80 – 2.72 (m, 1H), 1.72 – 1.55 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.5, 151.3, 128.2, 127.9, 126.5, 124.2, 117.0, 36.6, 34.4, 27.5, 11.1. IR (film): ν (cm⁻¹) 2967, 1769, 1613, 1486, 1456, 1267, 1217, 1151, 1116, 1091, 911, 757. HRMS (FTMS+c ESI) calcd for [C₁₁H₁₂O₂+Na⁺]: 199.0730, found 199.0728.

ſ		Retention Time	Area	% Area
	1	7.356	1619030	49.01
	2	7.945	1684157	50.99

	Retention Time	Area	% Area
1	7.390	16264	0.36
2	7.976	4482590	99.64

(4R)-4-cyclopropylchroman-2-ol (2j)

5 h, **L-PiPr**₂/Fe(OTf)₂ (1/1, 5 mol% catalyst loading); colorless oil, 29.3 mg, 77% yield, 3.0:1 d.r.; $[\alpha]^{23} = -284.0$ (*c* = 0.48 in CH₂Cl₂, λ = 436 nm); ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.56 (m, 1H), 7.11 – 7.08 (m, 1H), 7.01 – 6.89 (m, 1H), 6.88 – 6.76 (m, 1H), 5.76 – 5.60 (m, 1H), 3.37 – 3.15 (m, 1H), 2.36 – 1.99 (m, 2H), 1.96 – 1.81 (m, 1H), 0.92 – 0.76 (m, 2H), 0.62 – 0.43 (m, 2H), 0.30 – 0.15 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 151.3, 127.7, 127.6, 126.2, 120.8, 116.6, 91.8, 34.6, 33.6, 15.9, 6.4, 1.9. IR (film): ν (cm⁻¹) 3422, 2999, 1580, 1486, 1453, 1270, 1219, 1108, 1018, 916, 883, 754. HRMS (FTMS+c ESI) calcd for [C₁₂H₁₄O₂+Na⁺]: 213.0886, found 213.0884.

(R)-4-cyclopropylchroman-2-one (3j)

Colorless oil, 28.0 mg, 74% yield over two steps, 88% ee; $[\alpha]^{21} = -177.7$ (c = 0.54, CH₂Cl₂, $\lambda = 436$ nm); HPLC (Daicel chiralcel IA, *n*-hexane/*i*-PrOH 90/10, 1.0 mL/min, 230 nm) $t_{R(minor)} = 5.52$ min, $t_{R(major)} = 6.11$ min; ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.12 (m, 1H), 7.09 – 7.03 (m, 1H), 6.98 – 6.88 (m, 1H), 6.87 – 6.81 (m, 1H), 2.72 – 2.64 (m, 1H), 2.59 – 2.51 (m, 1H), 2.18 (dd, J = 14.1, 7.2 Hz, 1H), 0.72 – 0.63 (m, 1H), 0.48 – 0.33 (m, 2H), 0.15 – 0.07 (m, 1H), 0.03 – 0.04 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.5, 151.4, 128.5, 127.5, 125.8, 124.4, 116.9, 39.2, 35.5, 15.0, 4.2, 2.7. IR (film): ν (cm⁻¹) 3000, 1769, 1612, 1586, 1485, 1455, 1274, 1216, 1154, 1023, 931, 874, 756. HRMS (FTMS+c ESI) calcd for [C₁₂H₁₂O₂+Na⁺]: 211.0730, found 211.0727.

	Retention Time	Area	% Area
1	5.518	251309	5.96
2	6.113	3961834	94.04

(4R)-4-cyclohexylchroman-2-ol (2k)

5 h, **L-PiPr**₂/Fe(OTf)₂ (1/1, 1 mol% catalyst loading); colorless oil, 42.7 mg, 92% yield, 2.7:1 d.r.; $[\alpha]^{21} = -32.1$ (*c* = 0.81 in CH₂Cl₂, λ = 436 nm); ¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.08 (m, 2H), 6.95 – 6.80 (m, 2H), 5.76 – 5.54 (m, 1H), 3.36 (d, *J* = 4.8 Hz, 1H), 2.92 – 2.84 (m, 1H), 2.16 – 1.53 (m, 8H), 1.43 – 1.07 (m, 4H), 0.97 – 0.84 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 152.2, 127.8, 127.2, 125.1, 120.7, 117.1, 92.0, 39.9, 35.5, 31.5, 28.7, 27.8, 26.9, 26.6, 26.6. IR (film): *v* (cm⁻¹) 3409, 2924, 2851, 1581, 1487, 1450, 1220, 1187, 1125, 1051, 1013, 933, 899, 752. HRMS (FTMS+c ESI) calcd for [C₁₅H₂₀O₂+Na⁺]: 255.1356, found 255.1355.

(R)-4-cyclohexylchroman-2-one (3k)

Colorless oil, 38.7 mg, 84% yield over two steps, 99% ee; $[\alpha]^{21} = -67.4$ (c = 0.71, CH₂Cl₂, $\lambda = 436$ nm); HPLC (Daicel chiralcel ASH, *n*-hexane/*i*-PrOH 95/5, 1.0 mL/min, 230 nm) $t_{R(major)} = 9.78$ min, $t_{R(minor)} = 10.93$ min; ¹H

NMR (400 MHz, CDCl₃) δ 7.29 – 7.23 (m, 1H), 7.19 – 7.00 (m, 3H), 2.99 – 2.86 (m, 1H), 2.83 – 2.65 (m, 2H), 1.84 – 1.56 (m, 5H), 1.51 – 1.37 (m, 1H), 1.26 – 0.94 (m, 5H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.9, 151.6, 129.1, 128.1, 125.5, 123.9, 117.0, 41.7, 41.2, 32.2, 30.5, 29.5, 26.1, 26.1, 26.0. IR (film): ν (cm⁻¹) 2926, 2852, 1770, 1586, 1486, 1452, 1349, 1215, 1151, 1073, 915, 851, 759. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₈O₂+Na⁺]: 253.1199, found 253.1196.

	Retention Time	Area	% Area
1	9.784	7986684	99.78
2	10.934	17768	0.22

(4R)-8-methoxy-4-phenylchroman-2-ol (2I)

16 h, **L-PiPr**₂/Sc(OTf)₃ (1/1, 5 mol% catalyst loading); colorless oil, 49.7 mg, 97% yield, 4.9:1 d.r.; $[\alpha]^{20} = -137.4$ (*c* = 0.45 in CH₂Cl₂, λ = 436 nm); ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.14 (m, 5H), 6.84 – 6.63 (m, 2H), 6.45 – 6.23 (m, 1H), 5.88 – 5.58 (m, 1H), 4.43 – 4.11 (m, 2H), 3.86 (s, 3H), 2.51 – 2.26 (m, 1H), 2.24 – 2.08 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 148.1, 144.3, 141.2, 128.8, 128.5, 126.7, 126.3, 121.5, 120.1, 109.3, 91.5, 55.7, 36.6, 36.0. IR (film): ν (cm⁻¹) 3459, 1584, 1472, 1261, 1207, 1085, 1012, 956, 894, 762, 732, 700. HRMS (FTMS+c ESI) calcd for [C₁₆H₁₆O₃+Na⁺]: 279.0992, found 279.0997.

(R)-8-methoxy-4-phenylchroman-2-one (3I)

Colorless oil, 17.8 mg, 35% yield over two steps, 80% ee; $[\alpha]^{20} = -105.8$ (c = 0.33 in CH₂Cl₂, $\lambda = 436$ nm); HPLC (Daicel chiralcel ID, *n*-hexane/*i*-PrOH 80/20, 1.0 mL/min, 230 nm) $t_{R (minor)} = 13.10$ min, $t_{R (major)} = 15.61$ min; ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.23 (m, 3H), 7.21 – 7.08 (m, 2H), 7.08 – 6.97 (m, 1H), 6.95 – 6.84 (m, 1H), 6.62 – 6.46 (m, 1H), 4.34 (t, J = 6.6 Hz, 1H), 3.92 (s, 3H), 3.19 – 2.88 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.9, 147.8, 141.0, 140.3, 129.1, 127.6, 127.5, 126.8, 124.5, 119.7, 111.4, 56.1, 40.9, 36.8. IR (film): ν (cm⁻¹) 1767, 1589, 1481, 1275, 1180, 1138, 1091, 910, 832, 770, 730, 700. HRMS (FTMS+c ESI) calcd for [C₁₆H₁₄O₃+Na⁺]: 277.0835, found 277.0836.

(4R)-8-chloro-4-phenylchroman-2-ol (2m)

11 h, **L-PiPr**₂/Fe(OTf)₂ (1/1, 5 mol% catalyst loading); colorless oil, 51.4 mg, 99% yield, 4.9:1 d.r.; $[\alpha]^{20} = -217.9$ (*c* = 0.85 in CH₂Cl₂, λ = 436 nm); ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.29 (m, 2H), 7.29 – 7.24 (m, 1H), 7.24 – 7.11 (m, 3H), 6.77 – 6.69 (m, 1H), 6.68 – 6.56 (m, 1H), 5.89 – 5.74 (m, 1H), 4.35 (dd, *J* = 11.6, 5.8 Hz, 1H), 3.68 – 3.52 (m, 1H), 2.39 – 2.25 (m, 1H), 2.24 – 2.11 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 147.6, 143.6, 128.7, 128.7, 128.4, 128.1, 127.5, 126.9, 121.7, 121.0, 91.8, 36.7, 35.7. IR (film): *v* (cm⁻¹) 3421, 1448, 1357, 1229, 1139, 1098, 1073, 1018, 946, 920, 889, 817, 761, 732, 700. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₃³⁷ClO₂+Na⁺]: 285.0467, found 285.0466. (*R*)-8-chloro-4-phenylchroman-2-one (3m)

Colorless oil, 46.9 mg, 91% yield over two steps, 96% ee; $[\alpha]^{21} = -210.4$ (c = 0.82 in CH₂Cl₂, $\lambda = 436$ nm); HPLC (Daicel chiralcel ODH, *n*-hexane/*i*-PrOH 90/10, 1.0 mL/min, 240 nm) $t_{R(minor)} = 15.90$ min, $t_{R(major)} = 19.10$ min; ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.27 (m, 4H), 7.23 – 7.13 (m, 2H), 7.06 – 6.95 (m, 1H), 6.94 – 6.82 (m, 1H), 4.37 (t, J = 6.9 Hz, 1H), 3.14 – 2.98 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.2, 147.6, 139.6, 129.6, 129.2, 127.9, 127.7, 127.5, 126.7, 124.8, 122.1, 40.9, 36.6. IR (film): ν (cm⁻¹) 1771, 1495, 1341, 1224, 1173, 1127, 974, 908, 797, 765, 731, 699. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₁³⁵ClO₂+Na⁺]: 281.0340, found 281.0334; HRMS (FTMS+c ESI) calcd for [C₁₅H₁₁³⁷ClO₂+Na⁺]: 283.0310, found 283.0300.

	Retention Time	Area	% Area
1	15.900	100907	1.78
2	19.098	5570358	98.22

(4R)-7-chloro-4-phenylchroman-2-ol (2n)

14 h, **L-PiPr**₂/Fe(OTf)₂ (1/1, 1 mol% catalyst loading); colorless oil, 43.1 mg, 83% yield, 4.3:1 d.r.; $[\alpha]^{22} = -130.5$ (*c* = 0.81 in CH₂Cl₂, λ = 436 nm); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.29 (m, 2H), 7.29 – 7.24 (m, 1H), 7.23 – 7.10 (m, 2H), 6.88 (d, *J* = 2.1 Hz, 1H), 6.81 – 6.73 (m, 1H), 6.72 – 6.66 (m, 1H), 5.66 (d, *J* = 2.4 Hz, 1H), 4.27 (dd, *J* = 11.4, 5.7 Hz, 1H), 3.40 (s, 1H), 2.32 – 2.20 (m, 1H), 2.19 – 2.02 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 152.4, 143.6, 132.8, 130.6, 128.7, 128.7, 126.9, 124.1, 121.2, 117.0, 91.5, 36.3, 35.8. IR (film): ν (cm⁻¹) 3399,

1601, 1573, 1483, 1452, 1409, 1216, 1128, 1096, 1080, 1048, 1012, 920, 858, 756, 700. HRMS (FTMS+c ESI) calcd for $[C_{15}H_{13}^{35}CIO_2+Na^+]$: 283.0496, found 283.0500; HRMS (FTMS+c ESI) calcd for $[C_{15}H_{13}^{37}CIO_2+Na^+]$: 285.0467, found 285.0467.

(R)-7-chloro-4-phenylchroman-2-one (3n)

White solid, Mp: 96–100 °C, 35.3 mg, 68% yield over two steps, 94% ee; $[\alpha]^{23} = -107.4$ (c = 0.59 in CH₂Cl₂, $\lambda = 436$ nm); HPLC (Daicel chiralcel ODH, *n*-hexane/*i*-PrOH 90/10, 1.0 mL/min, 230 nm) $t_{R(minor)} = 15.54$ min, $t_{R(major)} = 22.41$ min; ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.26 (m, 3H), 7.20 – 7.11 (m, 3H), 7.09 – 7.10 (m, 1H), 6.95 – 6.86 (m, 1H), 4.32 (dd, J = 7.8, 6.3 Hz, 1H), 3.21 – 2.97 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.8, 152.1, 139.7, 134.0, 129.3, 129.2, 127.9, 127.5, 124.8, 124.4, 117.5, 40.3, 36.7. IR (film): v (cm⁻¹) 1777, 1606, 1579, 1485, 1453, 1409, 1221, 1179, 1132, 1078, 946, 864, 821, 757, 699. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₁³⁵ClO₂+Na⁺]: 281.0340, found 281.0345; HRMS (FTMS+c ESI) calcd for [C₁₅H₁₁³⁷ClO₂+Na⁺]: 283.0310, found 283.0313.

(4R)-6-methyl-4-phenylchroman-2-ol (2o)

4 h, **L-PiPr**₂/Fe(OTf)₂ (1/1, 1 mol% catalyst loading); colorless oil, 45.0 mg, 94% yield, 3.5:1 d.r.; $[\alpha]^{19} = -76.1$ (*c* = 0.84 in CH₂Cl₂, λ = 436 nm); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.15 (m, 5H), 6.96 – 6.85 (m, 1H), 6.84 – 6.70 (m, 1H), 6.61 – 6.55 (m, 1H), 5.69 – 5.56 (m, 1H), 4.29 (dd, *J* = 10.9, 5.8 Hz, 1H), 3.52 – 3.32 (m, 1H), 2.32 – 2.21 (m, 1H), 2.19 – 2.02 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 149.6, 144.4, 130.2, 129.8, 128.8, 128.6, 128.5, 126.6, 124.9, 116.6, 91.3, 36.9, 36.3, 20.5. IR (film): ν (cm⁻¹) 3417, 3026, 1494, 1451, 1272, 1239, 1211, 1128, 1092, 1054, 1018, 925, 893, 816, 756, 701. HRMS (FTMS+c ESI) calcd for [C₁₆H₁₆O₂+Na⁺]: 263.1043, found 263.1038.

(R)-6-methyl-4-phenylchroman-2-one (3o)

White solid, Mp: 108–111 °C, 34.8 mg, 73% yield over two steps, 99% ee; $[\alpha]^{18} = -9.4$ (c = 0.72 in CH₂Cl₂, $\lambda = 436$ nm); HPLC (Daicel chiralcel ODH, *n*-hexane/*i*-PrOH 90/10, 1.0 mL/min, 230 nm) $t_{R(minor)} = 10.81$ min, $t_{R(major)} = 12.87$ min; ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.24 (m, 3H), 7.21 – 7.12 (m, 2H), 7.12 – 7.05 (m, 1H), 7.05 – 6.99 (m, 1H), 6.82 – 6.74 (m, 1H), 4.29 (t, J = 6.7 Hz, 1H), 3.11 – 2.88 (m, 2H), 2.25 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.8, 149.6, 140.5, 134.3, 129.3, 129.1, 128.6, 127.6, 127.5, 125.3, 116.8, 40.7, 37.1, 20.7. IR (film): ν (cm⁻¹) 3029, 1768, 1494, 1454, 1276, 1244, 1199, 1144, 970, 927, 895, 818, 750, 700. HRMS (FTMS+c ESI) calcd for [C₁₆H₁₄Q₂+Na⁺]: 261.0886, found 261.0893.

	Retention Time	Area	% Area
1	10.364	25420691	50.05
2	12.546	25370920	49.95

	Retention Time	Area	% Area
1	10.807	23793	0.58
2	12.865	4048689	99.42

(4R)-6-methoxy-4-phenylchroman-2-ol (2p)

4 h, **L-PiPr**₂/Fe(OTf)₂ (1/1, 1 mol% catalyst loading); colorless oil, 49.9 mg, 97% yield, 4.0:1 d.r.; $[\alpha]^{23} = -49.9$ (*c* = 0.96 in CH₂Cl₂, λ = 436 nm); ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.28 (m, 2H), 7.27 – 7.16 (m, 3H), 6.85 – 6.76 (m, 1H), 6.74 – 6.67 (m, 1H), 6.36 – 6.28 (m, 1H), 5.69 – 5.57 (m, 1H), 4.30 (dd, *J* = 11.1, 5.8 Hz, 1H), 3.60 (s, 3H), 3.47 (s, 1H), 2.31 – 2.20 (m, 1H), 2.18 – 2.00 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 153.7, 145.8, 144.1, 128.8, 128.6, 126.7, 126.0, 117.4, 114.4, 113.8, 91.2, 55.6, 37.1, 36.2. IR (film): ν (cm⁻¹) 3421, 2936, 1491, 1453, 1422, 1273, 1151, 1092, 1039, 1014, 920, 894, 812, 761, 701. HRMS (FTMS+c ESI) calcd for [C₁₆H₁₆O₃+Na⁺]: 279.0992, found 279.0988.

(R)-6-methoxy-4-phenylchroman-2-one (3p)

Colorless oil, 19.2 mg, 38% yield over two steps, 98% ee; $[\alpha]^{21} = +20.8$ (c = 0.34 in CH₂Cl₂, $\lambda = 436$ nm); HPLC (Daicel chiralcel ODH, *n*-hexane/*i*-PrOH 90/10, 1.0 mL/min, 230 nm) $t_{R(major)} = 19.55$ min, $t_{R(minor)} = 22.13$ min; ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.26 (m, 3H), 7.20 – 7.12 (m, 2H), 7.07 (d, J = 8.9 Hz, 1H), 6.82 (dd, J = 8.9, 3.0 Hz, 1H), 6.49 (dd, J = 2.9, 0.5 Hz, 1H), 4.30 (t, J = 7.2 Hz, 1H), 3.71 (s, 3H), 3.11 – 2.91 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.8, 156.3, 145.6, 140.1, 129.1, 127.7, 127.5, 126.7, 117.9, 113.7, 113.5, 55.6, 40.9, 37.0. IR (film): ν (cm⁻¹) 2920, 1758, 1490, 1454, 1426, 1274, 1193, 1137, 1033, 928, 896, 815, 767, 700. HRMS (FTMS+c ESI) calcd for [C₁₆H₁₄O₃+Na⁺]: 277.0835, found 277.0836.

		Retention Time	Area	% Area
,	1	19.549	3726033	99.02
	2	22.134	36904	0.98

(4R)-6-fluoro-4-phenylchroman-2-ol (2q)

3 h, **L-PiPr**₂/Fe(OTf)₂ (1/1, 0.1 mol% catalyst loading); colorless oil, 48.4 mg, 99% yield, 4.2:1 d.r.; $[\alpha]^{24} = -179.1$ (*c* = 0.93 in CH₂Cl₂, λ = 436 nm); ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.27 (m, 3H), 7.25 – 7.15 (m, 2H), 6.91 – 6.72 (m, 2H), 6.52 – 6.39 (m, 1H), 5.68 (dd, *J* = 5.9, 3.1 Hz, 1H), 4.32 (dd, *J* = 11.6, 5.8 Hz, 1H), 3.43 (dd, *J* = 3.6, 1.8 Hz, 1H), 2.34 – 2.21 (m, 1H), 2.20 – 2.07 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 157.1 (d, *J* = 237.0 Hz), 147.7 (d, *J* = 2.0 Hz), 143.4, 128.8, 128.7, 127.0, 126.8 (d, *J* = 15.9 Hz), 117.8 (d, *J* = 7.9 Hz), 115.5 (d, *J* = 23.3 Hz), 114.6 (d, *J* = 23.1 Hz), 91.3, 36.8, 35.6. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -122.81. IR (film): ν (cm⁻¹) 3403, 1489, 1424, 1255, 1189, 1135, 1092, 1054, 1017, 935, 815, 757, 701. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₃FO₂+H⁺]: 245.0972, found 245.0965.

(R)-6-fluoro-4-phenylchroman-2-one (3q)

Colorless oil, 38.2 mg, 79% yield over two steps, 99% ee; $[\alpha]^{22} = -101.5$ (c = 0.72 in CH₂Cl₂, $\lambda = 436$ nm); HPLC (Daicel chiralcel ODH, *n*-hexane/*i*-PrOH 90/10, 1.0 mL/min, 254 nm) $t_{R(minor)} = 17.15$ min, $t_{R(major)} = 18.59$ min; ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.27 (m, 3H), 7.21 – 7.13 (m, 2H), 7.13 – 7.07 (m, 1H), 7.03 – 6.91 (m, 1H), 6.73 – 6.59 (m, 1H), 4.32 (dd, J = 8.3, 6.2 Hz, 1H), 3.13 – 2.92 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.18, 159.1 (d, J = 242.5 Hz), 147.6 (d, J = 2.8 Hz), 139.38, 129.26, 127.94, 127.6 (d, J = 7.7 Hz), 127.51, 118.4 (d, J = 8.4 Hz), 115.5 (d, J = 23.4 Hz), 114.8 (d, J = 24.4 Hz), 40.67, 36.47. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ – 117.46. IR (film): ν (cm⁻¹) 1769, 1488, 1428, 1243, 1185, 1138, 973, 902, 820, 757, 700. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₁FO₂+H⁺]: 243.0816, found 243.0816.

(4R)-6-chloro-4-phenylchroman-2-ol (2r)

11 h, **L-PiPr**₂/Fe(OTf)₂ (1/1, 1 mol% catalyst loading); colorless oil, 51.8 mg, 99% yield, 4.0:1 d.r.; $[\alpha]^{23} = -13.0$ (*c* = 0.88 in CH₂Cl₂, λ = 436 nm); ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.27 (m, 3H), 7.24 – 7.15 (m, 2H), 7.10

(dd, J = 8.7, 2.4 Hz, 1H), 6.85 - 6.78 (m, 1H), 6.78 - 6.67 (m, 1H), 5.72 - 5.63 (m, 1H), 4.30 (dd, J = 11.4, 5.7 Hz, 1H), 3.40 (d, J = 1.6 Hz, 1H), 2.31 - 2.24 (m, 1H), 2.20 - 2.08 (m, 1H). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 150.4, 143.3, 129.1, 128.8, 128.7, 127.9, 127.1, 127.03, 125.8, 118.3, 91.3, 36.7, 35.7. IR (film): ν (cm⁻¹) 3397, 1476, 1405, 1260, 1230, 1176, 1120, 1094, 1052, 1014, 917, 896, 815, 759, 736, 699. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₃³⁵ClO₂+Na⁺]: 283.0496, found 283.0500; HRMS (FTMS+c ESI) calcd for [C₁₅H₁₃³⁷ClO₂+Na⁺]: 285.0467, found 285.0471.

(R)-6-chloro-4-phenylchroman-2-one (3r)

Colorless oil, 36.9 mg, 72% yield over two steps, 98% ee; $[\alpha]^{22} = +52.3$ (*c* = 0.63 in CH₂Cl₂, λ = 436 nm); HPLC (Daicel chiralcel ODH, *n*-hexane/*i*-PrOH 90/10, 1.0 mL/min, 230 nm) $t_{R(minor)} = 16.94$ min, $t_{R(major)} = 19.99$ min; ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.29 (m, 3H), 7.28 – 7.24 (m, 1H), 7.18 – 7.12 (m, 2H), 7.07 (d, *J* = 8.7 Hz, 1H), 6.94 (dd, *J* = 2.5, 0.7 Hz, 1H), 4.31 (t, *J* = 7.6 Hz, 1H), 3.17 – 2.94 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.9, 150.2, 139.4, 129.8, 129.3, 128.8, 128.1, 128.0, 127.5, 127.5, 118.5, 40.6, 36.5. IR (film): ν (cm⁻¹) 1774, 1478, 1413, 1263, 1218, 1174, 1136, 1085, 968, 924, 881, 822, 762, 699. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₁³⁷ClO₂+Na⁺]: 283.0310, found 283.0318.

	Retention Time	Area	% Area
1	16.939	596487	1.16
2	19.986	50844763	98.84

(4R)-6-bromo-4-phenylchroman-2-ol (2s)

3 h, **L-PiPr**₂/Fe(OTf)₂ (1/1, 1 mol% catalyst loading); colorless oil, 58.0 mg, 95% yield, 3.9:1 d.r.; $[\alpha]^{20} = +61.8$ (*c* = 1.08 in CH₂Cl₂, λ = 436 nm); ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.27 (m, 3H), 7.26 – 7.16 (m, 3H), 6.93 – 6.82 (m, 1H), 6.81 – 6.72 (m, 1H), 5.67 (dd, *J* = 5.8, 3.0 Hz, 1H), 4.31 (dd, *J* = 11.3, 5.7 Hz, 1H), 3.43 (d, *J* = 2.1 Hz, 1H), 2.32 – 2.21 (m, 1H), 2.19 – 2.07 (m, 1H).¹³C{¹H} NMR (100 MHz, CDCl₃) δ 151.0, 143.2, 132.0, 130.8, 128.8, 128.7, 127.7, 127.0, 118.7, 113.2, 91.4, 36.7, 35.7. IR (film): ν (cm⁻¹) 3408, 1476, 1401, 1263, 1229, 1178, 1126, 1094, 1051, 1015, 918, 894, 815, 757, 701. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₃⁸¹BrO₂+Na⁺]: 328.9971, found 328.9976. (*R*)-6-bromo-4-phenylchroman-2-one (3s)

White solid, Mp: 128–131 °C, 45.5 mg, 76% yield over two steps, 99% ee; $[\alpha]^{22} = +99.1$ (c = 0.71 in CH₂Cl₂, $\lambda = 436$ nm); HPLC (Daicel chiralcel ODH, *n*-hexane/*i*-PrOH 90/10, 1.0 mL/min, 230 nm) $t_{R(minor)} = 18.40$ min, $t_{R(major)} = 24.48$ min; ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.34 (m, 3H), 7.34 – 7.28 (m, 1H), 7.19 – 7.12 (m, 2H), 7.10 (dd, J = 2.3, 0.7 Hz, 1H), 7.02 (d, J = 8.6 Hz, 1H), 4.31 (t, J = 6.8 Hz, 1H), 3.11 – 2.92 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.8, 150.7, 139.4, 131.8, 131.0, 129.3, 128.0, 127.9, 127.4, 118.9, 117.3, 40.5, 36.6. IR (film): ν (cm⁻¹) 1773, 1475, 1408, 1268, 1220, 1173, 1135, 1075, 967, 921, 882, 819, 757, 700. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₁⁷⁹BrO₂+Na⁺]: 324.9835, found 324.9834; HRMS (FTMS+c ESI) calcd for [C₁₅H₁₁⁸¹BrO₂+Na⁺]: 326.9814, found 326.9815.

	Retention Time	Area	% Area
1	18.319	7393870	49.94
2	24.529	7410722	50.06

	Retention Time	Area	% Area
1	18.401	29679	0.35
2	24.479	8447951	99.65

(4R)-5-fluoro-4-phenylchroman-2-ol (2t)

11 h, **L-PiPr**₂/Sc(OTf)₃ (1/1, 5 mol% catalyst loading); white solid, Mp: 112–116 °C, 34.0 mg, 70% yield, 4.5:1 d.r.; $[\alpha]^{18} = -152.6$ (c = 0.50 in CH₂Cl₂, $\lambda = 436$ nm); ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.25 (m, 2H), 7.25 – 7.05 (m, 4H), 6.82 – 6.68 (m, 1H), 6.68 – 6.48 (m, 1H), 5.38 (q, J = 5.1 Hz, 1H), 4.42 (t, J = 5.7 Hz, 1H), 3.52 – 3.35 (m, 1H), 2.32 – 2.02 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.0 (d, J = 245.6 Hz), 154.4 (d, J = 7.0 Hz), 144.2, 128.7, 128.6, 127.4, 126.6, 112.6 (d, J = 3.1 Hz), 111.9 (d, J = 19.7 Hz), 107.7 (d, J = 21.4 Hz), 91.5, 36.9, 34.5. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ –113.33. IR (film): ν (cm⁻¹) 3400, 1622, 1585, 1465, 1310, 1260, 1130, 1048, 982, 884, 757, 702. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₃FO₂+Na⁺]: 267.0792, found 267.0795. (*R*)-5-fluoro-4-phenylchroman-2-one (3t)

White solid, Mp: 108–114 °C, 30.1 mg, 62% yield over two steps, 89% ee; $[\alpha]^{20} = -170.8$ (c = 0.58 in CH₂Cl₂, $\lambda = 436$ nm); HPLC (Daicel chiralcel ODH, *n*-hexane/*i*-PrOH 90/10, 1.0 mL/min, 230 nm) $t_{R(minor)} = 9.37$ min, $t_{R(major)} = 10.84$ min; ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.21 (m, 4H), 7.16 – 7.08 (m, 2H), 7.01 – 6.94 (m, 1H), 6.93 – 6.85 (m, 1H), 4.64 (dd, J = 6.1, 2.8 Hz, 1H), 3.14 – 3.00 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.5, 159.6 (d, J = 246.7 Hz), 152.6 (d, J = 6.5 Hz), 140.0, 129.4 (d, J = 9.5 Hz), 129.1, 127.6, 126.6, 113.5 (d, J = 21.8 Hz), 113.0 (d, J = 3.4 Hz), 111.6 (d, J = 21.3 Hz), 36.3, 34.7. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ –116.47. IR (film): ν (cm⁻¹) 1772, 1624, 1594, 1467, 1342, 1253, 1182, 1131, 1030, 966, 880, 793, 745, 698. HRMS (FTMS+c ESI) calcd for [C₁₅H₁₁FO₂+Na⁺]: 265.0635, found 265.0639.

	Retention Time	Area	% Area
1	9.367	203344	5.49
2	10.840	3498607	94.51

(1R)-1-phenyl-2,3-dihydro-1H-benzo[f]chromen-3-ol (2u)

11 h, **L-RaPr**₂/Fe(OTf)₂ (1/1, 10 mol% catalyst loading) in CH₂ClCH₂Cl; white solid, Mp: 160–164 °C, 33.3 mg, 60% yield, 4.9:1 d.r.; $[\alpha]^{19} = -225.2$ (c = 0.44 in CH₂Cl₂, $\lambda = 436$ nm); ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.67 (m, 2H), 7.49 – 7.39 (m, 1H), 7.32 – 7.07 (m, 8H), 5.50 – 5.27 (m, 1H), 4.85 – 4.56 (m, 1H), 3.22 (d, J = 6.5 Hz, 1H), 2.47 – 2.17 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 151.8, 145.1, 132.4, 129.5, 129.4, 128.7, 128.4, 128.0, 126.5, 126.5, 123.4, 123.4, 118.7, 113.9, 91.4, 37.9, 37.7. IR (film): ν (cm⁻¹) 3386, 1622, 1598, 1454, 1398, 1344, 1230, 1121, 1063, 1020, 894, 821, 745, 698. HRMS (FTMS+c ESI) calcd for [C₁₉H₁₆O₂+Na⁺]: 299.1043, found 299.1039.

(R)-1-phenyl-1,2-dihydro-3H-benzo[f]chromen-3-one (3u)

Pale yellow solid, Mp: 150–154 °C, 32.8 mg, 60% yield over two steps, 95% ee; $[\alpha]^{20} = -147.9$ (c = 0.33 in CH₂Cl₂, $\lambda = 436$ nm); HPLC (Daicel chiralcel IC, *n*-hexane/*i*-PrOH 80/20, 1.0 mL/min, 230 nm) $t_{R(major)} = 11.56$ min, $t_{R(minor)} = 13.10$ min; ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.71 (m, 3H), 7.51 – 7.40 (m, 2H), 7.39 – 7.33 (m, 1H), 7.31 – 7.05 (m, 5H), 4.94 (dd, J = 6.5, 2.0 Hz, 1H), 3.31 – 3.07 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.1, 149.7, 140.5, 131.0, 130.9, 129.9, 129.2, 128.7, 127.5, 127.4, 126.9, 125.2, 123.0, 117.5, 117.5, 37.6, 37.4. IR (film): ν (cm⁻¹) 1776, 1513, 1458, 1250, 1215, 1179, 1134, 969, 885, 816, 749, 701. HRMS (FTMS+c ESI) calcd for [C₁₉H₁₄O₂+Na⁺]: 297.0886, found 297.0890.

(1R)-1-(3-fluorophenyl)-2,3-dihydro-1H-benzo[f]chromen-3-ol (2v)

15 h, **L-RaPr**₂/Fe(OTf)₂ (1/1, 10 mol% catalyst loading) in CHCl₃; colorless oil, 46.2 mg, 79% yield, 6.1:1 d.r.; [α]¹⁸ = -194.7 (*c* = 0.66 in CH₂Cl₂, λ = 436 nm); ¹H NMR (400 MHz, CDCl₃) δ 7.82 - 7.68 (m, 2H), 7.45 - 7.34 (m, 1H), 7.30 - 7.11 (m, 4H), 6.95 - 6.66 (m, 3H), 5.75 - 5.20 (m, 1H), 4.85 - 4.55 (m, 1H), 3.44 (d, *J* = 6.7 Hz, 1H), 2.43 - 2.22 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.0 (d, *J* = 244.9 Hz), 151.7, 147.8 (d, *J* = 6.5 Hz), 132.2, 130.2 (d, *J* = 8.2 Hz), 129.6, 129.5, 128.5, 126.7 (d, *J* = 2.8 Hz), 123.6, 123.5, 123.2, 118.7, 115.0 (d, *J* = 21.6 Hz), 113.5 (d, *J* = 21.0 Hz), 113.2, 91.3, 37.6, 37.4. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -112.57. IR (film): ν (cm⁻¹) 3403, 1618, 1591, 1483, 1442, 1265, 1229, 1130, 1057, 993, 816, 745, 700. HRMS (FTMS+c ESI) calcd for [C₁₉H₁₅FO₂+Na⁺]: 317.0948, found 317.0958.

(*R*)-1-(3-fluorophenyl)-1,2-dihydro-3H-benzo[*f*]chromen-3-one (3v)

Yellow oil, 39.7 mg, 68% yield over two steps, 95% ee; $[\alpha]^{19} = -146.7$ (c = 0.67 in CH₂Cl₂, $\lambda = 436$ nm); HPLC (Daicel chiralcel IA, *n*-hexane/*i*-PrOH 95/5, 1.0 mL/min, 230 nm) $t_{\text{R(minor)}} = 11.80$ min, $t_{\text{R(major)}} = 12.96$ min; ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.82 (m, 2H), 7.81 – 7.71 (m, 1H), 7.55 – 7.39 (m, 2H), 7.39 – 7.29 (m, 1H), 7.27 – 7.19 (m, 1H), 7.04 – 6.86 (m, 2H), 6.86 – 6.69 (m, 1H), 5.04 – 4.78 (m, 1H), 3.36 – 2.96 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.7, 163.2 (d, J = 245.8 Hz), 149.8, 143.0 (d, J = 6.7 Hz), 131.08, 130.87, 130.8 (d, J = 2.5 Hz), 130.23, 128.82, 127.59, 125.36, 122.79, 122.6 (d, J = 2.9 Hz), 117.53, 116.84, 114.6 (d, J = 21.0 Hz), 114.1 (d, J = 21.9 Hz), 37.27, 37.24. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ –111.67. IR (film): ν (cm⁻¹) 1773, 1589, 1486, 1444, 1252, 1217, 1158, 1123, 977, 907, 816, 784, 749. HRMS (FTMS+c ESI) calcd for [C₁₉H₁₃FO₂+Na⁺]: 315.0792, found 315.0794.

	Retention Time	Area	% Area
1	11.904	21165962	50.02
2	13.182	21151842	49.98

	Retention Time	Area	% Area
1	11.798	958880	2.36
2	12.964	39629076	97.64

(R)-3-(2-hydroxynaphthalen-1-yl)-3-phenyl-1-(piperidin-1-yl)propan-1-one (4u)

White solid, Mp: 161–164 °C, 26.4 mg, 99% yield, 95% ee; $[\alpha]^{19} = +673.0$ (*c* = 0.23 in CH₂Cl₂, λ = 436 nm); HPLC (Daicel chiralcel IA, *n*-hexane/*i*-PrOH 80/20, 1.0 mL/min, 230 nm) $t_{R(minor)} = 6.85$ min, $t_{R(major)} = 7.79$ min; ¹H NMR (400 MHz, CDCl₃) δ 9.30 (s, 1H), 7.76 – 7.62 (m, 2H), 7.61 – 7.46 (m, 1H), 7.31 – 7.09 (m, 8H), 5.57 (dd, *J* = 9.9, 3.7 Hz, 1H), 3.66 – 3.37 (m, 5H), 3.36 – 3.27 (m, 1H), 1.65 – 1.24 (m, 5H), 1.21 – 1.09 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.2, 153.7, 143.3, 132.0, 130.3, 129.1, 128.9, 128.3, 127.0, 125.7, 125.4, 124.0, 122.5, 122.4, 121.0, 46.8, 43.4, 36.6, 34.9, 26.0, 25.4, 24.2. IR (film): ν (cm⁻¹) 3058, 2937, 1602, 1511, 1472, 1439, 1267, 1017, 816, 746, 700. HRMS (FTMS+c ESI) calcd for [C₂₄H₂₅NO₂+Na⁺]: 382.1778, found 382.1769.

	Retention Time	Area	% Area
1	6.765	14335298	49.58
2	7.712	14579775	50.42

	Retention Time	Area	% Area
1	6.850	212540	2.44
2	7.787	8481699	97.56

(R)-3-(3-fluorophenyl)-3-(2-hydroxynaphthalen-1-yl)-1-(piperidin-1-yl)propan-1-one (4v)

White solid, Mp: 162–166 °C, 22.4 mg, 94% yield, 95% ee; $[\alpha]^{19} = +671.9$ (*c* = 0.16 in CH₂Cl₂, λ = 436 nm); HPLC (Daicel chiralcel IA, *n*-hexane/*i*-PrOH 95/5, 1.0 mL/min, 230 nm) $t_{R(minor)} = 24.82$ min, $t_{R(major)} = 28.25$ min; ¹H NMR (400 MHz, CDCl₃) δ 9.33 (s, 1H), 7.82 – 7.59 (m, 2H), 7.56 – 7.39 (m, 1H), 7.30 – 7.11 (m, 4H), 7.00 – 6.87 (m, 2H), 6.87 – 6.75 (m, 2H), 5.54 (dd, *J* = 10.2, 2.3 Hz, 1H), 3.72 – 3.09 (m, 6H), 1.69 – 1.37 (m, 4H), 1.37 – 1.27 (m, 1H), 1.23 – 1.11 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.8, 162.9 (d, *J* = 243.5 Hz), 153.7, 146.2 (d, *J* = 6.7 Hz), 131.9, 130.4, 129.6 (d, *J* = 8.3 Hz), 129.3, 129.0, 125.6, 123.8, 122.7 (d, *J* = 2.6 Hz), 122.6, 121.8, 121.0, 114.0 (d, *J* = 22.1 Hz), 112.6 (d, *J* = 21.0 Hz), 46.8, 43.5, 36.5, 35.0, 26.1, 25.4, 24.2. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ –113.22. IR (film): ν (cm⁻¹) 3062, 2938, 1608, 1512, 1480, 1439, 1267, 1016, 818, 742, 697. HRMS (FTMS+c ESI) calcd for [C₂₄H₂₄FNO₂+Na⁺]: 400.1683, found 400.1678.

	Retention Time	Area	% Area
1	24.004	4747008	48.72
2	27.347	4995825	51.28

	Retention Time	Area	% Area
1	24.824	108811	2.24
2	28.245	4744373	97.76

(R)-tolterodine

Colorless oil, 35.1 mg, 72% yield; $[\alpha]^{21}_{D}$ = +30.2 (*c* = 0.38 in CH₃OH, λ = 589 nm); ¹H NMR (400 MHz, CDCl₃) δ 7.42 - 7.27 (m, 4H), 7.25 - 7.17 (m, 1H), 6.90 - 6.75 (m, 2H), 6.63 - 6.46 (m, 1H), 4.62 - 4.40 (m, 1H), 3.36 -3.08 (m, 2H), 2.79 - 2.67 (m, 1H), 2.45 - 2.27 (m, 2H), 2.16 - 1.98 (m, 4H), 1.14 (d, *J* = 6.7 Hz, 6H), 1.08 (d, *J* = 6.7 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 153.2, 144.8, 132.4, 129.3, 128.6, 128.5, 128.3, 127.7, 126.1, 118.2, 47.8, 42.0, 39.3, 33.2, 20.7, 20.0, 19.5. IR (film): ν (cm⁻¹) 2967, 1603, 1492, 1456, 1388, 1255, 1161, 1112, 1033, 815, 755, 701. HRMS (FTMS+c ESI) calcd for [C₂₂H₃₁NO+Na⁺]: 348.2298, found 348.2290.

-10 140 130

---0.00

-164.06 -161.61 -163.87 -149.44 -142.19 -142.19 -142.19 -142.19 -142.19 -142.19 -142.19 -142.19 -142.19 -142.19 -142.70 -91.75

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 10

-21.05

-143.72 -143.42 -143.42 -143.05 -143.05 -143.05 -143.05 -123.53 -123.53 -112.55 -123.55 -116.69 -116

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

7.7.7.128 7.7.7.128 7.7.7.128 7.7.7.128 7.7.7.128 7.7.7.128 7.7.7.128 6.895 6.897 6.997 6.997 6.997 6.997 6.997 6.997

441 4.37 4.11 4.11 4.10

~150.09 ~148.59 ~139.82 −139.82 −128.37 −128.37 −120.34 −120.34 −120.34 −120.34 ~170.367 ~77.57 ~77.68

128.35 117.80 115.86 114.81 114.57 149.38 157.92 155.55 149.97 91.92 91.92 777.32 77.00 76.68

---0.00

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

---0.00

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0

09.0 -109.5 -110.0 -110.5 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.0 -115.5 -116.0 -116.5 -117.0

NA

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 10

-10 -20 -30 -40

10 0

C

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

-151.71-142.70 -142.70 -142.70 -141.70.11 -120.41 -120.41 -120.41 -120.41 -121.10 -115.68 -91.17

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.

-148.05 -141.22 128.77 -141.26.65 -126.65 -121.60 -109.30 -91.45 -77.32 77.32 -65.71 -65.71

).0 7.5 3.5 2.5 2.0 1.5 1.0 0.5 0.0 9.5 9.0 8.5 8.0 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.0

-152.44 -135.44 132.83 133.83 133.83 132.83 128.73 128.12 128.12 117.01 -91.50 -91.50 -91.50 -91.66 77.32 77.00 77.32 77.3

-167.18 -157.89 -157.68 -147.65 -147.65 -147.63 -129.26 -127.51 -127.51 -127.51 -127.32 -77.02 -76.68 -40.67 -36.47

---117.46

-150.97-143.22-143.28-113.78-118.74-113.24-113.24-113.24-113.24-77.0077.668-35.66

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

-105 -106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 0 -10

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0

12. Copies of CD spectra for in CH₂Cl₂

13. References

- Y. H. Wen, X. Huang, J. L. Huang, Y. Xiong, B. Qin and X. M. Feng, *Synlett*, 2005, **16**, 2445. Y. Okimoto, S. Sakaguchi and Y. Ishii, *J. Am. Chem. Soc.*, 2002, **124**, 1590. 1
- 2