
Fig S1. Detailed description of reporter construct used in this work. Labeled positions
are xstart

MS2 = 0.024 kb, xend
MS2 = 1.299 kb, xstart

PP7 = 4.292 kb, and xend
PP7 = 5.758 kb, where

x = 0 corresponds to the 3’ end of the promoter. Distances are d = 4.27 kb and
L = 6.63 kb.

S1 Supplementary Information

A Full Model

To predict MS2 and PP7 fluorescence traces, we utilized a simple model of transcription
initiation, elongation, and cleavage. The entire model has the following free parameters: 1075

• hRi, the mean transcription initiation rate

• �R(t), the time-dependent fluctuations in the transcription initiation rate around
the mean hRi

• velon, the RNAP elongation rate

• ⌧cleave, the mRNA cleavage time 1080

• ton, the time of transcription onset after the previous mitosis, where t = 0
corresponds to the start of anaphase

• MS2basal, the basal level of MCP-mCherry fluorescence

• PP7basal, the basal level of PCP-eGFP fluorescence

• ↵, the scaling factor between MCP-mCherry and PCP-eGFP arbitrary 1085

fluorescence units

Note that the fluctuations �R(t) are independent for each time point, and exist to allow
for a slight time dependence in the overall initiation rate. Thus, �R(t) parameterizes a
set of independent constant offsets in the overall loading rate at each time point.

First, the parameters hRi, �R(t), ton, velon, and ⌧cleave were used to generate a map
xi(t) of the position of each actively transcribing RNAP molecule i along the body of
the reporter gene, as a function of time. Although the model is represented with
continuous time, the subsequent computational simulation used for the statistical
inference relies on discrete timesteps. Thus, given a computational time step dt, R(t)dt
RNAP molecules are loaded at time point t at the promoter x = 0, where

R(t) =

(
0 t < ton
hRi+ �R(t) t � ton.

Note while R(t)dt is a floating point number, the model utilizes discrete numbers of 1090

RNAP molecules. As a result, R(t)dt is rounded down to the nearest integer since the
model cannot load fractional numbers of RNAP molecules. After initiation, each RNAP
molecule proceeds forward with the constant elongation rate velon. Once an RNAP
molecule reaches the end of the gene, an additional cleavage time ⌧cleave elapses after
which the nascent transcript is cleaved and disappears instantly. This assumption of 1095

instantaneous disappearance following cleavage is justified in Section C in S1 File based
on the diffusion time scale of individual mRNA molecules.

From this position map, and based on the locations of the stem loop sequences along
the reporter construct (S1 Fig), we calculate the predicted MS2 and PP7 fluorescence
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signals. The contribution to the MS2 signal FMS2
i (t) of an individual RNAP molecule i

at position xi(t) is given by

FMS2
i (t) =

8
><

>:

0 xi(t) < xstart
MS2

xi(t)�xstart
MS2

xend
MS2�xstart

MS2
FMS2 xstart

MS2  xi(t) < xend
MS2

FMS2 xi(t) � xend
MS2

,

where xstart
MS2 and xend

MS2 are the start and end positions of the MS2 stem loop sequence,
respectively, and FMS2 is the mCherry fluorescence produced by a single RNAP
molecule that has transcribed the entire set of MS2 stem loops. Here, we also assume
that RNAP molecules that have only partially transcribed the MS2 stem loops result in
a fractional fluorescence given by the fractional length of the MS2 stem loop sequence
transcribed. Similarly, the contribution to the PP7 signal FPP7

i (t) is given by

FPP7
i (t) =

8
><

>:

0 xi(t) < xstart
PP7

xi(t)�xstart
PP7

xend
PP7�xstart

PP7
FPP7 xstart

PP7  xi(t) < xend
PP7

FPP7 xi(t) � xend
PP7

,

where xstart
PP7 and xend

PP7 are the start and end positions of the PP7 stem loop sequence,
respectively, and FPP7 is the GFP fluorescence produced by a single RNAP molecule
that has transcribed the entire set of PP7 stem loops. Note that we assume that the 1100

MCP-mCherry and PCP-GFP fluorophores effectively bind instantaneously to all their
associated stem loops once they are transcribed. Due to the high numbers of nascent
transcripts on the reporter gene (Fig 5D), we expect that corrections to this assumption
due to incomplete, stochastic, and/or non-instantaneous fluorophore binding will not
introduce substantial deviations to the model. 1105

The temporal dynamics of the total MS2 and PP7 signals FMS2(t) and FPP7(t) are
then obtained by summing over all the individual RNAP molecule contributions for
each timepoint

FMS2(t) =
NX

i=1

FMS2
i (t)

FPP7(t) =
NX

i=1

FPP7
i (t),

where i is the index of each individual RNAP molecule and N is the total number of
loaded RNAP molecules. The final signal is then modified by accounting for the scaling
factor ↵ and the basal fluorescence values of MS2basal and PP7basal. ↵ is necessary
because the two fluorescent protein signals have different arbitrary units (Fig 3).
Further, the two basal fluorescence values are incorporated to account for the
experimentally observed low baseline fluorescence in each fluorescent channel. The final
signals F 0

MS2(t) and F 0
PP7(t) are then given by

F 0
MS2(t) =

(
MS2basal/↵ FMS2(t) < MS2basal
FMS2(t)/↵ FMS2(t) � MS2basal

and

F 0
PP7(t) =

(
PP7basal FPP7(t) < PP7basal
FPP7(t) FPP7(t) � PP7basal.

All of the model parameters introduced in this section were used as free parameters in
the fitting procedure described in Section D in S1 File.
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Note that the model does not make mechanistic claims about the nature of the
cleavage process, which could potentially be convolved with processes such as
transcriptional pausing. Specifically, if RNAP pausing were to happen 3’ of the PP7 1110

stem loop sequence, then it is effectively indistinguishable from cleavage at the 3’ UTR.
However, we stress that our model is only an effective parameterization, and so we

make no mechanistic claims as to the source of a particular cleavage time value. What
our model interprets as cleavage could stem from pausing at the 3’UTR of the reporter,
for example, or from continued elongation past the 3’UTR due to inefficient cleavage 1115

and termination processes. These would exhibit the same experimental signals—namely,
persistence of fluorescent signal after the expected time of signal loss—and thus is a
challenge of experimental resolution and not of model formulation.

B Characterization of photobleaching in
experimental setup 1120

To determine whether photobleaching was present in our experimental setup, we
conducted an experiment with the dual-color 5’/3’ tagged reporter (Fig 1C) where half
of the field of view was illuminated using the experimental settings described in the
Methods and Materials section (S2A Fig, purple), and the other half was illuminated at
half the temporal sampling rate (S2A Fig, yellow). 1125

Since the measurement conditions were identical except for the sampling rate for
both reporter constructs used in this work, any systematic differences between the two
measurement conditions could only stem from this different sampling rate. Thus, if the
experimental settings were in the photobleaching regime, then the purple region would
exhibit fluorescence at a systematically lower intensity compared to the yellow region. 1130

S2B Fig and S2C Fig show the fluorescence intensities of mCherry and eGFP as a
function of time at a particular anterior-posterior position of the embryo for both 0.5x
and 1x sampling rates, where data points indicate fluorescence averaged within the
anterior-posterior position (indicated schematically by the dashed box in S2A Fig) and
error bars indicate standard error across cells. The plots reveal that, qualitatively, there 1135

is no obvious systematic difference between the two illumination regions.
To quantify photobleaching, we defined the average normalized difference � between

illuminated regions. This magnitude is calculated by subtracting the fluorescence value
at 1x sampling rate F1x by that at 0.5x sampling rate, dividing by the fluorescence
value at 0.5x sampling rate F0.5x, and then averaging across all time points Ntimepoints

and embryo positions Npositions

� =

NtimepointsX

i=1

NpositionsX

j=1

1

Ntimepoints

1

Npositions

F ij
1x � F ij

0.5x

F ij
0.5x

.

For example, for the curves shown in S2B Fig, this entails subtracting the red curve by
the black curve, dividing by the black curve, and then averaging for all
anterior-posterior embryo positions. An overall value of less than zero means that the
1x sampling rate produces systematically lower fluorescence intensities, indicating that 1140

our experimental settings are in the photobleaching regime.
As seen in S2D Fig, the average normalized difference � is consistent with zero for

both fluorophores (within standard error, measured across all time points and
anterior-posterior positions). Thus, we conclude that our data are not in the
photobleaching regime. 1145
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Fig S2. Investigation of photobleaching in experimental setup. (A) Control experiment
where half of the field of view is illuminated at the standard experimental settings
(yellow), and the other half of the field of view is imaged at half of the illumination rate
(purple). (B, C) The (B) mCherry and (C) eGFP fluorescence signals at a given
anterior-posterior embryo position, averaged across cells within that position (white
dashed rectangle in (A)), do not exhibit photobleaching. (D) The average normalized
difference between illuminated regions, averaged across time points and
anterior-posterior embryo positions, are approximately zero within error. A negative
value would indicate the presence of photobleaching. (B, C, error bars indicate standard
error of the mean averaged across cell nuclei in the field of view; D, error bars indicate
standard error of the mean averaged across time points and embryo positions).

C Justification for approximating transcript
cleavage as instantaneous

In the model presented in Section A in S1 File, we assumed that, when a nascent RNA
transcript is cleaved at the end of the reporter gene, its MS2 and PP7 fluorescence
signals disappear instantaneously. Here, we justify this assumption by demonstrating 1150

that the timescale of mRNA diffusion away from the active locus is much shorter than
the experimental resolution of our system.

When a nascent RNA transcript is cleaved, it diffuses away from the gene locus. For
a free particle with diffusion coefficient D, the characteristic timescale ⌧ to diffuse a
length scale L is given by

⌧ ⇠ L2

D
.

In the context of the experiment performed here, this can interpreted as the timescale
for a cleaved mRNA transcript to diffuse away from the diffraction-limited fluorescence
punctum at the locus. 1155

We can estimate the characteristic timescale ⌧ by plugging in the following values.
Assume that the completed transcript possesses a typical mRNA diffusion coefficient of
D ⇠ 0.1 µm2/s [149]. The length scale L corresponds to the Abbe diffraction limit,
which yields L ⇠ 250 nm for green light with a wavelength of about 500 nm and a
microscope with a numerical aperture of 1. Plugging these values into the equation
yields a diffusion time scale of

⌧ ⇠ (250nm)2

0.1µm2/s
⇠ 0.625 s.

As a result, a newly cleaved mRNA transcript will typically diffuse away from the locus
in less than a second, meaning that its MS2 and PP7 fluorescence signal will vanish
much faster than our experimental time resolution of 15 s. For this reason, we can
justify approximating the cleavage process as instantaneously removing the fluorescent
signals of newly cleaved transcripts. 1160

D Overview and application of MCMC

The inference procedures described in the main text were carried out using the
established technique of Markov Chain Monte Carlo (MCMC). Specifically, we used the
MATLAB package MCMCstat, an adaptive MCMC technique [146,147]. For detailed
descriptions, we refer the reader to the the MCMCstat website 1165

(https://mjlaine.github.io/mcmcstat/), as well as to a technical overview of
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MCMC [69]. Briefly, MCMC allows for an estimation of the parameter values of a
model that best fit the experimentally observed data along with an associated error. In
this work, we use MCMC to infer the best fit values of the transcription cycle
parameters given observed fluorescence data at the single-cell level. Then, we combine 1170

these inference results across cells to construct distributions of inferred values across the
ensemble of cells.

MCMC calculates a Bayesian posterior probability distribution of each free
parameter given the data by stochastically sampling different parameter values. For a
given set of observations D and a model with parameters ✓, the so-called posterior
probability distribution of ✓ possessing a particular set of values is given by Bayes’
theorem

p(✓|D)| {z }
posterior

=

likelihoodz }| {
p(D|✓)

prior
z}|{
p(✓)

p(D)| {z }
evidence

.

This posterior distribution is a combination of three components: the likelihood, prior,
and evidence. This latter term represents the probability of the observations possessing
their particular values, and allows the overall posterior distribution to be normalized. In
practice, the evidence term is often dropped since MCMC can still yield accurate results
without requiring this normalization. Thus, we have

p(✓|D)| {z }
posterior

/
likelihoodz }| {
p(D|✓)

prior
z}|{
p(✓) .

The prior function contains a priori assumptions about the probability distribution of
parameter values ✓, and the likelihood function represents the probability of obtaining
the observations, given a particular set of parameters ✓. Thus, the most likely set of 1175

parameters ✓ occurs when the product of the likelihood and prior is maximized, resulting
in a maximum in the posterior function. MCMC extends this by sampling different
values of ✓ such that an approximation of the full posterior distribution is also obtained.

The prior distributions for the inferred parameters were set as follows. The prior
distribution for the fluctuations in the initiation rate �R(t) at each time point was 1180

assumed to be a Gaussian distribution centered around 0 AU/min with a standard
deviation of 30 AU/min. This penalized fluctuations that strayed too far from zero,
smoothing the overall initiation rate R(t). For the rest of the parameters, a uniform
distribution was chosen using the following uniform intervals:

• velon: [0, 10] kb/min 1185

• ton: [0, 10] min

• ↵: [0, 1]

• ⌧cleave: [0, 20] min

• MS2basal: [0, 50] AU

• PP7basal: [0, 50] AU 1190

• hRi: [0, 40] AU/min

These intervals were justified with the following arguments. Previous elongation rate
measurements have indicated values between around 1 and 4 kb/min (S9 Fig; [89]), so
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we approximately doubled this range for flexibility. Previous measurements of the
transcription onset time ton for hunchback range from about 1 to 6 min [25], so we 1195

chose a similarly flexible interval. The calibration factor ↵ must take on values between
0 and 1, since, under the experimental settings used, mCherry exhibits weaker absolute
fluorescence than eGFP (see for example, Fig 3C). Although the cleavage time is not
well understood, estimates lie on the order of minutes [75]—we chose a large interval to
be conservative. Based on our experimental data (e.g. Fig 2B), basal levels of MS2 and 1200

PP7 fluorescence lie comfortably in the range [0, 50] AU. Finally, as observed in our
data and also reported in [25], the mean rates of initiation lie comfortably in the range
[0, 40] AU/min (Fig 4A).

For the likelihood function, a Gaussian error function was used

p(D|✓) = e�SS ,

where SS is a scaled sum-of-squares residual function given by

SS =
X

t

(Fdata � Fprediction)2

Fdata
. (A)

Here, the summation runs over individual time points, Fdata corresponds to the MS2 or
PP7 fluorescence at a given timepoint, and Fprediction corresponds to the predicted MS2
or PP7 fluorescence according to the model, for a given set of parameter values. That is,

Fdata =
�
MS21, . . . ,MS2N ,PP71, . . .PP7N

 

where the subscripts indicate the time index over N time points. Similarly,

Fprediction =
�
MS2pred1 , . . . ,MS2predN ,PP7pred1 , . . .PP7predN

 

where the superscripts indicate that these are model predictions evaluated at the 1205

experimental time points. The presence of Fdata in the denominator scales the overall
sum-of-squares residual function by the mean signal intensity and is required because
the measurement noise in the fluorescence scales linearly with fluorescence intensity
(Section E in S1 File and S3 Fig).

The MCMC approach samples values of parameters ✓ to approximate the posterior 1210

probability distribution. There are several algorithms that achieve this—the adaptive
technique used in the MCMCstat package is an efficient algorithm that updates the
sampling technique to more quickly arrive at the converged distribution.

For each inference run, an initial condition of parameter values is chosen. The
algorithm then stochastically updates the next set of parameter values based on the 1215

current and previous values of the posterior distribution function. After a preset
number of updates (typically at least on the order of thousands), the algorithm stops,
resulting in a chain of MCMC parameter value samples. The initial period following the
initial condition, known as the burn-in time, is typically discarded since the results are
not reliable. The remaining values of the chain comprise an approximation of the 1220

underlying posterior probability distribution, with smaller errors for longer run times.
For the purposes of this work, the MCMC procedure was run by separately inferring

parameter values for the data corresponding to each single cell. For each inference,
random parameter values were chosen for the initial condition of the sampling algorithm
in order to prevent initial condition bias from affecting the inference results. The 1225

algorithm was run for a total of 20, 000 iterations, which, after removing a burn-in
window of length 10, 000, resulted in a chain of length 10, 000 for each of the 355 cells
examined. To assess whether or not the algorithm was run for a sufficient number of
iterations, the final chain was examined for rapid mixing, where the sampled values of a
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particular parameter rapidly fluctuate around a converged value. Fig 2C highlights this 1230

rapid mixing in the inferred transcription cycle parameters of a sample single cell. The
lack of long-timescale correlations, also exemplified by the quick decay of the
auto-correlation function of each chain (Fig 2D), indicates that the algorithm has
converged. In addition, a corner plot of the three transcription cycle parameters
(Fig 2E) illustrates the pairwise correlations between them, demonstrating that the 1235

inference did not encounter degenerate solutions, and that each parameter has a fairly
unimodal distribution.

These diagnostics provided a check on the quality of the inference results.
Afterwards, the mean value of each parameter’s final chain was then retained for each
single cell for use in the further statistical analysis carried out in the main text. 1240

E Justification of scaled observation model due to
fluorescence noise behavior

The observation model parameterized by the sum-of-squares residual in Equation A in
S1 File is scaled by dividing by the overall fluorescence intensity. This is needed because
the fluorescence noise is not constant, but rather scales linearly with overall intensity. 1245

Here, we demonstrate this behavior by examining the fluorescence noise exhibited in our
system.

A priori, if we consider that the fluorescent signals in our experiment are the result
of the sum of many individual fluorophores, then we would expect that, if an individual
fluorophore possesses some intrinsic constant measurement error with variance �2, then 1250

the associated error of N fluorophores would have a similarly scaled overall
measurement error with variance N�2. Since N is proportional to the overall mean
fluorescent signal, the observation model in Equation A in S1 File thus needs the mean
signal in the denominator.

To validate this scaling of the variance with the mean, we examined the data from 1255

the dual-color interlaced MS2/PP7 reporter construct from Fig 3B. These data
constitute, in principle, a two-point measurement of the same underlying biological
process, so we reasoned that we could utilize this measurement to quantify the scaling
of fluorescence noise with respect to overall fluorescence intensity.

Specifically, by creating bins of eGFP fluorescence measurement from the scatterplot 1260

in Fig 3D, we calculated how the variance of associated mCherry fluorescence values
within a bin scaled with eGFP fluorescence (here a proxy for overall fluorescence
intensity). If the calculated variance increased with overall fluorescence, this would
indicate that the fluorescence measurement noise is not constant, but rather scaled
positively with signal strength. S3 Fig shows this calculated variance (red), along with 1265

bootstrapped standard error, as a function of bin value (i.e. eGFP fluorescence). We see
that the variance indeed increases with bin value fairly linearly, confirming our
hypothesis. If we then scale the variances by dividing by the mean mCherry
fluorescence within a bin, we recover a constant scaling, as expected (black).

The fluorescence intensity of each detected MS2 or PP7 spot was calculated by 1270

integrating the pixel intensities in a small circular neighborhood with a fixed radius of
about 1 micron around each spot center and subtracting by the background
fluorescence, calculated by fitting a Gaussian to the spatial fluorescence profile (see
Methods and Materials). While the number of detected pixels does contributes to the
fluorescence intensity (and thus variance across measurements), the size of a spot does 1275

correlate with overall transcriptional activity – thus, the scaling of signal variance
depends on multiple factors but would be expected to increase with spot brightness, and
to a lesser degree, size, both of which contribute to the overall integrated intensity
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Fig S3. Scaling of fluorescence measurement noise with overall fluorescence intensity.
Variance of mCherry fluorescence at a particular GFP fluorescence (red), from the
dual-color interlaced reporter construct from Fig 3B, along with variance scaled by
dividing out the mean mCherry fluorescence (black).

within the neighborhood.
The observed behavior of fluorescence variance is intriguing because previous work 1280

using the same spot detection methodology found that the dominant contributor to
fluorescence noise was background fluorescence outside of the actively transcribing
locus [25]. In contrast, this work is consistent with a scenario where the noise intrinsic
to the individual fluorophore molecules dominates, leading to the observed scaling of
fluorescent noise with the mean intensity. We speculate that, in this work, the difference 1285

in fluorescence noise behavior stems from the usage of mCherry, whose signal is lower,
and therefore noisier, than that of GFP in the context of the fruit fly embryo (Fig 3F).
In addition, other differences such as usage of MS2-mCherry instead of MS2-GFP and a
different maternal fly line driving different levels of constitutive MCP-mCherry and
PCP-GFP could change the relative strength of background fluorescence noise. 1290

F Curation of inference results

Individual single cell inference results were filtered automatically and then run through
an automated curation procedure for final quality control. First, due to experimental
and computational imaging limits, some MS2 or PP7 trajectories were too short to run
a meaningful inference on. As a result, we automatically skipped over any cell with an 1295

MS2 or PP7 signal with fewer than 30 datapoints. This amounted to 626 cells skipped
out of a total of 1053, with 427 (41%) retained.

Second, the retained cells were run through an automated curation pipeline. For
each single-cell fit, we calculated the average squared normalized residual �2, defined as

�2 =
X

timepoints

(Fdata � Ffit)2

F 2
data

,

where the summation occurs over all time points and Fdata and Ffit correspond to the
fluorescence data and fit, respectively. Thus, �2 gives a measure of how good or bad, on
average, each single-cell fit is. S4A Fig and S4B Fig show histograms of the average 1300

squared normalized residual �2 for the entire n = 427 dataset, with log and linear
x-axes. We see that the vast majority of data possesses values of �2 smaller than unity,
with a long tail at higher values corresponding to bad fits. We decided to implement a
cutoff of �2cutoff = 1 (red line), where any cell with a higher value of �2 was
automatically discarded. 1305

In sum, 355 cells of data were retained out of 427 total after this curation process.
We reasoned that, since we still ended up with hundreds of single cells of data, the
resultant statistical sample size was large enough to extract meaningful conclusions.

To assess the rejected fits for underlying biological causes, we did a qualitative
examination for common features. There were several sources of bad fits. First, some 1310

traces possessed low signal-to-noise ratio (S4C Fig) that nevertheless yielded reasonable
fits that were slightly above �2cutoff . Still others simply had poor fits, possibly due to
running into issues with the inference algorithm such as getting trapped in local minima
(S4D Fig). We consider improvements to the algorithm to be outside the scope of this
work, since the retained data still contain enough statistical size to provide interpretable 1315

results.
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Finally, one potential biological source confounding the model could be the presence
of substantial transcriptional bursting of the promoter. Although the majority of the
traces we analyzed indicated that the hunchback reporter gene studied here possessed a
promoter that was effectively ON during the cell cycle studied, a small fraction of traces 1320

(4% of the filtered cells) possessed substantial time dependence of the fluorescence
signal, potentially resulting from rapid switching of the promoter between ON and OFF
states (S4E Fig).

The presence of transcriptional bursts is of high biological significance, but capturing
the behavior would require more specific models (e.g. two-state telegraph models 1325

like [35]). As a result, we relegate extensions of the model that can account for
transcriptional bursting for future work. Thus, our work provides a self-contained
framework applicable for describing the behavior of promoters that are primarily ON for
the duration of the experiment and that do not experience transcriptional bursting.

Due to the variety of sources contributing to the rejected fits, we opted for a 1330

conservative approach and only analyzed the cells with high signal quality that did not
exhibit the complications mentioned above. The number of retained fits were still much
higher than the number of rejected fits (S4F Fig).

To check that the curation procedure did not incur substantial bias, we compared
the average inferred mean initiation rate, elongation rate, and cleavage time as a 1335

function of embryo position between the post-filtering curated and uncurated datasets
of size n = 355 and n = 427, respectively (S4G-I Fig). We observed no substantial
difference between the two datasets, indicating that the curation procedure was not
systematically altering the inference results.

Fig S4. Automated curation of data. (A, B) Histograms (blue) of average squared
normalized residual of single-cell fits, in log (A) and linear (B) scale, with cutoff of
�2cutoff = 1 shown in red in (B). (C) Example of bad fit from poor signal-to-noise ratio
(SNR). (D) Example of bad fit of otherwise reasonable data from issues in fitting
algorithm, for example due to local minima. (E) Example of bad fit due to potential
presence of substantial bursting of promoter. (F) Number of single cell fits in each class
of rejected fit, along with number of accepted fits, after the initial filtering based on
number of time points. Altogether, 84% of filtered fits were accepted. The percentages
of filtered fits in the three rejected categories (low SNR, poor fits, bursting) were 7%,
5%, and 4%, respectively. The data shown in C-E are in each fluorophore’s intrinsic
arbitrary unit without rescaling, to present the fluorescence intensities in their raw form.
(G, H, I) Comparison of average inferred (G) mean initiation rate, (H) elongation rate,
and (I) cleavage time as a function of embryo position, between curated (blue) and
uncurated (red) datasets. Values of �2 were 6.05, 1820, and 688 for the example fits
shown in C-E, respectively, here given to illustrate the qualitative correspondence of �2

as a metric with the overall goodness-of-fit. Shading in G-I represent standard error of
the mean for 355 and 427 cells across 7 embryos for curated and uncurated datasets,
respectively.

G Validation of inference results 1340

To assess the accuracy of the inference method, we validated our MCMC approach
against a simulated dataset. Using the inferred distribution of model parameters from
the experimental data, we generated a simulated dataset with our theoretical model
(Section A in S1 File) and ran the MCMC inference on it.

The simulated dataset consisted of 300 cells. The model parameters used to simulate 1345

each individual cell’s MS2 and PP7 fluorescences were drawn randomly from a Gaussian
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distribution, with mean µ and standard deviation � calculated from the distribution of
inferred model parameters from the experimental data. Table A in S1 File shows the
parameters used in the Gaussian distributions generating each single cell’s model
parameters. We chose to fix the time-dependent fluctuations in the initiation rate �R(t) 1350

at zero since these fluctuations are not well understood at the single-cell level, and the
hunchback reporter studied here is well parameterized by a mean initiation rate
(Fig 2B).

mean (µ) standard deviation (�)

hRi 16.6 AU/min 5.1 AU/min
�R(t) 0 0
velon 1.8 kb/min 0.8 kb/min
⌧cleave 3.1 min 1.4 min
ton 3.5 min 1.6 min
↵ 0.16 0.05

MS2basal 10 AU 5 AU
PP7basal 10 AU 5 AU

Table A. Mean and standard deviation of model parameters used in single-cell
simulations.

In addition, fluorescence measurement error was generated for each single cell and at
each time point by drawing a random number from a Gaussian distribution with mean 0 1355

and standard deviation 10⇥
p
Fsim AU, where Fsim is the fluorescence at each time

point, and adding this random number to the MS2 or PP7 fluorescence at that time
point (prior to rescaling the MS2 fluorescence with the scaling factor ↵). Here, thep
Fsim factor in the magnitude of the fluorescence noise accounts for our observation

that the variance of the fluorescence measurement noise scales linearly with the mean 1360

signal intensity (S3 Fig).
S5A Fig shows an example of the simulated MS2 and PP7 fluorescence from a single

cell along with their corresponding fits. The resulting MCMC-sampled values of the
mean initiation rate, elongation rate, and cleavage time are shown in the histograms in
S5B Fig (blue), along with the ground truth for that single cell (red line). As described 1365

in Section D in S1 File, the mean value of each sampled distribution was retained for
downstream statistical analysis.

The accuracy of the inference was investigated on three levels: 1) systematic errors
affecting mean analyses, 2) random errors affecting measurements of distributions, and
3) spurious correlations between parameters affecting inter-parameter correlations. 1370

First, the scaled error " for each parameter was calculated on a single-cell basis as
defined by

" =
xinfer � xtruth

µx
,

where x represents the model parameter being investigated, the subscripts indicate
whether the quantity is the inferred result or the ground truth for that single cell, and
µx is the population mean of the parameter value from the experimental data (i.e., the
values of the “mean” column in Table A in S1 File). For example, for the mean
initiation rate hRi, µhRi takes the value 16.6 AU/min. " gives a unitless measure of the 1375

magnitude of inference error of each single cell, where a value of 1 indicates an error
that is as large as the population mean itself. Because the scaled error is defined as the
error due to inference for a single cell, it is an intensive quantity that is independent
from the overall dataset size.

S5C Fig shows the histogram of single-cell scaled errors "hRi, "velon , and "taucleave for 1380

the inferred mean initiation rate, elongation rate, and cleavage time, respectively. The
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Fig S5. Overview of MCMC inference validation. (A) Example single-cell simulated
data and inferred fits. (B) MCMC inference results for the simulated data in (A) for the
mean initiation rate, elongation rate, and cleavage time. The histogram represents the
raw MCMC sampled values, and the red line is the ground truth for this particular cell.
The mean value of each histogram is then retained for further statistical analysis. (C)
Scaled error of initiation, elongation, and cleavage for each simulated cell. (D)
Comparison of relative magnitudes of random inference error and true experimental
variability for the initiation, elongation, and cleavage parameters. (E, F, G, H)
Single-cell correlations along with Spearman correlation coefficients and p-values for
simulated data between (E) mean initiation rate and cleavage time, (F) mean initiation
rate and elongation rate, (G) elongation rate and cleavage time, and (H) mean RNAP
density and cleavage time, respectively. Blue points indicate single-cell values; black
points and error bars indicate mean and SEM, respectively, binned across x-axis values.
Line and shaded region indicate generalized linear model fit and 95% confidence interval,
respectively. Linear fits were calculated using a generalized linear regression model and
are presented for ease of visualization (see Methods and Materials for details).

majority of the scaled errors fall between �0.5 and 0.5, indicating that most inferred
results possess relatively small error.

The systematic error on measurements of the ensemble mean can be estimated by
calculating the mean of the scaled errors shown in S5C Fig. Doing so results in a value 1385

of �0.06± 0.01, �0.01± 0.02, and 0.04± 0.02 (mean and SEM) for the mean scaled
error of the mean initiation rate, elongation rate, and cleavage time, respectively. For
context, this means that, if the mean cleavage time is ⇠ 3 min, then the systematic
error in the cleavage time is ⇠ 10 sec, about the time resolution of the data. Thus, the
systematic error for each parameter is a couple orders of magnitude below that of the 1390

experimental mean value of each parameter, indicating that the inference provides an
accurate and precise readout of the mean.

While the inference’s systematic error across cells may be small, the presence of
individual single-cell errors will affect measurements of distributions of parameters. To
investigate the impact of these random errors, we quantified the fraction of total
empirically inferred variability that consisted of inferential error. Specifically, for a
parameter x, we separated the variance of single-cell measurements as

�2
x,total = �2

x,empirical + �2
x,inference,

where �2
x,total represents the overall single-cell variability observed in the data (the

combination of empirical and inferential variability), �2
x,inference represents the error

inherent to our inference process, and �2
x,empirical represents the true empirical 1395

variability after subtracting out inferential error �2
x,inference. Note that �2

x,total is the
square of the values in the standard deviation column in Table A in S1 File.

Dividing by the square of the population means µx yields

�2
x,total

µ2
x

=
�2
x,empirical

µ2
x

+
�2
x,inference

µ2
x

.

Note that these are just squared CV terms, and that the last term is simply the square
of the scaled error " defined earlier

CV 2
x,total = CV 2

x,empirical + "2x.

Thus, the overall impact of the inferential error can be quantified by calculating the
relative magnitudes of the contributions of CV 2

x,empirical and "2 to the total variability
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CV 2
x,total. S5D Fig shows this separation, where the dark bars represent the squared 1400

scaled error "2, the light bars represent the true empirical variability CV 2
x,empirical, and

the overall bars represent the total variability CV 2
x,total obtained from the values of µ

and � in Table A in S1 File.
All three model parameters—initiation, elongation, and cleavage—possess no more

than approximately 25% inferential error. Nevertheless, the presence of this much error 1405

indicates that measurements of distributions of these parameters will be somewhat
confounded by the inherent error present in our inference method, highlighting the
general difficulty in measuring values beyond the mean.

However, these errors in the inference of the variability of the transcription cycle
parameters should not impact the results of investigating the distribution of elongation 1410

rates in Fig 4D, since the simulated results there were also pushed through the inference
pipeline and should pick up similar inferential noise. Furthermore, the variances of the
simulated distributions in the presence or absence of single-molecule elongation
variability differed by essentially around a factor of two (S10D Fig), twice as much as
the random error exhibited in the simulated results here (see Section M in S1 File for 1415

details).
Future improvements on increasing the accuracy of measurements of distributions

could be achieved, for example, by utilizing interleaved loops such as those introduced
in Fig 3B. Here, two orthogonal species of mRNA binding proteins fused to different
fluorescent proteins would bind to interleaved loops located at the 5’ end of the 1420

construct. In addition, a second pair of mRNA binding proteins would bind to an
analogous set of interleaved loops located at the 3’ end. The result would be a
four-color experiment, with two colors reporting on transcription at the 5’ end of the
transcript, and two different colors reporting on transcription the 3’ end. In this
scenario, the data would provide independent readouts of the same underlying signal, 1425

making it possible to perform two independent inferences on the same nucleus. This
would allow for the decomposition of the inference into biological variability and
inferential error using techniques analogous to those presented in SectionK in S1 File.

Finally, we examined the inference method for spurious correlations to investigate
the accuracy of the experimental single-cell correlations shown in Fig 5. The presence of 1430

spurious correlations would reflect inherent couplings in the inference method itself,
since the simulation parameters were generated independently and stochastically.

S5E-H Fig show the single-cell correlations using the Spearman rank correlation
coefficient between model parameters for the simulated dataset, as well as between the
mean RNAP density and the cleavage time, as defined in the main text. Linear 1435

regression fits are also displayed for intuitive visualization. We discovered a slight
positive correlation (⇢ = 0.15) between the elongation rate and the cleavage time
(S5G Fig, p-val = 0.01). In contrast, there was no significant correlation between the
mean initiation rate and the cleavage time, the mean initiation rate and the elongation
rate, and the mean RNAP density and the cleavage time (S5E, F, and H Fig). Although 1440

the relationship between the elongation rate and the cleavage time possessed the same,
albeit weaker, correlation as found in the data (Fig 5C), the main finding in the main
text of the correlation between the mean RNAP density and the cleavage time was not
reproduced by the simulations (S5H Fig). The comparisons of Spearman rank
correlation coefficients and p-values between the data and simulations are summarized 1445

in Table B in S1 File.
Thus, our results validated the single-cell correlations discovered in the main text,

indicating that the experimental results were not the product of spurious correlations.
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initiation
cleavage

initiation
elongation

elongation
cleavage

RNAP density
cleavage

data ⇢ = �0.52 ⇢ = �0.21 ⇢ = 0.35 ⇢ = �0.55
p-val ⇡ 0 p-val = 5⇥ 10�5 p-val = 2⇥ 10�11 p-val ⇡ 0
negative negative positive negative

correlation correlation correlation correlation
simulation ⇢ = 0.07 ⇢ = 0.01 ⇢ = 0.15 ⇢ = �0.01

p-val = 0.24 p-val = 0.86 p-val = 0.01 p-val = 0.86
insignificant insignificant positive insignificant
correlation correlation correlation correlation

Table B. Comparison of Spearman rank correlation coefficients and p-values between
experimental and simulated single-cell correlations.

H Validation of the RNAP processivity assumption

The calibration between the MS2 and PP7 signals (Fig 3) provided an opportunity to 1450

test the processivity assumption presented in the main text, namely that the majority
of loaded RNAP molecules transcribe to the end of the gene without falling off. To
estimate the processivity quantitatively, we assume that a series of N RNAP molecules
transcribes past the MS2 stem loop sequence at the 5’ end of the reporter gene, and
that only pN successfully transcribe past the PP7 stem loop sequence at the 3’ end. 1455

Here, we define p to be the processivity factor, and require 0 < p < 1. Thus, p = 1
indicates maximal processivity where every RNAP molecule that transcribes the MS2
sequence also transcribes the PP7 sequence, and p = 0 indicates minimal processivity,
where no RNAP molecules make it to the PP7 sequence.

We assume that no RNAP molecules fall off the gene while they transcribe the
interlaced MS2/PP7 loops used in the calibration experiment described in Fig 3B.
Under this assumption, N RNAP molecules will fully transcribe both sets of stem loop
sequences, allowing us to define the scaling factor as the ratio of total fluorescence values

↵calib =
NFMS2

NFPP7
=

FMS2

FPP7
.

Note that, in this simple model, RNAP molecules can still fall off the gene after they
transcribe the set of MS2/PP7 loops. Now, we consider the construct with MS2 and
PP7 at opposite ends of the gene used in the main text. Allowing a fraction p of RNAP
molecules to fall off the gene between the MS2 and PP7 loops, we arrive at a scaling
factor

↵infer =
NFMS2

pNFPP7
=

FMS2

pFPP7
.

We can thus calculate the processivity p from taking the ratio of the true and biased
scaling factors

p =
↵calib
↵infer

.

Taking the mean value of ↵calib from our control experiment using the interlaced 1460

MS2/PP7 loops to be the true value and the mean value of ↵infer from the inference
from the main text to be the biased value, we calculate a mean processivity of p = 0.96,
with a negligible standard error of 4.81⇥ 10�5. Thus, on average, 96% of RNAP
molecules that successfully transcribe the 5’ MS2 stem loop sequence also successfully
transcribe the 3’ PP7 stem loop sequence, confirming previous results [25, 76] and 1465

lending support to the processivity assumption invoked in our model.
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Fig S6. Comparison of intra- and inter-embryo variability for inferred (A) mean
initiation rates, (B) elongation rates, and (C) cleavage times, as a function of embryo
position. (D) Intra- and inter-embryo variability for transcriptional parameters averaged
across all embryo positions. (A-C, lines and shaded regions indicate mean and standard
error of the mean, respectively; D, error bars indicate bootstrapped standard error error
across 100 bootstrap samples. Data were taken over 355 cells across 7 embryos, with
approximately 10-90 cells per embryo in the region of the embryo examined here.)

Fig S7. Single cell distributions of inferred parameters. (A-C) Full single-cell
distributions of (A) mean initiation rate, (B) elongation rate, and (C) cleavage time as a
function of embryo position.

I Comparing intra- and inter-embryo variability

In the analysis in the main text, we treated all single cell inference results equally
within one statistical set. In principle, this is justified only if the variability between
single cells is at least as large as the variability between individual embryos. In this 1470

section we prove this assumption.
Here, we examine two quantities: the intra-embryo variability, defined as the

variance in a parameter across all single cells in a single embryo, and the inter-embryo

variability, defined as the variance across embryos in the single-embryo mean of a
parameter. We examined these two quantities for the three primary inferred 1475

parameters—the mean initiation rate, elongation rate, and cleavage time.
S6A-C Fig shows the results of this comparison as a function of embryo position,

where the red (blue) lines indicate the intra- (inter-) embryo variability and the red
(blue) shaded regions indicate the standard error (bootstrapped standard error) in the
intra- (inter-) embryo variability. For all of the parameters, the intra-embryo variability 1480

is at least as large as the inter-embryo variability, validating our treatment of all of the
single-cell inference results as a single dataset, regardless of embryo.

This is seen more clearly when the data are averaged across embryo position. As
shown in S6D Fig, the inter-embryo variability of each parameter is substantially higher
than the intra-embryo variability. 1485

J Full distributions of transcriptional parameters as
a function of embryo position

Fig 4 presents inferred values of the transcriptional parameters in the form of population
means and CVs as a function of embryo position. We chose this form of presentation to
focus on spatial variation of these parameters via a succinct visualization. 1490

S7 Fig shows the full distributions of the transcriptional parameters as a function of
embryo position. For each parameter, the observed variability at a particular position in
the embryo is quite broad, indicating substantial cell-to-cell variability. Nevertheless,
there is no clear indication of multimodal behavior, indicating that the mean is still a
reliable metric of population-averaged behavior. 1495
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K Comparison of variability in mean initiation rate
reported by our inference with static
measurements

A widespread strategy to measure variability in transcription initiation relies on
techniques such as single-molecule FISH (smFISH), which count the number of nascent 1500

transcripts at a transcribing locus in a fixed sample
[39–41,43,45,48–52,56–58,76–78,80–83]. These single time point measurements are
typically interpreted as reporting on the cell-to-cell variability in transcription initiation.
Further, under the right conditions, the variability reported by this method has been
shown to be dominated by biological sources of variability and to have a negligible 1505

contribution from experimental sources of noise [57].
Inspired by these measurements in fixed embryos, we sought to determine how well

our approach could report on biological variability. To do so, we contrasted the
inference results of the transcriptional activity of our hunchback reporter with a
snapshot-based analysis inspired by single-molecule FISH [57]. Specifically, we 1510

calculated the CVs in the raw MS2 and PP7 fluorescence in snapshots taken at
10 minutes after the start of nuclear cycle 14, from the same post-curation cells
analyzed with the inference method. We reasoned that, since this calculation does not
utilize the full time-resolved nature of the data, it provides a baseline measurement of
total noise that encompasses both experimental and biological variability. As a point of 1515

comparison, we also calculated the CV in the instantaneous MS2 signal from another
work using a similar P2P-MS2-lacZ construct [61].

S8A Fig shows the CV as a function of embryo position as reported by these
different approaches. For the static measurements (red, green, and blue), the CV values
lay around 20% to 80%. The CV of the inferred mean initiation rate (purple) exhibited 1520

similar values, although it was slightly lower in a systematic fashion. This difference
was likely due to the fact that the inference relies on time-dependent measurements that
can average out certain sources of error such as experimental noise, whereas such time
averaging is not possible in the context of single time point measurements.

To succinctly quantify variability in the mean initiation rate, we then calculated the 1525

position-averaged squared CV for the same measurements in S8A Fig. The resulting
squared CV values are shown in S8B Fig. Although the static measurements possessed
essentially identical squared CVs (blue, red, green), the inference method exhibited a
clear reduction in the squared CV (purple).

To test whether the discrepancy in the variability between time-resolved and 1530

snapshot-based measurements arose from differences in the experimental error of each
technique, we used the formalism introduced by [84] to separate the noise in the system
into uncorrelated and correlated components. Here, uncorrelated noise represents
random measurement error, while correlated noise contains both systematic
measurement error as well as true biological variability. To perform this separation, we 1535

utilized the alternating MS2-PP7 reporter used in the calibration calculation (Fig 3B).
Because the MS2 and PP7 fluorescent signals in this reporter construct should, in
principle, reflect the same underlying biological signal, deviations in each signal from
each other should report on the relative magnitudes of both types of noise.

First, we defined the deviations �MS2 and �PP7 of each instantaneous MS2 and PP7
fluorescent signal from the mean MS2 and PP7 fluorescence signals, averaged across
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nuclei and time

�MS2 =
FMS2

hFMS2i
� 1

�PP7 =
FPP7

hFPP7i
� 1,

where FMS2 and FPP7 are the respective instantaneous MS2 and PP7 fluorescence
values for a given nucleus and time point, and hFMS2i and hFPP7i are the respective
mean MS2 and PP7 fluorescence values, averaged across nuclei and time points. Using
these deviations, the uncorrelated and correlated noise terms are defined as

⌘2uncorr =
1

2
h
�
�MS2 � �PP7

�2i

⌘2corr = h�MS2�PP7i,

where the brackets indicate an ensemble average over time points and cells [84]. From
this, the total noise ⌘2tot, defined as the variance �2 divided by the mean squared µ2, is
simply the uncorrelated and correlated noise components added in quadrature

⌘2tot =
�2

µ2
= ⌘2uncorr + ⌘2corr.

Note that the total noise ⌘2tot is simply the squared coefficient of variation. Thus, the 1540

squared coefficient of variation (CV2) of our data is equal to ⌘2tot and can be separated
into the uncorrelated and correlated components.

S8B Fig shows this CV2 (averaged across all embryo positions) for snapshots of the
interlaced loop construct compared with the separated uncorrelated and correlated noise
sources. Intriguingly, the uncorrelated and correlated noise (yellow) each contribute 1545

about half to the overall noise. We posit that the relative magnitude of partitioning
between correlated and uncorrelated noise also holds for the static measurements of spot
fluorescence (S8B Fig, blue, red and green). As a result, given this assumption, we can
calculate the correlated and uncorrelated variability contributions to total squared CV
from these static measurements. This is shown in light and dark red in the case of the 1550

static MS2 fluorescence measurement in S8B Fig. The plot reveals that the correlated
noise component of the static measurements (dark red) is only slightly smaller than the
overall noise measured by the inference (purple) , suggesting that our inference method
primarily reports on correlated variability.

As a result, the MCMC inference method can quantitatively capture the true 1555

biological variability in the mean initiation rate while separating out most of the
uncorrelated contribution due to random experimental noise. Thus our results support
the power of model-driven inference approaches in providing clean readouts of
variability in transcriptional parameters.

L Comparison of distribution of elongation rates 1560

with other works

As an additional validation of our inference results, we compared the distribution of
single-cell inferred elongation rates with those reported in two similar works by [23]
and [26]. Both of these works used a two-color live imaging reporter like the one utilized
in this work, and measured the time delay between the onset of each stem loop signal to 1565

estimate a single-cell mean elongation rate. [26] studied a similar hunchback reporter to
the one used here, while [23] used a reporter construct in yeast.
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Fig S8. Comparison of coefficients of variation (CV) between inferred mean initiation
rates and instantaneous counts of number of nascent RNA transcripts. (A)
Position-dependent CV of inferred mean initiation rate (purple) compared with static
measurements of MS2 and PP7 raw fluorescence (red, green) from the dual-color
reporter (Fig 1C), as well as with static measurements of MS2 data from [61] (blue).
(B) Position-averaged squared CVs of the same measurements, where the entire dataset
is treated as a single sample and embryo position information is disregarded. In
addition, separation of uncorrelated and correlated sources of variability are shown,
calculated using the reporter described in Fig 3B. (A, Shaded regions indicate
bootstrapped standard error of the mean; B, error bars indicate bootstrapped standard
error of the mean for n = 100 bootstrap samples.)

Fig S9. Comparison of distribution of elongation rates (green) with previous studies
( [23], red and [26], blue). Distributions of previous studies were adapted from Figs. 2D
and 2A of [23] and [26], respectively.

S9 Fig shows the comparison of distributions of elongation rates. Because the
reporter constructs and analysis techniques differed between works, a quantitative
comparison is not possible. Nevertheless, all three sets of results report a significant 1570

cell-to-cell variability in mean elongation rate, ranging from 1 kb/min to 3 kb/min.

M Theoretical investigation of single-cell
distribution of elongation rates

To investigate the molecular mechanisms underling single-cell distributions of elongation
rates obtained from the inference, we developed a single-molecule theoretical model. We 1575

were interested in how the observed variability in single-cell elongation rates could
constrain models of the single-molecule variability in RNAP elongation rates. To
disregard effects due to position-dependent modulations in the transcription initiation
rate, we only studied cells anterior of 40% along the embryo length, where the initiation
rate was roughly constant. 1580

The model was adapted from the stochastic Monte Carlo simulation used in [92],
which accounts for the finite size of RNAP molecules (S10A Fig). Here, single RNAP
molecules are represented by one-dimensional objects of size Nfootprint that traverse a
gene consisting of a one-dimensional lattice with a total number of sites, corresponding
to single base pairs, equal to Nsites. The position of the active site of molecule i is given 1585

by xi, which takes integer values—each integer corresponds to a single base pair of the
gene lattice. Because RNAP molecules have a finite size, given by Nfootprint, an RNAP
molecule i thus occupies the lattice sites from xi to xi +Nfootprint. In this model, we
do not incorporate sequence-dependent RNAP pausing along the gene.

New RNAP molecules are loaded at the start of the gene located at x = 0. Due to 1590

the exclusionary interactions between molecules, simultaneously simulating the motion
of all molecules is unfeasible, and a simulation rule dictating the order of events is
necessary.

At each simulation timestep dt, a randomized sequence of indices is created from the
following sequence

I = {0, 1, . . . , N},

where {1, . . . , N} correspond to any RNAP molecules i = 1, . . . , N already existing on
the gene, and 0 corresponds to the promoter loading site that generates new RNAP 1595

molecules.
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Choosing indices i from the random sequence I obtained above, the following
actions are taken. If the index i indicates that an RNAP molecule was chosen (i > 0),
then that RNAP molecule advances forward with stochastic rate ✏. This probability is
simulated by drawing a random number from a Poisson distribution with parameter 1600

✏ dt, thus giving an expected distance traveled of ✏ dt per timestep (recall that, for a
Poisson distribution with parameter ✏ dt, the resulting random variable corresponds to
the number of occurrences in a time frame dt.). If this movement would cause the
RNAP molecule to overlap with another RNAP molecule, then no action is taken.
Otherwise, the RNAP molecule moves forward the number of steps given by the 1605

generated random variable.
If no RNAP molecule on the gene is chosen (i = 0), an RNAP molecule is loaded

using a probability parameterized by the term � dt, only if no already existing RNAP
molecules overlap with the footprint of the new RNAP molecule. If such an overlap
occurs, then no action is taken. Otherwise, to calculate the probability of loading, a 1610

random number is drawn from a Poisson distribution with parameter � dt. If this
number is one or higher, then the loading event is considered a success. The process is
repeated until a total simulation time T has elapsed.

To simulate potential single-molecule variability, each RNAP molecule can possess a
different stepping rate ✏. For a given RNAP molecule i, its stochastic stepping rate ✏i is
drawn from a truncated normal distribution Tr with mean µ✏ and standard deviation
�✏ and lower and upper limits 1 and infinity bp/sec, respectively

✏i = Tr(✏,�✏, 0,1).

Once the position of the active site of an RNAP molecule exceeds that of the total
number of sites Nsites, i.e. the molecule reaches the end of the gene, it is removed from 1615

the simulation after the cleavage time ⌧ elapses..
Finally, to account for single-cell variability in the transcription initiation rate, the

loading rate � and cleavage time ⌧ were allowed to vary across each simulated cell j by
drawing these magnitudes from a Gaussian distribution with parameters reflecting the
actual data. Since hunchback is known to load new nascent RNA transcripts at a rate of
1 molecule every 6 seconds in the anterior of the embryo [25], we thus chose the mean of
this distribution µ� to be 1 molecule/6 s = 0.17 s�1. The standard deviation �� was
chosen to be this mean multiplied by the CV in the initiation rate in the anterior
inferred in the main text, resulting in a value of 0.05 s�1. Thus, for simulated cell j

�j = N(µ� ,��),

where any negative value was replaced with zero.
Similarly, the cleavage time ⌧j for each simulated cell was drawn from a Gaussian

distribution with mean µ⌧ = 2.5 min and standard deviation �⌧ = 1.6 min. These values
were obtained from the distribution of inferred cleavage times in the anterior of the 1620

embryo. The values of each simulation parameter are summarized in Table C in S1 File.
From these simulations, the positions of each RNAP molecule on the gene as a

function of time were saved and then fed into the model of the reporter gene (Section A
in S1 File), producing simulated single-cell MS2 and PP7 fluorescence traces (S10B Fig).
Simulated fluorescence noise was added using the same parameters as in the validation 1625

simulations discussed earlier (Section G in S1 File, Table A in S1 File, and S5 Fig).
These fluorescence traces were then run through the inference pipeline (Section D in S1
File), resulting in inferred distributions of single-cell mean elongation rates from the
single-molecule elongation simulation.

In order to compare these results with the empirically inferred distribution of 1630

elongation rates (Fig 4D, red), we first considered a scenario where the single-molecule
variability in stepping rates �✏ was fixed at zero and the mean stepping rate µ✏ was

May 3, 2021 45/48



Parameter Description Value
T total simulation time 600 sec
dt simulation timestep 0.5 sec

Nsites size of lattice 6626 bp
Nfootprint RNAP footprint [105] 40 bp

µ� mean loading rate 0.17 sec�1

�� standard deviation of loading rate 0.05 sec�1

µ⌧ mean cleavage time 2.5 min
�⌧ standard deviation of cleavage time 1.6 min
µ✏ mean elongation rate free parameter
�✏ standard deviation of elongation rate free parameter

Table C. Parameters used in single-molecule Monte Carlo simulation of elongation
rates.

varied from 0.6 to 2.1 kb/min. While the combination of exclusionary interactions
between RNAP molecules, stochasticity in single-molecule stepping, and inferential
noise did produce some cell-to-cell variability (S10C Fig, top row), the resulting 1635

distributions nevertheless were unable to reproduce the large variance observed in the
data. This can be seen by plotting the mean and variance of the simulated distributions
(S10D Fig, blue), where we see that the variance in the case of �✏ = 0 is always below
that of the data (S10D Fig, purple).

Next, we allowed �✏ to vary, simulating small to moderate variability with values of 1640

�✏ = 0.3 kb/min and �✏ = 0.6 kb/min. As expected, this single-molecule variability
caused the inferred single-cell elongation rate distributions to widen (S10C Fig, middle
and bottom rows). In the presence of this variability, there existed parameter sets where
the mean and variance of the simulated distributions quantitatively matched the
empirical distribution within error (S10D Fig, red and gold). 1645

The distributions presented in the main text correspond to the following parameter
values. For the case with no molecular variability in elongation rates (Fig 4D, brown),
we used µ✏ = 0.9 kb/min and �✏ = 0 kb/min, chosen as the simulated parameter set
with results closest to the inferred mean and variance of empirical elongation rates
(S10D Fig, lower black arrow). For the case with molecular variability in elongation 1650

rates (Fig 4D, gold), we used µ✏ = 0.9 kb/min and �✏ = 0.3 kb/min, chosen as a
representative example of a simulation possessing a mean and variance in elongation
rate that agreed with the inferred mean and variance of empirical elongation rates
within error (S10D Fig, upper black arrow), as well as qualitatively agreeing with the
inferred distribution (Fig 4D, gold). 1655

N Single-cell correlation analysis using full
posterior distributions

The single-cell inter-parameter correlations presented in the main text (Fig 5 were based
off of mean values from the posterior distributions obtained from the inference procedure
for ease of interpretation and visualization. In principle, these correlations could possess 1660

high amounts of uncertainty due to uncertainty in the single-cell parameter estimates.
Here, we conduct a correlation analysis based on the full posterior distributions from
the inference and validate the mean results presented in the main text.

To do so, we used a Monte Carlo simulation to construct a distribution of Spearman
correlation coefficients and investigated if the mean Spearman correlation coefficients 1665

presented in Fig 5 agreed with these simulated distributions.
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Fig S10. Single-molecule simulations of elongation dynamics require molecular
variability to describe empirical distributions. (A) Cartoon overview of simulation.
RNAP molecules with footprint Nfootprint stochastically advance along a
one-dimensional gene represented as a lattice with Nsites unique sites, with each site
equivalent to a single base pair. Each RNAP molecule i possesses an intrinsic stepping
rate ✏i, and each cell j stochastically loads new RNAP molecules at the promoter with
rate �j and cleaves finished RNAP molecules after a cleavage time ⌧j . (B) Sample
simulated MS2 and PP7 fluorescence traces for a single cell, using the single-molecule
simulation with parameters µ✏ = 1.8 kb/min and �✏ = 0 kb/min, along with inferred
fits. (C) Simulated distributions of elongation rates (red) for varying values of µ✏ and
�✏, compared with inferred empirical distribution from data (blue). (D) Mean and
variance of simulated and empirical distributions of elongation rates for varying values
of µ✏ and �✏. Without enough variability in the elongation rate of individual RNAP
molecules (blue), the single-molecule model cannot produce the variance observed in the
data (purple). However, in the presence of enough molecular variability, the empirical
distribution’s mean and variance can be reproduced for certain parameter sets (red and
gold). Black arrows correspond to parameter sets used for simulated distributions
presented in the main text (Fig 4D).

First, we extracted the mean and variance of the inferred posterior distribution
obtained from each single cell, for each transcriptional parameter (Fig 2C and E). We
then simulated N = 50, 000 new single-cell datasets comprising the mean initiation rate,
elongation rate, and cleavage time, where these values were generated from Gaussian 1670

distributions parameterized by the means and variances from each parameter’s posterior
distribution at the single-cell level.

Thus, each of the N = 50, 000 simulations resulted in a simulated dataset of n = 355
cells with randomly generated transcriptional parameter values obtained from the
information inside the single-cell inferred posterior distributions from the experimental 1675

data. We then calculated an individual Spearman correlation coefficient and associated
p-value for each simulation, generating an N = 50, 000 distribution for each correlation
relationship.

S11A Fig and S11B Fig show the ensuing distribution of p-values for the Spearman
correlation coefficient between the mean initiation rate and elongation rate, as well as 1680

between the elongation rate and cleavage time, respectively. The p-values for the
relationships between the mean initiation rate and cleavage time and between the mean
RNAP density and cleavage time were essentially zero due to floating point error. Thus,
the distributions of p-values for all four inter-parameter relationships were extremely
small and support the statistical significance of their associated correlations. 1685

S11C Fig shows the simulated distributions of Spearman correlation coefficients for
all four relationships (histograms), along with the values obtained from the simpler
mean analysis presented in the main text (dashed lines). We see that using the full
posterior via this Monte Carlo simulation yields distributions that are in agreement
with the results from the mean analysis, and that the distributions themselves are 1690

narrow, with widths of around 0.05. As a result, the correlations obtained from utilizing
only mean inferred parameters quantitatively agree with the results obtained from
utilizing the full Bayesian posterior obtained from the MCMC inference procedure.

Thus, our original analysis is robust, and we chose to retain its presentation in the
main text for simplicity and ease of understanding. 1695
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Fig S11. Monte Carlo simulation of error in single-cell analysis. (A, B) p-values of
Spearman correlation coefficient for relationships between mean initiation rate and
elongation rate (A) and between elongation rate and cleavage time (B). The p-values for
the relationships between mean initiation rate and cleavage time as well as between
mean RNAP density and cleavage time were essentially zero due to floating point error.
(C). Distributions of Spearman correlation coefficients between mean initiation rate and
cleavage time (blue), mean initiation rate and elongation rate (red), elongation rate and
cleavage time (green), and mean RNAP density and cleavage time (purple). Results
from mean-level analysis (Fig 5) are shown in dashed lines.

O Supplementary Videos

S1. Video 1. Measurement of main reporter construct. Movie of
P2P-MS2-lacZ-PP7 reporter construct used in an embryo in nuclear cycle 14.
Fluorescence intensities are maximum projections in the z-plane. Time is defined
with respect to the previous anaphase. 1700

S2. Video 2. Measurement of interlaced reporter construct. Movie of
P2P-24x(MS2/PP7) reporter construct used in an embryo in nuclear cycle 14.
Fluorescence intensities are maximum projections in the z-plane. Time is defined
with respect to the previous anaphase.
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https://www.dropbox.com/s/l9oiwjjgl4hx3uq/Video_1.avi?dl=0
https://www.dropbox.com/s/5xhtobnzjjac20g/Video_2.avi?dl=0

