
Reviewer's Responses to Questions 

Comments to the Authors: 

Please note here if the review is uploaded as an attachment. 

We thank the reviewers and reviewing editor for their comments. We’ve copied these 
comments below and have responded to them in-line, point-by-point. Where 
appropriate, we’ve incorporated these critiques and suggestions as new content into the 
manuscript, which we believe is much improved with the addition of this feedback. 

Reviewer #1:  
Regulation of transcription is a fundamental problem that has received growing attention 
with the emergence of technologies that enable single-cell measurements. In their 
manuscript, Liu et al hybridize experimental and computational approaches to 
investigate single cell variability of biophysical parameters for the transcription cycle 
across the AP axis of developing fruit fly embryos. Nascent mRNA production is 
quantified over time in living cells using orthogonal fluorescence-labeled stem loops 
placed at the 3’ and 5’ ends of a transgenic reporter gene. Biophysical parameters are 
subsequently calculated for each cell using Bayesian inference and mechanistic 
modeling. The resultant fits reveal significant cell-to-cell variability in rates for 
transcriptional initiation, elongation, and cleavage, and also support a range for 
intermolecular variability between individual RNA polymerases. Value in the approach 
for hypothesis generation/refinement is furthermore demonstrated with parameter co-
variation analysis, suggesting novel mechanistic relationships between steps of the 
transcription cycle that are likely to be the topic of follow-up studies. Although the 
manuscript can still be improved by addressing several issues, it is elegant in its 
simplicity and of high technical quality. Overall, I expect the optimized approach and 
results will valuable to the readership of PLoS Computational Biology and should be 
published following revision. 

Author response: We thank the reviewer for their assessment. We have responded to 
their comments below, and believe that the manuscript is greatly improved after 
incorporating the suggestions and critiques presented. 

 

Major Comments: 



1. My predominant concern relates to interpretation of the data. In supplementary movie 
1, it’s clear that mCherry peaks in intensity and fades before the eGFP channel 
approaches its peak in intensity in the same cell (further supported by the data points 
for a single cell in figure 2b). This seems in contrast with the assumptions of RNA 
processivity and instantaneous cleavage in timescales of the experiment. Based on 
these assumptions my expectation is that decay in intensity for both fluorescent 
molecules should begin and proceed simultaneously. Is there an interpretation of this 
phenomenon that does not conflict with the assumptions? 

Author response: The reconciliation between the reviewer’s assumptions with the 
observed decay in intensity in fluorescence lies in the fact that there is a slight time 
dependence in the transcriptional dynamics of the hunchback gene. Specifically, the 
initiation rate slowly decays from a maximal ON state to an OFF state starting around 
~10-18 min into the nuclear cycle (previously observed by Garcia et al. 2013, Current 
Biology and Liu et al. 2013, PLoS ONE). Thus, if the promoter turns off at some point, 
there will still be some finite time for freshly initiated RNAP molecules to traverse the 
gene and finish transcribing. Because the MS2/mCherry readout is 5’ of the PP7/GFP 
readout, it will decay in intensity first when no new RNAP molecules transcribe its stem 
loops while recently initiated RNAP molecules still have yet to reach the PP7 stem 
loops. This is illustrated in the cartoon in Fig. 1D, where after the initiation rate drops to 
zero, the MS2 signal begins decaying before the PP7 signal. Note that here, because 
the cleavage process occurs before the promoter shuts off, the two signals plateau 
together but exhibit a temporal delay in the decay. 

For the specific case pointed out by the reviewer where the MS2 signal peaks before 
the PP7 signal, consider the cartoon shown in Fig. R1. In contrast to Fig. 1D, here, the 
cleavage process occurs after the promoter shuts off, resulting in the MS2 signal 
plateau first, and then the PP7 signal due to the temporal delay between the 5’ and 3’ 
stem loop sequences. 

 



 

Figure R1 - Cartoon illustration of expected MS2 and PP7 signals. (top) idealized pulse of constant 
initiation rate results in (bottom) trapezoidal MS2 and PP7 signals. If the promoter shuts off (black line) 
before the first cleavage process occurs (brown line), then the MS2 signal will plateau before the PP7 

signal due to the former being located on the 5’ end of the reporter gene. 

2. During curation, roughly half of the single cell data that passed technical 
requirements are filtered and discarded, leaving a subset of trajectories that can be 
well-fit by the model. It should be reported what fraction of filtered cells are low 
signal:noise (S3E) and the fraction trajectories with poor fits (S3F). If the poor fits are 
significant in proportion, does this class of trajectories have any common features? An 
unfortunate requirement of standard Bayesian inference is that a model topology is itself 
assumed true. In combination with comment 1, it seems likely that the model, or its 
underlying assumptions, may be inadequate to reflect true biological complexity (which 
is probably always the case), but this has several consequences – one of which is that 
biophysical inferences may reflect a combination of biological rates associated with 
multiple cellular processes. The possibility exists that cells filtered because of poor fit 
indicate other states of the system that are not recapitulated in the model topology, but 
are reflected in another topology. Some of these limitations and ramifications associated 
with Bayesian inference would make relevant discussion at the discretion of the 
authors/editor. 

Author response: In response to this and to the statements made by Reviewer 4’s 
Point #12, we have overhauled our curation procedure to be completely automated.  



To improve our dataset filtering procedure, we decided to remove the human element 
(which correctly was pointed out by several reviewers as non-rigorous and possibly 
bias-inducing) and implement an automated procedure.  

The process now has two steps. First, we initially discarded any single cell time trace 
that did not have at least 30 time points in each fluorescent channel (the previous value 
was 10 timepoints). Over the 18 minute window of data acquisition at a time resolution 
of 15 seconds, this threshold corresponds to roughly half of the time window possessing 
detectable signal. We reasoned that traces with fewer than 30 time points would have 
an insufficient amount of data for the inference to work successfully. This reduced the 
number of cells from 1053 to 427. 

Second, instead of manually curating the subsequent data and potentially introducing 
human bias, we opted for a new methodology that used an automatic cutoff. For each 
single-cell fit, we calculated the average squared normalized residual 𝛿2, defined as 𝛿2 =
∑!"#$%&"'!((𝐹)*!* − 𝐹+"!)2/𝐹)*!*2, where the summation occurs over all time points and 
𝐹)*!*and 𝐹+"!correspond to the fluorescence data and fit, respectively. Thus, 𝛿2gives a 
measure of how good or bad, on average, each single-cell fit is. 

Fig. R6A and B show histograms of the average squared normalized residual 𝛿2for the 
entire n=427 dataset, with log and linear x-axes. We see that the vast majority of data 
possesses values of 𝛿2smaller than unity, with a long tail at higher values corresponding 
to bad fits. We decided to implement a cutoff of 𝛿2 = 1, where any cell with a higher 
value of 𝛿2was automatically discarded. This reduced the dataset from 427 cells to 355 
cells (in the previous version of the manuscript size, the final dataset size was n=299). 

To assess the rejected fits for underlying biological causes, we did a qualitative 
examination for common features. There were several sources of bad fits. First, some 
traces possessed low signal-to-noise ratio (Fig. R6C), possibly due to fluctuations in 
MCP-mCherry or PCP-GFP background fluorescences leading to increased uncertainty, 
that nevertheless yielded reasonable fits that were slightly above the 𝛿2cutoff. Still 
others simply had poor fits, possibly due to running into issues with the inference 
algorithm such as getting trapped in local minima (Fig. R6D). We consider 
improvements to the algorithm to be outside the scope of this work, since the retained 
data still contain novel, interpretable results. 

Finally, one potential biological source confounding the model could be substantial 
burstiness of the promoter. Although the majority of the traces we analyzed indicated 
that the hunchback reporter gene studied here possessed a promoter that was 
effectively ON during the cell cycle studied, some traces possessed substantial time 
dependence of the fluorescence signal, potentially resulting from rapid switching of the 
promoter between ON and OFF states. From the lens of the model, this would violate 



the mean-field assumption of the initiation rate term 𝑅(𝑡)and cause the fluctuations 𝛿𝑅to 
no longer be small compared to the mean value < 𝑅 >. As seen in a representative 
example in Fig. R6E, such traces are very time-dependent and are not fit well with the 
model. Although such bursty behavior is of high biological significance, capturing the 
behavior would require more specific models (e.g. two-state telegraph models in the 
flavor of Lammers et. al. 2020 PNAS), and thus we hope to consider these extensions 
in future work.  

Due to the variety of sources contributing to the rejected fits, we opted for a 
conservative approach and only analyze the cells with high signal quality that did not 
exhibit noticeable bursting. The number of retained fits were still much higher than the 
number of rejected fits (Fig. R6F). Thus, our work provides a self-contained framework 
applicable for describing the behavior of promoters that are primarily ON for the duration 
of the experiment. 

To check that the curation procedure did not incur substantial bias, we compared the 
average inferred mean initiation rate, elongation rate, and cleavage time as a function of 
embryo position between the curated and uncurated datasets (Fig. R6G-I). We 
observed no substantial difference between the two datasets, indicating that the 
curation procedure was not systematically altering the inference results. 

These details have been included in the updated Section S4.3 and the new Figure S4. 
We have also expanded the discussion to talk about these bursty traces, starting at Line 
520. 



3. The authors perform a nice control experiment treating their movies as snapshot data 
to infer sources of correlated and uncorrelated noise. Because CVs of their inference 
approach are comparable with the biological noise component from the snapshot 
analysis, the authors conclude that inference filters experimental noise and effectively 
captures biological variability only. It’s not fully clear what criteria are used to establish 
that inference is capturing only biological variability only in Figs 2D and S7, and not 
some combination of variability with noise sources? Although it may be true that 
inference is filtering poisson noise, I can imagine other systematic sources of noise that 
would almost certainly be reflected in inferred parameters that do not reflect variation in 
a transcriptional parameters. For example, compare parameters inferred for a trajectory 
and for the same trajectory convolved with the line y = at+b which may represent a time 
varying fluctuation in the fluorescent coat protein – this type of noise will not be filtered 
by Bayesian inference. In addition, for this assertion to be true, the snapshot analyses 
must be limited to only the same curated cells that were analysed by inference (i.e. the 
~30% of cells that passed the stringent filters), although it’s not clear that this is the 
case. 

Author response: We agree with the reviewer that our language was imprecise. Our 
method can only separate between uncorrelated and correlated sources of variability, 
which we imprecisely interpreted as experimental and biological variability, respectively. 
We have now amended our language in the main text and Section S8 to state that our 
inference method filters out the bulk of the uncorrelated variability and retains the 
correlated variability, which includes the biological variability. We have also clarified the 
text in Section S8 starting at Line 1369 to state that the snapshot analysis was limited to 
the same curated cells analysed by inference. 

4. Although the writing and presentation is generally very clear, the results section 
seems awfully long and wordy, and requires regular flipping between the MS and 
supplement. For example, much of Figure 2 establishes that rates from inference are 
consistent with previous observations, yet the description is spread over 6 pages of text 
that require significant detail from various subsections of the supplement. A constructive 
criticism is to distill the results section, moving text as necessary to the intro/discussion, 
and recover some of the details from the supplement into the main paper. In my opinion, 
Figure S2 is an important representation of the fundamental approach that would be 
appreciated as a main figure by the computational readership, and there may be others 
at the discretion of the authors/editor. 

Author response: We completely agree with the reviewer. To improve the clarity and 
flow of presentation, we have added two new figures to the main text with 
corresponding text and have rewritten parts of the introduction and discussion.We hope 



that the reviewer will agree with us that the main text now reads more clearly and will 
require less consultation of the supplement. 

Minor Comments: 

1. The abstract builds the expectation that there is significant novelty in the 
computational algorithm, but the core approach is standard Bayesian inference with a 
few optimizations for these particular data. At the authors’ discretion, I’d suggest edits to 
the abstract and introduction as necessary to keep these expectations realistic. 

Author response: We agree with these suggestions and have edited the abstract, 
introduction, and discussion to more precisely state the novelty of our work. Namely, the 
computational algorithm itself is quite standard, but the application of Bayesian 
inference to directly fitting live imaging datasets is novel. 

2. S3.3 curation suggests 260 cells were skipped from 1053 total leaving 567: these 
numbers don’t add up. 

Author response: After implementing a new automated curation procedure (see above 
response to Major Comment #2), these numbers have been updated. 

3. Explanation/citation for the ranges of prior distributions in the supplement 

Author response: We have added a paragraph with explanations and citations for the 
ranges of prior distributions in Section S3.1. 

4. Full model seems to assume instantaneous and complete binding of fluorescent 
protein-fused PCP/MCP to stem loops. The assumption should be explicit and possible 
caveats discussed in the relevant section of the supplement. 

Author response: We have clarified the text in the supplement (Section S1) to be clear 
about this instantaneous and complete binding assumption (starting at Line 969), and 
have also added text discussing the implications of this assumption (starting at Line 
971). 

 

5. More details are necessary to understand why simulated trajectories have poor S:N 
(line 931). 

Author response: Previously, we classified some simulated trajectories as having poor 
signal to noise due to the incorporation of Gaussian fluorescence noise, using that as a 
basis for rejecting fits of certain simulated cells. Now, we have decided to forgo any 



curation of simulated results and instead are running our analysis on the full simulated 
dataset, to prevent human bias. As a result, the point about poor signal to noise has 
been removed from the manuscript. 

6. The discussion could benefit from description of how the experimental limitations 
(15s/frame) and inference limitations may be improved in the future. Also whether 
inferred parameters are likely to change significantly with more technological 
advancements. 

Author response: We have added text in the Discussion starting at Line 509 
discussing the impacts of experimental and inference limitations. To summarize briefly, 
while increased experimental and inferential resolution will likely sharpen single-cell 
results and reduce error, we do not believe that our results will change dramatically, 
since our current conclusions are already within statistical error. Furthermore, the model 
itself is coarse-grained enough where finer resolution will probably access regimes 
where the model will no longer apply (e.g. single-molecule resolution accessing 
fluctuations due to stochasticity in single molecule dynamics), requiring advances in 
modeling as well. 

Reviewer #2:  
The authors combine quantitative experiments of nascent transcription with 
computational modeling to simultaneously study the relationship between critical steps 
in transcription: initiation, elongation, and cleavage on nascent RNA. Studying these 
three processes together rather than independently, as often done in the literature, is an 
essential step toward understanding the transcription cycle. Integration of experiments 
with computational modeling is vital in this process. 

I am overall enthusiastic about the problem and the importance of integration of 
modeling with experiments. I am also excited about the fact that the experiments have 
been performed in a multicellular organism. However, I have major reservations about 
why a model is necessary in the first place? What is the utility of the model besides data 
analysis? I also have concerns about the implementation and choice of modeling tools. 
Besides, I have concerns about the lack of cited references related to the same and 
competing modeling approaches from other groups. Moreover, I have reservations 
about the presentation of the results. Lastly, I have concerns about the lack of controls. 

Author response: We thank the reviewer for their assessment. We have responded to 
their comments below, and hope that the reviewer will agree with us that the manuscript 
has been greatly improved after incorporating their suggestions and critiques presented. 

Here are my specific concerns: 



 

1. The model is not used to make any predictions for new or non analyzed data. 
Although I see the value in using a model to quantify the single-cell data, I have 
concerns about how predictive such a model is. How do the results change if one would 
use a piecewise linear fit to each of the sections of the single cell transcription time 
trace? 

Author response: The primary purpose of our model is not to generate predictions on 
biological data, but rather to provide a first-principles framework to quantify effective 
transcriptional parameters that can then be used in predictive models. We now make 
this point more explicitly in the manuscript at Line 72. Indeed, we envision our 
methodology to provide a bridge between theoretical and experimental works. For 
example, a truly predictive biophysical model may involve parameters such as the 
elongation rate. These parameters are not easily or directly identifiable from raw 
microscopy data. Our work provides the middle ground that processes the raw data to 
generate the more biophysically motivated parameters that other models rely on. 

This type of modeling approach is important because models not rooted in first 
principles, such as the piecewise linear fit posed by the reviewer, cannot easily be tied 
to underlying biophysical mechanisms. For example, a piecewise linear fit to 
fluorescence data inherently contains assumptions about what physical processes are 
generating the piecewise linear functional form. In this case, that includes a constant 
rate of initiation in order to produce a linear increase in fluorescence. Our first principles 
model explicitly writes down these biophysical processes in order to generate 
fluorescence predictions that arise directly from biophysical parameters, rather than 
empirical or heuristic fits. 

Finally, while our model does not generate predictions a priori, it does provide fertile 
ground for posing new experiments. For example, our observed correlation between 
mean RNAP densities and cleavage times posits a quantitative relationship that has not 
been measured with current technology, providing a motivation for developing new 
experiments—and theory—that could measure and explain such relationships. 

We have updated the Introduction to be more explicit about this type of reasoning. 



2. A discussion should be included why there are differences in the distribution shape 
between the inferred single-cell parameters from the model fit and the distributions from 
the simulations (e.g. Fig2F). I believe the simulations make assumptions about the 
shape of the parameter distribution that differs from the data. 

Author response: We agree that the previous analysis of distributions could have been 
more rigorous. In the new manuscript, we have updated the single-molecule simulations 
of elongation rates to provide a more meaningful comparison with the data by now 
simulating actual MS2 and PP7 fluorescences that are pushed through the inference 
pipeline instead of just calculating simulated elongation rates. The inferred elongation 
rate results from the simulation can then be more directly and sensibly compared to the 
empirical inferred distribution of elongation rates (Fig. 4D in the new manuscript).  

With these new results, we now show that, while inferential noise widens the distribution 
of elongation rates in the absence of single-molecule variability in RNAP stepping rates, 
this distribution is still not wide enough to account for the observed data. In contrast, 
allowing for single-molecule variability can quantitatively recover the observed 
distribution within error, described in more depth in Section S10 and Fig. S10. 

 

3. An explanation should be provided why R(t) is parameterized as a constant and a 
noise term. What are the advantages and disadvantages of this approach? The 
explanation should also include modeling approaches from other groups to understand 
the context of the work better. 

Author response: Parameterizing R(t) using a mean-field approach with fluctuations 
captures a balance between reducing the number of free parameters in our model while 
also allowing for a slight time dependence. For example, completely relaxing R(t) to be 
an arbitrary time dependent vector underconstrains the model and will likely result in 
overfitting. Specifically, in this scenario we would expect the model to attempt to fit each 
nonlinear deviation in the fluorescence even though most of these deviations stem from 
measurement noise. On the other hand, the hunchback gene is known to possess time-
dependent behavior (Garcia et al. 2013, Current Biology; Liu et al. 2013, PLoS One), 
slowly beginning to shut off its promoter over the time window studied here. Including 
the fluctuation terms allows the model to account for this time dependence. 

This modeling decision should be considered complementary to other time-dependent 
models of initiation, for example the two-state telegraph (e.g., ON/OFF) model of bursty 
promoters (see, for example, Lammers et al. 2020, PNAS). While those classes of 
models attempt to explain genes that have bursty rates of initiation that are nevertheless 
well approximated by a binary set of ON/OFF states, here our gene appears to 



overwhelmingly stay in an ON state with a more continuous interval of possible rates of 
initiation. 

We have integrated a discussion of these caveats and assumptions into the introduction 
of the model starting at Line 107, and also into the Discussion at Line 520. 

4. The authors stress in their abstract that the in-vivo dissection of initiation, elongation, 
and cleavage is challenging because of the lack of sufficient spatiotemporal resolution 
to separate the contributions from each of these steps. It is not clear in the context of 
the manuscript what the authors mean by that. Are you referring to the lack of 
spatiotemporal analysis of nascent, nuclear, and cytoplasmic RNA or referring to 
differences in expression within the organism? Both are important questions that could 
be answered in this model system. A differentiated discussion would be helpful for the 
manuscript, particularly in the context of the findings. 

Author response: By spatiotemporal resolution, we mean spatial resolution within the 
body of an organism, and temporal resolution to resolve transcriptional processes in 
living cells on sub-minute time scales. While analysis of nuclear and cytoplasmic RNA 
can shed light on many biological processes, we have restricted this work to considering 
only nascent RNA labeling technologies in order to constrain the overall scope. The 
primary motivation for this consideration of spatiotemporal resolution is the fact that 
many transcriptional processes vary both in time and space, and that a nuanced 
analysis of the transcription cycle should possess the ability to parse this variation. In 
comparison with other technologies that require the use of fixed material such as RNA-
FISH or GRO-SEQ, single-cell live imaging provides superior temporal resolution 
(compared to RNA-FISH) and superior spatial resolution (compared to GRO-SEQ). 

We have updated the Discussion starting at Line 516 to clarify this point, and to mention 
the connections to analysis of nuclear and cytoplasmic RNA. 

5. Also, in the abstract, the authors claim that the cell-to-cell variability is due to 
variability in the inferred parameters. It is not clear to me that this kind of statement is 
the only explanation. Alternative possibilities should be discussed that could contribute 
to these results. 

Author response: Because our model invokes and infers effective transcriptional 
parameters, any cell-to-cell variability in transcription necessarily produces variability in 
the inferred parameters. This variability could stem from multiple sources, including 
experimental error, single-molecule stochasticity, or systematic variability in rates 
between cells, to name just a few examples. In this work we are not making definitive 
claims about the nature of these sources of variability, but rather providing a way to 



quantitatively parameterize the transcription cycle to pave way for more first-principles, 
predictive models to tease apart these various sources. 

We have updated the Introduction to be more clear about this point. 

6. A discussion should also include the advantages and disadvantages of measurement 
and model inference from live cells compared to snapshots in time of single-cell 
measurements of transcription (RNA-FISH). 

Author response: We have updated the Discussion starting at Line 440 to explicitly 
compare our live imaging methodology with fixed-tissue approaches such as RNA-
FISH. Briefly, RNA-FISH provides superior spatial and molecular resolution at the 
expense of temporal resolution from within the same organism. Snapshots in time from 
different experiments using RNA-FISH are not equivalent due to the inherent variability 
between organisms and also the fixation process preventing high temporal resolution 
(e.g. ~15s as performed in this work). 

7. The presentation of the data needs to improve substantially. Currently, many of the 
critical results are buried in the supplementary material. It is also unclear the 
intermediate steps from the concept to the final results as shown in Fig.2. 

Author response: We agree with the reviewer and have restructured our manuscript to 
be more clear by bringing in some figures and text from the supplement. We have also 
modified the old Fig. 2 (now Fig. 4) to hopefully become more clear. 

8. The author state that they measured 299 cells across 7 embryos. In the title and 
abstract, the authors state that they study cell to cell variability. So why are many of the 
plots showing population-averaged data? It would be much more insightful if the results 
are plotted as joint probability distributions for any of the graphs, instead of showing 
population averages, to appreciate the level of variability truly. 

Author response: We respectfully disagree with the reviewer and think that our choice 
to present population means with standard errors in the old Fig. 2 (now Fig. 4) provides 
a more accessible presentation of the data. Particularly because the standard in the 
developmental biology community is to consider spatial variation of averaged data, our 
Fig. 4 provides easily interpreted results that many in the eukaryotic transcription 
community would find easily readable. 

The latter half of Fig. 4, as well as Fig. 5, expand on this presentation to provide 
distributions, coefficients of variation, and correlation analysis. We believe that this 
provides a comprehensive summary of the data and that including the full probability 
distributions does not provide extra insight, especially in consideration of the fact that 



the empirical distributions are confounded with inferential noise (Fig. S5 in the updated 
manuscript). 

That said, full probability distributions provide a comprehensive way to visualize the 
data, and so we have included a new supplementary Section S7 and Fig. S7 that 
include these plots. 

9. More of the supplementary figures should be moved to the main manuscript. I don’t 
see any reason why the main manuscript needs to have only 3 figures. 

Author response: We agree with the reviewer’s assessment and have moved some 
figures to the main manuscript. Specifically, we have moved parts of Fig. S1, S2, and 
S5 into the main manuscript, along with the corresponding relevant text. 

10. Interestingly, some of the parameters change within the embryo (lines 260-262). 
Unfortunately, the biological reason for this is not discussed, nor how the organism 
could regulate these changes. More discussion should be added to better present this 
exciting result. 

Author response: We have added text in the Results section at Line 354 and in the 
Discussion at Line 430 emphasizing this result. To summarize, we speculate that the 
coupling of the cleavage time to embryo position could stem from processes such as 
promoter-terminator looping, where the cleavage time could couple to a position-
dependent factor such as an activator. 

11. Figure 1 outlines the different steps in the transcription cycle that can be inferred 
from the single-cell time-lapse data. Figure S1 should be integrated into Figure1. All the 
features that can be extracted from the single-cell time traces should also be included in 
this figure to make readers fully aware of the approach's power. 

Author response: We have integrated Fig. S1 into Fig. 1 as recommended by the 
reviewer. 



12. Besides the authors filtering out cells that do not have enough time points 
measured, the authors filter out 268 cells (567-299 retained after curation) that could not 
be inferred. This might bias their results if they filter data that their model can describe 
vs. improve/alter their model to describe those cells. The concern is that filtering might 
be removing some dynamics that could not be inferred by the model instead of just 
quality control. Experimental acquisition noise/Intrinsic Biological deviation from the 
model does not seem to me be enough justification for removing cells from the dataset. 
A comparison between the current data and the data with this additional curve should 
be compared to remove this does not change the results. 

Author response: We agree that the curation procedure may be biased, and in 
response to this (as well as other reviewers’ comments) we have overhauled the 
curation procedure to be fully automated, with no human input.  

The process now has two steps. First, we initially discarded any single cell time trace 
that did not have at least 30 time points in each fluorescent channel (the previous value 
was 10 timepoints). Over the 18 minute window of data acquisition at a time resolution 
of 15 seconds, this threshold corresponds to roughly half of the time window possessing 
detectable signal. We reasoned that traces with fewer than 30 time points would have 
an insufficient amount of data for the inference to work successfully. This reduced the 
number of cells from 1053 to 427. 

Second, instead of manually curating the subsequent data and potentially introducing 
human bias, we opted for a new methodology that used an automatic cutoff. For each 
single-cell fit, we calculated the average squared normalized residual 𝛿2, defined as 𝛿2 =
∑!"#$%&"'!((𝐹)*!* − 𝐹+"!)2/𝐹)*!*2, where the summation occurs over all time points and 
𝐹)*!*and 𝐹+"!correspond to the fluorescence data and fit, respectively. Thus, 𝛿2gives a 
measure of how good or bad, on average, each single-cell fit is. 

Fig. R6A and B show histograms of the average squared normalized residual 𝛿2for the 
entire n=427 dataset, with log and linear x-axes. We see that the vast majority of data 
possesses values of 𝛿2smaller than unity, with a long tail at higher values corresponding 
to bad fits. We decided to implement a cutoff of 𝛿2 = 1, where any cell with a higher 
value of 𝛿2was automatically discarded. This reduced the dataset from 427 cells to 355 
cells (in the previous version of the manuscript size, the final dataset size was n=299). 

To assess the rejected fits for underlying biological causes, we did a qualitative 
examination for common features. There were several sources of bad fits. First, some 
traces possessed low signal-to-noise ratio (Fig. R6C), possibly due to fluctuations in 
MCP-mCherry or PCP-GFP background fluorescences leading to increased uncertainty, 
that nevertheless yielded reasonable fits that were slightly above the 𝛿2cutoff. Still 
others simply had poor fits, possibly due to running into issues with the inference 



algorithm such as getting trapped in local minima (Fig. R6D). We consider 
improvements to the algorithm to be outside the scope of this work, since the retained 
data still contain novel, interpretable results. 

Finally, one potential biological source confounding the model could be substantial 
burstiness of the promoter. Although the majority of the traces we analyzed indicated 
that the hunchback reporter gene studied here possessed a promoter that was 
effectively ON during the cell cycle studied, some traces possessed substantial time 
dependence of the fluorescence signal, potentially resulting from rapid switching of the 
promoter between ON and OFF states. From the lens of the model, this would violate 
the mean-field assumption of the initiation rate term 𝑅(𝑡)and cause the fluctuations 𝛿𝑅to 
no longer be small compared to the mean value < 𝑅 >. As seen in a representative 
example in Fig. R6E, such traces are very time-dependent and are not fit well with the 
model. Although such bursty behavior is of high biological significance, capturing the 
behavior would require more specific models (e.g. two-state telegraph models in the 
flavor of Lammers et. al. 2020 PNAS), and thus we hope to consider these extensions 
in future work.  

Due to the variety of sources contributing to the rejected fits, we opted for a 
conservative approach and only analyze the cells with high signal quality that did not 
exhibit noticeable bursting. The number of retained fits were still much higher than the 
number of rejected fits (Fig. R6F). Thus, our work provides a self-contained framework 
applicable for describing the behavior of promoters that are primarily ON for the duration 
of the experiment. 

To check that the curation procedure did not incur substantial bias, we compared the 
average inferred mean initiation rate, elongation rate, and cleavage time as a function of 
embryo position between the curated and uncurated datasets (Fig. R6G-I). We 
observed no substantial difference between the two datasets, indicating that the 
curation procedure was not systematically altering the inference results. 

These details have been included in the updated Section S4.3 and the new Figure S4. 
We have also expanded the discussion to talk about these bursty traces, starting at Line 
520. 

 



13. No experiments are performed testing if rates can be separated from each 
transcription cycle step. Potential further experiments would be to add inhibitors of 
regulatory proteins involved in nascent transcription initiation, elongation, and or 
cleavage to see if specific rates in the model associated with each transcription cycle 
change. 

Author response: We have added text to the Discussion starting at Line 476 talking 
about the potential for future perturbative experiments to assess how rates in the model 
change as a result. 

14. How does the insertion of the MS2 / PP7 repeat impact the transcription cycle? 
Comparing live-cell labeled nascent transcription with RNA-FISH on fixed cells with 
probes against MS2 or PP7 repeat is required to ensure that the repleads do not 
introduce artifacts. 

Author response: Previous works utilizing MS2 and/or PP7 nascent RNA labeling 
technologies have shown by comparison with RNA-FISH that the insertion of these 
stem loops does not introduce substantial artifacts on transcription initiation (Garcia et 
al., Current Biology, 2013; Coulon et al., eLife, 2014). More importantly, we do not 
believe RNA-FISH, or any existing technology for that matter, provides a concrete 
control to compare our experimental setup with, as there currently is no analogous 
technology for directly measuring the transcription cycle at the single-cell level and in 
live cells. A fixed-tissue technology such as RNA-FISH is unable to separate out the 
components of transcription initiation, elongation, and cleavage as done in this work, 
and thus would not be able to produce a direct comparison. Producing a framework to 
indirectly separate out these steps by assuming underlying model structures (e.g. Zoller 
et al., Cell, 2018) could constitute a feasible strategy, but such work would justify a new 
project in and of itself. 

Because nascent RNA labeling technologies such as MS2 and PP7 have been widely 
adopted in recent years with many existing controls performed to confirm its robustness, 
we believe that carrying out an RNA-FISH experiment is unnecessary. While we agree 
that creating an orthogonal method to verify the results of our work would strengthen 
our confidence in our results, we hope that the reviewer will agree that the development 
of such new methodology lies outside the scope of this work. 

 

Minor: 



15. The statistical analysis in figure three was not the best suited for the data. The R^2 
value is essentially meaningless due to the data not fitting a line, and linear regression, 
in general, is not ideal for data that is not normally distributed. I would suggest using a 
non-parametric test for correlation, such as the Spearman. 

Author response: We have updated the analysis to use the Spearman non-parametric 
test for correlation instead of linear regression, and the main conclusions about RNAP 
density and cleavage times hold. We opted to retain the linear fits in Figure 3 (now 
Figure 5) for visualization purposes. 

16. Inline 197, the authors state: “...convolved with undesired experimental noise.”. 
What does this mean? Please provide more detail. 

Author response: We have clarified this line by providing an example of undesired 
experimental noise, using the case of uncorrelated measurement noise from 
fluorescence microscopy measurements. 

17. The manuscript's title is a summary of what has been done. But not the take-home 
message of the manuscript? I recommend rephrasing the title. 

Author response: We have changed the title to “Real-time single-cell characterization 
of the eukaryotic transcription cycle reveals correlations between RNA initiation, 
elongation, and cleavage” and hope that the reviewer will agree that this new title more 
comprehensively summarizes the results of our work. 

Reviewer #3:  
the review uploaded as an attachment 

Review for “Single-cell characterization of the eukaryotic transcription cycle using live 
imaging and statistical inference” by Liu et al.  
 
Summary:  
In this work, Liu et al. present a novel computational technique to simultaneously infer 
the effective parameters of the transcription cycle (including initiation, elongation, and 
cleavage of the nascent transcript) at the single-cell level from live-imaging of 
transcription using a two-color MS2/PP7 reporter gene. The authors apply this 
technique to study these parameters in developing fruit flies by analyzing the dynamics 
of ms2/pp7 gene controlled by the hunchback P2 promoter. From the fitted parameters’ 
distributions, the authors show significant variability in the elongation rates between 
transcribing RNAP and a small negative correlation between the transcription initiation 



rate and RNA cleavage time. The results are extensively compared with findings from 
previous works on transcription initiation, elongation and termination.  
 
MS2 and PP7 reporter genes have been shown to be powerful tools to study the in vivo 
dynamics of transcription in many organisms, from bacteria to human. The combination 
of the two reporter systems is promising in revealing the parameters of transcription 
cycle, as demonstrated in the studies of e.g. elongation rates (Fukaya et al., 2017), 
RNA splicing kinetics (Coulon et al., 2014). Due to the fact that the fluorescence signals 
are usually from multiple nascent RNAs, a computational framework to extract the 
kinetic parameters of transcription cycle, as intended in this work, is welcomed.  

Author response: We thank the reviewer for their assessment. We agree with their 
critique and have responded to their comments below. We hope the reviewer agrees 
with us that the new manuscript is greatly improved after incorporating their 
suggestions. 

 
However, in this work, the model’s assumptions are not adequately justified. The 
inference method, despite its flexibility to account for more complex models, is 
undermined by the arbitrary hierarchical fitting method. When applying the inference to 
individual traces, the systematic error is shown to be significant enough to affect the 
conclusions, especially regarding the parameters’ variability and correlation.  
As these issues are at the bottleneck of this work, it is difficult to evaluate the validity of 
the subsequent presentations and interpretations of the inference results from MS2/PP7 
data, despite being well written in details.  

Author response: We have overhauled the hierarchical fit procedure and have 
replaced it with a more suitable observation model. This new fit procedure did not 
exhibit the systematic errors in fitting earlier time points versus later time points that was 
shown in the old model. Please, see our response to point #8 below. 

In addition, we would like to clarify that analysis on simulated data indicated that the 
systematic error in inferred values was negligible (Section S4.4 and Fig. S5). As a 
result, we hope that the reviewer will agree that the systematic error, though non-
negligible, is not sufficient to obscure the correlations we have uncovered.  

Major points:  



1. As the conclusions are drawn entirely by fitting a 3-step model (line 92-107) to a 
single dataset of hunchback P2 reporter, the presented model needs to be justified first. 
Without this, it is difficult to conclude about the steps at the mechanistic level.  
Author response: We intend our model to be less of a mechanistic explanation of the 
transcription cycle, but rather a simple parameterization of the key steps that provides 
effective values of the key steps—initiation, elongation, and cleavage. This reasoning is 
clarified more in the Introduction and Discussion. In addition, these 3-parameter models 
have been successfully used in prior studies of the same reporter gene (Garcia et. al. 
2013 Current Biology, Eck et. al. 2020 eLife). While some other biological mechanisms 
are missing in our model (e.g. abortive initiation or nonprocessive RNAP molecules), we 
do not anticipate them being necessary for our reporter gene. For example, for our 
reporter we estimate that the vast majority of productively elongation RNAP molecules 
are processive (see Section S5 in the new manuscript) and the experimental readout 
can only resolve these productively elongating molecules, we do not anticipate factors 
such as incomplete elongation to play a role. Thus, we believe our model provides a 
sufficient parameterization of the relevant steps of the transcription cycle.  

2. How the cleavage time can be distinguished from RNAP pausing at random or 
specific sites of the reporter gene (Herbert et al, Cell 2006)? Please clarify on the 
possible time scales of these steps to justify the preference of the cleavage time. I 
would also like to see how this technique can help in model selections.  
Author response: Our experimental system should directly resolve the presence of 
substantial RNAP pausing within the main body of the reporter gene. For example, if 
RNAP molecules were to pause between the MS2 and PP7 stem loop sequences, then 
the corresponding fluorescent signal would exhibit delays or plateaus in the rising slope 
of the mCherry and/or GFP fluorescences. The cleavage time, on the other hand, 
entirely depends on how long the signal persists after the onset of the 3’ GFP signal 
(see Fig. 1D in the new manuscript for a graphical explanation of this). 
 
If pausing were to happen 3’ of the GFP signal, then it is effectively indistinguishable 
from cleavage. However, we stress that our model is only an effective parameterization, 
and so we make no mechanistic claims as to the source of a particular cleavage time 
value. It could stem from pausing at the 3’UTR of the reporter, for example, or from 
continued elongation past the 3’UTR due to inefficient cleavage and termination 
processes. These would exhibit the same experimental signals—namely, persistence of 
fluorescent signal after the expected time of signal loss—and thus is a challenge of 
experimental resolution and not of model formulation. We now discuss this ambiguity in 
the Supplementary Section S1 starting at Line 982. 
 



3. Transcription in eukaryotes, particularly in developing flies, has been shown to be 
very bursty. In Drosophila embryogenesis, the inferred ON-OFF periods are found to be 
~ 1-5 minutes (Lammers et al. PNAS 2019, Desponds et al. PLOS CB 2016, Bothma et 
al. 2014), of the same order as the elongation time of MS2/PP7 transcript in this study 
(𝜏𝑑𝑤𝑒𝑙𝑙). Is this bursty dynamics accounted for in the temporal RNAP firing rate 𝑅(𝑡)? If 
not, how does including bursty behavior affect the final conclusions?  
Author response: The hunchback gene studied here primarily exists in an ON state in 
the time window analyzed, while slowly decaying to an OFF state over the course of the 
cell cycle. Because we have restricted our analysis to the first 18 minutes, where the 
gene remains mainly ON (Garcia et al., Current Biology, 2013; Liu et al., PLoS One, 
2013), the system does not exhibit bursting, except in a small minority (4%) of cells that 
we have excluded from our analysis (see the updated Section S4.3 and Figure S4).  
 
As it stands, our current parameterization of R(t) cannot accurately capture bursting 
because it does not assume a distinct set of ON-OFF states, but rather describes a 
continuous interval of initiation rates around some nonzero mean. As this manuscript 
presents a new approach for inferring values of live imaging data, we have restricted 
our analysis to promoters that are primarily ON, and consider bursty promoters to be 
outside the scope of this work. That said, bursting remains a biologically relevant 
feature of many systems and we believe future extensions to our work could benefit 
from integrating our approach in a hierarchical fashion with bursting models, such as the 
ON-OFF telegraph models referenced by the reviewer. We have added a discussion on 
this in the Discussion (Line 520). 

4. Please clarify on the model: The fluctuation term 𝛿𝑅(𝑡): is it free vector (arbitrary) 
term, correlated noise or uncorrelated noise? From the SI, it appears to be uncorrelated 
noise as its parameters are not inferred. Please clarify in the main text.  
Author response: The fluctuation term is a deterministic free vector term that is 
constrained by imposing a Gaussian prior centered around zero (see Section S4.1 in 
the new manuscript). That is, at each time point of a trace the fluctuation term is 
independently inferred to be able to account for slight nonlinearities in the fluorescence, 
since the mean term will only produce a straight line in fluorescence. The presence of 
the Gaussian penalizes large fluctuations and exists to prevent overfitting to 
measurement noise. We have clarified the relevant text in Section S1 and S4.1 to 
include this information more explicitly. 



 

5. If 𝛿𝑅(𝑡) is uncorrelated noise, the fluorescent signal should be deterministic (as in Fig. 
1). Why there are fluctuations in the prediction of the model (Fig. S3, Fig. S4) or the 
downward trend in Fig. 2B after 10 minutes.  
Author response: These fluctuations exist because the fluctuations 𝛿𝑅(𝑡) serve as 
independent constant offsets at each time point to introduce and account for slight time 
dependence in the overall initiation rate. Biologically, the hunchback gene slowly 
transitions from an (approximately) constant ON state to an OFF state. Our time window 
of analysis captures the start of this decay, hence the downward trend of fluorescence 
at the end of the time window. This point is clarified in the main text at Line 141. 
 

6. Does 𝑅(𝑡) account for the promoter bursty dynamics (Desponds et al, PLOS CB, 
2016) or only dynamics of initiation during the ON period (a single burst)? How would 
this bursty dynamics affect the fluorescent traces?  
Author response: See our answer to the point above on bursting. The hunchback gene 
primarily stays in an ON state for this reporter construct. Bursty dynamics would cause 
the fluorescent traces to oscillate dramatically in time (see e.g. Lammers et al., PNAS, 
2020 and the new Fig. S4E). Our framework is only applicable for traces that are in an 
ON period, and we envision future extensions to this work to account for bursting. We 
have included this caveat in the Discussion starting at Line 520. 
 

7. Do you assume Gaussian noise on top of the signal from gene loci?  
Author response: Our model previously assumed constant Gaussian noise, as 
parameterized by the sum-of-squares function in the old Eq. S12 and S13. In response 
to a point raised by Reviewer #4, our model now assumes Gaussian noise with variance 
that scales linearly with the mean (see Section S4.2 in the new manuscript). This new 
observation model fits the data much better and obviates the need for the hierarchical fit 
procedure. 

 



8. The hierarchical fitting method seems confusing and arbitrary. First, the authors show 
that the inference from some longer (18 minutes) traces does not fit well with its early 
time points (line 870). For these traces that are not well fitted, only shorter (10 minutes) 
traces are fed to the inference (line 875). Then, the authors show that the refitted model 
from the short traces can generate traces that capture the dynamics in longer traces 
(line 885). In principle, it is the model’s fault if it could not explain the data. For example, 
the promoter can turn OFF, leading to changes in loci fluorescent intensity after the 
initial uphill slope. I think data treatment for all traces should be done BEFORE the fit, 
rather than after the fit and only to a subset of traces.  
Author response: In response, to a point brought up by Reviewer #4, we have 
developed a new observation model for our inference procedure that obviates the 
problematic hierarchical fitting method, as pointed out by the reviewer. The new model 
does a much better job of fitting both early and late timepoints, and we have thus 
removed the hierarchical fitting method from the analysis in the new manuscript. 

To develop this new observation model, we decided to investigate the nature of the 
fluorescence measurement noise in our data. A priori, if we consider that the fluorescent 
signals in our experiment are the result of the sum of many individual fluorophores, then 
we would expect that if an individual fluorophore possesses some intrinsic constant 
measurement error with variance 𝜎!, then the associated error of 𝑁fluorophores would 

have a similarly scaled overall measurement error with variance 𝑁𝜎!. Since 𝑁is 
proportional to the overall mean fluorescent signal, we thus hypothesize that our 
observation model would be improved by considering a scaled residual where the sum-
of-squares error is divided by the signal intensity: 𝑆𝑆	 = 	 (𝐹!"# − 𝐹$%#%)&/𝐹$%#%, where 
𝐹!"#and 𝐹$%#%correspond to the individual predicted or measured fluorescence intensities 
at each time point, respectively. 

To check this approach, we examined the data from the dual-color interlaced MS2/PP7 
reporter construct from Fig. 3B. These data constitute, in principle, a two-point 
measurement of the same underlying biological process, so we reasoned that we could 
utilize this measurement to quantify the scaling of fluorescence noise with respect to 
overall fluorescence intensity. 

Specifically, by creating bins of eGFP fluorescence measurement from the scatterplot in 
Fig. 3D, we could then calculate how the variance of associated mCherry fluorescences 
within a bin scaled with eGFP fluorescence (here a proxy for overall fluorescence 
intensity). If the calculated variance increases with overall fluorescence, this indicates 
that the fluorescence measurement noise is not constant, but rather scaled positively 
with signal strength. 



Fig. R3A shows this calculated variance (red), along with bootstrapped standard error, 
as a function of bin value (i.e. eGFP fluorescence). We see that the variance indeed 
increases with bin value fairly linearly, confirming our a priori hypothesis. If we then 
scale the variances by dividing by the mean mCherry fluorescence within a bin, we 
recover a constant scaling, as expected (black).  

Thus, in the revised manuscript, we updated the observation model to include this 
scaled fluorescence measurement noise by dividing the sum-of-squares residual by the 
observed fluorescence intensities, as described by the equation above and in the 
updated Equation S14. We have also added a new section S4.2 describing this 
fluorescence noise scaling behavior. 

Next, we investigated how this new observation model performed in terms of inference 
on the data. After implementing the modification to the observation model described in 
the previous point, the new inference procedure performs much better in terms of fitting 
earlier time points such that the hierarchical fit was no longer necessary. This is to be 
expected, since scaling the sum-of-squares residual causes lower intensity values (and 
thus earlier time points) to be weighted more strongly than higher intensity (i.e. later) 
values. 

Fig. R4 shows data from a sample representative single-cell. In Fig. R4A, we used the 
old hierarchical fit with the previous observation model, which results in a discrepancy 
between the fit and data at earlier time points, exemplified by examining the onset of the 
GFP signal (green). In contrast, Fig. R4B shows the fit from using the new observation 
model with a scaled residual term, which fits the onset of GFP signal much better. Thus, 
the hierarchical fit was no longer necessary, and we decided to remove it. We believe 
the new methodology is much more statistically sound and hope the reviewer will agree. 
As a result, we have removed the old Section S3.2 describing this hierarchical fit 
procedure. 

 

 
 

9. The model that fits the short traces is shown to capture the longer traces’ dynamics, 
which were not well fitted before. Intuitively, this suggests a bias in the inference from 
individual traces, as demonstrated with simulated data.  
Author response: Please see the above response. The new model behaves much 
better with fitting short and long traces. 
 



10. When testing the inference on simulated data (Fig. S4C), the scaled error (or bias 
per cell) distribution is symmetric indicating that the estimation of the ensemble mean 
parameter values may be correct. However, the scaled error’s ranges of -0.5 to 0.5 
should be considered significant, as it is of the same order as the CV of the inferred 
parameter distribution (Fig. 2). Therefore, conclusions on the variability of the elongation 
rates should all be reconsidered.  
Author response:  We agree that the old conclusions on the variability of elongation 
rates could be made more rigorous. We have updated the single-molecule simulations 
of elongation rates to provide a more meaningful comparison with the data by now 
simulating actual MS2 and PP7 fluorescences that are pushed through the inference 
pipeline instead of just calculating simulated elongation rates. Because now both 
simulation and data are processed with the same inference procedure, confounding 
factors such as inferential noise will be present in both experimental and simulation 
analyses. Thus, the -0.5 to 0.5 scaled error is already manifested in both analyses, and 
does not need to be taken into account in downstream comparisons. The inferred 
elongation rate results from the simulation can then be more directly and sensibly 
compared to the empirical inferred distribution of elongation rates (Fig. 4D in the new 
manuscript).  

With these new results, we now show that, while inferential noise widens the distribution 
of elongation rates in the absence of single-molecule variability in RNAP stepping rates, 
this distribution is still not wide enough to account for the observed data. In contrast, 
allowing for single-molecule variability can quantitatively recover the observed 
distribution within error, described in more depth in Section S10 and Fig. S10. 

 

11. Does the scaled error reduce with more nuclei/embryo?  
Author response: Because the scaled error is defined as the error due to inference for 
a single cell, it is an intensive quantity that is independent from the overall dataset size. 
So, increasing the number of cells, for example in the inference simulation used in 
Section S4.4 and Fig. S5 will merely reduce the uncertainty in overall measures of the 
scaled error, such as the error bars in the ensemble squared CV shown in Fig. S5D. 
This is clarified in Section S4.4 at Line 1230. 

12. Regarding the MCMC inference method, for each cell, after extracting the posterior 
distribution of the parameters, why the mean value is retained, rather than the mode 
(best fit)?  
Author response: Because we had no a priori justification or expectation for the 
shapes of the inferred posterior distributions, calculating the mode would be difficult 



since we would need to estimate a continuous PDF from empirical data. Thus, we 
retained the mean value rather than an estimate of the mode. 
 
Additionally, in response to Reviewer #4, we conducted a deeper exploration of the 
single-cell correlation analysis in Fig. 5 in the new manuscript by considering the full 
posterior distribution (Fig. S11 in the new manuscript), and found that the conclusions 
did not change. Given this reassurance, we think our choice of using the mean is 
justified and validated. 

13. I would like to see more discussion on the findings (e.g. variability in the elongation 
rates, RNAP crowding at termination site) and which additional experiments (e.g. 
additional ms2/pp7 configurations) that can, in complement with this approach, validate 
these findings.  
Author response: We have added text in the Discussion starting at Lines 458 and 476 
exploring the ramifications of our discoveries and potential future experiments to 
conduct. 
 
Minor:  

14. Until reading the detailed model section of the Appendix, I had the impression that 
elongation times of ms2 and pp7 stemloops (~1kb?) are considered negligible. Please 
add the length in base pair of the ms2, pp7 stem loops, lacZ and lacY in Fig. 1C, or at 
least some text in the main text to clarify.  
Author response: We have added the lengths of these sequences to Fig. 1C. 
 

15. Figure 1D, panel iii, left: R should represent the height of the slope, not the duration.  
Author response: We have moved <R> in the figure to correct this. 
 

16. Figure 2B: it is not clear whether the data points are taken from discrete uniform 
time interval. When active loci is not detected, do you assign a zero intensity value or 
the background value?  
Author response: Data points are taken from a discrete uniform time interval of 15 
seconds, with short (~3 sec) gaps every so often due to the experimental need for 
manually adjusting the confocal stack of the microscope. The fluorescence at each time 
point is subtracted by the background value as a rule. When active loci are not 
detected, they are assigned an intensity value of NaN. We have clarified this in the 
Materials and Methods section. 
  



17. Readers would benefit from Fig. S1C being moved to the main text as it provides 
intuitions on how each parameter can affect the final trace.  
Author response: We have replaced the old Fig. 1D with Fig. S1C, which provides a 
more complete picture of the model’s behavior. 
 

18. 100 cells for the evaluation of the inference seems very small, given the number and 
variability in distribution of the input parameters.  
 
Author response: We agree with the reviewer that 100 cells is a small number for 
statistical purposes. The simulated dataset has now been expanded to possess 300 
cells, which is sufficient to compare statistics with the dataset. For example, in Fig. S5D, 
the simulated inference’s error in scaled squared error is sufficiently small to be able to 
definitively conclude that inferential noise is reasonably small compared to overall 
empirical variability in the inferred transcriptional parameters. 

 

Reviewer #4:  
%%%% What are the main claims of the paper and how significant are they for the 
discipline? 

 

The authors investigate transcription dynamics in live cells using the well-established 
technique of labelling nascent mRNA molecules using the MS2/PP7 system. The main 
contribution of the paper is a deterministic model that describes transcription in terms of 
a few fundamental kinetic parameters. Despite its simplicity, the calibrated model is able 
to predict measured fluorescence levels fairly well. This is demonstrated on 
experimental data from the hunchback gene in the Drosophila embryo, which is known 
to show spatial variability of transcription levels. 

 

%%%% Are these claims novel? If not, which published articles weaken the claims of 
originality of this one? 

 



1. In my opinion the authors make too strong claims regarding the novelty of their 
general approach of using inference techniques in single-cell studies. I am aware that 
statistically sound inference is rarely done in the physics community (where it is usually 
degraded to a fitting procedure) but there is ample of work from the statistics and 
machine learning community to develop dedicated and sound inference schemes for 
single-cell data (e.g. papers of Finkenstadt and Rand, D. Suter et al. Science 2011, 
Zechner et al. Nature Methods 2014 and many more). 

Author response: We thank the reviewer for bringing these related works to our 
attention and have added new text in the discussion starting at Line 480 discussing our 
work in the context of this existing literature. We view our work as providing a much-
needed framework for statistical analysis of single-cell live imaging transcriptional data, 
extending the repertoire of existing statistical techniques for single-cell biological 
datasets. 

2. For parameter inference, a semi-Bayesian perspective is adopted. In particular, an 
individual Markov chain is run for each cell. The posterior samples are used to estimate 
the posterior mean per parameter per cell. Then, the authors use descriptive statistics 
on these MAP estimates. As MAP estimates are usually rather sensitive (in particular for 
sampling-based approaches) I am a bit concerned whether the weak correlations they 
are finding and interpreting are really significant. A more rigorous approach would have 
been to work with the full posterior distribution.  

Author response: We opted to use descriptive statistics on the posterior mean for each 
parameter since we were primarily interested in investigating variability between cells, 
rather than distributions of inferred values within a single cell. Although investigation of 
higher moments has been successful in FISH studies (e.g., Zoller et al., Cell, 2018), 
even mean analyses are still bearing fruitful insights in live imaging experiments. Thus, 
in this work we decided to focus on mean-level analysis and consider a detailed 
examination of the full posterior for future works. Thus, in the main text we present 
single-cell correlations based on posterior means. 

Nevertheless, we decided to ensure that these analyses were not biased. To do so, we 
extracted the mean and variance of each inferred parameter from the posterior 
distribution. We then conducted a Monte Carlo simulation to simulate a distribution of 
Spearman correlation coefficients (which we now use instead of Pearson correlation 
coefficients at the suggestion of Reviewer #2’s Point #15) and associated p-values to 
gain a sense of how accurate the results of the single-cell correlation analysis were. 
Using the mean and variance of each inferred parameter, we simulated N=50,000 new 
values of the mean initiation rate, elongation rate, and cleavage time, where these 
values were generated from Gaussian distributions parameterized by the means and 



variances from each parameter’s posterior distribution. We then calculated an individual 
Spearman correlation coefficient and associated p-value for each simulation, generating 
a distribution for each correlation relationship.  

Fig. R2A and B show the ensuing distribution of p-values for the Spearman correlation 
coefficient between the mean initiation rate and elongation rate, as well as between the 
elongation rate and cleavage time. The p-values for the relationships between the mean 
initiation rate and cleavage time and between the mean RNAP density and cleavage 
time were essentially zero due to floating point error. Finally, Fig. R2C shows the 
simulated distributions of Spearman correlation coefficients for all four relationships 
(histograms), along with the values obtained from the simpler mean analysis presented 
in the main text (dashed lines). We see that using the full posterior via this Monte Carlo 
simulation yields distributions that are in agreement with the results from the mean 
analysis, and that the distributions themselves are fairly narrow. Thus, our original 
analysis is robust, and we chose to retain its presentation in the main text for simplicity 
and ease of understanding. This new analysis using the full posterior is included as a 
new supplementary section S11. 

In addition, our investigation of simulated data provide a window into possible 
systematic bias in the inferred means (Fig. S5). Because the single-cell correlation 
analysis shows correlations in the data that do not exist in the simulated data, we 
believe that our results are not merely the product of inferential artifacts. 

 

Figure R2 - Monte Carlo simulation of error in single-cell analysis. (A, B) p-values of Spearman 
correlation coefficient for relationships between (A) mean initiation rate and elongation rate and (B) 

between elongation rate and cleavage time. The p-values for the relationships between mean initiation 
rate and cleavage time as well as between mean RNAP density and cleavage time were essentially zero 



due to floating point error. (C) Distributions of Spearman correlation coefficients between mean initiation 
rate and cleavage time (blue), mean initiation rate and elongation rate (red), elongation rate and cleavage 
time (green), and mean RNAP density and cleavage time (purple). Results from mean-level analysis are 

shown in dashed lines. 

3. From a computational perspective, the Monte Carlo inference procedure is quite 
standard. Considering this, the promise of a “novel computational technique to 
simultaneously infer […] parameters” as mentioned in the abstract may be a bit over the 
top.  

Author response: We agree with this point, as other reviewers have also pointed this 
out. We have adjusted our language throughout the abstract, introduction, and 
discussion accordingly. The computational technique is no longer regarded as novel, 
and we rather emphasize the novelty of applying a well-known statistical inference 
technique like Markov Chain Monte Carlo for the analysis of live imaging fluorescence 
microscopy datasets. 

4. Nevertheless, the demonstrated results such as the spatial variation of the initiation 
rate are interesting. In my opinion, the most compelling methodological result is the use 
of the dual reporter system to eliminate the need for GFP calibration experiments. This 
is important, since GFP calibration has been a major drawback for model-based 
approaches in this area so far. 

Author response: We appreciate the reviewer’s assessment of the usefulness of our 
dual reporter system. To emphasize its importance, we have moved the SI section on 
this calibration experiment to the main text, as well as the SI figure to become the new 
Fig. 3 in the main text. 

 

%%%% Are the claims properly placed in the context of the previous literature? Have 
the authors treated the literature fairly? 

 



5. Related work is not fully captured (see above) although the list of references is rather 
extensive with respect to nascent mRNA labeling work. What I found surprising though, 
is that auto-correlation analysis (e.g. applied by Larson and co-workers) was not 
discussed at all. To my knowledge, this is a standard technique to analyze live cell 
transcription traces. I would have expected a discussion of the advantages and 
disadvantages of the proposed method compared to ACA. 

Author response: This is a pertinent comparison to make, and we have now included a 
discussion on advantages and disadvantages of our technique compared to auto-
correlation analysis in the discussion, at Line 480. To summarize, we view auto-
correlation analysis as a complementary method to our own, with its own set of 
strengths and weaknesses depending on various factors.  

First, auto-correlation analysis typically requires a time-homogeneous transcript 
initiation process (Coulon and Larson 2016, Methods in Enzymology), and benefits 
immensely from having experimental data acquired over long time windows to enhance 
the auto-correlation signal. In contrast, our model-driven inference approach can 
account for slight time dependence and directly fits to time traces. This is of particular 
relevance to the fly embryo, where each cell cycle in early development is incredibly 
short (here, we only examined 18 minutes of data) and transcription initiation switches 
from OFF to ON and back to OFF within that time frame. As a point of comparison, 
Coulon et al., eLife (2014) very successfully used auto-correlation analysis to examine 
splicing in human cells, but here the data were acquired over hundreds of minutes with 
a more time-homogeneous gene. 

Secondly, auto-correlation analysis depends strongly on signal-to-noise ratio, namely 
the ability to resolve single-or-few-transcript fluctuations in the number of actively 
transcribing polymerases on a gene. This can be achieved via several methods, such 
as having single-polymerase resolution (Larson et al., Science, 2011) or utilizing intronic 
splicing to produce fast, observable fluctuations in the signal (Coulon et al., eLife, 2014). 
In our system, we do not have observable splicing and our signal-to-noise ratio is poor 
enough to only be able to resolve differences in transcript number of several transcripts, 
rather than just one. 

Finally, our model-driven approach benefits from explicitly parameterizing the various 
steps of the transcription cycle, allowing for the separation of processes such as 
elongation and cleavage. In contrast, while the auto-correlation technique has the 
advantage of not relying on a particular specific model, it does rely on unknown 
parameters such as the overall transcript dwell time, which is a combination of 
elongation and cleavage. Thus, it becomes harder to separate contributions from these 
different processes. Furthermore, the overall auto-correlation signal benefits greatly 



from averaging the auto-correlation signals from many individual cells. If there is large 
cell-to-cell variability in the transcription cycle, causing, for example, variability in the 
single-cell dwell time, then this averaging method becomes less useful. In contrast, our 
method reports on single-cell behavior and only needs averaging to produce summary 
statistics. 

%%%% Do the data and analyses fully support the claims? If not, what other evidence 
is required? 

 

6. The proposed inference scheme relies on an established Monte Carlo procedure and 
seems to work fairly well. However, it may be helpful to refine the observation model 
given in (S12), (S13). The given likelihood function implicitly assumes that given the true 
intensity, the observations are distributed with a standard deviation of one around the 
true value. Such a small observation noise is not realistic for fluorescence 
measurements. I would propose to consider a multiplicative noise model (larger noise 
for larger intensity) or at least some relative error in (S13). This may also help with the 
problem that the tails gets too much emphasis during the fit as discussed in S3.2. 

Author response: We agree that assuming a constant fluorescence measurement 
noise is unrealistic, and decided to investigate this line further to figure out a more 
precise observation model. A priori, if we consider that the fluorescent signals in our 
experiment are the result of the sum of many individual fluorophores, then we would 
expect that if an individual fluorophore possesses some intrinsic constant measurement 
error with variance 𝜎!, then the associated error of 𝑁fluorophores would have a 

similarly scaled overall measurement error with variance 𝑁𝜎!. Since 𝑁is proportional 
to the overall mean fluorescent signal, we thus hypothesize that our observation model 
would be improved by considering a scaled residual where the sum-of-squares error is 
divided by the signal intensity: 𝑆𝑆	 = 	 (𝐹!"# − 𝐹$%#%)&/𝐹$%#%, where 𝐹!"#and 
𝐹$%#%correspond to the individual predicted or measured fluorescence intensities at each 
time point, respectively. 

To check this approach, we examined the data from the dual-color interlaced MS2/PP7 
reporter construct from Fig. 3B. These data constitute, in principle, a two-point 
measurement of the same underlying biological process, so we reasoned that we could 
utilize this measurement to quantify the scaling of fluorescence noise with respect to 
overall fluorescence intensity. 

Specifically, by creating bins of eGFP fluorescence measurement from the scatterplot in 
Fig. 3D, we could then calculate how the variance of associated mCherry fluorescences 



within a bin scaled with eGFP fluorescence (here a proxy for overall fluorescence 
intensity). If the calculated variance increases with overall fluorescence, this indicates 
that the fluorescence measurement noise is not constant, but rather scaled positively 
with signal strength. 

Fig. R3A shows this calculated variance (red), along with bootstrapped standard error, 
as a function of bin value (i.e. eGFP fluorescence). We see that the variance indeed 
increases with bin value fairly linearly, confirming our a priori hypothesis. If we then 
scale the variances by dividing by the mean mCherry fluorescence within a bin, we 
recover a constant scaling, as expected (black).  

Thus, in the revised manuscript, we updated the observation model to include this 
scaled fluorescence measurement noise by dividing the sum-of-squares residual by the 
observed fluorescence intensities, as described by the equation above and in the 
updated Equation S14. We have also added a new section S4.2 describing this 
fluorescence noise scaling behavior. 

 

Figure R3 - Scaling of fluorescence measurement noise with overall fluorescence intensity. 
Variance of mCherry fluorescence at a particular GFP fluorescence (red), from the dual-color interlaced 

reporter construct from Fig. 3B, along with variance scaled by dividing out the mean mCherry 
fluorescence (black). 

7. In my opinion, the hierarchical procedure proposed in S3.2 is a bit of a hack. There 
are more transparent methods to solve this problem, such as alternative observation 
models or using weighted residuals. The motivation to call some data points less 
important always seemed to be rooted in the bad fit they generate if considered full. A 
more sound way to model such discounting is through introducing heteroscedasticity in 
the observation model but that then still requires biophysical justification. 

Author response: We agree that the hierarchical procedure is indeed a hack. We 
appreciate the reviewer for pointing out the necessity (and subsequent utility) of using 



an improved observation model above. After implementing the modification to the 
observation model described in the previous point, the new inference procedure 
performs much better in terms of fitting earlier time points such that the hierarchical fit 
was no longer necessary. This is to be expected, since scaling the sum-of-squares 
residual causes lower intensity values (and thus earlier time points) to be weighted 
more strongly than higher intensity (i.e. later) values. 

Fig. R4 shows data from a sample representative single-cell. In Fig. R4A, we used the 
old hierarchical fit with the previous observation model, which results in a discrepancy 
between the fit and data at earlier time points, exemplified by examining the onset of the 
GFP signal (green). In contrast, Fig. R4B shows the fit from using the new observation 
model with a scaled residual term, which fits the onset of GFP signal much better. Thus, 
the hierarchical fit was no longer necessary, and we decided to remove it. We believe 
the new methodology is much more statistically sound and hope the reviewer will agree. 
As a result, we have removed the old Section S3.2 describing this hierarchical fit 
procedure. 

 

 

Figure R4 - Comparison of hierarchical fit methodology with improved observation model. (A) Fit 
results using old hierarchical fit with constant fluorescence noise observation model. (B) Fit results using 

improved, scaled fluorescence noise observation model, obviating the need for a hierarchical fit. The 
mCherry fluorescence values between methodologies is different due to a different calibration factor 

being inferred between models. 



8. Testing the inference procedure on simulated results (S3.4) is helpful. I am surprised, 
though, that the inference result is so biased (Fig. S4 a). Considering that the model is 
relatively simple and the number of data points is large, I would not have expected such 
a mismatch. For me, this indicates some problem with the inference procedure. For 
example, the posterior could be multi-modal and the chain could be trapped in a local 
mode. The normalized error measure does not help to resolve this discrepancy. 

Author response: With the new observation model, the inference has been much 
improved. As seen in the new Fig. S5A, the model fits well to the simulated data, with 
only slight deviations due to the addition of simulated fluorescence noise. 

9. In my opinion, more evidence is required for section S4. This part is based on a 
construct with 24 alternating MS2-PP7 stem-loops. This model has been established 
first using sm-FISH using FISH probes (Zoller et al.,2018). Compared with the MS2-PP7 
system, the FISH probes can be labeled with a lot of fluorophores, so it is more 
convenient to measure fluorescence intensity. By using the MS2-PP7 system, normally 
more than 14 consecutive stem-loops should be used to generate a single spot. It would 
be helpful to provide more figures or videos in this section. Also, the photobleaching 
needs to be considered by using this system. It would be better to mention more details 
about the DNA construct in this part as well. The measurement condition should be 
mentioned in figure 5S. 

Author response: To clarify, the alternated MS2-PP7 construct has a total of 48 stem 
loops (24 of each type of stem loop), so the overall signal is definitely bright enough and 
over the 14-stem loop threshold suggested by the reviewer. We have updated the text 
accordingly to make this clear, as well as updated Figure S5 (now Fig. 3 in the main 
text) with the measurement conditions. We’ve additionally uploaded a new 
supplementary video S2 showing the live cell microscopy of this experiment—-both 
MS2 and PP7 signals exhibit similar dynamics and reflect the same underlying 
biological signal. 

To check for photobleaching, we conducted an experiment with the dual-color 5’/3’ 
tagged reporter where half of the field of view was illuminated using the experimental 
settings described in the Methods and Materials section (Fig. R5A, purple), and the 
other half was illuminated at half the temporal sampling rate (Fig. R5A, yellow). Since 
the measurement conditions were identical for both reporter constructs used in this 
work, the bleaching behavior (if any) should be the same. Thus, if the experimental 
settings were in the photobleaching regime, then the purple region would exhibit 
fluorescence at a systematically lower intensity compared to the yellow region. 

Fig. R5B, C shows the fluorescence intensities of mCherry and eGFP as a function of 
time at a particular anterior-posterior position of the embryo for both 0.5x and 1x 



sampling rates, where data points indicate fluorescence averaged within the anterior-
posterior position (i.e. vertically in the field of view) and error bars indicate standard 
error across cells. There is no obvious systematic difference between the differentially 
illuminated regions. 

To quantify this more accurately, we calculated the average normalized difference 
between illuminated regions, obtained by subtracting the fluorescence value at 1x 
sampling rate by that at 0.5x sampling rate, dividing by the fluorescence value at 0.5x 
sampling rate, and then averaging across all time points and embryo positions. For 
example, for the curves shown in Fig. R5B, this entails subtracting the red curve by the 
black curve, and then dividing by the black curve—and then averaging for all anterior-
posterior embryo positions. An overall value of less than one means that the 1x 
sampling rate produces systematically lower fluorescence intensities, indicating that our 
experimental settings are in the photobleaching regime. As seen in Fig. R5D, the 
average normalized difference is around one for both fluorophores (within standard 
error, measured across all time points and anterior-posterior positions). Thus, we 
conclude that our data are not in the photobleaching regime. 

We have added this information on photobleaching as a new supplementary Section S2 
and Fig. S2. 



 

Figure R5 - Investigation of photobleaching. (A) Control experiment where half of the field of view is 
illuminated at the standard experimental settings (yellow), and the other half of the field of view is imaged 

at half of the illumination rate (yellow). (B, C) The (B) mCherry and (C) eGFP fluorescence signals at a 
given anterior-posterior embryo position, averaged across cells within that position, do not exhibit 

photobleaching. (D) The average normalized difference between illuminated regions, averaged across 
time points and anterior-posterior embryo positions, are approximately zero within error, rather than 

negative, which would indicate photobleaching. 



10. The most problematic aspect of the paper seems to be the simulation study in S9. 
The idea is to support the claim of individual RNAPs having different step sizes by 
consulting a more elaborate simulation model of the transcription process. I see, 
however, some severe problems with the taken approach. First, the simulation itself is 
not very meaningful. Essentially, the result is that randomized RNAP step sizes produce 
random elongation rates, which seem quite trivial. Second, the authors compare this 
distribution of elongation rates to the distribution of inferred elongation rates. 
Conceptually, it does not make much sense to compare the distribution of inferred 
quantities with the distribution of a completely different generative process. What the 
authors could have done instead is to extend the fine-grained model in such a way that 
it can produce artificial observations. The artificial observation could then be used for 
inference as in S3.4. The obtained distribution of posterior means would allow an 
appropriate comparison with the distribution of inferred elongation rates from the real 
data. 

Author response: We agree with the reviewer’s critique of our approach. In response, 
we have updated the single-molecule simulation analysis of elongation rates to produce 
simulated MS2 and PP7 fluorescences that are then pushed through the inference 
pipeline, to produce results that can be directly and sensibly compared to the empirical 
inferred distribution of elongation rates. While inferential noise widens the distribution of 
elongation rates in the absence of single-molecule variability in RNAP stepping rates, 
this distribution is still not wide enough to account for the observed data. In contrast, 
allowing for single-molecule variability can recover the observed distribution. 

We believe this result is not trivial. For example, due to effects such as stochasticity in 
RNAP stepping rates as well as traffic jamming due to steric hindrance, cell-to-cell 
variability could presumably manifest as an emergent phenomenon even in the absence 
of real single-molecule variability. Our simulation results, while far from conclusive, do 
provide preliminary exploratory work suggesting that the empirical cell-to-cell variability 
is large enough that these emergent phenomena are insufficient to reproduce them.  

11. The filtering of data-points for the synthetic data scenario is beyond justification. If 
the data was generated according to the model that is later used inference, every 
datapoint needs to be taken into account. 

Author response: We agree, and have updated the simulation validation (Section 
S4.4) to reflect this. We no longer filter out any of the synthetic data points and instead 
analyze the whole population. 



12. The aggressive down selection performed on the real dataset appears also very 
problematic. From the original 1053 cells after successive filtering only 299 remain in 
the inference dataset. For some data points, the only justification to discard them is that 
they cannot be well explained by model. In my opinion that is an elementary statistical 
fallacy. 

Author response: To improve our dataset filtering procedure, we decided to remove 
the human element (which correctly was pointed out by several reviewers as non-
rigorous and possibly bias-inducing) and implement an automated procedure.  

The process now has two steps. First, we initially discarded any single cell time trace 
that did not have at least 30 time points in each fluorescent channel (the previous value 
was 10 timepoints). Over the 18 minute window of data acquisition at a time resolution 
of 15 seconds, this threshold corresponds to roughly half of the time window possessing 
detectable signal. We reasoned that traces with fewer than 30 time points would have 
an insufficient amount of data for the inference to work successfully. This reduced the 
number of cells from 1053 to 427. 

Second, instead of manually curating the subsequent data and potentially introducing 
human bias, we opted for a new methodology that used an automatic cutoff. For each 
single-cell fit, we calculated the average squared normalized residual 𝛿2, defined as 𝛿2 =
∑!"#$%&"'!((𝐹)*!* − 𝐹+"!)2/𝐹)*!*2, where the summation occurs over all time points and 
𝐹)*!*and 𝐹+"!correspond to the fluorescence data and fit, respectively. Thus, 𝛿2gives a 
measure of how good or bad, on average, each single-cell fit is. 

Fig. R6A and B show histograms of the average squared normalized residual 𝛿2for the 
entire n=427 dataset, with log and linear x-axes. We see that the vast majority of data 
possesses values of 𝛿2smaller than unity, with a long tail at higher values corresponding 
to bad fits. We decided to implement a cutoff of 𝛿2 = 1, where any cell with a higher 
value of 𝛿2was automatically discarded. This reduced the dataset from 427 cells to 355 
cells (in the previous version of the manuscript size, the final dataset size was n=299). 

To assess the rejected fits for underlying biological causes, we did a qualitative 
examination for common features. There were several sources of bad fits. First, some 
traces possessed low signal-to-noise ratio (Fig. R6C), possibly due to fluctuations in 
MCP-mCherry or PCP-GFP background fluorescences leading to increased uncertainty, 
that nevertheless yielded reasonable fits that were slightly above the 𝛿2cutoff. Still 
others simply had poor fits, possibly due to running into issues with the inference 
algorithm such as getting trapped in local minima (Fig. R6D). We consider 
improvements to the algorithm to be outside the scope of this work, since the retained 
data still contain novel, interpretable results. 



Finally, one potential biological source confounding the model could be substantial 
burstiness of the promoter. Although the majority of the traces we analyzed indicated 
that the hunchback reporter gene studied here possessed a promoter that was 
effectively ON during the cell cycle studied, some traces possessed substantial time 
dependence of the fluorescence signal, potentially resulting from rapid switching of the 
promoter between ON and OFF states. From the lens of the model, this would violate 
the mean-field assumption of the initiation rate term 𝑅(𝑡)and cause the fluctuations 𝛿𝑅to 
no longer be small compared to the mean value < 𝑅 >. As seen in a representative 
example in Fig. R6E, such traces are very time-dependent and are not fit well with the 
model. Although such bursty behavior is of high biological significance, capturing the 
behavior would require more specific models (e.g. two-state telegraph models in the 
flavor of Lammers et. al. 2020 PNAS), and thus we hope to consider these extensions 
in future work.  

Due to the variety of sources contributing to the rejected fits, we opted for a 
conservative approach and only analyze the cells with high signal quality that did not 
exhibit noticeable bursting. The number of retained fits were still much higher than the 
number of rejected fits (Fig. R6F). Thus, our work provides a self-contained framework 
applicable for describing the behavior of promoters that are primarily ON for the duration 
of the experiment. 

To check that the curation procedure did not incur substantial bias, we compared the 
average inferred mean initiation rate, elongation rate, and cleavage time as a function of 
embryo position between the curated and uncurated datasets (Fig. R6G-I). We 
observed no substantial difference between the two datasets, indicating that the 
curation procedure was not systematically altering the inference results. 

These details have been included in the updated Section S4.3 and the new Figure S4. 
We have also expanded the discussion to talk about these bursty traces, starting at Line 
520. 

 



 

Figure R6 - Automated curation of data. (A, B) Histograms (blue) of average squared normalized 
residual of single-cell fits, in log (A) and linear (B) scale, with cutoff of𝛿2 = 1shown in red in (B). (C) 

Example of bad fit from poor signal-to-noise ratio. (D) Example of bad fit of otherwise reasonable data 
from issues in fitting algorithm, for example due to local minima. (E) Example of bad fit due to potential 
presence of substantial bursting of promoter. (F) Number of single cell fits in each class of rejected fit, 
along with number of accepted fits, after the initial filtering based on number of time points. Altogether, 
84% of filtered fits were accepted. (G, H, I) Comparison of average inferred (G) mean initiation rate, (H) 
elongation rate, and (I) cleavage time as a function of embryo position, between curated and uncurated 
datasets. The data shown in C-E are in each fluorophore’s intrinsic arbitrary unit without rescaling, to 
present the fluorescence intensities in their raw form. Values of 𝛿2were 6.05, 1820, and 688 for C-E, 

respectively. Shading in G-I represents standard error of the mean across 355 and 427 cells across 7 
embryos for curated and uncrated datasets, respectively. 



13. In section DNA construct, they mentioned the paper Garcia et al.,2013. They used 
the almost the same DNA construct. However compared with the paper, it showed no 
background signal inside the cell. More details should be discussed in both DNA 
construct parts and also behind the figure 2A. 

Author response: We are not entirely sure what background signal the reviewer is 
referring to. Garcia et al. used MCP-GFP to label RNA, and a Histone-RFP fusion to 
label nuclei. The core difference between this work and Garcia et al. is that, due to the 
additional MCP-mCherry channel to acquire MS2 data, a Histone-iRFP fusion was 
utilized to label nuclei. iRFP has emission and absorption spectra distinct from the GFP 
and mCherry spectra. The nuclear background is given by the nuclear concentration of 
free MCP-mCherry and PCP-GFP, which is subtracted when quantifying the 
fluorescence of the transcription spots. We have updated the text for the “DNA 
Constructs” methods section as well as the caption for Figure 2A accordingly. 

14. In section S7 (line 1130), figure S5C was used to explain the separation of the 
experimental noise from the biological noise. However the figure showed the 
fluorescence intensity of MS2/PP7 and a linear fit. 

Author response: We have removed this reference to Fig. S5C (now Fig. 3) since it 
was a bit unclear given the flow of the manuscript. 

 

%%%% Are original data deposited in appropriate repositories and accession/version 
numbers provided for genes, proteins, mutants, diseases, etc.? 

 

15. In section S4, a construct with alternating MS2/PP7 loops was used to calibrate the 
signals. The DNA construct is required. 

Author response: This DNA construct has been added to the public Benchling folder 
under the label “pIB-hbP2 p2p-MS2/PP7-48-lacZ-Tub3'UTR”. 

%%%% Are details of the methodology sufficient to allow the experiments to be 
reproduced? 



16. More details are required in the methods and sample preparation section. In section 
sample preparation, only the reference papers were mentioned, the whole preparation 
process should be mentioned too. 

Author response: We have added and clarified the sample preparation process in the 
methods section. 

17. In section image analysis, a custom-written software was used to analyze the 
images. The name and purpose should also be mentioned. 

Author response: We have added more details on the image analysis software, and 
referenced a public GitHub repository containing the codebase. 

 

%%%% Is any software created by the authors freely available? 

 

Github repository 

 

%%%% Minor remarks regarding the modelling part 

 

18. The high RNAP density (Fig. 3 d) seems to contradict the independent particle 
assumption of the model. Can you clarify why it is legitimate to still use this model? 

Author response: We emphasize that our model is meant to produce effective 
transcriptional parameter values, rather than mechanistically motivated quantities. In 
particular, while the RNAP densities present in the hunchback reporter gene are rather 
high, little enough is understood about RNAP elongation in vivo to be certain of how this 
high density will affect overall elongation. For example, RNAP molecules in living 
organisms have been posited to traffic jam and slow down (Klumpp and Hwa, PNAS, 
2008), or instead push each other and speed up (Galbert, Biophysical Chemistry, 2011). 
Direct observation of either in a live imaging setup has not existed thus far. So, while 
interactions between RNAP molecules likely exist, we decided to remain flexible and 
produce an effective model that could produce self-consistent insights when comparing 
values within the model than to focus on a more mechanistically motivated model (see 
Line 72 of the manuscript for a clarification of this point). 



19. The initiation rate R(t) in the description of the full model in S1 is not fully clear to 
me. The notation suggests that delta R(t) is a stochastic fluctuation, but from the 
description in the inference part, it seems like it is treated as a constant offset for each 
time point.  

Author response: The delta R(t) is indeed a constant offset for each time point. We 
decided to use the delta notation because the mean initiation rate <R> essentially is a 
mean-field approximation, where the delta R(t) represent small deterministic fluctuations 
at each time point. We have updated Line 107 of the main text to clarify this. 

20. Also, the discussion suggests that the model is in continuous-time. Then, in line 
721, a computational time step suddenly appears. This could be explained more 
explicitly. 

Author response: While the model itself can function in continuous time, the 
computational simulation used for the statistical inference was coded using discrete 
computational timesteps. We have updated the text in Section S1 to be more clear 
about this point. 

21. From (S4), (S5) it seems that the number of RNAP molecules is a discrete quantity. 
In contrast, the discussion in S1 around line 720 explains that R(t) dt RNAP molecules 
are loaded at each time step, which is not an integer. 

Author response: Because the simulation relies on discrete numbers of RNAP 
molecules, after calculating R(t) dt, the subsequent value is rounded down to the 
nearest integer to be consistent with the discretization. We have updated the text to 
clarify this. 

22. Is there a particular reason mu_x is used in (S16) for the normalization? Why not 
use x_true as for a standard relative error? 

Author response: We used mu_x in the normalization to allow for the direct 
comparison of overall CV^2 between the simulation and data in Fig. S5. Since both the 
empirical CV^2 and the squared scaled error defined here have mu_x^2 in the 
denominator, their magnitudes can be directly compared to gain a sense of how the 
inference error contributes to the overall noise (Eq. S20). We believe that this 
presentation makes for ease of visualization and intuition, since scaling Fig. S5 by the 
empirical values mu_x allows for the interpretation of the inference error in units of the 
data. 



Using x_true for (S16) does not change the conclusions, as seen below in Fig. R7. For 
the most part, the distributions of both scaled error as defined in the supplement and 
relative error, defined as (x_infer - x_true)/x_true, lie between -0.5 and 0.5. 

 

Figure R7 - Comparison of scaled and relative error of inference. (Left) Histogram of scaled errors of 
transcriptional parameters from simulated data, scaled by dividing by the mean empirical distribution 

value as defined in the supplement. (Right) Histogram of relative errors of transcriptional parameters from 
simulated data, scaled by dividing by the single-cell ground truth as standard for relative error. The 

distributions are similar, indicating that the inference error does not depend strongly on the choice on 
definition of error. 


