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A. Quantification of the firing pattern properties
B. Simulations of the reduced models
C. Model description and their parameter values
D. Ionic channel description: steady-state functions and time constants of the gating
variables
E. Description of the reduced models and their parameter values

A. Quantification of the firing pattern properties
In Fig 2 (in the main article), for each model, one thousand circuits of two interconnected neurons are
generated with random ionic conductances varying from 10, 20 and 30% from their nominal values.
Fig S9. 1 shows the spiking frequency in tonic mode (blue) and the intra-burst frequency (orange)
among the rhythmic circuits. Models with a fast activation of T-type calcium channels show large
variations in the properties of the rhythm. Restoring the slow CaT channel activation reduces the
standard deviation (see models 5 vs 5’ and models 6 vs 6’).

Fig S9. 1: Quantification of the rhythmic networks obtained in Fig 2 (main article) for a variability equals to
10% (left), 20% (center) and 30% (right). The figure plots he mean and the standard deviation of the spiking
frequency in tonic mode (blue) and the intraburst frequency (orange) of the inhibitory cell.
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B. Simulations of the reduced models
Fig S9. 2 illustrates the simulation of the reduced models not shown in Fig 6 and Fig 7 (in the main
article). The top traces shows the switch from tonic to burst when the current is hyperpolarized.
The four models have the same behavior (top). However, models embedding a slow T-type calcium
channels exhibit a lower branch in the V-nullcline (models 2, 5’ and 6’) while model 5 considering an
instantaneous activation exhibits N-shape.
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Fig S9. 2: Simulations of the reduced models (top) Voltage recordings of a hyperpolarizing-induced
bursting considering its nominal T-type calcium channel activation and (bottom) the associated phase portrait
at the saddle node bifurcation (in models 2,5’,6 and 6’). The square arrow indicates the hyperpolarizing step
current. V-(resp Vs-) nullcline is marked in blue (resp. green). The unstable fixed nodes are drawn in open
circles. The half-open circle indicates the meeting between the saddle node and the stable fixed point.

C. Model description and their parameter values

Model 1

Paper: [Drion, Dethier, Franci, and Sepulchre (2018)]

Ionic currents
This model is composed of a six ionic currents:

- a transient sodium current: INa = ḡNam
3
NahNa(Vm − VNa),

- a delayed-rectifier potassium current: IK,D = ḡK,Dm
4
K,D(Vm − VK),

- a T-type calcium current: ICaT = ḡCaTm
3
CaThCaT (Vm − VCa),

- a calcium-activated potassium current: IK,Ca = ḡK,CamK,Ca∞(Ca)(Vm − VK),

- a hyperpolarization-activation cation current: IH = ḡHmH(Vm − VH),

- a leak current: Ileak = ḡleak(Vm − Vleak).

Voltage-dependent steady-state functions and associated time constants for activation and inactivation
gating variables are given in Table S9. 2. The calcium-dependent activation of the calcium-activated
potassium current is modeled as follows: mK,Ca,∞([Ca]) = ([Ca]/([Ca]+KD))2. The calcium dynamics
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follows the equation [Ċa] = −k1ICaT − k2[Ca] where k1 and k2 are rate parameters. Parameters used
in simulations are: Cm = 1[µF/cm2], VNa = 50mV, VK = −85mV, VCa = 120mV, Vleak = −55mV,
VH = −20mV, KD = 170. The maximal conductances are expressed in [mS/cm2] and their nominal
values are gNa = 170, ḡK,D = 40, ḡCaT = 0.55, ḡK,Ca = 4, ḡH = 0.01 and gleak = 0.055

Connectivity
For circuit and network models, the nominal values of maximal synaptic conductances are equal to:
ḡAMPA = 0.1/nE , ḡGABAA = 0.4/nI and ḡGABAB = 2/nI where nE and nI are respectively the number
of excitatory and inhibitory cells.

Applied currents
- At single-cell level, a hyperpolarized-induced bursting is obtained with the applied current equals to
1 then -0.9 [µA/cm2] (referring to Figure 1A).
- Single-cell robustness in Cm; the applied current during the first period is equal to 1 and then it is
swept from 0 to -2 with a step of 0.1. The hyperpolarized current leading to the highest robustness in
capacitance value variation is -1 (referring to Figure 1C).
- For 2-cell circuit or 200-cell network , the applied current exerted on the inhibitory cells is switching
from 1 to -2.6 [µA/cm2] (referring to Figures 2 to 5).

Threshold voltage
In Figure 3B, C and D, the voltage-dependent time constants of sodium channel activation τmNa(Vm)
and T-type calcium channel activation τmCaT (Vm) are evaluated at Vm = −50mV . The T-type calcium
channel inactivation τhCaT

(Vm) is evaluated at Vm = −70mV .

Currentscapes
Figure 1B shows the switch from tonic to burst in a neuron model whose parameters are: C =1, ḡNa

= 200, ḡK = 20, ḡCaT = 0.75, ḡKCa = 4, ḡH = 0.1 (top)/ḡH = 0.0008 (bottom), ḡleak = 0.055, .
The current in the depolarized state is equal to 1 and in the hyperpolarized state -1.85 (top) / -1.07
(bottom). The other parameters remain the same as in the initial description.

Model 2

Paper : [Destexhe, Contreras, Steriade, Sejnowski, and Huguenard (1996)]

Ionic currents
The model is composed of four ionic currents:

- a sodium current: INa = ḡNam
3
NahNa(Vm − VNa),

- a potassium current: IK = ḡKm
4
K(Vm − VK),

- a T-type calcium current: ICaT = ḡCaTm
2
CaThCaT (Vm − VCa),

- a leakage current: Il = ḡleak(Vm − Vleak).

Voltage-dependent steady-state functions and associated time constants for activation and inactiva-
tion gating variables are given in Table S9. 3 with V2(V ) = V − VT raub. Parameters used in simu-
lations are: Cm = 1e − 3 [mF/cm2], VNa = 50mV, VK = −100mV, VCa = 120mV, Vleak = −82mV,
VT raub = −63mV. Here, we chose to fix the reversal potential of calcium channel rather than evaluate
it through calcium concentrations. The maximal conductances are expressed in [S/cm2] and their
nominal values are ḡNa = 0.4, ḡK,D = 0.08, ḡCaT = 0.006, ḡleak = 5e− 5.

Connectivity
For circuit and network models, the nominal values of maximal synaptic conductances are equal to:
ḡAMPA = 0.1e−3/nE , ḡGABAA = 0.2e−3/nI and ḡGABAB = 1e−3/nI where nE and nI are respectively
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the number of excitatory and inhibitory cells.

Applied currents
- At single-cell level, a hyperpolarized-induced bursting is obtained with the applied current equals to
0.4e−3 then 0 [mA/cm2] (referring to Figure 1A).
- Single-cell robustness in Cm; the applied current during the first period is equal to 0.4e−3 and then
it is swept from 0.25e−3 to -0.25e−3 with a step of 0.15e−3. The hyperpolarized current leading to the
highest robustness in capacitance value variation is 0.1e−3. (referring to Figure 1C).
- For a 2-cell circuit or 200-cell network, the applied current exerted on the inhibitory cells is switching
from 0.4e−3 to -0.3e−3 [mA/cm2] (referring to Figures 2 to 5).

Threshold voltage
In Figure 3B, C and D, the voltage-dependent time constants of sodium channel activation τmNa(Vm)
and T-type calcium channel activation τmCaT (Vm) are evaluated at Vm = −60mV . The T-type calcium
channel inactivation τhCaT

(Vm) is evaluated at Vm = −70mV .

Model 3

Paper: [Destexhe, Neubig, Ulrich, and Huguenard (1998)]

Ionic currents
The model is composed of four ionic currents:

- a sodium current: INa = ḡNam
3
NahNa(Vm − VNa),

- a potassium current: IK = ḡKm
4
K(Vm − VK),

- a T-type calcium current: ICaT = ḡCaTm
2
CaThCaT (Vm − VCa),

- a leakage current: Il = ḡleak(Vm − Vleak).

Voltage-dependent steady-state functions and associated time constants for activation and inactiva-
tion gating variables are given in Table S9.4 with V2(V ) = V − VT raub and a voltage-shift of 3mV
for calcium current as explained in [Destexhe et al. (1998)]. Parameters used in simulations are:
Cm = 0.88 [µF/cm2], VNa = 50mV, VK = −100mV, VCa = 120mV, Vleak = −70mV, VT raub = −52mV.
Here, we chose to fix the reversal potential of calcium channel instead of computing it through calcium
concentration and to use a maximum conductance instead of a maximum permeability. The maxi-
mal conductances are expressed in [mS/cm2] and their nominal values are ḡNa = 100, ḡK,D = 100,
ḡCaT = 3.3, ḡleak = 5e− 2.

Connectivity
For circuit and network models, the nominal values of maximal synaptic conductances are equal to:
ḡAMPA = 0.1/nE , ḡGABAA = 0.2/nI and ḡGABAB = 1/nI where nE and nI are respectively the number
of excitatory and inhibitory cells.

Applied currents
- At single-cell level, a hyperpolarized-induced bursting is obtained with the applied current equals to
1.5 then -0.7[µA/cm2] (referring to Figure 1A).
- Single-cell robustness in Cm; the applied current during the first period is equal to 1.5 and then it is
swept from -0.1 to -1 with a step of 0.1. The hyperpolarized current leading to the highest robustness
in capacitance value robustness is -0.6 (referring to Figure 1C).
- For 2-cell circuit or 200-cell network, the applied current exerted on the inhibitory cells is switching
from 1.5 to -1.7 [µA/cm2] (referring to Figures 2 to 5).
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Threshold voltage
In Figure 3B, C and D, the voltage-dependent time constants of sodium channel activation τmNa(Vm)
and T-type calcium channel activation τmCaT (Vm) are evaluated at Vm = −40mV . The T-type calcium
channel inactivation τhCaT

(Vm) is evaluated at Vm = −60mV .

Model 4

Papers: [Huguenard and McCormick (1992); McCormick and Huguenard (1992)]

Ionic currents
The model is composed of eleven ionic currents:

- a transient sodium current: INa = ḡNam
3
NahNa(Vm − VNa),

- a persistent sodium current: INap = ḡNapmNap(Vm − VNa),

- a T-type calcium current: ICaT = ḡCaTm
2
CaThCaT (Vm − VCa),

- a calcium-activated potassium current: IC = ḡCmC(Vm − VK),

- a low threshold calcium current: IL = ḡLm
2
L(Vm − VCa),

- several potassium current: IK2a = ḡK2amK2hK2,a(Vm − VK), IK2b
= ḡK2b

mK2hK2,b
(Vm − VK),

IA = ḡAm
4
AhA(Vm − VK), IA2 = ḡA2m

4
A2
hA2(Vm − VK)

- a sodium leakage current: INa,leak = ḡNa,leak(Vm − VNa),

- a potassium leakage current: IK,leak = ḡK,leak(Vm − VK).
Voltage-dependent steady-state functions and associated time constants for activation and inactiva-
tion gating variables are given in Table S9. 5. Parameters used in simulations are: Cm = 0.29 [nF ],
VNa = 50mV, VK = −105mV, VCa = 120mV. Here, we chose to fix the reversal potential of calcium
channel instead of computed it through calcium concentration. The maximal conductances are ex-
pressed in [mS] and their nominal values are ḡNa = 12, ḡNap = 7e − 3, ḡA = 20e − 3, ḡA2 = 15e − 3,
ḡCaT = 1, ḡK2,a = 38e− 3, ḡK2,b

= 26e− 3, ḡC = 1, ḡL = 0.8, ḡNa,leak = 2.65e− 3 and ḡK,leak = 7e− 3.

Connectivity
For circuit and network models, the nominal values of maximal synaptic conductances are equal to:
ḡAMPA = 0.01/nE , ḡGABAA = 0.04/nI and ḡGABAB = 0.01/nI where nE and nI are respectively the
number of excitatory and inhibitory cells.

Applied currents
- At single-cell level, a hyperpolarized-induced bursting is obtained with the applied current equals to
1 then 0.1 [µA/cm2] (referring to Figure 1A).
- Single-cell robustness in Cm; the applied current during the first period is equal to 1 and then it is
swept from 0.4 to -0.2 with a step of 0.1. The hyperpolarized current leading to the highest robustness
in capacitance value variation is 0.1 (referring to Figure 1C).
- For 2-cell circuit or 200-cell network, the applied current exerted on the inhibitory cells is switching
from 1 to 0 [µA/cm2] (referring to Figures 2 to 5).

Threshold voltage
In Figure 3B, C and D, the voltage-dependent time constants of sodium channel activation τmNa(Vm)
and T-type calcium channel activation τmCaT (Vm) are evaluated at Vm = −50mV . The T-type calcium
channel inactivation τhCaT

(Vm) is evaluated at Vm = −60mV .
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Model 5

Paper: [Wang (1994)]

Ionic currents
This model is composed of a six ionic currents:

- a transient sodium current: INa = ḡNam
3
Na,∞(0.85 −mK)(Vm − VNa),

- a persistent sodium current: INap = ḡNapm
3
Nap,∞(Vm − VNa),

- a potassium current: IK = ḡKm
4
K(Vm − VK),

- a T-type calcium current: ICaT = ḡCaTm
3
CaT,∞hCaT (Vm − VCa),

- a sag current: IH = ḡHm
2
H(Vm − VH),

- a leak current: Ileak = ḡleak(Vm − Vleak).

Voltage-dependent steady-state functions and associated time constants for activation and inactiva-
tion gating variables are given in Table S9. 6. Parameters used in simulations are: Cm = 1[µF/cm2],
VNa = 55mV, VK = −80mV, VCa = 120mV, Vleak = −70mV, VH = −40mV, σK = 10, σNa = 6,
σNaP = −5, θh = −79 and kh = 5. The maximal conductances are expressed in [mS/cm2] and their
nominal values are ḡNa = 42, ḡNap = 9, ḡK = 30, ḡCaT = 1, ḡH = 0.04 and ḡleak = 0.12

Connectivity
For circuit and network models, the nominal values of maximal synaptic conductances are equal to:
ḡAMPA = 0.1/nE , ḡGABAA = 0.4/nI and ḡGABAB = 4/nI where nE and nI are respectively the number
of excitatory and inhibitory cells.

Applied currents
- At single-cell level, a hyperpolarized-induced bursting is obtained with the applied current equals to
3 then -1.3 [µA/cm2] (referring to Figure 1A).
- Single-cell robustness in Cm; the applied current during the first period is equal to 3 and then it is
swept from -0.2 to -2 with a step of 0.2. The hyperpolarized current leading to the highest robustness
in capacitance value robustness is -1.5 (referring to Figure 1C).
-For 2-cell circuit or 200-cell network, the applied current exerted on the inhibitory cells is switching
from 3 to -1.3 [µA/cm2](referring to Figures 2 to 5).

Model 5′

The model designed by Wang in 1994 [Wang (1994)] has set the activation variable of the calcium
channel as its steady-state value. It means this activation happens instantaneously without any
dynamics i.e. without any time constant. We build a new version of Wang model and call it WangCa
or model 5′. We restore the slow activation of this channel by integrating the initial expression of the
channel as described in the Wang model designed in 1991 with Vs = 2. The time constant is equal to:

τmCaT = 2.5
1.7 + exp

[
−(V +Vs+28.8)

13.5

]
1 + exp

[
−(V +Vs+63)

7.8

]
The expression is slightly scaled compared to the original one in [Wang, Rinzel, and Rogawski (1991)].
The time constant of the calcium channel inactivation is also scaled with a factor 5 (τhCaT

[WangCa] =
5τhCaT

[Wang]). The other parameters remain the same except in Figure 1C, the hyperpolarizing cur-
rent leading the highest robustness in capacitance value variation is equal to -1.9 (instead of -1.5).
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Threshold voltage
In Figure 3B, C and D, the voltage-dependent time constants of sodium channel activation τmNa(Vm)
and T-type calcium channel activation τmCaT (Vm) are evaluated at Vm = −40mV . The T-type calcium
channel inactivation τhCaT

(Vm) is evaluated at Vm = −60mV .

Model 6

Paper: [Rush and Rinzel (1994)]

Ionic currents
This model is composed of a five ionic currents:

- a transient sodium current: INa = ḡNam
3
Na,∞(Vm)(0.85 −mK)(Vm − VNa),

- a potassium current: IK = ḡKm
4
K(Vm − VK),

- a T-type calcium current: ICaT = ḡCaTm
3
CaT,∞hCaT (Vm − VCa),

- a sodium leak current: INaleak = ḡNaleak(Vm − VNa),

- a sodium leak current: IKleak = ḡKleak(Vm − VK).

Voltage-dependent steady-state functions and associated time constants for activation and inactiva-
tion gating variables are given in Table S9. 7. Parameters used in simulations are:Cm = 1[µF/cm2],
VNa = 50mV, VK = −85mV, VCa = 120mV, θs = −63, ks = −7.8, θh = −72, kh = 1.1,σm = 10.3,
σn = 9.3 and φ = 1. The maximal conductances are expressed in [mS/cm2] and their nominal values
are ḡNa = 120, ḡK = 10, ḡCaT = 0.3, ḡNaleak = 0.01429 and ḡKleak = 0.08571

Connectivity
For circuit and network models, the nominal values of maximal synaptic conductances are equal to:
ḡAMPA = 0.1/nE , ḡGABAA = 0.4/nI and ḡGABAB = 2/nI where nE and nI are respectively the number
of excitatory and inhibitory cells.

Applied currents
- At single-cell level, a hyperpolarized-induced bursting is obtained with the applied current equals to
15 then -1.2 [µA/cm2] (referring to Figure 1A).
- Single-cell robustness in Cm; the applied current during the first period is equal to 15 and then it is
swept from -0.6 to -1.3 with a step of 0.1. The hyperpolarized current leading to the highest robustness
in capacitance value variation is -1.2 (referring to Figure 1C).
- For 2-cell circuit or 200-cell network, the applied current exerted on the inhibitory cells is switching
from 15 to -1.2 [µA/cm2] (referring to Figures 2 to 5).

Model 6′

We built is a modified version of the neuron model established by Rush and Rinzel 1994 [Rush and
Rinzel (1994)]. While the activation of calcium current was considered as an instantaneous event
in [Rush and Rinzel (1994)], we restore the slow activation of the T-type calcium channel. We call
this new model RushCa or model 6′. To do so, we added a voltage-dependent function for the time
constant of the T-type calcium channel activation and remove the simplification that was performed
in the original paper. Therefore, the ionic currents are the same as the initial model except for the
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T-type calcium current: ICaT = ḡCaTm
3
CaThCaT (Vm −VCa). The associated time constant is expressed

as follows:

τmCaT = 0.1
1.7 + exp

[
−(V +28.8)

13.5

]
1 + exp

[
−(V +63)

7.8

]
The membrane capacitance is reduced by a factor of 10 such as Cm = 0.1[µF/cm2]. In order to respect
the physiological timescale of the different ionic currents (such as fast activation and slow inactivation
of sodium channels, slow activation of potassium channels, slow activation and ultraslow inactivation
of calcium channels), we adapted the time constant of the calcium channel inactivation and the potas-
sium channel activation:τhCaT

[RushCa] = 1.5τhCaT
[Rush] and τmK [RushCa]= 0.175τmK [Rush]. The

synaptic conductances remain the same. The external current is also the same for every simulation.
Except the hyperpolarized current leading to the highest robustness in capacitance value variation is
-1.1 (instead of -1.2).

Threshold voltage
In Figure 3B, C and D, the voltage-dependent time constants of sodium channel activation τmNa(Vm)
and T-type calcium channel activation τmCaT (Vm) are evaluated at Vm = −40mV . The T-type calcium
channel inactivation τhCaT

(Vm) is evaluated at Vm = −50mV .

Model summary

Model # 1 2 3 4 5 6 5′ 6′
Model name Drion Destexhe Destexhe 1998 Huguenard Wang Rush WangCa RushCa

and McCormick
Publication year 2018 1996 1998 1992 1994 1994 - -
Number of ionic currents 6 4 4 11 6 5 6 5
T-type calcium channel slow slow slow slow instant. instant. slow slow
activation dynamics

Table S9. 1: Key-information related to the conductance-based models
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D. Ionic channel description: steady-state functions and time con-
stants of the gating variables

Ii gating variable time constant
INa mNa,∞ = 1

1 + exp[(V + 35.5)/− 5.29] τm,Na = 1.32 − 1.26
1 + exp[(V + 120)/− 25]

hNa,∞ = 1
1 + exp[(V + 48.9)/5.18] τh,Na = 0.67

1+exp[(V+62.9)/−10.0]
∗
(

1.5 + 1
1+exp[(V+34.9)/3.6]

)
IK,D mK,D,∞ = 1

1 + exp[(V + 12.3)/− 11.8] τm,KD = 7.2 − 6.4
1 + exp[(V + 28.3)/− 19.2]

ICaT mCaT,∞ = 1
1 + exp[(V + 67.1)/− 7.2] τm,CaT = 21.7 − 21.3

1 + exp[(V + 68.1)/− 20.5]

hCaT,∞ = 1
1 + exp[(V + 80.1)/5.5] τh,CaT = 410 − 179.6

1 + exp[(V + 55)/− 16.9]

IH mH,∞ = 1
1 + exp[(V + 80)/6] τm,H = 272 + 1149

1 + exp[(V + 42.2)/− 8.73]

Table S9. 2: Steady-state functions for channel gating variables and time constants for the different ion
channels present in Drion model (Model 1).

Ii gating variable time constant

INa αmNa
= 0.32(13 − V2(V ))

exp
[

13−V2(V )
4

]
− 1

τm,Na = 1
αmNa

+ βmNa

βmNa
= 0.28(V2(V ) − 40)

exp
[
V2(V )−40

5

]
− 1

αhNa
= 0.128 exp

[
17−V2(V )

18

]
τh,Na = 1

αhNa
+ βhNa

βhNa
= 4

1 + exp
[

40−V2(V )
5

]
IK αmK

= 0.032(15 − V2(V ))
exp

[
15−V2(V )

5

]
− 1

τm,K = 1
αmK

+ βmK

βmK
= 0.5 exp

[
10−V2(V )

40

]
ICaT mCaT,∞ = 1

1 + exp
[
−(V+50)

7.4

] τmCaT
= 1 + 0.33

exp
[
−(V+100)

15

]
+ exp

[
V+25

10
]

hCaT,∞ = 1
1 + exp

[
V+80

5
] τhCaT

= 28.3 + 0.33
exp

[
V+48

4
]

+ exp
[
−(V+407)

50

]
Table S9. 3: Steady-state functions for channel gating variables and time constants for the different ion
channels present in Destexhe,1996 model (Model 2).
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Ii gating variable time constant

INa αmNa
= 0.32(13 − V2(V ))

exp
[

13−V2(V )
4

]
− 1

τm,Na = 1
αmNa

+ βmNa

βmNa
= 0.28(V2(V ) − 40)

exp
[
V2(V )−40

5

]
− 1

αhNa
= 0.128 exp

[
17−V2(V )

18

]
τh,Na = 1

αhNa
+ βhNa

βhNa
= 4

1 + exp
[

40−V2(V )
5

]
IK αmK

= 0.032(15 − V2(V ))
exp

[
15−V2(V )

5

]
− 1

τm,K = 1
αmK

+ βmK

βmK
= 0.5 exp

[
10−V2(V )

40

]
ICaT mCaT,∞ = 1

1 + exp
[
−(V+59)

6.2

] τmCaT
= 0.204 + 0.333

exp
[
V+18.8

18.2
]

+ exp
[
−(V+134)

16.7

]
hCaT,∞ = 1

1 + exp
[
V+83

4
] for V < −80 : τhCaT

= 0.33 exp
[
V+469

66.6
]

for V ≥ −80 : τhCaT
= 9.32 + 0.33 exp

[
V+24
10.5

]
Table S9. 4: Steady-state functions for channel gating variables and time constants for the different ion
channels present in Destexhe,1998 model (Model 3).
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Ii gating variable time constant

INa αmNa
= 0.091(V + 38)

1 − exp
[
−(V+38)

5

] τm,Na = 1
αmNa

+ βmNa

βmNa
= −0.062(V + 38)

1 − exp
[
V+38

5
]

αhNa
= 0.016 exp

[
−(V+55)

15

]
τh,Na = 1

αhNa
+ βhNa

βhNa
= 2.07

exp
[ 17−V

21
]

+ 1

INap mNap,∞ = 1
1 + exp

[
−(V+49)

5

] αmNap
= 0.091(V + 38)

1 − exp
[
−(V+38)

5

] , βmNap
= −0.062(V + 38)

1 − exp
[
V+38

5
]

τm,Nap = 1
αmNap

+ βmNap

IL αmL
= 1.6

1 + exp [−0.072(V − 5)] τm,L = 1
αmL

+ βmL

βmL
= 0.02(V − 1.31)

exp
[
V−1.31

5.36
]

− 1
IC αmC

= 2.5e5 [CaL] exp(V/24) τm,C = 1
αmC

+ βmC

βmC
= 0.1 exp[−V/24]

ICaT mCaT,∞ = 1
1 + exp

[
−(V+57)

6.2

] τmCaT
= 0.612 + 1

exp
[
−(V+131.6)

16.7

]
+ exp

[
V+16.8

18.2
]

hCaT,∞ = 1
1 + exp

[
V+81
4.03

] for V < −80: τhCaT
= exp

[
V+467

66.6
]

for V ≥ −80: τhCaT
= 28 + exp

[
−(V+21.88)

10.2

]
IA mA,∞ = 1

1 + exp
[
−(V+60)

8.5

] τmA
= 0.37 + 1

exp
[
V+35.82

19.697
]

+ exp
[
V+79.69
−12.7

]
hA,∞ = 1

1 + exp
[
V+78

6
] for V < −63: τhA

= 1
exp

[
V+46.05

5
]

+ exp
[
V+238.4
−37.45

]
for V ≥ −63: τhA

= 19
IA,2 mA2,∞ = 1

1 + exp
[
−(V+36)

20

] τmA2 = 0.37 + 1
exp

[
V+35.82

19.697
]

+ exp
[
V+79.69
−12.7

]
hA2,∞ = 1

1 + exp
[
V+78

6
] for V < −73: τhA2 = 1

exp
[
V+46.05

5
]

+ exp
[
V+238.4
−37.45

]
for V ≥ −73 τhA2 = 60

IK2 mK2,∞ = 1
1 + exp

[
V+43
−17

] τmK2 = 9.9 + 1
exp

[
V−81
25.6

]
+ exp

[
V+132
−18

]
hK2a,∞ = 1

1 + exp
[
V+58
10.6

] τhK2a
= 120 + 1

exp
[
V−1.329

200
]

+ exp
[
V+130
−7.1

]
IK2b hK2b,∞ = 1

1 + exp
[
V+58
10.6

] for V < −70: τhK2b
= 120 + 1

exp
[
V−1.329

200
]

+ exp
[
V+130
−7.1

]
for V ≥ −70: τhK2b

= 8.9

Table S9. 5: Steady-state functions for channel gating variables and time constants for the different ion
channels present in Huguenard and McCormick model (model 4).
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Ii gating variable time constant

INa αmNa
= −0.1(V + 29.7 − σNa)

exp [−0.1(V + 29.7 − σNa)] − 1 -

βmNa
= 4 exp

[
−(V+54.7−σNa)

18

]
INap αmNap

= −0.1(V + 29.7 − σNap)
exp [−0.1(V + 29.7 − σNap)] − 1 -

βmNap
= 4 exp

[
−(V+54.7−σNao)

18

]
IK αmK

= −0.01(V + 45.7 − σK)
exp [−0.1(V + 45.7 − σK)] − 1 τm,K = 7/200

αmK
+ βmK

βmK
= 0.125 exp

[
−(V+55.7−σK))

80

]
ICaT mCaT,∞ = 1

exp
[
−(V+65)

7.8

] -

hCaT,∞ = 1
exp

[
(V−θh)
kh

] τh,CaT = 1
2

exp
[
V+162.3

17.8
]

exp
[

(V−θh)
kh

] + 20


IH mH,∞ = 1

1 + exp
[
V+69

7.1
] τmH

= 1000
exp

[
V+66.4

9.3
]

+ exp
[
−(V+81.6)

13

]
Table S9. 6: Steady-state functions for channel gating variables and time constants for the different ion
channels present in Wang model (Model 5).

Ii gating variable time constant

INa αmNa
= 0.1(V + 35 − θm)

1 − exp [−0.1(V + 35 − σm)] -

βmNa
= 4 exp [−0.05(V + 60 − σm)]

IK αmK
= 0.01(V + 50 − σn)

1 − exp [−0.1(V + 50 − σn)] τm,K = 0.05
αmK

+ βmK

βmK
= 0.125 exp [−0.0125(V + 60 − σn)]

ICaT mCaT,∞ = 1
exp

[
V−θs

ks

] -

hCaT,∞ = 1

0.5 +
√

0.25 + exp
[
V−θh

kh

] τh,CaT = 1/φ

 exp
[
V+150

18
]

1.5 +
√

0.25 + exp
[
V−80

4
] + 30


Table S9. 7: Steady-state functions for channel gating variables and time constants for the different ion
channels present in Rush model (Model 6).
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E. Description of the reduced models and their parameter values
For each reduced model, we have adapted maximal ionic conductances and applied currents in order to
find a set of parameters allowing a switch from tonic to burst. The adapted parameter values are often
expressed as the original value times a constant that can be find in the table for a given scaled time
constant (written coef(η, ḡi)). Units are defined in Supplementary Material C. The applied current is
expressed in two terms: Iapp exerted during the entire simulation and Istep added to Iapp during the
hyperpolarized state. The multiplicative factor of the CaT time constant is indicated by η.

Reduced model 1

Cm = 1, VNa = 50, VK = −85, VCa = 120, Vleak = −55, VH = −20, Kd = 170, ḡleak =
0.055 ∗ coef(η, ḡleak), ḡNa = 150, ḡKd = 40, ḡCaT = 0.55 ∗ coef(η, ḡCaT ),ḡKCa = 0.4, ḡH = 0.01 ∗
coef(η, ḡH),k1 = 1.e− 1, k2 = 0.1e− 1, Iapp = 0, Istep = coef(η, Istep). The values of coef(η, param)
can be found in Table S9.8.
The differential equation d[Ca]/dt describing the dynamics of the calcium driving the calcium-

activated potassium current ( IKCa = ḡKCamKCa([Ca])(Vm − VK)) is replaced by a fixed calcium
concentration [Ca] equal to 10.

η Istep ḡleak ḡCaT ḡH

1/500 -3.3 2 1.9 2
1/200 -3.3 2 1.9 2
1/100 -3.3 2 1.9 2
1/50 -3.2 2 1.9 2
1/20 -2.5 2 1.2 2
1/10 -2.2 2 1.2 2
1/5 -3.3 2 1.2 2
1/2 -3.2 2 1.2 2
1 -2.5 2 1.2 2
2 -2.2 2 1.25 2
5 -2.9 2 1.3 2
10 -3 2 1.3 2
20 -3 2 1.3 2
50 -3 2 1.3 2
100 -3 2 1.3 2

Table S9. 8: Parameters for the reduced model 1 as a function of the multiplicative factor (η) of τmCaT

Reduced model 2

VNa = 50;VK = −100;Vleak = −82;VCa = 120;Vtraub = −63.; ḡNa = 0.4 ∗ coef(η, ḡNa); ḡK =
0.08 ∗ coef(η, ḡK); ḡleak = 5e − 5 ∗ coef(η, ḡleak); ḡCaT = 0.006 ∗ coef(η, ḡCaT );Cm = 1.e − 3; Iapp =
coef(η, Iapp); Istep = coef(η, Istep). The values of coef(η, param) can be found in Table S9.9.

Reduced model 5

VCa = 120.;VH = −40.;VK = −80.;VNa = 55.;Vleak = −70.;σK = 10.;σNa = 6.;σNaP = −5.; θh =
−79.; kh = 5.; ḡCaT = 1.0 ∗ 1.05; ḡH = 0.04; ḡKd = 30.0 ∗ 0.9; ḡNa = 42.0 ∗ 1.1; ḡNaP = 9.0; ḡleak =
0.12; Iapp = 3.; Istep = −4.4, Cm is equal to 1 (resp. 1/3) in Fig 7 left (resp. right).

Reduced model 5’

Cm = 1.;VCa = 120.;VH = −40.;VK = −80.;VNa = 55.;Vleak = −70.;σK = 10.;σNa = 6.; ĹsigmaNaP =
−5.; θh = −79.; kh = 5.; ḡH = 0.04∗coef(η, ḡH); ḡKd = 30∗coef(η, ḡKd); ḡNa = 42∗coef(η, ḡNa); ḡNaP =

13



η Iapp Istep ḡCaT ḡleak ḡNa ḡK

1/20 1.2e-3 -1.4e-3 4.7 2 0.19 0.9
1/10 1.2e-3 -1.3e-3 4.7 2 0.2 0.9
1/5 1.1e-3 -0.8e-3 4 2 0.25 0.9
1/2 1e-3 -0.7e-3 4 2 0.25 0.9
1/1.5 1e-3 -0.9e-3 4 2 0.25 0.9
1 1e-3 -1.1e-3 4 2 0.25 0.9
1.5 1e-3 -1.1e-3 4.1 2 0.25 0.9
2 1e-3 -1.3e-3 4.2 2 0.25 0.9
3 1e-3 -1.4e-3 4.2 2 0.25 0.9
5 1e-3 -1.6e-3 4.4 2.1 0.2 0.7
10 1e-3 -2e-3 4.4 2.1 0.2 0.7
20 1e-3 -2.3e-3 4.4 2 0.25 0.9

Table S9. 9: Parameters for the reduced model 2 as a function of the multiplicative factor (η) of τmCaT

9.0 ∗ coef(η, ḡNaP ); ḡleak = 0.12 ∗ coef(η, ḡleak); ḡCaT = 1.0 ∗ coef(η, ḡCaT ); Iapp = coef(η, Iapp), Istep =
coef(η, Istep). The values of coef(η, param) can be found in Table S9.10.

η Iapp Istep ḡKd ḡH ḡNa ḡNaP ḡleak ḡCaT

1/10000 1 -2.45 0.84 1/1.2 5 0.81 0.35 1.2
1/2000 1 -2.45 0.84 1/1.2 5 0.81 0.35 1.2
1/1000 1 -2.45 0.84 1/1.2 5 0.81 0.35 1.2
1/500 1 -2.45 0.84 1/1.2 5 0.81 0.35 1.2
1/200 1 -2.45 0.84 1/1.2 5 0.81 0.35 1.2
1/100 1 -2.45 0.84 1/1.2 5 0.81 0.35 1.2
1/50 1 -2.45 0.84 1/1.2 5 0.81 0.35 1.2
1/20 1 -2.45 0.84 1/1.2 5 0.81 0.35 1.2
1/10 1 -2.45 0.84 1/1.2 5 0.81 0.35 1.2
1/5 1 -2.45 0.84 1/1.2 5 0.81 0.35 1.2
1/2 1 -2.45 0.84 1/1.2 5 0.81 0.35 1.2
1 1 -2.45 0.84 1/1.2 5 0.81 0.35 1.2
2 0 -2.5 0.65 1.9 5 0.8 0.08 2.4
5 0 -2.5 0.65 1.9 5 0.8 0.08 3
10 0 -2.5 0.65 1.9 5 0.8 0.08 3
20 0 -2.5 0.65 1.9 5 0.8 0.08 3
50 0 -2.5 0.65 1.9 5 0.8 0.08 3
100 0 -2.5 0.65 1.9 5 0.8 0.08 3

Table S9. 10: Parameters for the reduced model 5’ as a function of the multiplicative factor (η) of τmCaT

Reduced model 6

Cm = 1;VNa = 55;VK = −85;VCa = 120; ḡNa = 120; ḡKd = 10; ḡNaleak = 0.01429; ḡKleak =
0.08571; ḡCaT = 0.3; θs = −63; ks = −7.8; θh = −72; kh = 1.1;σm = 10.3;σn = 9.3; Iapp = 15; Istep =
−16.2.

Reduced model 6’

Cm = 0.1;VNa = 55;VK = −85;VCa = 120; ḡNa = 120∗coef(η, ḡNa); ḡKd = 10∗coef(η, ḡKd); ḡNaleak =
0.01429 ∗ coef(η, ḡNaleak)ḡKleak = 0.08571 ∗ coef(η, ḡKleak); ḡCaT = 0.3 ∗ coef(η, ḡCaT ); θs = −63; ks =
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−7.8; θh = −72; kh = 1.1;σm = 10.3;σn = 9.3; Iapp = coef(η, Iapp); Istep = coef(η, Istep). The values
of coef(η, param) can be found in Table S9.11.

η Iapp Istep ḡNa ḡK ḡNaleak ḡKleak ḡCaT

1/1000 15 -16.2 1 1 1 1 1
1/500 15 -16.2 1 1 1 1 1
1/200 15 -16.2 1 1 1 1 1
1/100 15 -16.2 1 1 1 1 1
1/50 15 -16.2 1 1 1 1 1
1/20 15 -16.2 1 1 1 1 1
1/10 15 -16.2 1 1 1 1 1
1/5 15 -16.2 1 1 1 1 1
1/2 15 -16.2 1 1 1 1 1
1 15 -16.2 1.4 1.1 0.9 1 4
2 15 -16.2 1.4 1.1 0.9 1 4
5 15 -16.2 1.6 1.1 0.8 1 2
10 15 -16.2 1.8 0.85 0.65 1 4
20 15 -16.2 1.8 0.7 0.5 1 5
50 15 -16.2 1.8 0.7 0.5 1 5
100 15 -16.2 1.8 0.7 0.5 1 5

Table S9. 11: Parameters for the reduced model 6’ as a function of the multiplicative factor (η) of τmCaT
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