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Web Appendix A: Proof of Theorem 1 and 2

We first prove Theorem 1. Following the notation in Section 2, let

Vi,j(θ, α, β) ≡ θ
δiδj
πiπj

Di(1−Dj)−
δiδj
πiπj

Di(1−Dj)Iij

+
δiδj − πiπj

πiπj
Di(1−Dj)E {I(Xi > Xj) | Zi, Zj,Di,Dj} ,

where πi depends on α and E {I(Xi > Xj) | Zi, Zj,Di,Dj} depends on β. It follows that

V =
∑

i 6=j Vi,j(θ, α̂, β̂) are the set of estimating equations that are used to obtain θ̂DR. Let

Vn(θ, α, β) = 0.5n−2
∑

i,j {Vi,j(θ, α, β) + Vj,i(θ, α, β)}, and it is straightforward to show

that θ̂DR is the solution of Vn(θ, α̂, β̂) = 0.

Let Un = Vn(θ, α, β)−VE(θ, α, β), where VE = E(Vn) = 0.5E [Vi,j(θ, α, β) + Vj,i(θ, α, β)].

Suppose that the following conditions hold:

(A1) The U -process Un is stochastically equicontinuous.

(A2) VE is differentiable in (θ, α, β).

(A3) Vn and ∂Vn/∂(α, β) converge uniformly to VE and ∂VE/∂(α, β).

Let (α0, β0) be the probability limits of (α, β) using the two working models. Consistency

of θ̂DR follows by the uniform convergence of Vn to VE, because it is straightforward to verify

that VE(θ, α, β) = 0 when either working model is correctly specified, that is, α0 = αT

and/or β0 = βT . We now derive the asymptotic distribution of θ̂DR.

0 =
√
nVn(θ̂DR, α̂, β̂),

=
√
n
{
Vn(θ̂DR, α̂, β̂)− VE(θ̂DR, α̂, β̂)

}
−
√
n {Vn(θ, α0, β0)− VE(θ, α0, β0)}

+
√
n
{
VE(θ̂DR, α̂, β̂)− VE(θ, α0, β0)

}
+
√
nVn(θ, α0, β0),

= op(1) +
√
n
{
VE(θ̂DR, α̂, β̂)− VE(θ, α0, β0)

}
+
√
nVn(θ, α0, β0),

= op(1) +
∂VE
∂θ

(θ1, α1, β1)
√
n(θ̂DR − θ) +

∂VE
∂α

(θ1, α1, β1)
√
n(α̂−α0)

+
∂VE
∂β

(θ1, α1, β1)
√
n(β̂ − β0) +

√
nVn(θ, α0, β0),
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where (θ1, α1, β1) lies between (θ, α0, β0) and (θ̂DR, α̂, β̂). The first identity follows our

previous argument, the third identity follows from Condition (A1), and the fourth identity

follows from a Taylor expansion and the regularity conditions. After we replace
√
n(α̂−α0)

and
√
n(β̂ − β0) by their respective influence function, that are due to the two working

models for (M1) and (M2), namely, ψα
i and ψβ

i , and rearrange terms, we arrive at

√
n(θ̂DR − θ) =

{
∂VE
∂θ

(θ1, α1, β1)

}−1
{
−∂VE
∂α

(θ1, α1, β1)
√
n× n−1

∑
i

ψα
i

−∂VE
∂β

(θ1, α1, β1)
√
n× n−1

∑
i

ψβ
i −
√
nVn(θ, α0, β0)

}
+ op(1)

It is straightforward to verify that 1) ∂VE

∂θ
(θ1, α1, β1) −→p E

{
δiδj
πiπj

Di(1−Dj)
}

, which re-

duces to n1

n
n0

n
when the working model for δ is correctly specified; 2) the remaining partial

derivative terms all converge in probability to the expectation of the respective term eval-

uated at (θ, α0, β0), e.g., ∂VE

∂α
(θ1, α1, β1) converges to E

{
∂Vij

∂α
(θ, α0, β0)

}
; and 3) the last

term
√
nVn(θ, α0, β0) =

√
n× n−1

∑
iE {Vi,j(θ, α0, β0) + Vj,i(θ, α0, β0) | Oi}+ op(1), which

follows using standard arguments on the limiting distribution of U -statistics (van der Vaart

(1998), Ch. 12). Due to the uniform convergence of the terms in the expression of Ω̂, it

follows that Ω̂ is a consistent estimator for Ω. The proof of Theorem 1 is now complete.

Theorem 2 can be proved along the same lines under regularity conditions that parallel

(A1)-(A3).

Web Appendix B: Simulation Studies Using Original Weights

We repeated the simulations in Section 3.1 with the original weights (i.e., 1
π̂i

) and the results

are summarized in Web Tables 1 and 2, which parallel Tables 1 and 2 in the paper. Compared

to Tables 1 and 2 in the paper, the original weights lead to more noise in the estimation of

θ̂IW , θ̂DR and θ̂DR−N , i.e., large SD. In addition, the bootstrap SE of θ̂DR−N using the original

weights tends to overestimate its SD when (M1) is correctly specified, which is likely due to
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small sample sizes and some high missing probabilities. Extreme missing probabilities in a

few bootstrap samples can lead to unstable estimates in these bootstrap samples and hence

bootstrap SE that is greater than SD. In our additional simulations, this problem becomes

less pronounced as the sample size increases and/or the missing probabilities become more

moderate.

[Table 1 about here.]

[Table 2 about here.]

Web Appendix C: Data Analysis Using Original Weights

We repeated the data analysis in Section 4 using the original weights. The results are

summarized in Web Table 3. Compared to the results using the modified weights (Table 4 in

the paper), most results remain close except that the bootstrap SE of θ̂DR−N is substantially

greater, which is primarily due to the high percentage of missing data.

[Table 3 about here.]
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Table 1
Results of simulation study under MAR: comparison of θ̂0, θ̂IW , θ̂DR and θ̂DR−N using the original weights, when

Z1 and Z2 are identical. ε is Gaussian (i.e., ε ∼ N(0, 1)) or non-Gaussian (i.e., ε = 20{η − E(η)} with

η ∼ Beta(5, 1)). True θ is 0.722 for Gaussian ε and 0.675 for non-Gaussian ε. θ̂GS and θ̂IMP under the correctly
specified (M2) provide optimal benchmarks for bias and efficiency, respectively. RB, relative bias as the percentage

of the true θ; SD, Monte Carlo standard deviation of parameter estimates; SMSE, square root of mean squared
errors; SE, mean of the standard error estimates; CR, coverage rate of 95% Wald’s confidence interval.

Gaussian ε non-Gaussian ε
RB (%) SE SD SMSE CR (%) RB (%) SE SD SMSE CR (%)

θ̂GS -0.2 0.036 0.037 0.037 94.0 0.0 0.038 0.038 0.038 95.8

θ̂0 11.6 0.050 0.054 0.099 70.0 10.8 0.057 0.056 0.092 80.4
Both mean models correctly specified1

θ̂IMP -0.1 0.040 0.042 0.042 95.0 -0.8 0.054 0.054 0.054 94.8

θ̂IW 0.5 0.048 0.052 0.052 93.2 1.0 0.056 0.058 0.059 95.0

θ̂DR 0.5 0.046 0.048 0.048 94.2 1.0 0.057 0.059 0.059 96.4

θ̂DR−N 0.5 0.054 0.050 0.050 98.0 0.9 0.065 0.059 0.059 98.0
Mean model for (M1) misspecified2

θ̂IW 8.4 0.050 0.054 0.081 78.6 8.0 0.056 0.058 0.079 84.8

θ̂DR 0.0 0.040 0.044 0.044 93.8 0.7 0.052 0.055 0.056 94.2

θ̂DR−N 0.0 0.044 0.044 0.044 95.8 0.5 0.057 0.056 0.056 96.4
Mean model for (M2) misspecified3

θ̂DR 1.1 0.058 0.062 0.062 96.4 1.4 0.063 0.065 0.065 95.8

θ̂DR−N 1.1 0.071 0.062 0.062 99.4 1.4 0.074 0.065 0.066 97.6
Both mean models misspecified4

θ̂DR 8.4 0.050 0.054 0.081 79.2 8.0 0.057 0.059 0.080 85.4

θ̂DR−N 8.4 0.053 0.053 0.081 82.6 8.0 0.059 0.059 0.080 88.2

1: The correct model includes Z1 and D for (M1) and Z2 and D for (M2)

2: The misspecified (M1) includes only Z
(1)
1 and D.

3: The misspecified (M2) includes only Z
(1)
2 and D.

4: Both mean working models are misspecified as in 2 and 3.
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Table 2
Results of simulation study under MAR: comparison of θ̂0, θ̂IW , θ̂DR and θ̂DR−N using the original weights, when

Z1 and Z2 are independent. ε is Gaussian (i.e., ε ∼ N(0, 1)) or non-Gaussian (i.e., ε = 20{η − E(η)} with

η ∼ Beta(5, 1)). True θ is 0.722 for Gaussian ε and 0.675 for non-Gaussian ε. θ̂GS and θ̂IMP under the correctly
specified (M2) provide optimal benchmarks for bias and efficiency, respectively. RB, relative bias as the percentage

of the true θ; SD, Monte Carlo standard deviation of parameter estimates; SMSE, square root of mean squared
errors; SE, mean of the standard error estimates; CR, coverage rate of 95% Wald’s confidence interval.

Gaussian ε non-Gaussian ε
RB (%) SE SD SMSE CR (%) RB (%) SE SD SMSE CR (%)

θ̂GS 0.2 0.036 0.035 0.035 96.0 0.2 0.038 0.036 0.036 96.0

θ̂0 -0.1 0.059 0.057 0.057 95.8 0.4 0.063 0.061 0.061 96.4
Both mean models correctly specified1

θ̂IMP 0.1 0.039 0.040 0.040 94.2 -0.6 0.051 0.050 0.050 95.8

θ̂IW -0.1 0.059 0.060 0.059 94.8 0.4 0.062 0.065 0.065 94.8

θ̂DR 0.8 0.047 0.046 0.046 96.8 0.9 0.057 0.056 0.056 95.4

θ̂DR−N 0.8 0.055 0.046 0.046 97.6 0.8 0.062 0.056 0.056 98.4
Mean model for (M1) misspecified2

θ̂IW -0.2 0.058 0.059 0.059 95.0 0.4 0.062 0.062 0.062 95.2

θ̂DR 0.3 0.041 0.041 0.041 94.6 0.4 0.053 0.052 0.052 95.4

θ̂DR−N 0.3 0.043 0.041 0.041 95.6 0.3 0.056 0.052 0.052 96.8
Mean model for (M2) misspecified3

θ̂DR 0.3 0.059 0.058 0.058 96.2 1.1 0.063 0.065 0.065 95.2

θ̂DR−N 0.3 0.068 0.058 0.058 97.6 1.1 0.072 0.065 0.065 97.6
Both Mean Models misspecified4

θ̂DR -0.1 0.054 0.055 0.055 95.4 0.6 0.060 0.061 0.061 95.4

θ̂DR−N -0.1 0.057 0.055 0.055 97.0 0.5 0.063 0.060 0.061 96.6

1: The correct model includes Z1 and D for (M1) and Z2 and D for (M2)

2: The misspecified (M1) includes only Z
(1)
1 and D.

3: The misspecified (M2) includes only Z
(1)
2 and D.

4: Both mean working models are misspecified as in 2 and 3.
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Table 3
Sensitivity analysis using the original weights for estimation of the ROC AUC (θ) in the maternal depression study

αX = −1 αX = 0 αX = 1
Estimate SE Estimate SE Estimate SE

θ̂IW 0.864 0.037 0.851 0.040 0.849 0.042

θ̂DR 0.874 0.028 0.853 0.030 0.842 0.032

θ̂DR−N 0.874 0.058 0.853 0.056 0.842 0.057


