Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2020

Supporting Information to

Volker Strauss1*, Huize Wang1, Simon Delacroix1, Marc Ledendecker2, Pablo Wessig3

Synthesis

Figure S1. Photograph of aqueous sample solutions of the crude products (conc: 0.2 mg/mL) synthesized at temperatures between $100 - 220$ °C under illumination with a red laser (top) and under illumination with a UV-lamp *(365 nm) (bottom).*

Nuclear Magnetic Resonance Spectroscopy of the Raw Products

Figure S2. ¹H-NMR (left) and ¹³C-NMR (right) spectra of selected raw products of the CA/U reaction at different *temperatures between 110-210°C.*

UV-vis and Fluorescence Spectroscopy of the Raw Products

Figure S3. Combined electronic absorption (red to green) and excitation normalized (λ_{ex} = 350 nm) emission (pale red to pale green) spectra of crude CA/U products (0.013 mg/mL) synthesized at different temperatures between 100 *– 290°C; a) 100 – 140°C; b) 150 – 190°C; a) 200 – 240°C; a) 250 – 290°C.*

Nuclear Magnetic Resonance Spectroscopy of the Educts and References

Figure S4. Top: ¹H-NMR (top) and ¹³C-NMR (bottom) spectra of citric acid and urea in DMSO-d6.

Figure S5. Top: ¹H-NMR (top) and ¹³C-NMR (bottom) spectra of citrazinic acid (commercial) in DMSO-d6.

Separation of the Raw Products

Figure S6. Illustration of the separation process of the raw products obtained from a thermal CA/U reaction.

Extinction coefficients of CUg

Figure S7. Molar extinction coefficients of CUg in H2O and MeOH.

Time-correlated Single-Photon Counting of CUg and CUb

Figure S8. Fluorescence lifetime decay profiles obtained by TCSPC of CUb and CUg in H₂O and MeOH at room *temperature obtained upon excitation at 370 or 450 nm, respectively .*

Table S1. Fluorescence lifetimes of CUb and CUg in MeOH and H2O.

		τ_1	A ₁	τ_2	A ₂
		ns	$\frac{0}{0}$	ns	$\frac{0}{0}$
\mathbf{C} U \mathbf{b}	MeOH	3.1	28	7.6	72
	H ₂ O	4.1	45	9.5	55
CUg	MeOH	9.0	100		
	H ₂ O	5.3	100		

Fluorescence Quantum Yields of CUg

Figure S9. Determination of the fluorescence quantum yields of CUg in H_2O and MeOH using Na-fluorescein as a *standard.*

solvent	slope	$\varphi_{F1}(\%)$
H ₂ O	$6.30E + 09$	8564
MeOH	$5.90E + 09$	79
H ₂ O	$2.00E + 09$	27
MeOH	$5.20E + 09$	70

TableS2. Fluorescence quantum yields of CUg determined by the gradient method using Na-fluorescein as a standard and in MeOH and H2O.

Photostability of CUg

Figure S10. Left: photo-stability measurement of a 8.3 \times 10⁻⁵ M solution of CUg in H₂O. The sample was constantly illuminated for 16h. The inset shows the fluorescence spectra in time intervals of 20 min; Right: Photo-stability measurement of CUb in H_2O . The inset shows the fluorescence spectra in time intervals of 24 min from purple to red.

ESI - mass spectrometry of CUg and CUb

Figure S11. Liquid chromatography-electrospray ionization - mass spectrum of CUg obtained in negative ion mode.

Figure S12. Liquid chromatography – electrospray ionization - mass spectrum of CUb obtained in positive ion mode.

Figure S13. Potential compounds detected in the ESI-mass spectra of CUb.

2D-Correlation NMR of CUg

Figure S14. HSQC-C (left) and HSQC-N (right) of CUg in DMSO-d6 showing the direct coupling of ¹H to ¹³C or ¹⁵N, *respectively.*

Figure S15. HMBC-C (left) and HMBC-N (right) CUg enriched with ¹⁵N in DMSO-d6 showing the three-bond coupling of ¹H to ¹³C or ¹⁵N, respectively.

DFT calculations of CUg (HPPT)

Figure S16. Molecular structures of the tautomeric forms of HPPT.

Table S3. DFT calculated tautomeric forms of HPPT with relative energy values in arbitrary units using M06-2X-*D3/def2-TZVP, SCRF: PCM.*

2D-Correlation NMR of CUb

Figure S17. HSQC-N of **CUb** enriched with ¹⁵N in DMSO-d6 showing the direct coupling of ¹H to ¹³C or ¹⁵N, *respectively.*

Figure S18. HMBC-C (left) and HMBC-N (right) of CUb enriched with ¹⁵N in DMSO-d6 showing the three-bond *coupling of* ^{*¹H to* ^{*13}C or* ^{*15}N*, *respectively.*}</sup></sup>

Nuclear Magnetic Resonance Spectroscopy of Biuret

Figure S19. Top: ¹H-NMR (top) and ¹³C-NMR (bottom) spectra of biuret (commercial) in DMSO-d6.

Biuret test with CUb

Figure S20. Photograph of a basic solution of CUb upon addition of a CuSO⁴ solution.

Thermal Mass analysis of CUg and CUb

Figure S21. Temperature dependent mass spectrometric analysis of CUg.

Figure S22. Temperature dependent mass spectrometric analysis of CUb.

Thermogravimetric Analysis of the Raw Mixture

Figure S23. Thermogravimetric analysis of the supernatant of the raw product before column chromatography containing CUg and CUb.

Figure S24. X-ray photoelectron spectra of CUg (top) and CUb (bottom) with emphasis on the C_{1s} , N_{1s} , and O_{1s} *regions.*

Nuclear Magnetic Resonance Spectroscopy during Washing of CUp

Figure S25. ¹H-NMR spectra of the supernatant and the redispersed centrifugate after washing U p in H_2O at 95°C *in DMSO-d6.*

Optical Spectroscopy of dispersions of CUp in H2O.

Figure S26. Absorption (left) and fluorescence (center) spectra of CUp in H_2O at room temperature at different *concentrations. Right: Fluorescence intensity versus concentration of CUp in H2O.*

Nuclear Magnetic Resonance Spectroscopy of a Non-Separated Mixture

Figure S27. ¹H-NMR spectra of CUb (top), CUg (center) and the non-separated mixture of CUb and CUg (bottom) *in DMSO-d6.*

References (continued from paper)

64. X.-F. Zhang, J. Zhang and L. Liu, Fluorescence Properties of Twenty Fluorescein Derivatives: Lifetime, Quantum Yield, Absorption and Emission Spectra, *J. Fluoresc.,* 2014, **24** (3), 819– 826, 10.1007/s10895-014-1356-5