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Supplementary Figure 1 (Related to Figure 1): Bulk ATAC-seq data demonstrates 

differentially accessible chromatin elements around known marker genes, and in novel 

genomic regions. 

A) snRNA-seq data (Hodge et al., 2019), aggregated into pseudo-bulk profiles by weighted 

averages of gene CPM medians for 75 transcriptomic clusters. Weights were assigned by their 

frequencies within the eight sort strategies, and the heatmap is scaled by z-score within each 

column (gene). Relative expressions of eight sort strategy-specific marker genes are displayed.  

B) Example sort strategy-specific peaks proximal to (<50kb distance to gene body) the eight sort 

strategy-specific transcriptomic marker genes. Pileups indicate aggregated data within a 2 kb 

genomic window across five independent experiments. In B and E, dashed lines indicate introns, 

thick lines indicate exons, and arrows indicate direction towards proximal marker gene. Yellow 

highlights demarcate sort strategy-specific chromatin accessibility peaks.  

C) DiffBind (Ross-Innes et al., 2012) identification of 72,218 peaks that were differentially 

accessible among any pairwise comparison of sort strategies (FDR 0.01). Read counts within 

those 72,218 differentially accessible peaks then clustered samples using a correlation distance 

matrix, which revealed separate groupings of non-neuronal samples, and upper- and lower-layer 

neuronal samples. One sample was omitted from this analysis (H17.03.009 L1 NeuN+) because 

this sample appeared intermediate between NeuN+ and NeuN- cells, suggesting a failed sort.  

D) Number of peaks differentiating each pairwise sample contrast.  

E) Example sort strategy-specific peaks resulting from pairwise DiffBind differential peak analysis. 

These peaks were found in novel genomic regions (not proximal to known marker genes), and 

closest genes are shown.  
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Supplementary Figure 2 (Related to Figure 1): High confidence clustering for single 

nucleus ATAC-seq data. 

A) Histogram showing the percentages of variance explained by each principal component of the 

Jaccard single cell distance matrix. The first 30 principal components explain substantial variance 

within the dataset.  

B) Correlation of the first five principal components with quality metrics. Principal component 1 

was omitted from further analysis due to strong negative correlation with ENCODE overlap. 

C) Single nuclei evaluated by principal component analysis, with nuclei colored by cluster 

membership (left). Three major groups of nuclei were separated by PC2. Single nuclei were also 

colored by ENCODE overlap percentage, which is strongly negatively correlated with PC1 (right).  

D) tSNE plot to visualize either principal components 2 to 30 (left) or 1 to 30 (right). Note, PCs 2 

to 30 permit clear groupings with no ENCODE overlap gradient, whereas PCs 1 to 30 result in 

blurred cluster separations with a gradient of ENCODE spanning the clusters.  

E) Bootstrapped iterative clustering to identify reproducible nuclear clusters. From the 2858 x 29 

matrix of nuclei x principal component scores, we subsampled to either a constant 80% of nuclei 

(left) or a variable 50-90% of nuclei (middle), and calculated clusters using Jaccard-Louvain 

clustering (Tasic et al., 2018), which was repeated 200 times. Shuffled Jaccard distance matrix 

as input to PCA is shown (right). Heatmaps display the frequency of co-clustering among nuclei. 

The constant 80% bootstrapping co-clustering matrix was used as input into Euclidean distance 

clustering, which yielded the final 27 clusters by cutting the tree to the major blocks of co-

clustering nuclei. Nucleus order is not matched across the three plots. 

F) Agreement between cluster memberships resulting from constant 80% bootstrapping and 

variable 50-90% bootstrapping, for most nuclei.  

G) Visualization of nucleus groupings using five different feature sets (see Methods) using tSNE. 

Jaccard distances yielded clearest cell groupings. Cluster colors are applied in both (G) and (H). 



H) Different perplexity parameters for tSNE visualization of cell groupings. Nuclear cluster 

groupings are evident at a wide range of perplexity values.  

I) Visualization of disease status (tumor or epilepsy) for nuclei. Note that nuclei largely intermix 

regardless of disease status.  
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Supplementary Figure 3 (Related to Figure 1): Mapping ATAC-seq clusters to RNA-seq cell 

types and subclasses. 

A) Expected abundances of each of the 75 transcriptomic cell types (Hodge et al., 2019), 

correlated with observed abundances of those cell types, using four different methods for 

computing gene-level information from each nucleus: far left: read counts in gene bins, middle 

left: read counts in gene bodies, middle right: read counts in 10kb-extended TSS regions, and far 

right: Cicero gene activity scores. Correlation values are Pearson correlation statistics between 

log-transformed expected and observed abundances plus one, for each of the 75 transcriptomic 

cell types. Computing gene-level information using cicero gene activity scores results in the 

greatest correlation between expectation and observation for cell type abundances.  

B) Bootstrapped mapping of single nuclei (“cellwise”) to 75 transcriptomic cell types. Dot sizes 

indicate the frequencies of cell type mappings within each of the 27 ATAC-seq clusters.  

C) Bootstrapped mapping of clusters (“clusterwise”) to 75 transcriptomic cell types. Dot sizes 

indicate the frequency each cluster maps to each transcriptomic cell type. 

D) Bootstrapped mapping of single nuclei (“cellwise”) to 11 transcriptomic cell type subclasses. 

Dot sizes indicate the frequencies of subclass mappings within each of the 27 ATAC-seq clusters. 

E) Bootstrapped mapping of clusters (“clusterwise”) to 11 transcriptomic cell type subclasses. Dot 

sizes indicate the frequency each cluster maps to each subclass. This plot represents the final 

mapped subclass assigned as the most frequent mapping for each cluster, which are used 

throughout the text.  

F) Correlation of subclass mappings for all cells using four different mapping techniques. Overall, 

most cells are identically mapped to the same subclass with most of the techniques, with 

especially good agreement between both clusterwise mapping techniques. 

G) Correlation between RNA-seq and ATAC-seq dataset layerwise distributions for the 11 

subclasses. Most of the subclasses are observed in similar layer distributions in both datasets.    
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Supplementary Figure 4 (Related to Figure 2): Properties of human neocortical cell 

subclass-specific accessible genomic elements.  

A-B) Nuclei visualized by tSNE and colored by motif accessibilities for A) DLX1 and B) NEUROD6 

as calculated by chromVAR (Schep et al., 2017). DLX1 transcripts are specifically detected in 

inhibitory neurons (Hodge et al., 2019).  

C-D) Correlation between motif accessibilities and transcript abundances across cell subclasses 

for C) DLX1 and  D) NEUROD6 (grouping by average for motif accessibility, and by sum for 

transcript abundances). r, Pearson correlation coefficient. Two-tailed paired t-tests for significant 

correlation: DLX1 t = 3.0 df = 9 p < 0.01; NEUROD6 t = 5.4 df = 9 p < 0.001.  

E) Percent overlap of ATAC-seq peaks with previously identified DMRs (Lister et al., 2013; Luo 

et al., 2017), comparing real peaks to randomized peak positions. Absolute numbers of detected 

peaks and peak-DMR overlaps are shown. Error bars represent standard deviation across 100 

bootstrapped iterations using a subsampling rate of 80%. 

F) Mean phyloP scores across all peaks for cell subclass ATAC-seq peaks (colored line), 

compared to randomized peak positions (broken line).  

G) Active transcriptional regulators in human and mouse brain cell subclasses, revealed by motifs 

in ATAC-seq peaks and gene expression by transcriptomics (Tasic et al., 2018; Hodge et al., 

2019). E-value indicates the p-value from Fisher’s exact test, corrected for multiple testing as 

calculated by MEME-CHIP. Arrows indicate strong and specific microglial enrichments for 

SPI1/PU.1 (gray) and for TEAD in human astrocytes (brown) and for OLIG2 in 

oligodendrocytes/OPCs (cadet blue). 

H-I) Overlap of conserved or divergent peaks by cell subclass with multiple classes of repetitive 

genomic elements in both human (H) and mouse (I) sn/scATACseq datasets. An enrichment 

value of 1.0 corresponds to no fold change between real and random peak enrichment. Black 

bars represent the mean across the eleven neocortical cell subclasses. Heteroscedastic t-tests: 

*** p < 0.001, ** p < 0.01, ns not significant. Human all elements t = 5.2, df = 14.5; human DNA 



transposons t = 3.4, df = 14.8; human LINE t = 5.3, df = 18.3; human SINE t = 3.8, df = 18.8; 

human LTR t = 6.1, df = 18.3; human satellite t = 0.2, df = 12.4; human simple t = 1.6, df = 10.1; 

mouse all elements t = 3.7, df = 16.9; mouse DNA transposons t = 1.3, df = 12.7; mouse LINE t 

= 5.2, df = 18.5; mouse SINE t = 5.2, df = 18.0; mouse LTR t = 6.1, df = 17.5; mouse satellite t = 

1.6, df = 9.7; mouse simple t = 0.3, df = 19.0.  
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Supplementary Figure 5 (Related to Figure 3): Cell type validation of enhancer-AAV-labeled 

cells via scRNA-seq. Numbers of sorted labeled cells with each enhancer-AAV vector shown in 

Figures 3 and 4, mapped to the cell type transcriptomic taxonomy of mouse VISp (Tasic et al., 

2018). Dendrogram leaves represent 111 transcriptomic cell types. Circles on the dendrogram 

represent the number of cells that could be mapped to that point in the dendrogram (starting from 

the root) and bar plots below the leaves represent the number of each cell type recovered that 

mapped to that final leaf.  

 

 

  



eH
G

T_
35

9h
eH

G
T_

35
9h

CTX

P

HPF

CBX

CBN

A

B

SYFP2
PvalbSYFP2

*

PvalbPvalb

* *

50 μm

2 mm

92% Pvalb+



Supplementary Figure 6 (Related to Figure 4): eHGT_359h labels neocortical PVALB cells 

with high specificity, and also subcortical zones of Pvalb expression.  

A) Whole-brain labeling pattern by eHGT_359h. Abbreviations: CTX cerebral cortex, HPF 

hippocampal formation, P pons, CBX cerebellar cortex, CBN cerebellar nuclei. 

B) mFISH in L2/3 of VISp demonstrating positive labeling of Pvalb+ cells (arrows) by eHGT_359h. 

An asterisk denotes an off-target Pvalb- labeled cell. Data represents n = 1 experiment.   
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Supplementary Figure 7 (Related to Figure 4): Accessibility of candidate PVALB enhancers 

in human and mouse neocortical subclasses. 

A) Twenty candidate PVALB enhancers from human epigenetic data characterized by 

conservation, method of identification, genomic location, and ATAC-seq profiles across cell 

subclasses. Coordinates correspond to hg38 genome in (A).  

B) Orthologous mouse regions characterized by the same metrics. No mouse regions orthologous 

to eHGT_057h, 079h, 136h, and 150h could be identified, using liftOver with minMatch parameter 

set to either 0.6 or 0.5. CPM counts per million. Coordinates correspond to mm10 genome in (B). 




