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Supplementary Figure 1 (Related to Figure 1): Bulk ATAC-seq data demonstrates
differentially accessible chromatin elements around known marker genes, and in novel
genomic regions.

A) snRNA-seq data (Hodge et al., 2019), aggregated into pseudo-bulk profiles by weighted
averages of gene CPM medians for 75 transcriptomic clusters. Weights were assigned by their
frequencies within the eight sort strategies, and the heatmap is scaled by z-score within each
column (gene). Relative expressions of eight sort strategy-specific marker genes are displayed.
B) Example sort strategy-specific peaks proximal to (<50kb distance to gene body) the eight sort
strategy-specific transcriptomic marker genes. Pileups indicate aggregated data within a 2 kb
genomic window across five independent experiments. In B and E, dashed lines indicate introns,
thick lines indicate exons, and arrows indicate direction towards proximal marker gene. Yellow
highlights demarcate sort strategy-specific chromatin accessibility peaks.

C) DiffBind (Ross-Innes et al., 2012) identification of 72,218 peaks that were differentially
accessible among any pairwise comparison of sort strategies (FDR 0.01). Read counts within
those 72,218 differentially accessible peaks then clustered samples using a correlation distance
matrix, which revealed separate groupings of non-neuronal samples, and upper- and lower-layer
neuronal samples. One sample was omitted from this analysis (H17.03.009 L1 NeuN+) because
this sample appeared intermediate between NeuN+ and NeuN- cells, suggesting a failed sort.
D) Number of peaks differentiating each pairwise sample contrast.

E) Example sort strategy-specific peaks resulting from pairwise DiffBind differential peak analysis.
These peaks were found in novel genomic regions (not proximal to known marker genes), and

closest genes are shown.
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Supplementary Figure 2 (Related to Figure 1): High confidence clustering for single
nucleus ATAC-seq data.

A) Histogram showing the percentages of variance explained by each principal component of the
Jaccard single cell distance matrix. The first 30 principal components explain substantial variance
within the dataset.

B) Correlation of the first five principal components with quality metrics. Principal component 1
was omitted from further analysis due to strong negative correlation with ENCODE overlap.

C) Single nuclei evaluated by principal component analysis, with nuclei colored by cluster
membership (left). Three major groups of nuclei were separated by PC2. Single nuclei were also
colored by ENCODE overlap percentage, which is strongly negatively correlated with PC1 (right).
D) tSNE plot to visualize either principal components 2 to 30 (/eft) or 1 to 30 (right). Note, PCs 2
to 30 permit clear groupings with no ENCODE overlap gradient, whereas PCs 1 to 30 result in
blurred cluster separations with a gradient of ENCODE spanning the clusters.

E) Bootstrapped iterative clustering to identify reproducible nuclear clusters. From the 2858 x 29
matrix of nuclei x principal component scores, we subsampled to either a constant 80% of nuclei
(left) or a variable 50-90% of nuclei (middle), and calculated clusters using Jaccard-Louvain
clustering (Tasic et al., 2018), which was repeated 200 times. Shuffled Jaccard distance matrix
as input to PCA is shown (right). Heatmaps display the frequency of co-clustering among nuclei.
The constant 80% bootstrapping co-clustering matrix was used as input into Euclidean distance
clustering, which vyielded the final 27 clusters by cutting the tree to the major blocks of co-
clustering nuclei. Nucleus order is not matched across the three plots.

F) Agreement between cluster memberships resulting from constant 80% bootstrapping and
variable 50-90% bootstrapping, for most nuclei.

G) Visualization of nucleus groupings using five different feature sets (see Methods) using tSNE.

Jaccard distances yielded clearest cell groupings. Cluster colors are applied in both (G) and (H).



H) Different perplexity parameters for tSNE visualization of cell groupings. Nuclear cluster
groupings are evident at a wide range of perplexity values.
1) Visualization of disease status (tumor or epilepsy) for nuclei. Note that nuclei largely intermix

regardless of disease status.
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Supplementary Figure 3 (Related to Figure 1): Mapping ATAC-seq clusters to RNA-seq cell
types and subclasses.

A) Expected abundances of each of the 75 transcriptomic cell types (Hodge et al., 2019),
correlated with observed abundances of those cell types, using four different methods for
computing gene-level information from each nucleus: far left. read counts in gene bins, middle
left: read counts in gene bodies, middle right: read counts in 10kb-extended TSS regions, and far
right: Cicero gene activity scores. Correlation values are Pearson correlation statistics between
log-transformed expected and observed abundances plus one, for each of the 75 transcriptomic
cell types. Computing gene-level information using cicero gene activity scores results in the
greatest correlation between expectation and observation for cell type abundances.

B) Bootstrapped mapping of single nuclei (“cellwise”) to 75 transcriptomic cell types. Dot sizes
indicate the frequencies of cell type mappings within each of the 27 ATAC-seq clusters.

C) Bootstrapped mapping of clusters (“clusterwise”) to 75 transcriptomic cell types. Dot sizes
indicate the frequency each cluster maps to each transcriptomic cell type.

D) Bootstrapped mapping of single nuclei (“cellwise”) to 11 transcriptomic cell type subclasses.
Dot sizes indicate the frequencies of subclass mappings within each of the 27 ATAC-seq clusters.
E) Bootstrapped mapping of clusters (“clusterwise”) to 11 transcriptomic cell type subclasses. Dot
sizes indicate the frequency each cluster maps to each subclass. This plot represents the final
mapped subclass assigned as the most frequent mapping for each cluster, which are used
throughout the text.

F) Correlation of subclass mappings for all cells using four different mapping techniques. Overall,
most cells are identically mapped to the same subclass with most of the techniques, with
especially good agreement between both clusterwise mapping techniques.

G) Correlation between RNA-seq and ATAC-seq dataset layerwise distributions for the 11

subclasses. Most of the subclasses are observed in similar layer distributions in both datasets.
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Supplementary Figure 4 (Related to Figure 2): Properties of human neocortical cell
subclass-specific accessible genomic elements.

A-B) Nuclei visualized by tSNE and colored by motif accessibilities for A) DLX1 and B) NEURODG6
as calculated by chromVAR (Schep et al., 2017). DLX1 transcripts are specifically detected in
inhibitory neurons (Hodge et al., 2019).

C-D) Correlation between motif accessibilities and transcript abundances across cell subclasses
for C) DLX1 and D) NEURODG6 (grouping by average for motif accessibility, and by sum for
transcript abundances). r, Pearson correlation coefficient. Two-tailed paired t-tests for significant
correlation: DLX1 t = 3.0 df =9 p < 0.01; NEURODG6 ¢ = 5.4 df =9 p < 0.001.

E) Percent overlap of ATAC-seq peaks with previously identified DMRs (Lister et al., 2013; Luo
et al., 2017), comparing real peaks to randomized peak positions. Absolute numbers of detected
peaks and peak-DMR overlaps are shown. Error bars represent standard deviation across 100
bootstrapped iterations using a subsampling rate of 80%.

F) Mean phyloP scores across all peaks for cell subclass ATAC-seq peaks (colored line),
compared to randomized peak positions (broken line).

G) Active transcriptional regulators in human and mouse brain cell subclasses, revealed by motifs
in ATAC-seq peaks and gene expression by transcriptomics (Tasic et al., 2018; Hodge et al.,
2019). E-value indicates the p-value from Fisher's exact test, corrected for multiple testing as
calculated by MEME-CHIP. Arrows indicate strong and specific microglial enrichments for
SPI1/PU.1 (gray) and for TEAD in human astrocytes (brown) and for OLIG2 in
oligodendrocytes/OPCs (cadet blue).

H-1) Overlap of conserved or divergent peaks by cell subclass with multiple classes of repetitive
genomic elements in both human (H) and mouse (I) sn/scATACseq datasets. An enrichment
value of 1.0 corresponds to no fold change between real and random peak enrichment. Black
bars represent the mean across the eleven neocortical cell subclasses. Heteroscedastic t-tests:

***p < 0.001, ** p < 0.01, ns not significant. Human all elements t = 5.2, df = 14.5; human DNA



transposons t = 3.4, df = 14.8; human LINE t = 5.3, df = 18.3; human SINE t = 3.8, df = 18.8;
human LTR t = 6.1, df = 18.3; human satellite t = 0.2, df = 12.4; human simple t = 1.6, df = 10.1;
mouse all elements t = 3.7, df = 16.9; mouse DNA transposons t = 1.3, df = 12.7; mouse LINE t
=52, df = 18.5; mouse SINE t = 5.2, df = 18.0; mouse LTR t = 6.1, df = 17.5; mouse satellite t =

1.6, df = 9.7; mouse simple t = 0.3, df = 19.0.
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Supplementary Figure 5 (Related to Figure 3): Cell type validation of enhancer-AAV-labeled
cells via scRNA-seq. Numbers of sorted labeled cells with each enhancer-AAV vector shown in
Figures 3 and 4, mapped to the cell type transcriptomic taxonomy of mouse VISp (Tasic et al.,
2018). Dendrogram leaves represent 111 transcriptomic cell types. Circles on the dendrogram
represent the number of cells that could be mapped to that point in the dendrogram (starting from
the root) and bar plots below the leaves represent the number of each cell type recovered that

mapped to that final leaf.
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Supplementary Figure 6 (Related to Figure 4): eHGT_359h labels neocortical PVALB cells
with high specificity, and also subcortical zones of Pvalb expression.

A) Whole-brain labeling pattern by eHGT _359h. Abbreviations: CTX cerebral cortex, HPF
hippocampal formation, P pons, CBX cerebellar cortex, CBN cerebellar nuclei.

B) mFISH in L2/3 of VISp demonstrating positive labeling of Pvalb* cells (arrows) by eHGT_359h.

An asterisk denotes an off-target Pvalb labeled cell. Data represents n = 1 experiment.
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Supplementary Figure 7 (Related to Figure 4): Accessibility of candidate PVALB enhancers
in human and mouse neocortical subclasses.

A) Twenty candidate PVALB enhancers from human epigenetic data characterized by
conservation, method of identification, genomic location, and ATAC-seq profiles across cell
subclasses. Coordinates correspond to hg38 genome in (A).

B) Orthologous mouse regions characterized by the same metrics. No mouse regions orthologous
to eHGT_057h, 079h, 136h, and 150h could be identified, using liftOver with minMatch parameter

set to either 0.6 or 0.5. CPM counts per million. Coordinates correspond to mm10 genome in (B).





