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Sex-stratified datasets 

Sex-stratified genome-wide association study (GWAS) summary statistics for most traits were 

based on published data obtained by downloading from public repositories (e.g. 

http://www.med.unc.edu/pgc/results-and-downloads) or directly from analysts (see Table 1 for 

details), with several exceptions, as described below. 

PGC data for schizophrenia, major depressive disorder (MDD), and bipolar disorder were 

processed using a unified quality control pipeline as part of a separate study [1]. As part of 

this pipeline, samples were removed if they showed relatedness within or between datasets 

(PI-HAT <0.1). A subset of the MDD samples with recurrent MDD were also used for a sex-

stratified analysis.  

Unpublished sex-stratified GWAS summary-statistics for anxiety diagnosis, MDD diagnosis, 

and current and previous smoking were downloaded from http://www.nealelab.is/uk-biobank. 

The UK Biobank (UKBB) phenotype codes that were used are: “self-reported anxiety/panic 

attacks” (20002_1287), “self-reported depression” (20002_1286), “smoking status previous” 

(20116_1), and “smoking status current” (20116_2). Sex-stratified summary data from 2 other 

unpublished sex-stratified phenotypes in UK Biobank (neuroticism and cannabis use) were 

also available from co-authors; the UK Biobank codes that were used are: “neuroticism total 

score of 12 dichotomous items of the Eysenck Personality Questionnaire Revised Short Form” 

(20127) and "ever taken cannabis” (20453). 

For ASD, 2 datasets were meta-analysed based on data from 2 publications [2,3] using an 

inverse-variance weighted fixed effects model, implemented in METAL [4]; the genetic 

correlation (in LDSC [5]) between these 2 ASD datasets was: rg(SE)=0.70(0.11) in males and 

could not be estimated in females due to low sample size.  

For 2 phenotypes, data were available from 2 different sources and we assessed the genetic 

correlations between them and used only one of the datasets going forward; for MDD, data 

were available from the PGC and the UK Biobank (LDSC rg(SE)=1.16(0.37) for males & 

0.60(0.11) for females) and we selected the PGC data as it was based on a rigorously 

http://www.med.unc.edu/pgc/results-and-downloads
https://paperpile.com/c/6kTKz7/CEfM
http://www.nealelab.is/uk-biobank
https://paperpile.com/c/6kTKz7/IDbh8+I2Ovd
https://paperpile.com/c/6kTKz7/8izvR
https://paperpile.com/c/6kTKz7/Z1k1d
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phenotyped clinical case-control dataset; for alcohol consumption data were available from 2 

published studies [6,7] (rg(SE)=0.66(0.11) for males & 1.18(0.27) for females) and we used 

data from the larger study [6].  

Quality control & processing datasets for analyses 

The majority of available datasets had already undergone rigorous quality control, as 

described in each study publication (see Table 1 for references and Table S1 for data 

availability). We performed several additional steps, as follows. All datasets were on the same 

genomic build (hg19). SNPs were filtered for minor allele frequency (MAF), imputation quality, 

and sample size (N.B. different filters were applied for LDSC & meta-analyses; see below).  

LDSC 

The default parameters of LDSC (as per the script munge_sumstats.py) were used based on 

available columns provided in the shared datasets, removing variants as follows: MAF<=0.01, 

INFO<=0.9, N<(90th percentile N)/1.5, indels, strand-ambiguous SNPs and variants not in 

HapMap-3. Where the sample size was not provided per variant, the total sample size was 

provided to LDSC. 

Sex-specific trait prevalences for estimating SNP-h2 

We obtained sex-specific trait prevalence estimates from the USA and cumulative incidence 

rates from Denmark, to compare the SNP-h2 estimates using 2 different sources of information. 

The US-based estimates were derived from a hospital-based cohort of 752,436 patients who 

meet a medical home definition for Vanderbilt University Medical Center and whose de-

identified electronic health record (EHR) is in the clinical research database [8]; see Tables 
S2-S3 for details. The medical home is a heuristic definition aimed at reducing the influence 

of missing data. The medical home definition restricts the total sample to a subpopulation with 

at least 5 codes over a period of at least 3 years. This filters individuals who may have visited 

Vanderbilt for only a small number of specialty visits, but who receive their regular primary 

care in a community care setting. The requirement of a more complete medical record 

facilitates prevalence estimations for common mental health conditions seen typically in the 

primary care setting at Vanderbilt. We used estimates based on adults (age >18 years), except 

for ADHD and ASD, which included pediatric patients. To estimate prevalence of each 

phenotype (Table S2), we included individuals with at least one ICD code for each phenotype 

as the numerator, and ‘medical home’ hospital population as the denominator. However, 

hospital-based population prevalence estimates may be biased due to over-representation of 

individuals with more severe health-related conditions and higher levels of comorbidity. 

https://paperpile.com/c/6kTKz7/t1gRH+gJFgG
https://paperpile.com/c/6kTKz7/t1gRH
https://paperpile.com/c/6kTKz7/WvHU
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Additionally, these prevalence estimates may not generalize to populations outside of the 

USA. Therefore, we also used sex-specific cumulative incidence rates at age 50 years, based 

on individuals identified through inpatient and outpatient care in Denmark [9], as well as 

childhood-specific (age <18 years) estimates for the 2 neurodevelopmental disorders in our 

analyses (ADHD and ASD), based on a more recent Danish study, as the discovery GWAS 

for these traits were based on samples of mostly children [10]; see Table S2.  

Gene-based analysis, differential gene expression, and gene-set enrichment analysis 
of genes with sex-differentiated effects 

We used the Functional Mapping and Annotation of GWAS (FUMA) SNP2GENE web tool [11], 

to perform gene-based analysis using MAGMA v1.08 [12,13], where SNPs are mapped to 

genes if they fall within the gene start and end sites (the default window size of 0kb) based on 

the 1000 Genomes project reference panel. Z-scores and their p-values computed for each 

trait were used as an input. We have applied the mean gene analysis model, a test of weighted 

mean SNP association. In this analysis, the mean of the chi2 statistic for the SNPs in a gene 

is calculated and the p-value is obtained from a known approximation of the sampling 

distribution [14,15]. The genome-wide significance threshold is defined as 0.05/number of 

genes to which the SNPs are mapped. The number of genes that is analyzed through MAGMA 

depends on the SNPs represented in the summary statistics files. As shown in Table S7 the 

output of MAGMA results in an average ~18k genes. Some genes may be missed in the 

analysis if SNPs are not represented in a particular GWAS. 

We examined whether the genes with genome-wide significant difference (from MAGMA 

analysis) between males and females with trait association demonstrate differential by sex 

expression in brain tissues from the Genotype Tissue Expression project  v8 

(https://www.gtexportal.org/home/datasets) [16].  

After mapping SNPs to genes, we filtered the top 0.1% (with the lowest -log10(p-value)) from 

the gene-based MAGMA analysis, as genes with sex-differentiated effects and combined 

these sets across phenotypes. We selected the 0.1% threshold to test a set of genes with the 

greatest sex difference in effects, that did not exceed ~2000 genes, which is the input gene 

set limit for the Gene Set Enrichment Analysis (GSEA) tool 

(https://software.broadinstitute.org/gsea/index.jsp). We also evaluated the top 0.5% of genes 

to test sensitivity to this threshold. We observed that 57 out of the top 100 gene sets overlap 

between the 0.1% and 0.5% top genes which went into the GSEA. Finally, we computed a 

gene set overlap analysis using GSEA on the combined set of genes with sex-differentiated 

effects with collection C5 (GO biological process, GO cellular component, and GO molecular 

https://paperpile.com/c/6kTKz7/s0z6
https://paperpile.com/c/6kTKz7/UOFE
https://paperpile.com/c/6kTKz7/0qIph
https://paperpile.com/c/6kTKz7/EBuiA+qFTy3
https://paperpile.com/c/6kTKz7/sCfy5+ZzUQV
https://paperpile.com/c/6kTKz7/5DDRB
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functions) from MSigDB to investigate which functions may contribute to phenotypic 

differences observed for the traits. 

We chose to calculate per-SNP sex difference z-scores and then used them for gene-based 

and gene set analyses. An alternative approach would be to determine genes and gene sets 

separately in males and females and then examine the overlap. Given the sample sizes of the 

sex-stratified GWAS that are currently available to the scientific community for 

neuropsychiatric and behavioral traits, we have low power to detect genome-wide significant 

associations within each sex for many of the phenotypes examined. Thus, we would have to 

set a threshold for top genes arbitrarily. If this is done based on the p-value, the sample size 

difference between the sexes would bias the number of significant variants/genes observed 

at that threshold. For this reason we decided to compute z-scores based on effect betas and 

standard errors to determine sex-biased SNP- and gene-level associations. Additionally, given 

our approach to focus on genes across phenotypes, setting a single p-value threshold would 

not be appropriate. Instead we decided to focus on the top 0.1% and 0.5% of the genes for 

each trait. Additionally, the added value of the z-score approach is that it allowed us to look at 

the genes with the largest difference between the sexes rather than analyzing a mix of shared 

and unique genes and utilizing a mix of those genes in the gene-set enrichment analyses. 

Power calculations 

We examined the range of power to detect differences from 1 in rg estimates between 

males and females for a given trait, using previously described equations modified to 

test for differences from 1 [17]. We did this for all traits included in the genetic 

correlation analyses (i.e. those with non-zero SNP-h2 in both sexes). We summarise 

the assumptions and outcomes of these power calculations in Table S12. Given the 

available sample sizes and estimated sex-specific SNP-h2, we determined that for 

case-control traits, we have >80% power to detect significant differences from rg=1, 

ranging from good power to detect relatively small differences (rg=0.90 for 

schizophrenia) down to good power to detect only large deviation from 1 (rg=0.36 for 

OCD). For quantitative traits, we have >80% power to detect significant differences for 

rg=0.8 and above, for all traits. See Table S12 for details. 
  

https://paperpile.com/c/6kTKz7/2vUK
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Supplemental Figures 
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Figure S1. Scatter plots of the correlation of SNP-h2 estimates using: US- and Denmark- (DK) 
based population prevalence rates, for 2 different SNP-h2 estimation methods: (A) LDSC and 
(B) LDAK. Results show high correlation when using US-based (x-axis) and DK-based (y-axis) 
prevalence estimates for LDSC (r2=0.97, p=4.7x10-10) and LDAK (r2=0.94, p=4.5x10-7). 
Female SNP-h2 estimates are shown in green and male SNP-h2 estimates are shown in 
orange. The X:Y line is plotted in black. Standard errors (SE) are reported in the Tables S3 & 
S4. Phenotype abbreviations are listed in Table 1. 
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Figure S2. Correlation of SNP-h2 estimates using LDSC and LDAK methods. Scatter plots of 
SNP-h2 estimates on the (A) observed scale, (B) liability scale using US-based prevalence, 
and (C) liability scale using DK-based prevalence; each using LDSC (x-axis) and LDAK (y-
axis). The X:Y line is plotted in black. Observed scale SNP-h2 estimates from LDAK and LDSC 
methods are modestly correlated: (r=0.69, p=8.5x10-7 for all traits, r=0.85, p=3.3x10-11 
excluding traits for which SNP-h2 could not be reliably estimated in LDSC, i.e. PTSD & MDDR 
in males and ASD & ALCD in females. The liability scale SNP-h2 estimates are only modestly 
correlated; US: r2=0.44, p=0.042 for all traits, r2=0.61, p=0.0077 excluding the 4 traits; DK: 
r2=0.23, p=0.44 for all traits, r2=0.61, p=0.035 excluding the 4 traits. Standard errors (SE) are 
reported in Tables S3 & S4. Phenotype abbreviations are listed in Table 1. 
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Figure S3. The effect of sample size on the difference between the LDSC and LDAK methods. 
Each point represents a value for the difference in SNP-h2 estimated using two methods 
(LDSC and LDAK) for females (green) and males (orange). The sample size of the cohorts is 
shown on the x-axis, and the difference between SNP-h2 estimates on the observed scale is 
shown on the y-axis. Phenotype abbreviations are listed in Table 1. 
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Figure S4. Quantile-quantile (QQ) plots of z-score p-values. Theoretical -log10(p-values) are 
shown on the x-axis, and experimental -log10(p-values) are shown on the y-axis. The X:Y line 
is plotted as a black dashed line and the grey area represents the 95% confidence interval. 
Phenotype abbreviations are listed in Table 1.
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Figure S5. Manhattan plots of gene-based analysis in FUMA using z-score p-values. Each 
point represents a gene. Chromosome and base pair positions are shown on the x-axis, while 
the -log10(p-values) are shown on the y-axis. Phenotype abbreviations are listed in Table 1. 
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Figure S6. Heatmaps of genetic correlation analyses for females (left) and males (right). Red represents positive correlations and blue represents 
negative correlations. The correlation coefficient is listed in each cell. The significance of the correlations is denoted with asterisks, as follows:            
*p<0.05, **p<0.01, ***p<0.001. Phenotype abbreviations are listed in Table 1.  
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