# Visible Light Driven Deuteration of Formyl C-H and Hydridic

# C(sp<sup>3</sup>)-H Bonds in Feedstock Chemicals and Pharmaceutical

# Molecules

Yulong Kuang, Hui Cao, Haidi Tang, Junhong Chew, Wei Chen, Xiangcheng Shi, Jie Wu\*

Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore

E-Mail: chmjie@nus.edu.sg

## **Table of Contents**

| 1                    | . Gen  | ieral considerations                                              | 1  |  |
|----------------------|--------|-------------------------------------------------------------------|----|--|
| 2                    | . Inve | estigation for optimal conditions                                 | 2  |  |
|                      | 1)     | Time course of selective sequential deuteration of 4-anisaldehyde | 2  |  |
|                      | 2)     | Investigation of phase transfer agents                            | 2  |  |
| 3. General procedure |        |                                                                   |    |  |
| 4                    | . Res  | ults of deuteration of other hydridic C/X-H bonds                 | 3  |  |
| 5                    | . Rad  | lical clock expriment                                             | 4  |  |
| 6                    | . Cha  | uracterization of new compounds                                   | 4  |  |
| 7.                   | . Ref  | erence                                                            | 27 |  |
| 8                    | . Cop  | oies of NMR spectra                                               | 28 |  |

### 1. General considerations

All catalytic reactions were carried out with commercially available reagents in Schlenk tube (10 mL) under an argon atmosphere with magnetic stirring after freeze-pump-thaw. <sup>1</sup>H NMR yield was detected by adding CH<sub>2</sub>Br<sub>2</sub> as an internal standard. The isolated yield was the purified product by flash chromatography over silica gel. <sup>1</sup>H NMR spectra were recorded on commercial instruments (500 MHz). Chemical shifts were reported in ppm from the solvent resonance as the internal standard (CDCl<sub>3</sub>,  $\delta = 7.26$ ). Spectra were reported as follows: chemical shift ( $\delta$  ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, hept = heptet, m = multiplet), coupling constants (Hz), integration and assignment.  ${}^{13}C$  NMR spectra were recorded on commercial instruments (126 MHz). Chemical shift was reported in ppm from the solvent resonance as the internal standard (CDCl<sub>3</sub>,  $\delta = 77$ ). The densely deuterated compounds were also checked by D NMR spectra which were recorded on commercial instruments (77 MHz). Spectra (CHCl<sub>3</sub>) were reported in ppm from the comparison with its resonance in the corresponding <sup>1</sup>H NMR spectra. Grey dots ("<sup>•</sup>) on the structures represent that the deuterium incorporation is less than 2% based on analysis of <sup>1</sup>H NMR spectra, but deuterium signals showed on D NMR spectrum. HRMS was recorded on a commercial apparatus (EI source).

TBADT (tetra-*n*-butylammonium decatungstate)<sup>1</sup> and thiol (2,4,6-triisopropylthiophenol)<sup>2</sup> were synthesized according to the reported literatures.

## 2. Investigation for optimal conditions

### 1) Time course of selective sequential deuteration of 4-anisaldehyde



Figure S1. Time course study in selective sequential deuteration of 4-anisaldehyde

### 2) Investigation of phase transfer agents

Table S1. Investigation of various phase transfer agents<sup>a</sup>

|       |                         | TBADT (2 mol%), thiol (10 mol%)<br>additive (10 mol%) | 1                                  |
|-------|-------------------------|-------------------------------------------------------|------------------------------------|
|       | $BzO + D_2O - 50 equiv$ | CH <sub>3</sub> CN (1.0 M), 390 nm light, 24 h        | BzO 23                             |
| entry | additive                | results                                               |                                    |
|       |                         | yield <sup>b</sup> de                                 | uterium incorporation <sup>c</sup> |
| 1     | no                      | 96%                                                   | 84%                                |
| 2     | TBAF•3H <sub>2</sub> O  | 94%                                                   | 90%                                |
| 3     | TBAB                    | 96%                                                   | 90%                                |
| $4^d$ | TBAB                    | 99%                                                   | 91%                                |
| 5     | TBAI                    | 90%                                                   | 90%                                |
| 6     | <sup>n</sup> Bu₄N•BF₄   | 92%                                                   | 89%                                |
| 7     | SDS                     | 93%                                                   | 27%                                |
| 8     | PPh <sub>4</sub> Cl     | 94%                                                   | 4%                                 |

<sup>*a*</sup> Reaction was conducted with the indicated additive (10 mol%) for 24 h. <sup>*b*</sup> Yield was determined by analysis of <sup>1</sup>H NMR spectra of the crude product mixture using  $CH_2Br_2$  as an internal standard. <sup>*c*</sup> Deuterium incorporation was determined by analysis of <sup>1</sup>H NMR spectra of products. <sup>*d*</sup> 20 mol% TBAB was added. TBAF = tetra-*n*-butylammonium fluoride; TBAB = tetra-*n*-butylammonium bromide; TBAI = tetra-*n*-butylammonium iodide; SDS = sodium 1-decanesulfonate.

## 3. General procedure

General procedure for deuteration of formyl C-H bonds: The aldehyde substrate (0.2 mmol), TBADT (13.2 mg, 2 mol%), thiol (5 uL, 10 mol%), D<sub>2</sub>O (180 uL, 50 equiv) and CH<sub>3</sub>CN (200 uL, 1.0 M) were added to a 10 mL Schlenk tube equipped with a stir bar. The mixture was operated by freeze-pump-thaw procedures three times before charging the tube with argon. The reactor was then sealed and placed under 390 nm Kessil light (80 W) and stirred for 4 h. Then, the crude reaction mixture was extracted with diethyl ether ( $3 \times 2$  mL). The combined organic layer was concentrated and purified by flash column chromatography over silica gel to afford the deuterated product.

General procedure for deuteration of hydridic C(sp<sup>3</sup>)-H bonds and pharmaceuticals: A substrate (0.2 mmol), TBADT (13.2 mg, 2 mol%), thiol (5 uL, 10 mol%), D<sub>2</sub>O (360 uL, 100 equiv), TBAB (12.8 mg, 20 mol%) and CH<sub>3</sub>CN (200 uL, 1.0 M) were added to a Schlenk tube (10 mL) equipped with a stir bar. The mixture was operated by freeze-pump-thaw procedures three times before being charged with argon. The reactor was placed under 390 nm Kessil light (80 W) and kept stirring for 24 or 48 h. The crude reaction mixture was extracted with ethyl acetate ( $3 \times 2$  mL). The combined organic layer was concentrated and purified by flash column chromatography over silica gel to afford the deuterated product. C<sub>6</sub>H<sub>5</sub>CF<sub>3</sub> (200 uL, 1.0 M) was added at the beginning in cases where the substrate has low solubility in CH<sub>3</sub>CN.

## 4. Results of deuteration of other hydridic C/X-H bonds



Figure S2. Results on deuteration of other hydridic C/X-H bonds

### 5. Radical clock experiment



The reaction was conducted under the optimal conditions with 20 mol% TBAB. After 48 h under 390 nm light irritation, the reaction mixture was quenched. The crude NMR showed the above results by comparing with the known spectra.<sup>3</sup> The deuterium incorporation was obtained from <sup>1</sup>H NMR spectra of products after purification.



### 6. Characterization of new compounds

#### 4-Bromobenzaldehyde-formyl-d1 (1):

Prepared following the general procedure. <sup>1</sup>H NMR spectrum showed 94% deuterium incorporation and quantitative yield (> 99%) with CH<sub>2</sub>Br<sub>2</sub> as an internal standard. Then the crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless solid in 31.6 mg (85% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.96 (s, 0.06H), 7.73 (d, *J* = 8.0 Hz, 2H), 7.66 (d, *J* = 8.0 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 191.0 (COH), 190.7 (t, *J* = 27.2 Hz, COD), 134.9, 132.3, 130.9, 129.7. HRMS (EI-TOF) calcd for C<sub>7</sub>H<sub>4</sub>DBrO (M<sup>+</sup>) = 189.9561, found 186.9562.

4-Chlorobenzaldehyde-formyl-d1 (2):

Prepared following the general procedure. <sup>1</sup>H NMR spectrum showed 90% deuterium incorporation and quantitative yield (> 99%) with CH<sub>2</sub>Br<sub>2</sub> as an internal standard. Then the crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless oil in 24.8 mg (88% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.98 (s, 0.10H), 7.82 (d, *J* = 8.5 Hz, 2H), 7.51 (d, *J* = 8.5 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 190.8 (COH), 190.5 (t, *J* = 26.8 Hz, COD), 140.9, 134.6 (t, *J* = 3.8 Hz), 130.9, 129.4. HRMS (EI-TOF) calcd for C<sub>7</sub>H<sub>4</sub>DClO (M<sup>+</sup>) = 141.0086, found 141.0081.

#### 4-Fluorobenzaldehyde-formyl-d1 (3):

Prepared following the general procedure. <sup>1</sup>H NMR spectrum showed 89% deuterium incorporation and quantitative yield (> 99%) using CH<sub>2</sub>Br<sub>2</sub> as an internal standard. Then the crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless oil in 22.2 mg (86% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.96 (s, 0.11H), 7.96 – 7.86 (m, 2H), 7.24 – 7.17 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 190.5 (COH), 190.2 (t, *J* = 26.6 Hz, COD), 166.5 (d, *J* = 257.4 Hz), 133.0 – 132.5 (m), 132.2 (d, *J* = 9.6 Hz), 116.3 (d, *J* = 22.6 Hz). HRMS (EI-TOF) calcd for C<sub>7</sub>H<sub>4</sub>DFO (M<sup>+</sup>) = 125.0382, found 125.0384.

#### 4-Acetoxybenzaldehyde-formyl-d1 (4):

Prepared following the general procedure by using 365 nm (24 W) LED strip instead of 390 nm (80 W) Kessil light for 24 h. <sup>1</sup>H NMR spectrum showed 93% deuterium incorporation and 99% yield using CH<sub>2</sub>Br<sub>2</sub> as an internal standard. Then the crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless oil in 31.7 mg (96% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.99 (s, 0.07H), 7.92 (d, *J* = 8.5 Hz, 2H), 7.27 (d, *J* = 8.5 Hz, 2H), 2.33 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 190.9 (COH), 190.6 (t, *J* = 26.6 Hz, COD), 168.6, 153.3, 133.9 (t, *J* = 3.5 Hz), 131.1, 122.3, 21.1. HRMS (EI-TOF) calcd for C<sub>9</sub>H<sub>7</sub>DO<sub>3</sub> (M<sup>+</sup>) = 165.0531, found 165.0532. 4-Acetamidobenzaldehyde-formyl-d1 (5):

Prepared following the general procedure. <sup>1</sup>H NMR spectrum showed 90% deuterium incorporation and 95% yield using CH<sub>2</sub>Br<sub>2</sub> as an internal standard. Then the crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless solid in 29.5 mg (90% yield). <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>CN)  $\delta$  = 9.87 (s, 0.10H), 8.71 (br, 1H), 7.88 – 7.79 (m, 2H), 7.78 – 7.68 (m, 2H), 2.10 (s, 3H). <sup>13</sup>C NMR (126 MHz, CD<sub>3</sub>CN)  $\delta$  = 192.3 (COH), 192.0 (t, *J* = 26.8 Hz, COD), 170.3, 145.7, 132.9, 131.8, 119.8, 24.7. HRMS (EI-TOF) calcd for C<sub>9</sub>H<sub>8</sub>DNO<sub>2</sub> (M<sup>+</sup>) = 164.0691, found 164.0690.

#### 4-Hydroxybenzaldehyde-formyl-d1 (6):

Prepared following the general procedure. <sup>1</sup>H NMR spectrum showed 88% deuterium incorporation and 95% yield using CH<sub>2</sub>Br<sub>2</sub> as an internal standard. Then the crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 5 : 1) to afford product as a colorless solid in 21.4 mg (87% yield). <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>CN)  $\delta$  = 9.82 (s, 0.12H), 7.77 (d, *J* = 8.5 Hz, 2H), 6.96 (d, *J* = 8.5 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CD<sub>3</sub>CN)  $\delta$  = 191.9 (COH), 191.2 (t, *J* = 28.1 Hz, COD), 163.7, 133.1, 130.6 (t, *J* = 3.7 Hz), 116.9. HRMS (EI-TOF) calcd for C<sub>7</sub>H<sub>5</sub>DO<sub>2</sub> (M<sup>+</sup>) = 123.0425, found 123.0423.

4-(Trifluoromethyl)benzaldehyde-formyl-d1 (7):

Prepared following the general procedure. <sup>1</sup>H NMR spectrum showed 97% deuterium incorporation and 80% yield using CH<sub>2</sub>Br<sub>2</sub> as an internal standard. Then the compound was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless oil in 26.2 mg (70% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 10.10 (s, 0.03H), 8.01 (d, *J* = 8.0 Hz, 2H), 7.80 (d, *J* = 8.0 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 190.7 (t, *J* = 26.8 Hz, COD), 138.5, 135.6 (q, *J* = 32.8 Hz), 129.9, 126.8 (q, *J* = 3.8 Hz), 123.4 (q, *J* = 273.5 Hz). HRMS (EI-TOF) calcd for C<sub>8</sub>H<sub>4</sub>DF<sub>3</sub>O (M<sup>+</sup>) = 175.0350, found 175.0346.

4-Cyanobenzaldehyde-formyl-d1 (8):



Prepared following the general procedure. <sup>1</sup>H NMR spectrum showed 97% deuterium incorporation and 75% yield using CH<sub>2</sub>Br<sub>2</sub> as an internal standard. Then the crude mixture was purified over silica gel

chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless oil in 18.5 mg (70% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 10.09 (s, 0.03H), 8.00 (d, *J* = 8.5 Hz, 2H), 7.85 (d, *J* = 8.5 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 190.2 (t, *J* = 27.5 Hz, COD), 138.6 (t, *J* = 3.7 Hz), 132.9, 129.8, 117.7, 117.6. HRMS (EI-TOF) calcd for C<sub>8</sub>H<sub>4</sub>DNO (M<sup>+</sup>) = 132.0428, found 132.0429.

4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde-formyl-d1 (9):



Prepared following the general procedure. <sup>1</sup>H NMR spectrum showed 94% deuterium incorporation and quantitative yield (> 99%) with  $CH_2Br_2$  as an internal standard. Then the compound was purified over silica gel chromatography (hexane : diethyl ether = 2 : 1) to afford product as a colorless solid in 34.9 mg (75% yield). <sup>1</sup>H

NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 10.04 (s, 0.06H), 7.96 (d, *J* = 8.0 Hz, 2H), 7.86 (d, *J* = 8.0 Hz, 2H), 1.36 (s, 9H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 192.6 (COH), 192.3 (t, *J* = 26.7 Hz, COD), 138.0 (t, *J* = 3.2 Hz), 135.2, 128.7, 84.3, 24.9. HRMS (EI-TOF) calcd for C<sub>13</sub>H<sub>16</sub>DBO<sub>3</sub> (M<sup>+</sup>) = 233.1328, found 233.1323.

4-Benzyloxybenzaldehyde-formyl-*d1*(10):

Prepared following the general procedure for 8 h. <sup>1</sup>H NMR spectrum showed 85% deuterium incorporation on the formyl C-H bond, less than 2% deuterium incorporation on the *a*-oxy C(sp<sup>3</sup>)-H bonds and 99% yield using CH<sub>2</sub>Br<sub>2</sub> as an internal standard. Then crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless solid in 36.7 mg (86% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.89 (s, 0.15H), 7.86 – 7.82 (m, 2H), 7.46 – 7.37(m, 4H), 7.37 – 7.31 (m, 1H), 7.08 (d, *J* = 8.5 Hz, 2H), 5.15 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 190.7 (COH), 190.4 (t, *J* = 26.3 Hz, COD), 163.7, 135.9, 131.9, 130.0, 128.7, 128.3, 127.4, 115.1, 70.2. HRMS (EI-TOF) calcd for C<sub>14</sub>H<sub>11</sub>DO<sub>2</sub> (M<sup>+</sup>) = 213.0900, found 213.0895.

#### Benzaldehyde-formyl-d1 (11):



Prepared following the general procedure. <sup>1</sup>H NMR spectrum showed 91% deuterium incorporation and quantitative yield (> 99%) with  $CH_2Br_2$  as an internal standard. Then the crude mixture was purified over silica gel

chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless oil in 19.2 mg (90% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 10.0 (s, 0.08H), 7.92 – 7.81 (m, 2H), 7.63 (t, *J* = 7.5 Hz, 1H), 7.57 – 7.47 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 192.3 (CHO), 192.0 (t, *J* = 26.7 Hz, COD), 136.3, 134.4, 129.7, 129.0. HRMS (EI-TOF) calcd for C<sub>7</sub>H<sub>5</sub>DO (M<sup>+</sup>) = 107.0481, found 107.0480.

Thiophen-2-carbaldehyde-formyl-d1 (12):

Prepared following the general procedure. <sup>1</sup>H NMR spectrum showed 89% deuterium incorporation and quantitative yield (> 99%) with CH<sub>2</sub>Br<sub>2</sub> as an internal standard. Then the compound was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless oil in 18.8 mg (83% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.94 (s, 0.11H), 7.82 – 7.70 (m, 2H), 7.21 (t, *J* = 4.0 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 182.9 (COH), 182.7 (t, *J* = 27.3 Hz, COD), 144.0 (t, *J* = 4.7 Hz), 136.2, 135.1, 128.3. HRMS (EI-TOF) calcd for C<sub>5</sub>H<sub>3</sub>DOS (M<sup>+</sup>) = 113.0040, found 113.0042.

3-Phenylpropionaldehyde-formyl-d1 (13):



Prepared following the general procedure. <sup>1</sup>H NMR spectrum showed 89% deuterium incorporation on formyl group, 8% deuterium incorporation on the *a*-carbonyl C(sp<sup>3</sup>)-H bonds and 99% yield using CH<sub>2</sub>Br<sub>2</sub> as an internal

standard. Then the crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless oil in 22.9 mg (85% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.82 (t, *J* = 1.5 Hz, 0.11H), 7.31 (td, *J* = 7.5, 1.5 Hz, 2H), 7.22 (t, *J* = 7.5 Hz, 3H), 2.97 (t, *J* = 7.5 Hz, 2H), 2.82 – 2.74 (m, 1.84H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 201. 5 (COH), 201.2 (t, *J* = 26.5 Hz, COD), 140.3, 128.5, 128.2, 126.2, 45.0 (t, *J* = 3.7 Hz), 28.0. D NMR (77 MHz, CHCl<sub>3</sub>)  $\delta$  = 9.82. HRMS (EI-TOF) calcd for C<sub>9</sub>H<sub>9</sub>DO (M<sup>+</sup>) = 135.0789, found 135.0788.

*p-tert*-Butyl-α-methylhydrocinnamic aldehyde-formyl-*d1* (14):



Prepared following the general procedure. <sup>1</sup>H NMR spectrum showed 90% deuterium incorporation and 99% NMR yield using CH<sub>2</sub>Br<sub>2</sub> as an internal standard. Then the compound was purified

over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless oil in 31.6 mg (77% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.72 (m, 0.10H), 7.32 (d, *J* = 8.5 Hz, 2H), 7.11 (d, *J* = 8.5 Hz, 2H), 3.06 (dd, *J* = 13.5, 6.0 Hz, 1H), 2.72 – 2.62 (m, 1H), 2.59

(dd, J = 13.5, 8.0 Hz, 1H), 1.32 (s, 9H), 1.10 (d, J = 7.0 Hz, 3H).<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta = 204.6 (\text{COH}), 204.3 (t, J = 26.3 \text{ Hz}, \text{COD}), 149.2, 135.7, 128.6, 125.4, 48.0 - 47.8 (m),$ 36.1, 34.4, 31.3, 13.2. D NMR (77 MHz, CHCl<sub>3</sub>)  $\delta = 9.73$ . HRMS (EI-TOF) calcd for C<sub>14</sub>H<sub>19</sub>DO (M<sup>+</sup>) = 205.1571, found 205.1570.

6-Oxo-6-phenylhexanal-formyl-d1 (15):



Prepared following the general procedure. <sup>1</sup>H NMR spectrum showed 92% deuterium incorporation on formyl group, 9% deuterium incorporation on the *a*-carbonyl C(sp<sup>3</sup>)-H bonds and

quantitative yield (> 99%) using CH<sub>2</sub>Br<sub>2</sub> as an internal standard. Then the crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless solid in 29.0 mg (76% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.78 (s, 0.08H), 8.01 – 7.82 (m, 2H), 7.64 – 7.52 (m, 1H), 7.52 – 7.38 (m, 2H), 3.00 (t, *J* = 7.0 Hz, 2H), 2.49 (t, *J* = 7.0 Hz, 1.83H), 1.87 – 1.60 (m, 4H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 202.2, 201.9 (t, *J* = 26.5 Hz), 136.8, 133.0, 128.6, 128.0, 43.7 - 43.5 (m), 38.1, 23.6, 21.6. D NMR (77 MHz, CHCl<sub>3</sub>)  $\delta$  = 9.78, 2.44. HRMS (EI-TOF) calcd for C<sub>12</sub>H<sub>13</sub>DO<sub>2</sub> (M<sup>+</sup>) = 191.1051, found 191.1058.

#### *n*-Hexanal-formyl-*d1* (16):

Prepared following the general procedure by using CD<sub>3</sub>CN (1.0 M) instead of [90%] Prepared following the general procedure by using CD<sub>3</sub>CN (1.0 M) instead of CH<sub>3</sub>CN (1.0 M). <sup>1</sup>H NMR spectrum showed 90% deuterium incorporation and 90% yield using CH<sub>2</sub>Br<sub>2</sub> as an internal standard. <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>CN)  $\delta = 9.64$  (m, 0.10H), 2.42 – 2.31 (m, 1H), 2.29 – 2.19 (m, 1H), 1.59 – 1.50 (m, 2H), 1.28 – 1.24 (m, 4H), 0.86 (t, J = 7.0 Hz, 3H). HRMS (EI-TOF) calcd for C<sub>12</sub>H<sub>13</sub>DO<sub>2</sub> (M<sup>+</sup>) = 101.0945, found 101.0950.

4-Methoxybenzaldehyde-formyl-d1 (17):



Prepared following the general procedure. <sup>1</sup>H NMR showed 90% deuterium incorporation on the formyl C-H bond, 4% deuterium incorporation on the *a*-oxy  $C(sp^3)$ -H bonds and 99% yield using

CH<sub>2</sub>Br<sub>2</sub> as an internal standard. Then the crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless oil in 24.9 mg (90% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.87 (s, 0.10H), 7.85 – 7.75 (m, 2H), 6.99 (d, *J* = 9.0 Hz, 2H), 3.90 – 3.85 (m, 2.87H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 190.8 (COH), 190.4

(t, J = 26.5 Hz, COD), 164.6, 131.9, 129.8 (t, J = 3.8 Hz), 114.3, 55.5 (OCH<sub>3</sub>), 55.2 (t, J = 22.6 Hz, OCH<sub>2</sub>D). HRMS (EI-TOF) calcd for C<sub>8</sub>H<sub>7</sub>DO<sub>2</sub> (M<sup>+</sup>) = 137.0579, found 137.0574.

#### 4-(1,1,1-*d*3-Methoxy)-benzaldehyde-formyl-*d*1 (17'):

Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%). <sup>1</sup>H NMR spectrum showed 90% deuterium incorporation on the *a*-oxy C(sp<sup>3</sup>)-H bonds and 99% yield using CH<sub>2</sub>Br<sub>2</sub> as an internal standard. Then the crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless oil in 26.0 mg (92% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.88 (s, 0.10H), 7.84 (d, *J* = 8.5 Hz, 2H), 7.01 (d, *J* = 8.5 Hz, 2H), 3.90 – 3.83 (m, 0.89H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 190.8 (COH), 190.5 (t, *J* = 26.5 Hz, COD), 164.6, 132.0, 129.9 (t, *J* = 3.7 Hz), 114.3, 55.7 – 54.6 (m). HRMS (EI-TOF) calcd for C<sub>8</sub>H<sub>4</sub>D<sub>4</sub>O<sub>2</sub> (M<sup>+</sup>) = 140.0770, found 140.0763.

4-(1,1-d2-Ethoxy)-benzaldehyde-formyl-d1 (18):

4-(1,1-d2-Ethoxy)-benzaldehyde-formyl-d1 (18'):

(s, 0.11H), 7.81 (d, J = 8.5 Hz, 2H), 6.97 (d, J = 8.5 Hz, 2H), 4.14 – 4.06 (m, 0.23H), 1.45 – 1.38 (m, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 190.8 (COH), 190.5 (t, J = 26.3 Hz, COD), 164.0, 131.9, 129.7 (t, J = 7.6 Hz), 114.7, 63.8 – 63.0 (m), 14.5 – 14.3 (m). HRMS (EI-TOF) calcd for  $C_9H_7D_3O_2(M^+) = 153.0864$ , found 153.0860.

4-(Methylthio)benzaldehyde-formyl-d1 (19):

Prepared following the general procedure. <sup>1</sup>H NMR spectrum showed 45% deuterium incorporation on the formyl C-H bond, 10% deuterium [10%] [45%] incorporation on the *a*-thioxy  $C(sp^3)$ -H bonds and 99% yield using CH<sub>2</sub>Br<sub>2</sub> as an internal standard. Then the crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless oil in 30.4 mg (99% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 9.89$  (s, 0.55H), 7.77 – 7.69 (m, 2H), 7.32 – 7.27 (m, 2H), 2.55 - 2.41 (m, 2.71 H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta = 191.1$  (COH), 190.8 (t, J =26.3 Hz, COD), 147.8, 132.8, 129.8, 125.0, 14.5. HRMS (EI-TOF) calcd for C<sub>8</sub>H<sub>6</sub>D<sub>2</sub>SO (M<sup>+</sup>) = 154.0410, found 154.0406.

4-(1,1,1-d3-Methylthio)benzaldehyde-formyl-d1 (19'):



TBAB (20 mol%). <sup>1</sup>H NMR spectrum showed 90% deuterium [90%] incorporation on the formyl C-H bond, 68% deuterium incorporation on the *a*-thioxy C(sp<sup>3</sup>)-H bonds and 99% yield using CH<sub>2</sub>Br<sub>2</sub> as an internal standard. Then the crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless oil in 30.3 mg (99% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.90 (s, 0.10H), 7.75 (d, J = 8.5 Hz, 2H), 7.30 (d, J = 8.5 Hz, 2H), 2.52 – 2.47 (m, 0.95H). <sup>13</sup>C NMR  $(126 \text{ MHz}, \text{CDCl}_3) \delta = 191.1 \text{ (COH)}, 190.8 \text{ (t, } J = 26.3 \text{ Hz}, \text{COD)}, 147.8, 132.8, 129.9, 125.1,$ 14.6 - 13.8 (m). HRMS (EI-TOF) calcd for C<sub>8</sub>H<sub>4</sub>D<sub>4</sub>SO (M<sup>+</sup>) = 156.0541, found 156.0537.

Prepared following the general procedure for 48 h with the addition of

4-Methylbenzaldehyde-formyl-*d1*(20):

Prepared following the general procedure. <sup>1</sup>H NMR spectrum showed 91% deuterium incorporation on the formyl C-H bond, less than 2% deuterium D [91%] incorporation on the benzyl C(sp<sup>3</sup>)-H bond s and 97% yield using CH<sub>2</sub>Br<sub>2</sub> as an internal standard. Then the crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless oil in 21.8 mg (90% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.96 (s, 0.09H), 7.77 (d, J = 9.5 Hz, 2H), 7.32 (d, J = 9.5 Hz, 2H),

2.43 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 191.9 (COH), 191.6 (t, *J* = 33.0 Hz, COD), 145.5, 134.1 (t, *J* = 4.3 Hz), 129.8, 129.7, 21.8. HRMS (EI-TOF) calcd for C<sub>8</sub>H<sub>7</sub>DO (M<sup>+</sup>) = 121.0632, found 121.0631.

4-(1,1,1-d3-Methyl)benzaldehyde-formyl-d1 (20'):

Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%). <sup>1</sup>H NMR spectrum showed 91% deuterium incorporation on the formyl C-H bond, 38% deuterium incorporation on the benzyl C(sp<sup>3</sup>)-H bonds and 95% yield using CH<sub>2</sub>Br<sub>2</sub> as an internal standard. Then compound was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless oil in 20.6 mg (85% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.96 (s, 0.09H), 7.78 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 2.43 (s, 1.87H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 192.0 (COH), 191.7 (t, *J* = 33.0 Hz, COD), 145.6 – 145.4 (m), 134.3 – 134.0 (m), 129.8, 129.7, 21.9 (CH<sub>3</sub>), 21.6 (t, *J* = 18.0 Hz, CH<sub>2</sub>D). HRMS (EI-TOF) calcd for C<sub>8</sub>H<sub>6</sub>D<sub>2</sub>O (M<sup>+</sup>) = 122.0691, found 122.0681.

5-Methylhexan-2-yl-5-*d* benzoate (22):



Prepared following the general procedure for 24 h with the addition of TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless oil in 41.0 mg (93% yield). <sup>1</sup>H NMR spectrum showed 88%

deuterium incorporation on the tertiary C(sp<sup>3</sup>)-H bond. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 8.16$ - 8.00 (m, 2H), 7.66 - 7.49 (m, 1H), 7.48 - 7.40 (m, 2H), 5.22 - 5.10 (m, 1H), 1.82 - 1.68 (m, 1H), 1.67 - 1.58 (m, 1.12H), 1.34 (d, *J* = 6.5 Hz, 3H), 1.32 - 1.20 (m, 2H), 0.96 - 0.84 (m, 5.74H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta = 166.2$ , 132.6, 131.0, 129.5, 128.2, 72.0, 34.4, 33.8, 27.9 (CH(CH<sub>3</sub>)<sub>2</sub>), 27.4 (t, *J* = 19.3 Hz, CD(CH<sub>3</sub>)<sub>2</sub>), 22.4, 22.4, 20.0. D NMR (77 MHz, CHCl<sub>3</sub>)  $\delta = 1.53$ , 0.89. HRMS (EI-TOF) calcd for C<sub>14</sub>H<sub>19</sub>DO<sub>2</sub> (M<sup>+</sup>) = 221.1521, found 221.1528.

4-Methylpentyl-4-*d* benzoate (23):

Prepared following the general procedure for 24 h with the addition of
TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a

colorless oil in 38.0 mg (92% yield). <sup>1</sup>H NMR spectrum showed 91% deuterium incorporation on the tertiary C(sp<sup>3</sup>)-H bond. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 8.09 - 7.99$  (m, 2H), 7.59 -

7.52 (m, 1H), 7.43 (t, J = 7.5 Hz, 2H), 4.31 (t, J = 7.0 Hz, 2H), 1.83 – 1.70 (m, 2H), 1.64 – 1.60 (m, 0.09H), 1.38 - 1.25 (m, 2H), 0.94 - 0.87 (m, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta = 166.7$ , 132.8, 130.5, 129.5, 128.3, 65.4, 35.0, 27.7 (CH(CH<sub>3</sub>)<sub>2</sub>), 27.2 (t, *J* = 19.2 Hz, CD(CH<sub>3</sub>)<sub>2</sub>), 26.6, 22.4. D NMR (77 MHz, CHCl<sub>3</sub>)  $\delta$  = 4.32, 1.77, 1.61, 1.32, 0.93. HRMS (EI-TOF) calcd for  $C_{13}H_{17}DO_2$  (M<sup>+</sup>) = 207.1364, found 207.1364.

#### 3-Methylbutyl-3-*d* benzoate (24):

Βz

Prepared following the general procedure for 24 h with the addition of TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless oil in 38.1 mg

(99% yield). <sup>1</sup>H NMR spectrum showed 90% deuterium incorporation on the tertiary C(sp<sup>3</sup>)-H bond. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.40 (d, J = 8.0 Hz, 2H), 7.55 (t, J = 8.0 Hz, 1H), 7.44 (t, J = 8.0 Hz, 2H), 4.36 (t, J = 6.5 Hz, 1.89H), 1.82 - 1.76 (m, 0.10H), 1.66 (t, J = 6.5 Hz, 2H),0.97 (s, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta = 166.7, 132.8, 130.5, 129.5, 128.3, 63.6, 37.3, 129.5, 128.3, 63.6, 37.3, 129.5, 128.3, 63.6, 37.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 129.5, 128.3, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5,$ 25.1 (CH(CH<sub>3</sub>)<sub>2</sub>), 24.7 (J = 19.5 Hz, CD(CH<sub>3</sub>)<sub>2</sub>), 22.4. D NMR (77 MHz, CHCl<sub>3</sub>)  $\delta = 4.33$ , 1.77, 1.64, 0.96. HRMS (EI-TOF) calcd for  $C_{12}H_{15}DO_2$  (M<sup>+</sup>) = 193.1208, found 193.1207.

#### 2-(3-Methylbutyl-1,3-*d*<sub>2</sub>)isoindoline-1,3-dione (**25**):



Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless oil in 34.5 mg (80% yield). <sup>1</sup>H NMR spectrum showed 93% deuterium incorporation on the tertiary  $C(sp^3)$ -H bond, and 22% deuterium incorporation on the *a*-amide  $C(sp^3)$ -H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.84 – 7.79 (m, 2H), 7.72 – 7.58 (m, 2H), 3.81 – 3.42 (m, 1.57H), 1.66 - 1.60 (m, 0.07H), 1.58 - 1.47 (m, 2H), 0.96 - 0.92 (m, 6H). <sup>13</sup>C NMR (126) MHz, CDCl<sub>3</sub>)  $\delta = 168.4$ , 133.8, 132.2, 123.1, 37.4 - 37.0 (m), 36.4, 25.9 - 25.2 (m), 22.2. D NMR (77 MHz, CHCl<sub>3</sub>)  $\delta$  = 3.67, 1.58, 0.94. HRMS (EI-TOF) calcd for C<sub>13</sub>H<sub>13</sub>D<sub>2</sub>NO<sub>2</sub> (M<sup>+</sup>) = 219.1223, found 219.1219.

#### 4-Methylcyclohexyl-4-*d* benzoate (26):

Prepared following the general procedure for 24 h with the addition of **BzO** TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless oil in 39.2 mg

(90% yield). <sup>1</sup>H NMR spectrum showed 90% deuterium incorporation on the tertiary C(sp<sup>3</sup>)-H bond. *cis* : *trans* = 1 : 3, Major one, *trans*: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.12 – 7.97 (m, 2H), 7.59 – 7.48 (m, 1H), 7.48 – 7.37 (m, 2H), 4.95 – 4.81 (m, 1H), 1.99 – 1.89 (m, 2H), 1.82 – 1.31 (m, 4.1H), 1.18 – 1.02 (m, 1.15H), 0.94 – 0.82 (m, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 166.1, 132.6, 130.9, 129.5, 128.2, 73.9, 32.9 – 32.6 (m), 31.6 – 31.5 (m), 29.7 – 29.5 (m), 21.7. Minor one, *cis*, <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.12 – 7.97 (m, 2H), 7.59 – 7.48 (m, 1H), 7.48 – 7.37 (m, 2H), 5.35 – 5.18 (m, 1H), 1.99 – 1.89 (m, 2H), 1.82 – 1.31 (m, 4.1H), 1.18 – 1.02 (m, 1.15H), 1.09 – 0.95 (m, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 166.0, 132.6, 131.1, 129.6, 128.2, 70.3, 32.6 – 32.2 (m), 31.2 – 30.7 (m), 29.4 – 29.0 (m), 22.0. D NMR (77 MHz, CHCl<sub>3</sub>)  $\delta$  = 2.05, 1.73, 1.53, 1.46, 1.37, 1.07, 0.90. HRMS (EI-TOF) calcd for C<sub>14</sub>H<sub>15</sub>D<sub>3</sub>O<sub>2</sub> (M<sup>+</sup>) = 221.1490, found 221.1485.

#### 4-Methyl-1-phenylpentan-1-one-4-d (27):



Prepared following the general procedure for 24 h with the addition of TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a

colorless oil in 19.7 mg (56% yield). <sup>1</sup>H NMR spectrum showed 91% deuterium incorporation on the tertiary C(sp<sup>3</sup>)-H bond. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.96 (d, *J* = 7.5 Hz, 2H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 2H), 3.02 – 2.87 (m, 1.95H), 1.64 – 1.46 (m, 2.09H), 0.97 – 0.89 (m, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 200.8, 137.1, 132.8, 128.5, 128.0, 36.7 – 36.5 (m), 33.1, 27.4 – 27.0 (m), 22.4 – 22.2 (m). D NMR (77 MHz, CHCl<sub>3</sub>)  $\delta$  = 2.93, 1.60, 0.92. HRMS (EI-TOF) calcd for C<sub>12</sub>H<sub>15</sub>DO (M<sup>+</sup>) = 177.1258, found 177.1261.

 $1-(4-(Methoxy-d_3)phenyl)-4-methylpentan-1-one-4-d$  (28):



Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1)

to afford product as a colorless oil in 37.2 mg (90% yield). <sup>1</sup>H NMR spectrum showed average 47% deuterium incorporation on the tertiary C(sp<sup>3</sup>)-H bond and adjacent secondary C(sp<sup>3</sup>)-H bonds which overlap with each other on the <sup>1</sup>H NMR spectrum, 7% deuterium incorporation on the *a*-oxy carbonyl bonds and 84% deuterium incorporation on the *a*-oxy C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.99 – 7.86 (m, 2H), 6.96 – 6.86 (m, 2H), 3.86 – 3.78 (m, 0.48H), 2.94 – 2.81 (m, 1.86H), 1.65 – 1.52 (m, 1.60H), 0.96 – 0.87 (m, 6H). <sup>13</sup>C NMR (126

MHz, CDCl<sub>3</sub>)  $\delta$  = 199.3, 163.2, 130.3, 130.1, 113.6, 55.3 – 54.5 (m), 36.3 – 36.0 (m), 33.4 – 32.6 (m), 28.1 – 26.3 (m), 23.5 – 22.0 (m). D NMR (77 MHz, CHCl<sub>3</sub>)  $\delta$  = 3.82, 2.89, 1.60, 0.92. HRMS (EI-TOF) calcd for C<sub>13</sub>H<sub>14</sub>D<sub>4</sub>O<sub>2</sub> (M<sup>+</sup>) = 210.1552, found 210.1548.

10-Bromo-2-methyldecan-5-one-2-*d* (29):



Prepared following the general procedure for 24 h with the addition of TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1)

to afford product as a colorless oil in 49.2 mg (99% yield). <sup>1</sup>H NMR spectrum showed 5% deuterium incorporation on the *a*-bromide C(sp<sup>3</sup>)-H bonds and 62% deuterium incorporation on the tertiary C(sp<sup>3</sup>)-H bond. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 3.40 (t, *J* = 7.0 Hz, 1.90H), 2.44 – 2.35 (m, 4H), 1.92 – 1.82 (m, 2H), 1.62 – 1.52 (m, 2H), 1.52 – 1.50 (m, 0.38H), 1.49 – 1.36 (m, 4H), 0.89 – 0.86 (m, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 211.2, 42.4 – 42.2 (m), 40.9, 40.9, 33.6, 32.7 – 32.4 (m), 27.8, 27.7, 22.9 – 22.6 (m), 22.4, 22.2. D NMR (77 MHz, CHCl<sub>3</sub>)  $\delta$  = 3.39, 2.39, 1.50. HRMS (EI-TOF) calcd for C<sub>11</sub>H<sub>20</sub>DBrO (M<sup>+</sup>) = 249.0833, found 249.0823.

2-Methyl-10-phenoxydecan-5-one-2,10,10-*d*<sub>3</sub> (**30**):



Prepared following the general procedure for 24 h with the addition of TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 :

1) to afford product as a colorless oil in 51.9 mg (99% yield). <sup>1</sup>H NMR spectrum showed average 34% deuterium incorporation on the tertiary C(sp<sup>3</sup>)-H adjacent secondary C(sp<sup>3</sup>)-H bonds which overlap with each other in the <sup>1</sup>H NMR spectrum, and 65% deuterium incorporation on the *a*-oxy C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.32 – 7.25 (m, 2H), 6.94 (t, *J* = 7.5 Hz, 1H), 6.89 (d, *J* = 8.5 Hz, 2H), 4.00 – 3.92 (m, 0.70H), 2.47 – 2.34 (m, 4H), 1.82 – 1.74 (m, 2H), 1.68 – 1.61 (m, 1.97H), 1.51 – 1.41 (m, 4H), 0.92 – 0.88 (m, 5.89H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 211.4, 159.0, 129.4, 120.5, 114.4, 67.5 - 67.1 (m), 42.6 – 42.3 (m), 40.9 – 40.6 (m), 32.7 – 32.4 (m), 29.1 (CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>), 28.8 (t, *J* = 11.8 Hz, CHDCH(CH<sub>3</sub>)<sub>2</sub>), 27.7 (CH(CH<sub>3</sub>)<sub>2</sub>), 27.2 (t, *J* = 19.4 Hz, CD(CH<sub>3</sub>)<sub>2</sub>), 25.8 – 25.4 (m), 23.7 – 23.2 (m), 22.5 – 22.1 (m). D NMR (77 MHz, CHCl<sub>3</sub>)  $\delta$  = 3.95, 2.44, 1.78, 1.63, 1.53, 0.90. HRMS (EI-TOF) calcd for C<sub>17</sub>H<sub>21</sub>D<sub>5</sub>O<sub>2</sub> (M<sup>+</sup>) = 267.2241, found 267.2239.

2-Methyl-10-(phenylthio)decan-5-one-2,10,10-*d*<sub>3</sub> (**31**):



Prepared following the general procedure for 24 h with the addition of TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 :

1) to afford product as a colorless oil in 52.8 mg (95% yield). <sup>1</sup>H NMR spectrum showed 77% deuterium incorporation on the tertiary C(sp<sup>3</sup>)-H bond, and 83% deuterium incorporation on the *a*-thioxy C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.33 – 7.29 (m, 2H), 7.29 – 7.25 (m, 2H), 7.18 – 7.13 (m, 1H), 2.92 – 2.86 (m, 0.34H), 2.42 – 2.31 (m, 3.91H), 1.67 – 1.60 (m, 2H), 1.60 – 1.53 (m, 2H), 1.52 – 1.48 (m, 0.23H), 1.46 – 1.35 (m, 4H), 0.90 – 0.84 (m, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 211.3, 136.7, 128.9, 128.8, 125.7, 42.4, 40.9, 40.8, 32.6 – 32.5 (m), 28.8 - 28.6 (m), 28.2, 27.7, 23.3, 22.3, 22.2. D NMR (77 MHz, CHCl<sub>3</sub>)  $\delta$  = 2.88, 2.36, 1.49, 0.89, HRMS (EI-TOF) calcd for C<sub>17</sub>H<sub>23</sub>D<sub>3</sub>OS (M<sup>+</sup>) = 281.1887, found 281.1881.

#### 4-(Methyl-*d*<sub>3</sub>)-1,1'-biphenyl (**32**):

Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless solid in 33.2 mg (99% yield), and <sup>1</sup>H NMR spectrum showed 81% deuterium incorporation on the benzylic  $C(sp^3)$ -H bonds. After second running with the 81% deuteride product, the deuterium incorporation was improved to 90%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.78 – 7.66 (m, 2H), 7.65 – 7.59 (m, 2H), 7.58 – 7.51 (m, 2H), 7.51 – 7.42 (m, 1H), 7.41 – 7.32 (m, 2H), 2.54 – 2.43 (m, 0.30H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 141.1, 138.3, 136.9, 129.4, 128.7, 126.9, 126.9, 21.1 – 20.1 (m). HRMS (EI-TOF) calcd for C<sub>13</sub>H<sub>9</sub>D<sub>3</sub> (M<sup>+</sup>) = 171.1122, found 171.1114.

4,4,5,5-Tetramethyl-2-(4-(methyl-*d*<sub>3</sub>)phenyl)-1,3,2-dioxaborolane (**33**):



Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 5 : 1) to afford product as colorless solid in 43.1 mg (99% yield), and the <sup>1</sup>H NMR spectrum

showed 70% deuterium incorporation on the benzylic C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.71(d, *J* = 6.5 Hz, 2H), 7.19 (d, *J* = 6.5 Hz, 2H), 2.38 – 2.32 (m, 0.90H), 1.35 (s, 12H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 141.3, 134.8, 128.5, 83.6, 24.8, 21.7 – 21.5 (m). HRMS (EI-TOF) calcd for C<sub>13</sub>H<sub>16</sub>D<sub>3</sub>BO<sub>2</sub> (M<sup>+</sup>) = 221.1661, found 221.1657.

1-Bromo-4-(methoxy-*d*<sub>3</sub>)benzene (21):

Prepared following the general procedure for 48 h with the addition of Br [91%] TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 10 : 1) to afford product as a colorless solid in 31.8 mg (85% yield), and the <sup>1</sup>H NMR spectrum showed 91% deuterium incorporation on the *a*-oxy C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.52 – 7.34 (m, 2H), 6.91 – 6.73 (m, 2H), 3.79 – 3.72 (m, 0.27H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 158.7, 132.2, 115.7, 112.7, 55.2 – 54.6 (m). HRMS (EI-TOF) calcd for C<sub>7</sub>H<sub>4</sub>D<sub>3</sub>BrO (M<sup>+</sup>) = 188.9861, found 188.9859.

#### ((Propan-2-yl-2-d)oxy)benzene (34):

Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%). The yield was detected to be 99% using CH<sub>2</sub>Br<sub>2</sub> as internal standard. Finally, the crude mixture was purified over silica gel chromatography (pure hexane) to afford product as a colorless oil which still contained some diethyl ether, but <sup>1</sup>H NMR spectrum was clean enough to show 91% deuterium incorporation on the *a*-oxy C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.33 – 7.27 (m, 2H), 7.00 – 6.90 (m, 3H), 4.61 – 4.53 (m, 0.09H), 1.39 – 1.35 (m, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 157.8, 129.4, 120.4, 115.8, 70.0 – 69.0 (m), 21.9. HRMS (EI-TOF) calcd for C<sub>9</sub>H<sub>11</sub>DO (M<sup>+</sup>) = 137.0945, found 137.0947.

#### Chroman-4-one-2,2-*d*<sub>2</sub> (**35**):

Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 10 : 1) to afford product as a colorless oil in 26.7 mg (90% yield), and <sup>1</sup>H NMR spectrum showed 3% deuterium incorporation on the *a*-carbonyl C(sp<sup>3</sup>)-H bonds and 87% deuterium incorporation on the *a*-carbonyl C(sp<sup>3</sup>)-H bonds and 87% deuterium incorporation on the *a*-carbonyl C(sp<sup>3</sup>)-H bonds (d, J = 7.5, 2.0 Hz, 1H), 7.49 – 7.43 (m, 1H), 7.04 – 6.97 (m, 1H), 6.96 (d, J = 8.0 Hz, 1H), 4.55 – 4.47 (m, 0.27 H), 2.79 (s, 1.94H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta = 191.8, 161.8, 135.9, 127.1, 121.3, 117.8, 66.9 – 66.0 (m), 37.5. D NMR (500 MHz, CHCl<sub>3</sub>) <math>\delta = 4.50, 2.78$ . HRMS (EI-TOF) calcd for C<sub>9</sub>H<sub>6</sub>D<sub>2</sub>O<sub>2</sub> (M<sup>+</sup>) = 150.0644, found 150.0643.

(4-(Methoxy-*d*<sub>3</sub>)phenyl)(4-(trifluoromethyl)phenyl)methanone (**36**):

Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%) and C<sub>6</sub>H<sub>5</sub>CF<sub>3</sub> (0.2 mL). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 10 : 1) to afford a colorless solid in 55.4 mg (99% yield), and <sup>1</sup>H NMR spectrum showed 69% deuterium incorporation on the *a*-oxy C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.88 – 7.77 (m, 4H), 7.73 (d, *J* = 8.5 Hz, 2H), 6.97(d, *J* = 8.5 Hz, 2H), 3.91 – 3.83 (m, 0.92H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 194.2, 163.7, 141.5, 133.2 (q, *J* = 32.8 Hz), 132.6, 129.7, 129.3, 125.2 (q, *J* = 3.8 Hz), 123.7 (q, *J* = 272.8 Hz), 113.8, 55.5 – 54.7 (m). HRMS (EI-TOF) calcd for C<sub>15</sub>H<sub>8</sub>D<sub>3</sub>F<sub>3</sub>O<sub>2</sub> (M<sup>+</sup>) = 283.0894, found 283.0896.

#### *tert*-Butyl (methyl-*d*<sub>3</sub>)(phenyl)carbamate (**37**):

Boc Prepared following the general procedure for 48 h with the addition of TBAB (20 Ph<sup>N</sup>) mol%). The crude mixture was purified over silica gel chromatography (hexane : [91%] diethyl ether = 5 : 1) to afford product as a colorless oil in 37.7 mg (90% yield), and <sup>1</sup>H NMR spectrum showed 91% deuterium incorporation on the *a*-amide C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.34 – 7.29 (m, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.17 – 7.13 (m, 1H), 3.26 – 3.21 (m, 0.26 H), 1.45 (s, 9H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 154.8, 143.8, 128.5, 125.5, 125.3, 80.2, 37.2 – 36.3 (m), 28.3. HRMS (EI-TOF) calcd for C<sub>12</sub>H<sub>14</sub>D<sub>3</sub>NO<sub>2</sub> (M<sup>+</sup>) = 210.1442, found 210.1446.

#### *tert*-Butyl indoline-1-carboxylate-2,2,3-*d*<sub>3</sub> (**38**):

Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 5 : 1) to afford product as a colorless solid in 37.2 mg (85% yield), and <sup>1</sup>H NMR spectrum showed 87% deuterium incorporation on the benzylic C(sp<sup>3</sup>)-H bonds and 52% deuterium incorporation on the *a*-amide C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.01 – 7.43 (m, 1H), 7.21 – 7.06 (m, 2H), 6.92 (t, *J* = 7.5 Hz, 1H), 3.96 (bs, 0.96H), 3.11 – 3.02 (m, 0.27H), 1.57 (s, 9H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 152.6, 143.3 – 143.0 (m), 132.1 – 130.0 (m), 127.3, 124.9 – 124.3 (m), 122.0, 114.6, 80.2 – 77.5 (m), 47.5 – 47.2 (m), 28.4, 27.1 – 26.2 (m). HRMS (EI-TOF) calcd for C<sub>13</sub>H<sub>14</sub>D<sub>3</sub>NO<sub>2</sub> (M<sup>+</sup>) = 222.1442, found 222.1437.

4-Phenylbutanoic-4,  $4-d_2$  acid (**39**):



Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (dichloromethane : methanol = 20 : 1) to afford

product as a colorless solid in 29.5 mg (90% yield), and <sup>1</sup>H NMR spectrum showed 71% deuterium incorporation on the benzylic C(sp<sup>3</sup>)-H bonds and 3% deuterium incorporation on the *a*-carboxylic acid C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.30 (t, *J* = 7.5 Hz, 2H), 7.23 – 7.15 (m, 3H), 2.73 – 2.63 (m, 0.58H), 2.39 (t, *J* = 7.0 Hz, 2H), 2.02 – 1.83 (m, 1.94H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 179.9, 141.2 – 141.0 (m), 128.4, 128.4, 126.0, 35.0 – 34.3 (m), 33.3 – 33.0 (m), 26.1 – 26.0 (m). D NMR (77 MHz, CHCl<sub>3</sub>)  $\delta$  = 2.68, 2.40, 1.98. HRMS (EI-TOF) calcd for C<sub>10</sub>H<sub>10</sub>D<sub>2</sub>O<sub>2</sub> (M<sup>+</sup>) = 166.0957, found 166.0955.

Methyl (2*S*)-2-(4-(2-methylpropyl-1,2-*d*<sub>2</sub>)phenyl)propanoate (**40**):



Prepared following the general procedure for 24 h with the addition of TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 50 : 1) to afford product as a colorless solid in 40.5 mg (92% yield),

and <sup>1</sup>H NMR spectrum showed 89% deuterium incorporation on the isopropyl C(sp<sup>3</sup>)-H bond, 49% deuterium incorporation on the benzylic C(sp<sup>3</sup>)-H bonds and 20% deuterium incorporation on the *a*-ester C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.21 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 3.71 (m, 0.80H), 3.66 (s, 3H), 2.47 – 2.40 (m, 1.03H), 1.91 – 1.80 (m, 0.11H), 1.53 – 1.43 (m, 3H), 0.94 – 0.86 (m, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 175.2, 140.5, 137.7, 129.3, 127.1, 51.9, 45.0, 30.1 – 29.8 (m), 29.7 – 29.4 (m), 22.2, 18.6, 18.5. D NMR (77 MHz, CHCl<sub>3</sub>)  $\delta$  = 3.70, 2.44, 1.84, 1.50, 0.91. HRMS (EI-TOF) calcd for C<sub>14</sub>H<sub>17</sub>D<sub>3</sub>O<sub>2</sub> (M<sup>+</sup>) = 223.1646, found 223.1647.

Methyl 2,2-dimethyl-5-(2-(methyl-*d*)-5-(methyl-*d*<sub>2</sub>)phenoxy)pentanoate-5-*d* (41):



Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 10 : 1) to afford product as a colorless solid in 47.7

mg (90% yield), and <sup>1</sup>H NMR spectrum showed 66%, 33% deuterium incorporation on the benzylic  $C(sp^3)$ -H bonds individually, and 64% deuterium incorporation on the *a*-oxy  $C(sp^3)$ -

H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.01 (d, *J* = 7.5 Hz, 1H), 6.67 (d, *J* = 7.5 Hz, 1H), 6.62 (s, 1H), 3.96 – 3.88 (m, 0.72H), 3.68 (s, 3H), 2.33 – 2.27 (m, 1.02H), 2.21 – 2.15 (m, 1.69H), 1.77 – 1.69 (m, 4H), 1.24 (s, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 178.3, 156.9, 136.3, 130.2, 123.6 – 123.3 (m), 120.6, 111.9, 67.5 (dd, *J* = 44.7, 23.2 Hz), 51.7, 42.1, 37.1 – 37.0 (m), 25.1, 25.0, 21.4 – 20.5 (m), 15.8 – 15.1 (m). D NMR (77 MHz, CHCl<sub>3</sub>)  $\delta$  = 3.92, 2.32 – 2.93, 2.20 – 2.17. HRMS (EI-TOF) calcd for C<sub>16</sub>H<sub>19</sub>D<sub>5</sub>O<sub>3</sub> (M<sup>+</sup>) = 269.2034, found 269.2038.

#### (4-(Methyl-*d*<sub>3</sub>)-1*H*-pyrazol-1-yl)(phenyl)methanone (**42**):

N-N [85%] Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%). The crude mixture was purified by silica gel chromatography (hexane : diethyl ether = 5 : 1) to afford product as a colorless solid in 33.1 mg (89% yield), and <sup>1</sup>H NMR spectrum showed 85%

deuterium incorporation on the benzylic C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.18 (s, 1H), 8.09 – 8.05 (m, 2H), 7.63 (s, 1H), 7.61 – 7.55 (m, 1H), 7.52 – 7.45 (m, 2H), 2.15 – 2.11 (m, 0.44H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 166.3, 146.2, 132.7, 131.7, 131.3, 128.1, 128.0, 120.2, 8.5 – 8.3 (m). HRMS (EI-TOF) calcd for C<sub>11</sub>H<sub>7</sub>D<sub>3</sub>N<sub>2</sub>O (M<sup>+</sup>) = 189.0976, found 189.0973.

#### 5-(Methyl-*d*<sub>3</sub>)-2-phenyl-2,4-dihydro-3*H*-pyrazol-3-one (**43**):



[54%]

Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 5 : 1) to afford the product as a colorless solid in 34.6 mg (99% yield), and <sup>1</sup>H NMR spectrum showed

75% deuterium incorporation on the methyl C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.85 (d, *J* = 8.0 Hz, 2H), 7.38 (t, *J* = 8.0 Hz, 2H), 7.17 (t, *J* = 8.0 Hz, 1H), 3.41 (s, 2H), 2.19 – 2.12 (m, 0.74H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 170.5, 156.2, 138.0, 128.8, 125.0, 118.8, 43.0, 16.7 – 16.2 (m). HRMS (EI-TOF) calcd for C<sub>10</sub>H<sub>7</sub>D<sub>3</sub>N<sub>2</sub>O (M<sup>+</sup>) = 177.0976, found 177.0972.

5-(Methyl-*d*<sub>3</sub>)-1-phenylpyridin-2(1*H*)-one (44):

Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%) after mixing with trifluoroacetic acid (3.0 equiv) in  $D_2O$ . The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 2 : 1) to afford the product as a colorless solid in 31.7 mg (85% yield), and <sup>1</sup>H NMR spectrum showed 54% deuterium incorporation on the benzylic C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.52 – 7.46 (m, 2H), 7.44 – 7.39 (m, 1H), 7.38- 7.35 (m, 2H), 7.27 (dd, *J* = 7.0, 2.5 Hz, 1H), 7.12 (s, 1H), 6.62 (d, *J* = 9.5 Hz, 1H), 2.12 – 2.06 (m, 1.39H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 161.7, 142.5, 141.1, 135.3, 129.3, 128.3, 126.5, 121.4, 114.8 – 114.7 (m), 17.0 – 16.4 (m). HRMS (EI-TOF) calcd for C<sub>12</sub>H<sub>8</sub>D<sub>3</sub>NO (M<sup>+</sup>) = 188.1023, found 188.1018.

#### 3-Butylisobenzofuran-1(3*H*)-one-3-*d* (45):



Prepared following the general procedure for 24 h with the addition of TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 2 : 1) to afford product as a colorless oil in 32.0 mg (84% yield), and <sup>1</sup>H NMR spectrum showed 92%

deuterium incorporation on the *a*-oxy C(sp<sup>3</sup>)-H bond, and 25% deuterium incorporation on the indicated secondary C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.87 (d, *J* = 8.0 Hz, 1H), 7.65 (t, *J* = 8.0 Hz, 1H), 7.50 (t, *J* = 7.5 Hz, 1H), 7.43 (d, *J* = 7.5 Hz, 1H), 5.46 (dd, *J* = 7.5, 4.0 Hz, 0.08H), 2.08 – 1.95 (m, 1H), 1.80 – 1.68 (m, 1H), 1.53 – 1.25 (m, 3.00H), 0.98 – 0.82 (m, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 170.6, 150.0, 133.9, 129.0, 126.1, 125.6, 121.7, 81.4 (OCH*n*Bu), 81.0 (t, *J* = 22.4 Hz, OCD*n*Bu), 34.4 – 34.1 (m), 26.8 – 26.2 (m), 22.5 – 20.8 (m), 13.9 – 13.1 (m). D NMR (77 MHz, CHCl<sub>3</sub>)  $\delta$  = 5.45, 1.35. HRMS (EI-TOF) calcd for C<sub>12</sub>H<sub>12</sub>D<sub>2</sub>O<sub>2</sub> (M<sup>+</sup>) = 192.1114, found 192.1115.

#### *N*-(2,6-bis(methyl-*d*<sub>3</sub>)phenyl)-2-(diethylamino)acetamide (**46**):



Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%) after mixing with trifluoroacetic acid (3.0 equiv) in  $D_2O$ . The crude mixture was purified by silica gel chromatography (hexane : diethyl ether = 5 : 1) to afford product as a colorless solid in

39.4 mg (84% yield), and <sup>1</sup>H NMR spectrum showed 62% deuterium incorporation on the benzylic C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.92 (bs, 1H), 7.15 – 7.00 (m, 3H), 3.22 (s, 2H), 2.69 (q, *J* = 7.0 Hz, 4H), 2.24 – 2.18 (m, 2.31H), 1.14 (t, *J* = 7.0 Hz, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 170.3, 135.0, 134.0, 128.2, 127.0, 57.5, 48.9, 18.6 – 18.0 (m), 12.6. D NMR (77 MHz, CHCl<sub>3</sub>)  $\delta$  = 3.21 – 3.18. HRMS (EI-TOF) calcd for C<sub>14</sub>H<sub>18</sub>D<sub>4</sub>NO (M<sup>+</sup>) = 238.1978, found 238.1970.

*N*-(1-(2,6-bis(methyl-*d*<sub>3</sub>)phenoxy)propan-2-yl)benzamide (47):



Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 10 : 1) to afford product as a colorless solid in 49.4 mg (87% yield), and <sup>1</sup>H NMR spectrum showed

66% deuterium incorporation on the benzylic C(sp<sup>3</sup>)-H bonds, and 15% deuterium incorporation on the *a*-oxy C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.87 – 7.78 (m, 2H), 7.56 – 7.48 (m, 1H), 7.48 – 7.32 (m, 2H), 7.01 (d, *J* = 7.5 Hz, 2H), 6.97 – 6.89 (m, 1H), 6.73 (bs, 1H), 4.62 – 4.49 (m, 1H), 3.98 – 3.88 (m, 0.88H), 3.87 – 3.76 (m, 0.83H), 2.29 – 2.21 (m, 2.03H), 1.53 (d, *J* = 7.0 Hz, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 166.8, 154.8, 134.6, 131.4, 130.7 – 130.5 (m), 129.0, 128.5, 126.8, 124.1, 73.8, 45.8 – 45.6 (m), 17.8 – 17.6 (m), 16.2 – 15.2 (m). D NMR (77 MHz, CHCl<sub>3</sub>)  $\delta$  = 3.89 – 3.78, 2.24 – 2.20. HRMS (EI-TOF) calcd for C<sub>18</sub>H<sub>17</sub>D<sub>4</sub>NO<sub>2</sub> (M<sup>+</sup>) = 287.1818, found 287.1823.

#### 4-Chloro-3,5-bis(methyl-*d*<sub>3</sub>)phenyl acetate (48):



Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 10 : 1) to afford product as a colorless oil in 39.2 mg (99% yield), and <sup>1</sup>H NMR spectrum showed 69%

deuterium incorporation on the benzylic C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 6.82 (s, 2H), 2.38 – 2.32 (m, 1.87H), 2.28 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 169.5, 148.2, 137.4, 131.8, 121.3, 21.0, 20.7 – 20.1 (m). HRMS (EI-TOF) calcd for C<sub>10</sub>H<sub>7</sub>D<sub>4</sub>ClO<sub>2</sub> (M<sup>+</sup>) = 202.0693, found 202.0695.

Benzo[*d*][1,3]dioxol-5-yl-2,2-*d*<sub>2</sub> acetate (**49**):

<sup>[94%]</sup> OAc Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless solid in 34.2 mg (95% yield), and <sup>1</sup>H NMR spectrum showed 94% deuterium incorporation on the  $\alpha$ -oxy C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 6.77 (d, *J* = 9.0 Hz, 1H), 6.60 (d, *J* = 2.5 Hz, 1H), 6.52 (dd, *J* = 9.0, 2.5 Hz, 1H), 5.95 (s, 0.12H), 2.26 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 169.8, 148.0, 145.3, 144.9, 113.9, 107.9, 103.7, 101.6 – 100.8 (m), 20.9. HRMS (EI-TOF) calcd for  $C_9H_6D_2O_4$  (M<sup>+</sup>) = 182.0543, found 182.0546.

(2*S*)-7-Chloro-2'-methoxy-4,6-bis(methoxy-*d*)-6'-methyl-3*H*-spiro[benzofuran-2,1'cyclohexan]-2'-ene-3,4'-dione (**50**):



Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%) and  $C_6H_5CF_3$  (0.2 mL). The crude mixture was purified over silica gel chromatography (dichloromethane : diethyl ether = 1 : 1) to afford product as a

colorless solid in 70.1 mg (99% yield), and <sup>1</sup>H NMR spectrum showed 31% and 22% deuterium incorporation on the *a*-oxy C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 6.12 (s, 1H), 5.52 (s, 1H), 4.02 – 3.97 (m, 2.33H), 3.96 – 3.92 (m, 2.06H), 3.60 (s, 3H), 3.00 (dd, *J* = 16.5, 13.5 Hz, 1H), 2.86 – 2.77 (m, 1H), 2.41 (dd, *J* = 16.5, 4.5 Hz, 1H), 0.94 (d, *J* = 7.0 Hz, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 197.0, 192.4, 170.7, 169.4, 164.6, 157.7, 104.8, 89.4, 57.2 – 56.0 (m), 40.0, 36.3, 14.2. D NMR (77 MHz, CHCl<sub>3</sub>)  $\delta$  = 3.99. HRMS (EI-TOF) calcd for C<sub>17</sub>H<sub>15</sub>D<sub>2</sub>ClO<sub>6</sub> (M<sup>+</sup>) = 354.0834, found 354.0831.

*N*-((3*s*,5*s*,7*s*)-adamantan-1-yl)benzamide-*d*11 (**5**1):



Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%) and  $C_6H_5CF_3$  (0.2 mL). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 10 : 1) to afford product as a colorless solid in 50.4 mg (99% yield), and <sup>1</sup>H NMR spectrum showed 10.9

deuterium atoms per adamantyl molecule. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.70 (d, *J* = 7.0 Hz, 2H), 7.48 – 7.41 (m, 1H), 7.41 – 7.33 (m, 2H), 5.84 (bs, 1H), 2.17 – 2.02 (m, 1.60H), 1.76 – 1.61 (m, 2.55H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 166.6 (166.5), 135.9, 130.9, 128.3, 126.6, 52.1 – 51.6 (m), 41.5 – 40.4 (m), 36.2 – 35.1 (m), 29.2 – 28.1 (m). D NMR (77 MHz, CHCl<sub>3</sub>)  $\delta$  = 2.04, 1.64. HRMS (EI-TOF) calcd for C<sub>17</sub>H<sub>10</sub>D<sub>11</sub>O (M<sup>+</sup>) = 266.2304, found 266.2294.

N-((1r,3R,5S,7r)-3,5-dimethyladamantan-1-yl)benzamide-d7 (52):

NHBz Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%) and C<sub>6</sub>H<sub>5</sub>CF<sub>3</sub> (0.2 mL). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 10 : 1) to afford the product as a colorless solid in 56.1 mg (99% yield), and <sup>1</sup>H NMR spectrum showed 6.7 deuterium atoms per adamantyl molecule. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.75 – 7.65 (m, 2H), 7.47 – 7.41 (m, 1H), 7.41 – 7.33 (m, 2H), 5.90 (bs, 1H), 2.19 – 2.17 (m, 0.13H), 1.98 – 1.92 (m, 0.31H), 1.81

-1.71 (m, 2.55H), 1.46 -1.36 (m, 1.40 H), 1.36 -1.25 (m, 1.56 H), 1.24 -1.10 (m, 2.33H), 0.86 (s, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta = 166.6$ , 135.8, 140.0, 128.3, 126.6, 53.6 (t, J = 8.3 Hz), 50.5, 47.5 -46.9 (m), 42.5 -41.8 (m), 40.7 -40.5 (m), 32.3 (t, J = 10.5 Hz), 30.1, 39.8 -29.0 (m). D NMR (77 MHz, CHCl<sub>3</sub>)  $\delta = 2.12$ , 1.89, 1.73, 1.37, 1.28, 0.86. HRMS (EITOF) calcd for C<sub>19</sub>H<sub>18</sub>D<sub>7</sub>NO (M<sup>+</sup>) = 290.2370, found 290.2366.

#### Phenyl (3*r*,5*r*,7*r*)-adamantane-1-carboxylate-*d*8 (53):

CO<sub>2</sub>Ph [56%] [67%]

Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%) and C<sub>6</sub>H<sub>5</sub>CF<sub>3</sub> (0.2 mL). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 8 : 1) to afford product

as a colorless solid in 50.3 mg (98% yield), and <sup>1</sup>H NMR spectrum showed 8.8 deuterium atoms per adamantyl molecule. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.42 – 7.34 (m, 2H), 7.24 – 7.16 (m, 1H), 7.08 – 7.01 (m, 2H), 2.11 – 2.01 (m, 5.23H), 1.79 – 1.70 (m, 0.98H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 176.2, 151.1, 129.3, 125.4, 121.5, 40.9 – 40.6 (m), 38.7 – 38.3 (m), 38.3 – 37.8 (m), 36.0 – 35.1 (m), 27.9 – 26.6 (m). D NMR (77 MHz, CHCl<sub>3</sub>)  $\delta$  = 2.10, 1.77. HRMS (EI-TOF) calcd for C<sub>17</sub>H<sub>12</sub>D<sub>8</sub>O<sub>2</sub> (M<sup>+</sup>) = 264.1960, found 264.1955.

#### $2-(3,4-Bis(methoxy-d)phenyl)acetonitrile-d_2$ (54):



Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1)

to afford product as a colorless solid in 31.2 mg (88% yield), and <sup>1</sup>H NMR spectrum showed 33% deuterium incorporation on the *a*-oxy C(sp<sup>3</sup>)-H bonds, and 99% deuterium incorporation on the benzylic C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 6.87 – 6.81 (m, 2H), 6.80 (s, 1H), 3.90 – 3.80 (m, 4.02H), 3.70 (m, 0.01H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 149.3, 148.8, 122.0, 120.1, 118.1, 111.4, 110.9, 56.0 – 55.2 (m), 22.7 (t, *J* = 20.5 Hz, OCH<sub>2</sub>D). HRMS (EI-TOF) calcd for C<sub>10</sub>H<sub>7</sub>D<sub>4</sub>NO<sub>2</sub> (M<sup>+</sup>) = 181.1035, found 181.1027.

#### 2,3-Dihydro-1*H*-inden-1-one-3,3-*d*<sub>2</sub> (55):

Prepared following the general procedure for 48 h with the addition of [12%] TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 20 : 1) to afford product as a colorless solid in 25.2 mg (95% yield), and <sup>1</sup>H NMR spectrum showed 73% deuterium incorporation on the benzylic C(sp<sup>3</sup>)-H bonds, and 12% deuterium incorporation on the *a*-carbonyl C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.75 (d, *J* = 8.0 Hz, 1H), 7.58 (dt, *J* = 7.5, 1.0 Hz, 1H), 7.48 (d, *J* = 7.5 Hz, 1H), 7.36 (t, *J* = 7.5 Hz, 1H), 3.18 – 3.08 (m, 0.55H), 2.71 – 2.62 (m, 1.76 H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 207.1, 155.0, 137.1, 134.5, 127.3, 126.7, 123.7, 36.1, 25.8 - 25.4 (m). HRMS (EI-TOF) calcd for C<sub>9</sub>H<sub>6</sub>D<sub>2</sub>O (M<sup>+</sup>) = 134.0695, found 134.0692.

#### Methyl 2-(4-(methoxy- $d_3$ )phenyl)acetate- $d_2$ (56):

[90%] [98%] Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 10 : 1)

to afford product as a colorless solid in 35.7 mg (99% yield), and <sup>1</sup>H NMR spectrum showed 90% deuterium incorporation on the *a*-oxy C(sp<sup>3</sup>)-H bonds, and 98% deuterium incorporation on the *a*-benzylic C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.20 (d, *J* = 8.0 Hz, 2H), 6.86 (d, *J* = 8.0 Hz, 2H), 3.79 – 3.74 (m, 0.30H), 3.68 (s, 3H), 3.57 – 3.53 (m, 0.04H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 172.3, 158.7, 130.2, 125.9, 113.9, 55.0 – 54.3 (m), 51.9, 40.0 – 39.3 (m). HRMS (EI-TOF) calcd for C<sub>10</sub>H<sub>7</sub>D<sub>5</sub>O<sub>3</sub> (M<sup>+</sup>) = 185.1095, found 185.1093.

(2-(Methyl-*d*<sub>3</sub>)phenyl)(phenyl)methanone (57):



Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 8 : 1) to afford product as a colorless oil in 37.7 mg (96% yield), and <sup>1</sup>H NMR spectrum showed 93%

deuterium incorporation on the benzylic C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.81 (d, *J* = 7.5 Hz, 2H), 7.62 – 7.54 (m, 1H), 7.49 – 7.43 (m, 2H), 7.42 – 7.37 (m, 1H), 7.34 – 7.28 (m, 2H), 7.27 – 7.22 (m, 1H), 2.34 – 2.29 (m, 0.21H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 198.6, 138.6, 137.7, 136.6, 133.1, 130.9, 130.2, 130.1, 128.5, 128.4, 125.1, 19.5 – 18.9 (m). HRMS (EI-TOF) calcd for C<sub>14</sub>H<sub>19</sub>D<sub>3</sub>O (M<sup>+</sup>) = 199.1071, found 199.1067.

#### 2-Bromo-6-(methoxy-*d*<sub>2</sub>)naphthalene (58):

<sup>[62%]</sup> <sup>Br</sup> Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 8 : 1) to afford product as a colorless solid in 46.7 mg (99% yield), and <sup>1</sup>H NMR spectrum showed 62% deuterium incorporation on the *a*-oxy C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.91 (d, *J* = 2.0 Hz, 1H), 7.63 (d, *J* = 9.0 Hz, 1H), 7.60 (d, *J* = 9.0 Hz, 1H), 7.50 (dd, *J* = 9.0, 2.0 Hz, 1H), 7.16 (dd, *J* = 9.0, 2.0 Hz, 1H), 7.09 (s, 1H), 3.92 – 3.86 (m, 1.15H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 157.8, 133.0, 130.0, 129.6, 129.6, 128.4, 128.3, 119.7, 117.0, 105.7, 52.3 – 54.7 (m). HRMS (EI-TOF) calcd for C<sub>11</sub>H<sub>7</sub>D<sub>2</sub>BrO (M<sup>+</sup>) = 239.9936, found 239.9939.

*N*-(2,6-bis(methyl-*d*<sub>3</sub>)phenyl)acetamide (**59**):

[93%] NHAc [93%]

Prepared following the general procedure for 48 h with the addition of TBAB (20 mol%). The crude mixture was purified over silica gel chromatography (hexane : diethyl ether = 8 : 1) to afford product as a

colorless solid in 32.2 mg (99% yield), and <sup>1</sup>H NMR spectrum showed 93% deuterium incorporation on the benzylic C(sp<sup>3</sup>)-H bonds. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.17 – 7.01 (m, 3H), 6.93 (br, 1H), 2.27 – 2.21 (m, 0.40H), 2.16 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  = 168.7, 136.5, 135.4, 128.6, 128.2, 128.1, 127.3, 23.0, 18.4 – 17.5 (m). HRMS (EI-TOF) calcd for C<sub>10</sub>H<sub>7</sub>D<sub>6</sub>NO (M<sup>+</sup>) = 169.1368, found 169.1366.

## 7. Reference

- 1 I. B. Perry, T. F. Brewer, P. J. Sarver, D. M. Schultz, D. A. DiRocco and D. W. C. MacMillan, *Nature*, 2018, **560**, 70.
- 2 D. C. Miller, J. M. Ganley, A. J. Musacchio, T. C. Sherwood, W. R. Ewing and R. R. Knowles, *J. Am. Chem. Soc.*, 2019, **141**, 16590.
- 3 Y. Motoyama, M. Abe, K. Kamo, Y. Kosako and H. Nagashima, *Chem. Commun.*, 2008, 5321.

# 8. Copies of NMR spectra







ppm










ppm



ppm























*t*Bu′





























 F2
 - Processing parameters

 SI
 32748

 SF
 125.7577330 MHz

 NDW
 EM

 NSB
 N

 LB
 1.00 Hz

 GB
 0

 FC
 1.40



































ÉR

0 30030.025 Hz 0.456222 Hz 1.0911744 sec 6.00 usec 295.6 K 2.00000000 sec 0.0300000 sec 1.09399998 sec 20















Current Data Farameters NAME ykl125-kyl-4091-3-1 EXPMC 2 PROCNO 1

LARPO 2 PROCHO 2 PROCHO

 F2
 - Processing parameters

 SI
 32768

 SF
 125.7577575

 NDW
 EM

 NDW
 EM

 NDW
 EM

 SSB
 0

 LB
 1.00 Hz

 GB
 0

 FC
 1.40










































2H AV 500 NEO 23 May 2017 D NMR in CHC13

























160

140

120

100

80

60

40

20

ppm



F2 - Pro SI SF WDW SSB LB GB FC

































































2,30

2.35

2.25 ppm













