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1 Supplementary Notes

1.1 Selection of model architecture via performance on held-out time-point
recovery

Deep learning enables arbitrary parameterizations of the underlying potential function. We hypothesized
that more expressive parameterizations of the potential function might improve modeling capacity of the
diffusion process. We hence evaluated models of differing complexity on the task of predicting the marginal
distribution at a held-out time point using the Weinreb et al. dataset.

We fit models with four different architectures (fully connected neural network models with 1 layer of
1000 units, 1 layer of 4000 units, 2 layers of 200 units, or 2 layers of 400 units, all using soft-plus as the
activation function), and using three different regularization strengths (7 = 1le-3, le-6, 1le-9). Architectures
were chosen such that the 2 layer models had a corresponding 1 layer model with a roughly equivalent total
number of parameters. The smaller models (1 layer of 1000 units, 2 layers of 200 units) had 50k parameters
and were trained using Adam with a learning rate of 0.01. The larger models (1 layer of 4000 units, 2 layers
of 400 units) had 200k parameters and were trained with a learning rate of 0.005, as these models sometimes
diverged when trained with a learning rate of 0.01 (Fig. S1b). Models were then fit as described in Methods.

In general, models performed well, outperforming the baselines described except when the regularization
strength was too high (i.e. excepting when 7 = le-3). For both models trained with or without taking into
account cell proliferation, we observed that although 1-layer models may perform as well as 2-layer models
on training, 2-layer models achieve lower testing distance even when the number of parameters in the 1-layer
models was greater than or equivalent to in the 2-layer models (Fig. Slc,e). This could suggest that the
2-layer models are either better able to approximate the potential function, or are easier to fit. We also
observed that model training and testing distance was best with a moderate regularization strength of le-6
across model architectures (Fig. S1d,e). Models accounting for cell proliferation performed slightly worse at
predicting the held-out time point than models that did not account for cell proliferation.

We reasoned that hyper-parameters selected on this task would be transferable to models for fate predic-
tion because good recovery of the held-out time point should imply that the model had been able to find a
good approximation of the underlying potential function. We hence use 2-layer models with 400 units and a
regularization strength of 1e-6 for subsequent tasks (Fig. Sla). Models with this architecture achieved both
the lowest training and testing distance in our experiments.

Since 2-layer models with 7 = le-6 generally performed well on the Weinreb et al. dataset, we chose to
fit models with 2 layers of either 200 units or 400 units on the Veres et al. dataset. As we observed in the
experiments for the Weinreb et al. dataset, the 2 layer 400 unit model achieved a lower training distance
(Fig. S3c-d). Hence, we also used a 2 layer 400 unit model for the Veres et al. experiments. Further
experiments would be needed to study if larger models could lead to overfitting (such that lower training
distance does not necessarily imply lower testing distance).
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Figure S1: Training and testing performance on time point recovery on Weinreb et al. lineage
tracing dataset. (a) Results for for 2-layer models with 400 units and a regularization strength of 7 = 1le—6.
Actual and simulated populations on days 6 (training, top), and 4 (testing, below). Distance reported is
the Wasserstein distance of the simulated population to the actual population at the given time point. (b)
Training (blue, left axis) and testing (red, right axis) performance across training epochs for 2 layer 400
unit models with and without proliferation and with different learning rates across 5 seeds. Training and
testing performance is reported for best training epoch, as indicated by the vertical dashed line. (c)-(e)
Testing performance for models of different model architecture (c,e) and regularization strength (d,e) for 5
seeds. (c,d) Dashed line indicates linear interpolation baseline. (f) Runtime estimates of training 500 pre-
training epochs and 2500 training epochs with fixed hyperparameters on different GPUs (1x) with increasing
training set sizes. (g) Runtime estimates of increasing numbers of simulations of 400 randomly initialized
cells. Repeated 5 times for each number of simulations and GPU device (1x).

In (c-d), boxplots indicate median (middle line), first and third quartiles (box), and the upper whisker
extends from the edges to the largest value no further than 1.5IQR (interquartile range) from the quartiles
and the lower whisker extends from the edge to the smallest value at most 1.5IQR of the edge, while data

beyond the end of the whiskers are outlying points that are plotted individually as diamonds.
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Figure S2: Training and testing performance on cell fate prediction on Weinreb et al. lineage
tracing dataset (a) Training (blue, left axis) and testing Pearson r (red, first right axis) and AUROC
(green, second right axis) across training epochs for 2-layer 400 unit models with and without proliferation.
Ensembled testing performance is reported and indicated as horizontal dashed lines (b) Distribution of ground
truth and predicted clonal fate bias across testing cells as a histogram (left) and visualized on the UMAP
(right) (c) Visualization of actual and estimated proliferation on UMAP (d-e) Distribution of cell types at
the final time point (d) and across training steps until final time point (e) for unperturbed simulations of in
vitro hematopoietic differentiation.
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Figure S3: Preprocessing and model fitting on Veres et al. dataset. Visualization of cells at different
time points (a) or annotated as different cell types (b) (c-d) Training performance across 5 seed with and
without proliferation for 2 2-layer models across training epochs and summed over time points (¢) and for
individual time points at epoch 1500 (d). The vertical dashed line in (c¢) also indicates epoch 1500. (e)
Visualization of birth, death and proliferation rates estimated via KEGG, as well as scaled expression of
TOP2A (f) Visualization of drift and potential learned by example 2 layer, 400 unit evaluated at epoch 1500.
The red circles indicate qualitative differences in drift and potential between models fit with and without
proliferation.



Ensemble of NKX6.1,NEUROG3 Ensemble of PTFIAHES1 b

. 055 3 10

045 0350 -
2 08

o0 i 045 %I L
038 040 & os

Normalized TF expressionateach

unperturbed 05 1 25 unperturbed 05 1 25 ime-point 3
Ensemble of NKX6.1,NEUROG3 Ensemble of PTF1AHES1 E o4

65 T 0 o H

1

-
n
1

HH
|.U] -
0
[ |

fraction of non-endocrine cells  fraction of endocrine cells
fraction of non-endocrine cells fraction of endocrine cells

unperturbed-05 1 25 unperturbed-05 1 25 Gomposiionofunpertrbedcell
Zscore Ziscore P
Magnitude of perturbation Magnitude of perturbation &
ARX paxa
» 010 | o010 % a l H
Soos T o1s
g ¢ 8 in silico perturbation (2=-2.5)
S 00s == 5 0075 =
B 0.02 é £ o050 %] g 0009
205 CE s ST = 0.0
g & Diffe fraction of =
Cos | iferonce n frac s ]
2 £o1s endocrine cells 2 —0.06
203 D a (perturbed — unperturbed) =
z = S0 T £ -0.084
B o
502 § Q
§ = 4 £ -0.10-]
| . 8 005 2
o1 £ &
= -0.124 .
e 2 5 10 wpertues 2 5 10 5
z-score machE: ~0.144 . T . T . . T
Magnitude of perturbation Magnitude of perturbation [} 2 3 4 ]
Day (introduction of silico perturbation)
-cell
£ a-cell EC-cell
. 15
154 o 1s] .
e 3 9 .
g 3 101 2
g o* H 2
= ? 9
K . o 05 ] .
& e . = .
g ° 3 S .
i 2 o004 L)
o o = o .
s 0 ° < M <
g D s s
g F40) B —05 o g - .
= . ° g g
= _os of £ £
3 oo o = =
8 . =
.o * . S 10 . * |8
.
10d
o0 o5 10 15 20 25 v v y ; " y v T T T
Normalized gene expression (t=1) 00 05 10 15 20 25 00 X X . 20 25
Normalized gene expression (t=1) Normalized gene expression (t=1)
[ unperturbed
acell TF TFs commonto both aand celllineages Bcell TFs B perturbed

-3
R

ST

acell TF TFs common o both a and B cellline Becell TFs
B ¢ - 2. il -

P LR &, 4. - @, o=

@ 4 i @ = 5t i L

i

)
e

Sampled population

Figure S4: Expanded evaluation of PRESCIENT perturbational outcomes on Veres et al. 2019
dataset. (a) Final fractions of endocrine and exocrine cells as a result of ensembled knockdowns of endocrine-
and exocrine- associated TFs (left, right) on day 0 (b) in silico perturbations (NKX6.1, NEUROG3; z=10)
are introduced at different time points to the corresponding unperturbed population. The different outcomes
of the cell type of interest are then calculated as the difference in fraction at the final time point starting from
the perturbed and unperturbed populations. (c¢) Final fractions of and cells when introducing perturbations
to ARX and PAX4 in the starting cell population at day 0. (a-b) Red asterisks indicate significance at two-
sided independent t-test p < 0.05 (d) Normalized gene expression at timepoint 0 vs. Log2(fold-change) in cell
fractions from perturbations of 200+ TFs (z=5) for -cells (purple), a-cells (red) and EC-cells (blue). (e-f)
Final fractions of o, 8 and EC cells when starting from different perturbed (e: z =5, f: z = 5) vs. unperturbed
populations Asterisks indicate significance at paired t-test p * < 0.05 ** < 0.01, *** < 0.001. Different
starting populations correspond to cell stages as labeled by Veres et al.: SOX2+ progenitors (progsox2),
NKX614 progenitors (prognkx61), and cells with early/middle/late NEUROGS3 signatures (neurog3early,
neurog3mid, neurog3late, respectively). (a-c, d-e) Results are reported over 10 randomly sampled starting
populations. In b, bar plots show the average fraction of cells with error bars representing the 95% CI. In
(a-b), (e-f) boxplots indicate median (middle line), first and third quartiles (box), and the upper whisker
extends from the edges to the largest value no further than 1.5IQR (interquartile range) from the quartiles
and the lower whisker extends from the edge to the $mallest value at most 1.5IQR of the edge, while data
beyond the end of the whiskers are outlying points that are plotted individually as diamonds.
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Figure S5: PRESCIENT predicts non-significant changes to final cell fraction in response to in
silico perturbations of the non-TFs not involved in apoptosis/proliferation. (a) Final fractions of
endocrine and exocrine cells as a result of ensembled perturbations of non-TF control genes (top, bottom) on
day 0. (b) in silico perturbations of non-proliferative, non-TF genes (TRAM2, B2M; z=10) are introduced
at different time points to the corresponding unperturbed population. The different outcomes of the cell
type of interest are then calculated as the difference in fraction at the final time point starting from the
perturbed and unperturbed populations. (c) Final fractions of a, 8 and EC cells when starting from different
perturbed vs. unperturbed populations. Asterisks indicate significance at paired t-test p * < 0.05 ** < 0.01,
*H% < 0.001. (a-c) Results are reported over 10 randomly sampled starting populations. In b, bar plots show
the average fraction of cells with error bars representing the 95% CI. In (a), (c) boxplots indicate median
(middle line), first and third quartiles (box), and the upper whisker extends from the edges to the largest
value no further than 1.5IQR (interquartile range) from the quartiles and the lower whisker extends from
the edge to the smallest value at most 1.5IQR of the edge, while data beyond the end of the whiskers are
outlying points that are plotted individually as diamonds.



