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Supplementary Note 1: The advance in CRISPR gRNA activity prediction is mostly data-

driven, rather than model-driven 

Numerous machine learning methods have been so far applied for predicting the editing efficiency 

of SpCas9 gRNAs, including linear regressors1-3, SVMs4-9, tree-based models8, 10 and deep-

learning networks11-14. Among notable predictors, the gradient boosting regressor “Azimuth”10 has 

for long been known because of its superior generalization ability in predicting SpCas9 efficiency 

for gRNAs expressed from a U6 promoter, as highlighted by the independent benchmark of 

Haeussler et at.15. A further advance was recently offered by the deep learning regressors of Kim 

et al., “DeepSpCas9”, and Wang et al., “DeepHF”, trained on large-scale datasets of SpCas9 

efficiencies generated by the same groups12, 13. Even more recently, Kim et al. developed a new 

set of deep-learning regression models, “DeepSpCas9variants”, which predicts gRNA efficiency 

in relation with SpCas9 and eight variants of the complex with remarkable prediction ability14. 

Below, we show that the performance of this model was overestimated by mixing together 

efficiency data derived from both canonical and non-canonical PAMs, with the latter being easy 

to predict because of their general low efficiency. Moreover, we explain that the improvement of 

a deep learning model such as DeepSpCas9 over a regular machine learning tool such as Azimuth, 

is to be attributed predominantly to the usage of a larger training dataset and not to the application 

of a more complex model. 

According to the comparison among machine learning-based methods presented by Kim et al.12, 

tree-based regressors, including a gradient boosting regression tree (GBRT) resembling Azimuth, 

were the worst performing models in a 10-fold cross-validation and in additional independent tests, 

a result profoundly in contrast with the previous analysis of Doench et al.10. We reasoned that this 

discrepancy might be caused by an unfortunate choice of validation hyperparameters. In the study 

by Kim et al., tree-based models were configured to have a maximum depth of at least 50, a 

minimum number of samples necessary for branching of 2 or 4 and a minimum number of samples 

in leaf nodes of 1 or 2, while no tuning was performed on the learning rate. Such hyperparameters 

might generate considerably complex regression trees, which are not suitable for an ensemble 

model designed to combine weak learners rather than powerful predictors16. 
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To address this, we repeated the training of GBRTs on the Kim et al. (2019) by decreasing the tree 

complexity directed by hyperparameters, using input features either as in Azimuth or as in 

DeepSpCas9 (only sequence-related). We validated 432 GBRTs on the dataset of Kim et al. (2019) 

with the following hyperparameters: learning rate chosen from [0.05, 0.08, 0.1], maximum tree 

depth chosen from [3, 5, 7, 10], minimum number of samples to generate a new split chosen from 

[10, 15, 20], minimum number of samples to be present in a leaf node chosen from [3, 5, 7], total 

number of trees in the model chosen from [200, 400, 600, 800]. The structure and input features 

of the trees was the same described in Material and Methods for CRISPRon-GBRT v0 and v1, 

with either the same features except ΔGB, to resemble Azimuth, or only the sequence-related ones. 

In lack of information on the cross-validation set construction by Kim et al., we divided the dataset 

in 11 subsets accounting for data similarity, such that highly similar gRNAs were grouped in the 

same subset (see Methods). Hyperparameter cross-validation was performed on 10 subsets, while 

the remaining one was preserved as an independent test set. Additionally, we validated 192 GBRTs 

with the same hyperparameters chosen by Kim et al. (max depth = 600 was employed to 

approximate training until leaf purity) and re-trained their deep learning-based model in a cross-

validation over the 10 validation subsets. This latter model, referred to as DeepSpCas9-Val, had 

the same performances as the one reported for the validation of the original DeepSpCas9. The 

GBRTs trained with our selection of hyperparameters significantly outperformed those of Kim et 

al. and did not present any significant prediction difference compared to the re-validated 

DeepSpCas9 on the internal independent test set (Supplementary Fig. 1). We then compared the 

re-trained GBRTs and the original DeepSpCas9 model on the external independent datasets 

targeting human cells analyzed by Kim et al.1, 4, 10, 17-19. The datasets were pre-processed and 

filtered as explained in Methods (main text), except for the gRNAs targeting the last 10% of the 

merged coding sequence of the target gene, which were not excluded in this comparison. We report 

that the GBRTs and deep learning-based model performed equally well on the external 

independent test set (removal of similarity with training data was performed as explained in 

Methods, see main text). Importantly, the appropriate re-training of Azimuth enabled to achieve 

performance results comparable to DeepSpCas9. Hence, we ascribed the prediction improvement 

observed by Kim et al. to the large high-quality dataset generated in their study, rather than their 

deep learning model. In agreement with this, we also observe a modest difference between the 
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CRISPRon (v0 and v1) deep learning-based model and the CRISPRon-GBRT (v0 and v1) trained 

on the same dataset (Supplementary Data 2). 

Supplementary Note 2: Evaluating gRNA predictions on data from different PAMs leads to 

performance overestimation 

The recent DeepSpCas9variants model14 was trained and tested on both canonical and non-

canonical PAMs, and because of this we suspected its reported performances to be inflated by the 

presence of numerous zero-value gRNAs, easy to predict because of their PAM composition. 

Indeed, the PAM was also the feature reported to have the highest SHAP importance in the related 

study. We tested DeepSpCas9variants after removing one PAM at a time, from the lowest to the 

highest efficient one. We observed a consistent decrease in performances from a Spearman 

correlation R=0.94 and a Pearson’s r=0.96 down to R=0.70 and r=0.79, with the latter measure 

obtained when exclusively considering the canonical NGG PAM (Supplementary Fig. 1). 

Moreover, DeepSpCas9variants showed scarce generalization ability compared to its predecessor 

DeepSpCas9 and other models when benchmarked on external independent test datasets 

(Supplementary Data 2), suggesting that its training data has characteristics that were not present 

in previous studies. These characteristics go beyond the presence of non-canonical PAMs in the 

training dataset, which are easily identified and categorized by machine learning, as shown by the 

SHAP analysis mentioned above. None of DeepSpCas9, DeepHF, pre-CRISPRon_v1 or Azimuth 

could predict the gRNA efficiencies reported in the dataset used to train DeepSpCas9variants (Kim 

et al. (2020), filtered for NGG PAMs only) with a Spearman’s R > 0.5, and this dataset was the 

lowest in terms of predictions for all models except DeepSpCas9, trained on data generated by the 

same group, for which it was the third lowest (Supplementary Data 2). Instead, the gRNA 

efficiency values of both our data and Kim et al. (2019) were exceptionally well predicted by both 

DeepSpCas9 and pre-CRISPRon_v0 (Spearman’s R >0.7). Thus, despite its size, the Kim et al. 

(2020) dataset was excluded for the development of CRISPRon. 
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Supplementary Note 3: Establishment of the lentiviral surrogate vector-based gRNA 

efficiency evaluation method 

We and several other groups previously demonstrated that a surrogate target site can faithfully 

recapitulate the endogenous editing efficiency and indel profile. To streamline vector cloning, 

accurate quantification of viral titer, and enrichment of gene edited cells, we firstly designed a 

lentivirus-based system with three main features (plasmid can be acquired from the Luo lab): (1) 

Golden-Gate Assembly (GGA) based cloning with a lac Z marker for precise and efficient insertion 

of the gRNA expression cassette; (2) A green fluorescent protein (GFP) marker for measuring viral 

titer and real-time tracking of viral delivery; (3) A puromycin selection gene for enrichment of 

stably transduced cells (Supplementary Fig. 2). Essentially, this lentivirus system allows 

conventional GGA-based insertion of a synthetic DNA containing a gRNA spacer, scaffold and 

the corresponding surrogate target site after the U6 promoter. As current microarray-based method 

can only faithfully synthesize oligo pools of max 170 bp, we optimized the DNA design to contain 

a 102bp gRNA expression cassette (20bp spacer + 82bp scaffold) and a 37bp surrogate target site, 

flanked by 31bp GGA cloning sites and PCR handles (Fig. 1a, Supplementary Fig. 2). Although 

the surrogate site is 37bp, we validated at 17 surrogate and corresponding endogenous sites that 

there is a good correlation in on-target gRNA efficiency between them.  

 

Supplementary Note 4: Massively parallel quantification of on-target gRNA efficiency 

Several experimental procedures have to be optimized to generate the 12K sequencing library. A 

detail protocol is shared in protocols.io20. PCR conditions have to be optimized by gradient melting 

temperature and PCR cycles. With optimized PCR conditions, we have setup 72 parallel PCR 

reactions (20ul in each reaction) and the final PCR products were pooled and purified. All these 

detail steps are to faithfully amplify the 12,000 oligos from pooled oligos without causing PCR-

induced bias. Next, for Golden-Gate Assembly, it is essential to perform large replicates to avoid 

the ligation-induced bias in oligo representation as well. In our optimized condition, we have 

performed 36 independent GGA reactions (20ul per reaction). For the same reason, 42 independent 

E.coli transformations with GGA ligation product were performed (10ul each). Our deep 
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sequencing results of the 12K pool oligos, 12K plasmid library and 12K lentivirus library 

transduced cells prove that the optimized procedure yield high coverage (over 99%) and 

correlation (Pearson’s r = 0.86-0.91). 

For on-target gRNA efficiency, we transduced the HEK293T expressing the codon-optimized 

SpCas9 with the 12K lentivirus (MOI is 0.3 and transduction coverage is approximately 4000 cells 

per surrogate site. Based on this, the number of cells used for transduction is 12K * 4000/MOI. 

The expression of SpCas9 was controlled by a Doxycycline (Dox)-inducible TRE promoter. 

However, due the leakiness of promoter activity, we can observe significant SpCas9 activity in the 

cells without addition of Dox. Enhanced SpCas9 expression by Dox addition significantly increase 

the on-target editing efficiency leading to over skewed and saturated on-target gRNA activities 

(Supplementary Data 1, S7). Thus, for CRISPRon model training, we only used on-target gRNA 

efficiency data from the HEK293T-SpCas9 cells without Dox addition. 

 

Supplementary Note 5: The dynamics and predictable characteristics of indels introduced 

by SpCas9 

Repair of the double-strand DNA breaks (DSBs) introduced by SpCas9 is carried out by the 

endogenous DSB repair machineries, and mostly by the microhomology-mediated end-joining 

(MMEJ) and non-homologous end-joining (NHEJ) repair pathway. While indel profiles differ 

between DSBs introduced by different gRNAs, it has been found that the repair outcomes (indel 

profiles) are predictable and approximately 5–11% SpCas9 gRNAs induced a dominant indel 

(>50% of all indel events)21. One dominant indel type is 1-bp insertion in the DSB site. Besides, 

it has also been showed that, depending on the CRISPR/Cas9 delivery formats (plasmids 

transfection, lentiviral transduction, ribonuclear protein electroporation) and time, there exists 

certain dynamics in indel profiles. Under conditions of persistent editing (via stable integration of 

SpCas9 and gRNA in cells), relative higher frequency of small indels (1-bp deletion and 1-bp 

insertion) appear earlier post expression of SpCas9 and gRNA. Importantly, the frequency of large 

indels (> 6 bp) increase following persistent editing and reach a stable distribution of indel types. 

Consistent with that, our data showed that 1-bp deletion and 1-bp insertion are the two most 
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frequent indel types across all time points studied (Fig. 1d and Supplementary Fig. 7). The 

frequency of other indels (> 2 bp) increase following increased editing time and over-expression 

of SpCas9 (Fig. 1d and Supplementary Fig. 7). The inDelphi was developed based on indel profile 

dataset from cells with one-week persistent editing of over-expressing SpCas9. We validate our 

gRNA efficiency evaluation approach by comparing the indel profiles of our gRNAs to the 

corresponding indel profiles predicted by inDelphi. Our results showed that correlations were 

increased from day 2 to day8-10 (Fig. 1e and Supplementary Fig. 7). When analyzing the 

correlation between nucleotides of the 1-bp insertion indel and nucleotides presented at the N17 

position (4-nt upstream of the PAM), corroborating with the finding by Shen et al. our results 

showed that the 1-bp inserted nucleotide is mostly identical to the N17 nucleotide (Fig. 1f and 

Supplementary Fig. 7). Besides, the presence of T at N17 favors insertional indels, while the 

presence of G at N17 more favors deletion indels (Supplementary Fig. 7). Though more studies 

are needed to better understand the mechanism of these predictive features and indel pattern, this 

“partially” predictive indel profiles allow us to introduce or correct mutations without donor 

templates.  

Supplementary Note 6: Analysis of features important for CRISPR gRNA on-target activity 

prediction 

To characterize the features with the highest contribution to the learning process we employed two 

strategies: the Shapley Additive exPlanations (SHAP)22 and the Gini importance23 (Supplementary 

Fig. 12). Both methods are applied on a gradient boosting regression tree (GBRT) version of 

CRISPRon, CRISPRon-GBRT (v0 and v1), whose performances exceeded those of existing 

models similarly to CRISPRon_v0 and v1 (Supplementary Data 2). The SHAP method reflects the 

GBRT model onto individual training instances to explain predictions by computing the local 

contribution of each feature to the predicted value. The global importance of a feature is then 

obtained by summarizing the local contributions over the whole training dataset. In complement, 

the Gini importance explains the composition of a GBRT globally in terms of variance reduction 

achieved by splitting the data in a node based on a given feature and can thus be considered as a 

reflection of the training data onto the model. Among the top 20 most relevant features highlighted 

by both methods within their top 25, thermodynamic properties such as ΔGB, MFE and melting 
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temperatures dominate. A few sequence-composition features also resulted to be highly relevant, 

particularly in the seed region. 

Supplementary Note 7: Data integration requires a fully representative gRNA activity 

distribution 

The large-scale dataset of SpCas9 gRNA efficiencies generated by Wang et al. (2019)13 was 

omitted from the training of CRISPRon because the choice of selecting gRNAs based on the 

Azimuth’s predictions resulted in a skewed distribution of gRNAs efficiencies, which is not fully 

representative of the CRISPR gRNAs landscape and would create a bias in our data integration 

process (Supplementary Fig. 1). 
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Supplementary Figure 1. Evaluation of recent datasets and models of CRISPR gRNA 

efficiency.  a. Comparison between the validation performances of different ML models on Kim 

et al. (2019) dataset. Black and red dots correspond to the Spearman correlation between 

experimentally measured and predicted indel frequencies obtained from one of 10 cross-

validations (black), which are summarized as one box plot for each model architecture, or to the 

internal independent test set (red), computed by averaging the predictions obtained from the 10 

trained models. The highest two-sided Steiger’s test P-value obtained from 10 comparisons, one 

for each validation set is illustrated on top of the box plots. The boxes represent the first quartile 

(Q1), the median (internal separator) and the third quartile (Q3); upper whiskers extend up to the 

last value lower than Q3 +1.5*(Q3-Q1); lower whiskers extend down to the first value greater than 

Q1+1.5*(Q3-Q1). The suffix ‘K’ is appended to the model’s identifier to designate trees validated 

with the set of parameters from Kim et al. Two-sided Steiger’s test P-values obtained on the 
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validation sets (from 1 to 10) comparing DeepSpCas9-Val and Sequence-GBRT: 5.77E-03; 1.20E-

02; 9.57E-01; 6.87E-04; 6.63E-01; 2.39E-01; 8.73E-03; 5.02E-03; 1.15E-02; 5.46E-02; Sequence-

GBRT and Sequence-GBRTK: 3.57E-13; 2.45E-11; 0.00E+00; 2.53E-11; 0.00E+00; 3.78E-10; 

3.56E-11; 4.08E-09; 2.66E-15; 1.38E-12; DeepSpCas9-Val and Doench2016-GBRT: 2.50E-04; 

8.67E-02; 5.64E-02; 1.64E-02; 8.99E-01; 1.83E-01; 3.63E-03; 3.73E-04; 5.17E-01; 4.70E-03; 

Doench2016-GBRT and Doench2016-GBRTK: 3.55E-09, 5.86E-11, 2.51E-11, 0.00E+00, 

0.00E+00, 8.56E-12, 1.08E-11, 3.09E-08, 1.54E-12, 1.12E-10. P-value computed with the two-

sided Steiger’s test between DeepSpCas9-Val and Sequence-GBRT: 3.02E-01; DeepSpCas9-Val 

and Doench2016-GBRT: 1.07E-02. b. Generalization performances of DeepSpCas9 and GBRTs, 

evaluated as Spearman correlation between experimentally measured and predicted indel 

frequencies. Statistical significance is computed between DeepSpCas9 and GBRTs: two-sided 

Steiger's test *P < 0.05, NS = not significant. P-values between Sequence-based GBRT and 

DeepSpCas9 (top to bottom rows): 4.36E-02, 9.18E-01, 8.76E-01, 6.51E-01, 3.21E-01, 6.34E-01; 

between Doench 2016 GBRT and DeepSpCas9: 5.40E-02, 5.55E-01, 5.85E-01, 5.74E-02, 6.65E-

01, 6.23E-01. c. DeepSpCas9variants performances decrease after removing non-canonical PAMs. 

On the X axis PAMs are sorted by median efficiency (left Y axis). Prediction performances (right 

Y axis) computed for DeepSpCas9variants on the full test set and after removing one PAM at a 

time, from left to right. The boxes and whiskers are structured as in a except for the median, that 

is here highlighted in red. d. Skewed distribution of indel frequencies for gRNAs in the dataset of 

Wang et al. (2019) compared to the Kim et al. (2019) and our data. 

 

 

 

  



11 

 

 

Supplementary Figure 2. Vector design and streamlined vector cloning by Golden Gate 

assembly. a. Graphical illustration of the lentiviral vector. lacZ, bacterial expression lac operon 

for rapid and convenient blue-white screen of vector construction efficiency. EFS, EF1alpha 

promoter (intron-less form, EFS), which controls a polycistronic expression cassette of EGFP and 

puromycin. b. Eight representative plates of transformed E.coli cell clones. Ligation product was 

based on golden-gate assembly of array-synthesized oligos into the empty lentiviral vector 

(Addgene plasmid # 170459). Representative negative clones are shown with arrows. 
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Supplementary Figure 3. Quantification of gRNA editing efficiency in surrogate and 

endogenous loci. a. Top 10 indel types for surrogate and endogenous locus for two genes (TET2 

and CAMK1G). I, insertion. D, deletion. Freq., indel frequency (fraction of total reads). b. Total 

indel frequency for 16 validated loci measured at surrogate and corresponding endogenous locus, 

Spearman’s R.  
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Supplementary Figure 4. Quality control of surrogate site representation in oligo library, 

plasmid and lentivirus library by deep sequencing. a. Dot plot of each surrogate site between 

the oligo pool and the plasmid pool. Log 1P: Log2(total raw reads + 1). b. Dot plot of each 

surrogate site between the oligo pool and lentivirus library transduced WT HEK293T cells (MOI 

= 0.3, 2 days after transduction). c. Dot plot of each surrogate site between the plasmid pool and 

the lentivirus library transduced WT HEK293T cells (MOI = 0.3, 2 days after transduction). Data 

for the WT HEK293T cells (MOI = 0.3, 2 days after transduction) are replot as in Supplementary 

Fig. 6 WT HEK293T cells at day 2. Correlation was provided with Pearson’s r.   
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Supplementary Figure 5. Quantification of lentiviral 12K library titer. a. Representative 

flowcytometry results (n = 2) with gating for GFP positive and GFP negative cells (left) and 



17 

 

quantification of lentiviral functional transduction titer by quantifying mean GFP+ positive cells 

from duplicates (right). Volumes indicate the amount of crude lentivirus used per transduction. b. 

Representative phase and fluorescence images (n = 3) of HEK293T and HEK293T-SpCas9 cells 

following lentiviral 12K library transduction (MOI = 0.3) and puromycin selection. 
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Supplementary Figure 6. Deep sequencing of surrogate loci in lentiviral 12K library 

transduced WT and SpCas9 cells. a. Violin plot (lines: median and quartiles) of log2 read counts 

per surrogate site (Log1P, Log2(total raw reads + 1)). b. Correlation dot plot of each surrogate site 

between SpCas9 (- or + dox) and WT cells at 2, 8, and 10 days post transduction. 
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Supplementary Figure 7. Indel profiles captured by targeted deep sequencing. a. Distribution 

of gRNA efficiency (indel frequency) measured in Day 8-10 cells with Dox addition. b. 

Correlation between indel frequency for gRNAs measured in Day 8-10 cells with Dox addition. c. 

Violin plots (lines: median and quartiles) of Pearson correlation R values between indel profiles 

captured by targeted deep sequencing of surrogate sites and indel profiles predicted by inDelphi. 

Each dot represents R value for one surrogate site. N indicates total number of surrogate sites. d. 

Dot plot of 1-bp insertion frequency (error bars are presented with mean ± 95% confidence 
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interval) among all surrogate sites analyze stratified by N17 nucleotides, N indicates the total 

number of loci included in the plot. e. Dot plot of frequency (error bars are presented with 

mean ± 95% confidence interval) of deletion and insertion indels stratified by the N17N18 di-

nucleotide motifs.      
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Supplementary Figure 8. Deep sequencing analysis of indel profiles introduced to surrogate 

sites. Three representative examples of top 10 indels types, reads, and indel frequency measure in 

HEK293T-SpCas9 cells at day 10. I, insertion. D, deletion. Freq., frequency (fraction of total 

reads).
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Supplementary Figure 9. gRNAs with measured on-target efficiency. a. Venn diagram of the 

gRNAs (20 nt) for which on-target efficiencies were reported in the datasets included in this study 

(after data cleaning, see Methods). While the 4 major datasets are shown separately, for visibility 

the datasets from Chari et al., Doench et al, Hart et al. and Xu et al. were grouped together as 

“Other”. b. Venn diagram of the gRNA + context (30 nt) sequences for which on-target efficiencies 

were reported in the datasets of Kim et al. (2019) and this study. The union of these two datasets 

(N=23,902 gRNA + context sequences) was used for the training of CRISPRon. Figure generated 

using http://bioinformatics.psb.ugent.be/webtools/Venn/. 
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Supplementary Figure 10. Relation between key features of gRNAs and efficiency: a-b. Box-

plot distribution of gRNAs efficiencies (indel frequencies in cells averaged between day 8 and day 

10), split by GC content intervals of 10% (a) or by gRNA minimum free energy (MFE) intervals 

of 1.5 kcal/mol (b). In both figures, the boxes represent the first quartile (Q1), the median (thicker 

line) and the third quartile (Q3); upper whiskers extend up to the last value lower than Q3 

+1.5*(Q3-Q1); lower whiskers extend down to the first value greater than Q1+1.5*(Q3-Q1). 
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Supplementary Figure 11. Generalization ability of CRISPRon on all independent test sets. 

Performance comparison between CRISPRon and other existing models on independent test sets. 

Test gRNAs highly similar to a gRNA in the training sets of any of the models compared (<3 nt 

difference on 20 nt gRNA) were removed. “N.a.”= not available (all gRNAs was regarded as 

training data due to lack of explicit train-test separation). CRISPRon_v0 was employed for testing 

on the internal independent test set “Our merged set”, for which in this plot Kim et al. (2019) and 

our data were used prior averaging data from multiple days, rescaling, and merging. Our data is 

split by day (Day 8 and Day10). CRISPRon_v1, or simply CRISPRon, was used for the external 

independent test sets (for a description of the CRISPRon versions, see Supplementary Table 1). 

Note that Kim et al. (2020) is the internal independent test set of DeepSpCas9variants. Two-sided 

Steiger’s test P-values of all comparisons are reported in Supplementary Data 2.   
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Supplementary Figure 12: Important features associated with gRNA on-target activity. 

Sequence and thermodynamic features employed to train the CRISPRon-GBRT_v1 were 

evaluated in terms of Gini (left) and SHapley Additive exPlanations “SHAP” (right) importance. 

The top 20 common features (among the top 25) identified by the two methods for the GBRT with 

highest validation performances are displayed. Positions on the 30mer DNA input are labeled as 

follows: left context: -4 to -1; gRNA spacer: 0 to 20, PAM: N, G1, G2; right context: +1 to +4. The 

spacer interval used to compute melting temperatures (MT) is indicated in square brackets.  
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Supplementary Figure 13. Model flow for the deep learning model (C) including convolutions 

and two dense layers. Technical output obtained from TensorFlow. The input (?, 30, 4) is the one-

hot encoded 30mer sequence, where the ? represent the variable number of input sequences in 

training or evaluation.  
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Supplementary Figure 14 Model flow for the deep learning model (CG) including 

convolutions, two dense layers and ΔGB. Technical output obtained from TensorFlow. The 

input_onehot (?, 30, 4) and input_dGB (?, 1) are the one-hot encoded 30mer sequence and the raw 

unscaled value of ΔGB, respectively, where the ? represent the variable number of input sequences 

in training or evaluation. 
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Supplementary Figure 15. Model flow for the deep learning model (Cx) with convolutions 

and three dense layers. Technical output obtained from TensorFlow. The input_onehot (?, 30, 4) 

is the one-hot encoded 30mer sequence, where the ? represent the variable number of input 

sequences in training or evaluation. 
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Supplementary Figure 16. CGx model flow including convolutions, ΔGB and 3 dense layers. 

Technical output obtained from TensorFlow. The input_onehot (?, 30, 4) and input_dGB (?, 1) are 
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the one-hot encoded 30mer sequence and the raw unscaled value of ΔGB, respectively, where the 

? represent the variable number of input sequences in training or evaluation. 
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Supplementary Data 1. Sequences of 12K surrogate oligonucleotide library, SpCas9 gRNA 

efficiencies and indel profiles. 12K microarray oligo sequences library (sheet 1), gRNA 

efficiencies and indel outcomes of gRNAs measured by targeted sequencing at Day 2, Day 8 

(Dox+/Dox-) and Day 10 (Dox+/Dox-). Please see separate table file. 

 

Supplementary Data 2. Comparison of generalization performances between prediction 

models. The prediction performances of various models, both from this study and from external 

ones, are evaluated in terms of Spearman correlation between predicted and actual values. When 

two or more models are compared, the best result is in bold and the two-sided Steiger’s p-value 

related to the comparison is reported. Underlined values highlight comparisons in which a model 

from this study showed a statistically significant improvement compared to all other models in the 

comparison (Steiger’s P < 0.05). Please see separate table file.  
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Supplementary Table 1. List of machine learning models based on our data. For each model, 

details about the dataset and the number of its partitions used for model development are given. 

Model name and 

version 
Model type 

Dataset used for model 

development 

Num. of dataset’s 

partitions used for 

model 

development 

pre-CRISPRon_v0 
Deep learning 

regressor 
Our data 5/6 

pre-CRISPRon_v1 
Deep learning 

regressor 
Our data 6/6 

CRISPRon_v0 
Deep learning 

regressor 
Our data + Kim et al. (2019) 5/6 

CRISPRon_v1 (or 

CRISPRon) 

Deep learning 

regressor 
Our data + Kim et al. (2019) 6/6 

CRISPRon-

GBRT_v0 

Gradient 

boosting 

regressor tree 

Our data + Kim et al. (2019) 5/6 

CRISPRon-

GBRT_v1 

Gradient 

boosting 

regressor tree 

Our data + Kim et al. (2019) 6/6 
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Supplementary Table 2. Filters applied to CRISPR gRNA on-target efficiency datasets. The 

amount of CRISPR gRNAs (30mer) in the on-target efficiency datasets included in this study is 

reported before and after each applied filter.  

 Doenc
h 2014 

Doenc
h 2016 

Char
i 

2015 

Har
t 

201
5 

Xu 
201
5 

Wan
g 

2019 

Kim 
2019 

Kim 
2020 Our data 

Initial size 882 2549 1234 423
9 

207
6 

5560
4 

1337
4 

29448  
(witho

ut 
gRNAs  

from 
tRNA) 

D10: 11617 
D8: 11603 
Intersection

: 11595 

Min200 
reads - - - - - - - - 

D10: 10933 
D8: 10655 
Intersection

: 10592 

Not present 
in hg38 882 2549 1233 423

8 
207
5 - - - - 

Multimappe
rs hg38 833 2391 1228 422

4 
128
5 - - - - 

Not 
overlapping 
target CDS  

833 2391 1224 417
6 

127
6 - - - - 

Outliers in 
replicates 796 2376 - - 125

2 - - - - 

<10 gRNA 
per target 
gene 

796 2376 - - 977 - - - - 

No context 
defined - - - - - 5502

2 - - - 

Duplicates - - - - - - 1335
9 29148 - 
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PAM not 
NGG - - - - - - - 8742 - 

Target last 
10% CDS 781 2145 - 400

1 971 - - - - 

TOTAL 781 2145 1224 400
1 971 5502

2 
1335

9 8742 10592 
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Supplementary Table 3. Hyperparameters selected by GBRT model validation. The 

hyperparameters used by the GBRTs with the highest Spearman correlation between predicted and 

actual values, averaged across validation folds, are reported for each model presented in this study. 

Non-validated default parameters are indicated with “(d)”. 

Trained model 

Hyperparameters 

Learning 

rate 

Num. 

trees 

Max. 

depth 

Min. 

split 

Min. 

leaf 

Max. 

features 

CRISPRon-

GBRT_v0 
0.08 1000 5 20 20 All (d) 

CRISPRon-

GBRT_v1 
0.1 800 5 10 20 All (d) 

Sequence-GBRT 0.05 800 5 10 3 All (d) 

Doench2016-GBRT 0.1 800 3 10 5 All (d) 

Doench2016-GBRT 0.10 (d) 400 600 4 2 Log2 

Sequence-GBRTK 0.10 (d) 100 600 2 2 Log2 
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Supplementary Table 4. Deep learning architectures. Details about each of the deep learning 

architectures. The models use one input (C, Cx) or two (CG, CGx) inputs. The 30mer sequence is 

always used as the input for the convolutions of size 3, 5 and 7 of which there are 100, 70 and 40, 

respectively. The second input is ΔGB, which is input alongside the output of the convolutions (CG) 

or alternatively (CGx) the outputs of the convolutions are first collected in a separate dense fully 

connected layer before combining the output of this dense layer with ΔGB. 

Name Type convolutions dGB Dense layers 

C Deep 3:100, 5:70, 7:40  80, 60 

CG Deep 3:100, 5:70, 7:40 x 80, 60 

Cx Deep 3:100, 5:70, 7:40  80, 80, 60 

CGx Deep 3:100, 5:70, 7:40 x 80, 80, 60 
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Supplementary Table 5: Evaluation of gradient boosting and deep learning on an internal 

independent test set. The merged dataset including our data and that of Kim et al. (2019) was 

split into 6 partitions, 5 of which were used for 5-fold cross-validation while 1 was preserved as 

internal independent test set. In each column, we list the mean square error (MSE) on the validation 

set based on the best performing model after 10 repeated initializations (5 for GBRT) using the 

other for 4 partitions for training. The performance un the independent test set is the performance 

of the combined model, which is the average of the 5 models build on the validation sets. 

ID Validation1 Validation2 Validation3 Validation4 Validation5 Validation 

Av. 

Indenpendent6 

GBRT 149.67 161.44 159.00 151.63 158.20 155.99 156.93 

C 137.17 150.26 146.37 138.68 143.26 143.15 145.79 

CG 136.62 148.31 144.26 136.50 143.13 141.76 142.21 

Cx 138.21 151.37 148.88 140.21 145.00 144.73 145.12 

CGx 134.31 147.67 144.96 135.95 141.26 140.83 140.35 
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Supplementary Table 6: Validation of gradient boosting and deep learning. The merged 

dataset including our data and that of Kim et al. (2019) was split into 6 partitions, all of which 

were employed for 6-fold cross-validation. In each column, we list the mean square error (MSE) 

on the validation set based on the best performing model after 10 repeated initializations (5 for 

GBRT) using the other for 5 partitions for training.  

ID Validation1 Validation2 Validation3 Validation4 Validation5 Validation6 Validation 

Av. 

GBRT 147.45 158.26 154.12 149.78 155.05 158.65 153.89 

C 134.29 147.12 142.83 136.38 140.68 146.71 141.33 

CG 134.35 144.86 142.52 135.26 139.69 142.64 139.88 

Cx 133.77 148.79 145.80 136.97 140.96 147.66 142.33 

CGx 130.53 144.31 139.67 133.15 138.35 141.45 137.91 
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Supplementary Table 7. Learning rate optimization of deep learning model. Models are as 

presented in Supplementary Table 5 and are trained on the combined dataset (our data and Kim et 

al. (2019)) using 5-fold cross validation. Each validation set is trained on 10 times and the best 

performing model is chosen. Reported below are the average of the 5 MSEs on the validation set 

of the best model trained using the same given validation set. The optimal learning rate was chosen 

as a compromise between the optimal learning rates obtained for C and CG of 0.0001 and 0.0005, 

respectively.  

Name Learning rate Average MSE 

C 0.00001 143.51 

C 0.00005 143.44 

C 0.0001 143.15 

C 0.0005 144.98 

C 0.001 148.19 

CG 0.00001 142.29 

CG 0.00005 142.07 

CG 0.0001 141.76 

CG 0.0005 141.55 

CG 0.001 141.96 
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