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Supplementary Fig. 1 Modeling and monitoring extensions of SNARE complexes. 22 

a The Allan deviation of bead position as a function of averaging time for our high speed (1.2 23 

kHz) trace. Error bars represent standard errors for 5 repeated measurements on the same 24 

construct. b Relative extension of the states of the SNARE complex at varying forces. The 25 

lines are the WLC model assuming a persistent length of 0.77 nm. c, d Representative 26 

refolding traces of the SNARE complex after force-induced disassembly (c) and 20S 27 

complex-mediated disassembly (d). e Representative trace and extension histogram of Fully-28 

zippered, Linker-unzipped, and Half-unzipped states under 16 pN of force at different 29 

αSNAP concentrations. f Extension histogram of Fully-zipped, Linker-unzipped, and Half-30 

unzipped states under different forces (12 pN, 14 pN, 16 pN) with or without 31 

αSNAP. Throughout the figure, gray and black traces are 1.2-kHz raw and 60-Hz-filtered 32 

traces, respectively. FZ: fully-zippered; LU: linker-unzipped; HU: half-unzipped; TU: totally-33 

unzipped; UC: unstructured-coil. 34 
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Supplementary Fig. 2 Model of SNARE complex unzipping and characterization of the 36 

intermediate state.  37 

a Dwell time distribution of the intermediate state for the same data as in Fig. 1i (N = 26). b 38 

Schematic model of SNARE complexes, following two different models regarding the 39 

intermediate state. The half-unzipped model starts from the HU state with unfolded VAMP2 40 

from the beginning. The symmetric-unfolding model starts from the LU state, and VAMP2 41 

symmetrically unfolds with syntaxin. c Two models (Half-unzipped, Symmetric-unfolding) 42 

plotted with the extent of syntaxin unfolding and extension level. In the half-unzipped model, 43 

the lower extent and upper extent of error bar demonstrate VAMP2 unfolding to +2 layer and 44 

to 0 layer, respectively1. The extension level at the intermediates (yellow line) is positioned 45 

between HU and LU and meets with the Symmetric-unfolding model plot (cyan-blue line).  46 
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 47 
Supplementary Fig. 3 Control experiments for SNAP tag fused αSNAP. 48 

a Design of SNAP tag-αSNAP with flexible linker and His tag/PreScission cleavage site for 49 

purification. After purification, SNAP tag was labeled with Benzylguanine(BG)-Alexa647 50 

dye. SDS-PAGE gel image of SNAP tag-αSNAP after affinity and size exclusion 51 

chromatography. A representative gel is shown from three independent experiments. Full gels 52 

are shown in Source data file. b Schematic for measuring the Alexa647-labeled NSF count 53 

during NSF-mediated SNARE complex disassembly using unlabeled SNAPtag-αSNAP. The 54 

schematic shows successful trapping of the 20S complex in 1 mM ATP/1 mM EDTA and 55 

following disassembly under 1 mM ATP/10 mM Mg2+ condition. c The number of labeled 56 

NSF spots under the two conditions in (b) with SNARE reconstituted vesicles or vesicles 57 

without SNAREs as a negative control. d Schematic for measuring the Cy3-labeled VAMP2 58 

count during 20S complex-mediated SNARE complex disassembly. After assembling the 20S 59 

complex with 1 mM ATP/1 mM EDTA, the complex was incubated with 1 mM ATP/1 mM 60 

EDTA or 1 mM ATP/10 mM Mg2+ for disassembly. e The number of Cy3-VAMP2 spots 61 

under the two conditions described in (d) using SNAP tag-αSNAP and wild type αSNAP.  62 

Error bars in (c and e) represent mean ± s.d. for n=8 (c) and n=7 (e) images from 2 independent 63 
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experiments. Source data are provided as a Source Data file. 64 

 65 
Supplementary Fig. 4 The measurement of labeling efficiency to create deconvoluted 66 

photobleaching histograms.  67 

a The design of the SNAP tag dimer with a flexible linker and a His tag for purification. 68 

SDS-PAGE gel image of SNAP tag dimer after affinity and size exclusion chromatography. 69 

The theoretical probability was calculated for four different labeling cases where r is labeling 70 

efficiency. A representative gel is shown from two independent gel from same sample. Full 71 

gels are shown in Source data file. b Characterization of SNAP tag dimer using an anti-SNAP 72 

tag antibody. c Distribution of the photobleaching step(s) of SNAP tag dimer (N = 672 73 

molecules), indicating a high labeling efficiency, r~0.9. d Example of the deconvoluted 74 

photobleaching step(s) considering 90% labeling efficiency compared to the raw data. The 75 

detail is described in method. Error bars in (b) represent mean ± s.d. for n=5 images. Source 76 

data are provided as a Source Data file.  77 
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 81 

Supplementary Fig. 5 Preparation and additional experiments for N-MT hybrid NSF. 82 

a SDS-PAGE gel image of N-MT hybrid NSF after affinity and size exclusion 83 

chromatography (SEC). N domains of N-5MT NSF protomers deleted by PreScission were 84 

removed during SEC. A representative gel is shown from two independent gel from same 85 

sample. b Counts for N-MT hybrid NSF under ATP-non-hydrolyzing (1 mM ATP/1 mM 86 

EDTA) and hydrolyzing (1 mM ATP/10 mM Mg2+) conditions. c The distributions of 87 

deconvoluted photobleaching step(s) for new N-MT hybrid NSF (N = 1229 molecules) 88 

binding to SNARE-αSNAP complex. New N-MT hybrid NSF consisted of a larger fraction 89 

of N-MT subunits than used in Fig. 3. d Comparison of SNARE disassembly activity of wild 90 

type NSF and new N-MT hybrid NSF while inducing ATP hydrolysis (+ATP/Mg2+) in pre-91 

made 20S complex. Error bars in (b and d) represent mean ± s.d. for n=7 (b) and n=7 (d) 92 

images from 2 independent experiments. Source data are provided as a Source Data file.  93 

  94 



 
 
 

8 
 
 
 

 95 
Supplementary Fig. 6 Alternating excitation for single pair FRET experiments and 96 

structure of 20S complex.  97 

a Full representative trace of a FRET measurement. Alternating laser excitation was used to 98 

select NSF with one donor and one acceptor dye from the photobleaching step. The 99 

fluorescence time trace in Fig. 4 was created by collecting the traces only when excitation of 100 

the green (532 nm) laser. b The 20S complex structure containing two αSNAPs interacting 101 

with four N domains of NSF (PDB ID: 6MDM2). The remaining two N domains of the NSF 102 

were not included in the structure, but are marked transparently. 103 
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 104 
Supplementary Fig. 7 Preparation of A-MT hybrid NSF and detailed results from the 105 

ATPase assay.  106 

a SDS-PAGE gel image of A-MT hybrid NSF at different (20%, 40%, 60%) A-MT protomer 107 

ratios. A representative gel is shown from two independent gel from same sample. Full gels 108 

are shown in Source data file. b Measurements of SNARE disassembly activity of A-MT 109 

(60%) hybrid NSF compared to WT NSF. 20S complex was pre-formed under non-110 

hydrolyzing (1 mM ATP/1 mM EDTA) conditions and SNARE disassembly was induced by 111 
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buffer exchange to 1 mM ATP/10 mM Mg2+ for 5 minutes. c, d Kinetic curves for free NSF 112 

ATPase activity at four different A-MT protomer ratios without (c) or with (d) SNARE (300 113 

nM) and αSNAP (1 μM). e Full image of the SDS-PAGE gel in Fig. 5h. The amounts of the 114 

standard samples were measured using the Bradford assay before loading. After the ATPase 115 

activity measurements, magnetic bead-trapped protein was solubilized and loaded with SDS-116 

PAGE loading dye. f Representative kinetic curves of ATPase activity for magnetic bead-117 

trapped NSF with or without SNARE and αSNAP. Error bars in (b) represent mean ± s.d. for 118 

n=10 images. Source data are provided as a Source Data file.  119 
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Supplementary Fig. 8: Additional fitting and experiments for NSF’s ATPase activity. 124 

a, f Representative kinetic curves of NSF’s ATPase activity in the 20S complex (a) and free 125 

NSF (f) using various ATP concentrations. b, c Cooperative model for ATP binding and 126 

hydrolysis if NSF in the 20S complex based on the MWC model (b) and KNF model (c). d 127 

Fitting result from the model described in (b). The infinite value of the KT means ATP-bound 128 

NSF exists only in the R form and that this result reduces the model in (b) to the one-layer 129 

model described in Fig. 6a. e Fitting result from the model described in (c). Since the scaling 130 

factor α is nearly 1, the model is also reduced to what is described in Fig. 6a. g Model of ATP 131 

hydrolysis cycle for free NSF with the same dissociation constant Kd. h Fitting result from the 132 

model described in (g). The fit did not converge well. i The effect of αSNAP to the ATPase 133 

activity of NSF without SNARE complex. The +/+ and -/- data are the same data in Fig. 5. 134 

The data in (d, e and h) are the same as those in Fig. 6. The -/+ data in (i) is mean ± s.e.m. for 135 

3 independent experiments. KT, KR, and Kd: dissociation constant for ATP binding in 136 

subunits; γ: independent hydrolysis rate; β: coupled hydrolysis rate; L: allosteric constant, that 137 

is the ratio of proteins in the T and R form in the absence of ATP. α: scaling factor for Kd. 138 

Source data are provided as a Source Data file.  139 
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