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Supplementary Fig. 1 Modeling and monitoring extensions of SNARE complexes.

a The Allan deviation of bead position as a function of averaging time for our high speed (1.2
kHz) trace. Error bars represent standard errors for 5 repeated measurements on the same
construct. b Relative extension of the states of the SNARE complex at varying forces. The
lines are the WLC model assuming a persistent length of 0.77 nm. ¢, d Representative
refolding traces of the SNARE complex after force-induced disassembly (¢) and 20S
complex-mediated disassembly (d). e Representative trace and extension histogram of Fully-
zippered, Linker-unzipped, and Half-unzipped states under 16 pN of force at different
aSNAP concentrations. f Extension histogram of Fully-zipped, Linker-unzipped, and Half-
unzipped states under different forces (12 pN, 14 pN, 16 pN) with or without

aSNAP. Throughout the figure, gray and black traces are 1.2-kHz raw and 60-Hz-filtered
traces, respectively. FZ: fully-zippered; LU: linker-unzipped; HU: half-unzipped; TU: totally-

unzipped; UC: unstructured-coil.
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Supplementary Fig. 2 Model of SNARE complex unzipping and characterization of the
intermediate state.

a Dwell time distribution of the intermediate state for the same data as in Fig. 11 (N = 26). b
Schematic model of SNARE complexes, following two different models regarding the
intermediate state. The half-unzipped model starts from the HU state with unfolded VAMP2
from the beginning. The symmetric-unfolding model starts from the LU state, and VAMP?2
symmetrically unfolds with syntaxin. ¢ Two models (Half-unzipped, Symmetric-unfolding)
plotted with the extent of syntaxin unfolding and extension level. In the half-unzipped model,
the lower extent and upper extent of error bar demonstrate VAMP2 unfolding to +2 layer and
to 0 layer, respectively'. The extension level at the intermediates (yellow line) is positioned

between HU and LU and meets with the Symmetric-unfolding model plot (cyan-blue line).
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Supplementary Fig. 3 Control experiments for SNAP tag fused aSNAP.
a Design of SNAP tag-aSNAP with flexible linker and His tag/PreScission cleavage site for
purification. After purification, SNAP tag was labeled with Benzylguanine(BG)-Alexa647
dye. SDS-PAGE gel image of SNAP tag-aSNAP after affinity and size exclusion
chromatography. A representative gel is shown from three independent experiments. Full gels
are shown in Source data file. b Schematic for measuring the Alexa647-labeled NSF count
during NSF-mediated SNARE complex disassembly using unlabeled SNAPtag-aSNAP. The
schematic shows successful trapping of the 20S complex in 1 mM ATP/1 mM EDTA and
following disassembly under 1 mM ATP/10 mM Mg2+ condition. ¢ The number of labeled
NSF spots under the two conditions in (b) with SNARE reconstituted vesicles or vesicles
without SNARES as a negative control. d Schematic for measuring the Cy3-labeled VAMP2
count during 20S complex-mediated SNARE complex disassembly. After assembling the 20S
complex with 1 mM ATP/1 mM EDTA, the complex was incubated with | mM ATP/1 mM
EDTA or 1 mM ATP/10 mM Mg?* for disassembly. e The number of Cy3-VAMP2 spots
under the two conditions described in (d) using SNAP tag-aSNAP and wild type aSNAP.

Error bars in (¢ and e) represent mean + s.d. for n=8 (¢) and n=7 (e) images from 2 independent

5



64

65
66

67
68
69
70
71
72
73
74
75
76
77
78
79

experiments. Source data are provided as a Source Data file.
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Supplementary Fig. 4 The measurement of labeling efficiency to create deconvoluted
photobleaching histograms.

a The design of the SNAP tag dimer with a flexible linker and a His tag for purification.
SDS-PAGE gel image of SNAP tag dimer after affinity and size exclusion chromatography.
The theoretical probability was calculated for four different labeling cases where r is labeling
efficiency. A representative gel is shown from two independent gel from same sample. Full
gels are shown in Source data file. b Characterization of SNAP tag dimer using an anti-SNAP
tag antibody. ¢ Distribution of the photobleaching step(s) of SNAP tag dimer (N = 672
molecules), indicating a high labeling efficiency, r~0.9. d Example of the deconvoluted
photobleaching step(s) considering 90% labeling efficiency compared to the raw data. The
detail is described in method. Error bars in (b) represent mean =+ s.d. for n=5 images. Source

data are provided as a Source Data file.
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Supplementary Fig. 5 Preparation and additional experiments for N-MT hybrid NSF.
a SDS-PAGE gel image of N-MT hybrid NSF after affinity and size exclusion
chromatography (SEC). N domains of N-5MT NSF protomers deleted by PreScission were
removed during SEC. A representative gel is shown from two independent gel from same
sample. b Counts for N-MT hybrid NSF under ATP-non-hydrolyzing (1 mM ATP/1 mM
EDTA) and hydrolyzing (1 mM ATP/10 mM Mg?*) conditions. ¢ The distributions of
deconvoluted photobleaching step(s) for new N-MT hybrid NSF (N = 1229 molecules)
binding to SNARE-aSNAP complex. New N-MT hybrid NSF consisted of a larger fraction
of N-MT subunits than used in Fig. 3. d Comparison of SNARE disassembly activity of wild
type NSF and new N-MT hybrid NSF while inducing ATP hydrolysis (+ATP/Mg?") in pre-
made 20S complex. Error bars in (b and d) represent mean = s.d. for n=7 (b) and n=7 (d)

images from 2 independent experiments. Source data are provided as a Source Data file.
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Supplementary Fig. 6 Alternating excitation for single pair FRET experiments and
structure of 20S complex.

a Full representative trace of a FRET measurement. Alternating laser excitation was used to
select NSF with one donor and one acceptor dye from the photobleaching step. The
fluorescence time trace in Fig. 4 was created by collecting the traces only when excitation of
the green (532 nm) laser. b The 20S complex structure containing two aSNAPs interacting
with four N domains of NSF (PDB ID: 6MDM?). The remaining two N domains of the NSF

were not included in the structure, but are marked transparently.



a b O A-MT(80 mol%) hybrid NSF

kDa = 2500, [l Wild-type only
@ ) g 2000] g0
135 O & 1500
100 NSF(E329Q)-SNAPtag —— =
(103kDa) Cy3 labsled ATP + Mg?' § 1000
75 . VAMP2 8‘ 500
(83kDa) -
63 W ol sNare | |+ | + | +
aSNAP + |+ |+ |+
48 NSF | AMT | Wild | AMT | Wild
+ATP/EDTA | hybrid | type |hybrid| type
ATPMg> | = = + | &
c d
ATPase Activity without SNARE and aSNAP ATPase Activity with SNARE and aSNAP
100+ WT A-MT 22501 WT A-MT
(mol%) | (mol%) = ] (mol%) | (mol%)
22 gol o100 0 "' 3 2000914 00 0
2o |[e] s 20 S5 17501 e | &0 20
g g A 60 40 ﬁ g 1500 4 A 60 40
o O 604 | v | 40 60 2 £ v | 40 50
25 & g 1250 1
oo = _
':t % 40- g cur'J 1000
5= o £, 7504
2 E 52 500
& = 29 2L -~
= 2502
w
04 ——————T——T——————— 0
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Time (min) Time (min)
e A-MT hybrid NSF standard Magnetic bead-trapped protein f

= +SNARE +aSNAP
e +SNARE -aSNAP

135 kDa 601 i _SNARE +aSNAP
100 kDa (A-MT)-SNAPtag 50-
75 kDa o

63 kDa

)
<

48 kDa

ATPase activity
([PiJ/[NSF protomer])
8 &

A

m
s
o

1 15 20 25 30
Time (min)

o

35kDa AP

SNAREs + 4+ 4+ -
+
s 4 4 -

+
104 NSF + + + +

105  Supplementary Fig. 7 Preparation of A-MT hybrid NSF and detailed results from the
106  ATPase assay.

107  a SDS-PAGE gel image of A-MT hybrid NSF at different (20%, 40%, 60%) A-MT protomer
108  ratios. A representative gel is shown from two independent gel from same sample. Full gels
109  are shown in Source data file. b Measurements of SNARE disassembly activity of A-MT

110 (60%) hybrid NSF compared to WT NSF. 20S complex was pre-formed under non-

111 hydrolyzing (1 mM ATP/1 mM EDTA) conditions and SNARE disassembly was induced by
9
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buffer exchange to 1 mM ATP/10 mM Mg?" for 5 minutes. ¢, d Kinetic curves for free NSF
ATPase activity at four different A-MT protomer ratios without (¢) or with (d) SNARE (300
nM) and aSNAP (1 uM). e Full image of the SDS-PAGE gel in Fig. Sh. The amounts of the
standard samples were measured using the Bradford assay before loading. After the ATPase
activity measurements, magnetic bead-trapped protein was solubilized and loaded with SDS-
PAGE loading dye. f Representative kinetic curves of ATPase activity for magnetic bead-
trapped NSF with or without SNARE and aSNAP. Error bars in (b) represent mean =+ s.d. for

n=10 images. Source data are provided as a Source Data file.
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Supplementary Fig. 8: Additional fitting and experiments for NSF’s ATPase activity.

a, f Representative kinetic curves of NSF’s ATPase activity in the 20S complex (a) and free
NSF (f) using various ATP concentrations. b, ¢ Cooperative model for ATP binding and
hydrolysis if NSF in the 20S complex based on the MWC model (b) and KNF model (c¢). d
Fitting result from the model described in (b). The infinite value of the Kt means ATP-bound
NSF exists only in the R form and that this result reduces the model in (b) to the one-layer
model described in Fig. 6a. e Fitting result from the model described in (¢). Since the scaling
factor a is nearly 1, the model is also reduced to what is described in Fig. 6a. g Model of ATP
hydrolysis cycle for free NSF with the same dissociation constant Kg. h Fitting result from the
model described in (g). The fit did not converge well. i The effect of aSNAP to the ATPase
activity of NSF without SNARE complex. The +/+ and -/- data are the same data in Fig. 5.
The data in (d, e and h) are the same as those in Fig. 6. The -/+ data in (i) is mean + s.e.m. for
3 independent experiments. K, Kr, and Kq: dissociation constant for ATP binding in
subunits; y: independent hydrolysis rate; f: coupled hydrolysis rate; L: allosteric constant, that
is the ratio of proteins in the T and R form in the absence of ATP. a: scaling factor for K.

Source data are provided as a Source Data file.
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