Supplementary Information

Automated annotation and visualisation of high-resolution spatial proteomic mass spectrometry imaging data using HIT-MAP

Guo et al.

Supplementary Figure 1 а 4 Peptide Score 0 8 -2 1000 2000 m/z

8

8

8

Decoy

Target

Somatostatin_28 8

8

Supplementary Figure 1 cont.

Supplementary Figure 1 | **a.** Post-hoc IQR outlier analysis of peptide score across the mass ranges identified in the peptide calibrant identifies putative outlier peptides (blue dots) using an interquartile-range (IQR) function (box plots how minimum, maximum and interquartile range). **b.** The frequency distribution of protein candidate list scoring for the preliminary HIT-MAP analysis, annotating 7/8 proteins (excluding Somatostatin-28). **c.** The peptide mass fingerprint analysis demonstrating cross-referencing of the observed isotopic pattern to the simulated theoretical target or decoy isotopic pattern for the 8 peptide calibrants. **d.** MALDI-FT-ICR-MS/MS of the 8 peptides present with the calibrant.

Supplementary Figure 2

a Filensin

С

Alpha Crystallin A Chain

b Phakinin

d Alpha Crystallin B Chain

Supplementary Figure 2 cont.

f Vimetin

h Visinin Like Protein 1

j Arpin

I Tropomyosin Alpha 1

n Dynein Regulatory Complex Subunit 4

p Ankyrin Repeat Domain 45

g Actin Related Protein 8

i Cortactin

k Tropomyosin 4

m Myosin Light Chain 3

o Kinesin Family Member 14

Supplementary Figure 2 | HIT-MAP analysis of published bovine lens(Wang et al. 2020). All peptide and protein cluster imaging outputs of annotated **a-e.** lens and **f-p.** cytoskeletal proteins, (scale bar = 3mm). Intensity scales represent relative intensity from 0% to 100%.

Supplementary Figure 3

Supplementary Figure 3 | **a.** Segmentation of published bovine lens(Wang et al. 2020) for cross-referencing to spatial microLESA captured regions that underwent LC-MS/MS on a serially sectioned bovine lens MALDI dataset. **b.** Cross-referencing of the annotated peptides from the MALDI-MSI HIT-MAP pipeline with the LC-MS dataset. The relative overlap in co-annotated peptides increases when implementing either a relative score (ii), and relative intensity (iii) or both (iv), as compared to no normalisation (i). **c.** Spatial correlation of additional LC-MS/MS validated proteins annotated by the HIT-MAP pipeline. Intensity scales represent relative intensity from 0% to 100%.

Supplementary Figure 4

a GABA receptor γ3 subunit

d Endophilin-A2

g Vesicle-associated membrane protein 7

 \boldsymbol{b} GABA receptor $\boldsymbol{\delta}$ subunit

e Endophilin-B1

h Vesicle-associated membrane protein 8

GENLDHLRNK	KFWWK	
1195.6178	794.4348	
C49H83N18O17	C43H56N9O6	
M+H	M+H	
1.52	-0.32	
9 8 9	13 100	
Carlos and a second sec		

C Neuronal acetylcholine receptor β3 subunit

LPRWLCMK	SSSTYHPMAPWVKR	VYFGLK
1046.5638	1646.8108	726.4185
C48H80N13O9S2	C74H112N21O20S1	C37H56N7O8
M+H	M+H	M+H
1.12	-0.59	1.64

f Syntaxin-1A

EELEELMSDIK	HSEIIK
1335.6348	726.4145
C56H95N12O23S1	C32H56N9O10
M+H	M+H
-1.31	3.82
FFI FFI MSDIK 1335 6348	HSEIK 726 4145

i Protein Kinase C eta type

Supplementary Figure 4 cont.

j Smad nuclear interacting protein-1

M Neutrophilic Granule Protein

P Hyaluronan and proteoglycan link protein 3

k Cytochrome c oxidase subunit 6A1

n Small EDRK rich

GNQRELAR

943.5068

C37H67N16O13

M+H

2.78

factor 2

MTRGNQR

862.4312

C32H60N15O11S1

M+H

1.45

Pyruvate Kinase

• Disintegrin and metalloproteinase domain-containing protein 22

q Wnt-2b

Supplementary Figure 4 | HIT-MAP analysis of murine brain. All peptide and protein cluster imaging outputs of annotated **a-c** neural receptors, **d-h** vesicle related proteins, **I** and **j** signalling proteins, **k** and **I** metabolic proteins, **m** and **n** Alzheimer's disease related proteins, and **o-q** extracellular proteins, scale bars = 4 mm. Intensity scales represent relative intensity from 0% to 100%.

Supplementary References

1. Wang, Z., Ryan, D. J. & Schey, K. L. Localization of the lens intermediate filament switch by imaging mass spectrometry. *Exp. Eye Res.* 108134 (2020). doi:10.1016/j.exer.2020.108134