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Supplementary Methods

Computational details. The density functional theory (DFT) calculations were performed
with the quantum chemistry program Turbomole V6.5.! Structural optimizations and
calculations of energies were done by DFT within the D3 dispersion correction.” The TPSS
(Tao, Perdew, Staroverov, and Scuseria) functional was used for electron exchange and
correlation,’ and the def2-TZVPP for orbital and auxiliary basis sets.* Gold (Au) uses the viable
core potentials with 19 valence electrons including scalar relativistic corrections.’ The initial
structures of Auis(SCH3)14 and Auxo(SCH3)16 are constructed by replacing hydrocarbyl in
Auis(SCeHi1)14 and Auzo(SPh-z-Bu)is with methyl.> 7 The structure of Auz(SCHs)is is

developed based on the previous study.®
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Supplementary Figure 1. pH monitoring in reaction process. pH variation of the reaction

solution in the etching process of Auzs(MHA)s NCs.
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Supplementary Figure 2. Enlarged view of ESI mass spectra in the range of 400-1000 m/z
from O h to 48 h.
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Supplementary Figure 3. Enlarged view of ESI mass spectra in the range of 400-1000 m/z
from 72 h to 720 h.
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Supplementary Figure 4. Enlarged view of ESI mass spectra in the range of 1000-3000 m/z
from O h to 48 h.
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Supplementary Figure 5. Enlarged view of ESI mass spectra in the range of 1000-3000 m/z

from 72 h to 720 h.
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Supplementary Figure 6. ESI mass spectra of purified Auz2sSRis. Both experimental (black

line) and simulated (red line) results were shown. The result indicates the main AuxsSRig

species is neutral in charge.
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Supplementary Figure 7. ESI mass spectra of [Au2sSR19]°. Both experimental (black line)

and simulated (red line) results were shown.
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Supplementary Figure 8. ESI mass spectra of [Au24SR1s]’. Both experimental (black line)

and simulated (red line) results were shown.



[Aug3SR,,° — 4H*]4

J\/\/\IJ [AuxsSR ;% + Na* - 5H*]4

I T
1755 1760
m/z

[AusSR;;° — 4H+-

MM/\/M

I - T
1756 1758
m/z

Supplementary Figure 9. ESI mass spectra of [Au23SR17]°. Both experimental (black line)

and simulated (red line) results were shown.
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Supplementary Figure 10. ESI mass spectra of [Au22SR17]". Both experimental (black line)

and simulated (red line) results were shown.
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Supplementary Figure 11. ESI mass spectra of [Au21SR16] . Both experimental (black line)

and simulated (red line) results were shown.
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Supplementary Figure 12. ESI mass spectra of [Au20SR15]™. Both experimental (black line)

and simulated (red line) results were shown.
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Supplementary Figure 13. ESI mass spectra of [Au24SR20]’. Both experimental (black line)

and simulated (red line) results were shown.
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Supplementary Figure 14. ESI mass spectra of [Au23sSR19]’. Both experimental (black line)

and simulated (red line) results were shown.
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Supplementary Figure 15. ESI mass spectra of [Au22SRis]’. Both experimental (black line)

and simulated (red line) results were shown.
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Supplementary Figure 16. ESI mass spectra of [Au20SR16]’. Both experimental (black line)

and simulated (red line) results were shown.

10



[Au;gSR 40 = 4H"]*

[AU188R140 + Na* = 5H+]4—
ANNANNAA~
I T T T T T T T T T . T T T
1398 1400 1402 1404 1406 1408 1410 1412
m/z

[Au1gSR,° = 4H]+

T L T
1400 1402
m/z

Supplementary Figure 17. ESI mass spectra of [Au1sSR14]’. Both experimental (black line)

and simulated (red line) results were shown.
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Supplementary Figure 18. ESI mass spectra of [Au1sSR14]’. Both experimental (black line)

and simulated (red line) results were shown.
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Supplementary Figure 19. ESI mass spectra of [Aui1sSR13]’. Both experimental (black line)

and simulated (red line) results were shown.
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Supplementary Figure 20. ESI mass spectra of [Aui2SR12]° (long-chain complexes). Both

experimental (black line) and simulated (red line) results were shown.
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Supplementary Figure 21. ESI mass spectra of [AuiiSRu1]’ (long-chain complexes). Both

experimental (black line) and simulated (red line) results were shown.
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Supplementary Figure 22. ESI mass spectra of [Au10SR10]° (long-chain complexes). Both

experimental (black line) and simulated (red line) results were shown.
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Supplementary Figure 23. ESI mass spectra of small complexes. (a) [AuSR2]", (b)

[AuzSR3], (c) [AusSR4] ", and (d) [AusSR4]°. Both experimental (black line) and simulated

(red line) results were shown.
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Supplementary Figure 24. PAGE separation of the etching product and the ESI mass
spectra of the species in the corresponding bands at the reaction time of 48 h. Three bands
were cut from the gel and analyzed by ESI-MS. The ESI mass spectra show signals of AuisSR 14,
AuSR s and AuxsSRi9 for each band, stepwise from small to large. This result indicates that
these species exist in the etching process of AuzsSRis NCs, and no in-situ electrochemical
reactions occurred in the ESI-MS test. It is worth noting that the resolution of PAGE is not
sufficient to separate all species of similar size (band merging is severe), and some species may
not be abundant enough to show clear bands. In addition, we cannot ensure the stability of all
species during the long electrophoresis process (usually 24 h). Therefore, we did not use PAGE

for fulltime screening of all intermediate species.
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Supplementary Figure 25. EPR capturing of thiol radicals in the reaction process. EPR
spectra captured by using 4-OH-TEMPO as trapping reagent in water phase. Two characteristic

time points were chosen to show the presence of thiol radicals at different stages of the etching

reaction.

[AUsSR6]° + RS- + BRS™ — [AU,SRs]” + 5[AUSR,]"
[AUsSR )0 + RS- + 5RS™ — [Au,,SR¢]” + 4[AUSR,]-

[AUySR ] + 2RS: + 2RS™ — [AugSR,]° + 3[AUSR,]-
[AU SR 6]” + 4RS: + 5RS™ — [Au;5SR 3]0 + 6[AUSR,]-

Supplementary Figure 26. Decomposition process mediated by thiol radicals in Stage 1.

Decomposition reactions responsible for the formation and consumption of 6 e species were

proposed.
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Supplementary Figure 27. Control experiments without excess thiol ligands. ESI mass

spectra of AuzsSR g NCs without adding excess thiol ligands.
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Supplementary Figure 28. Control experiments with reducing/inert gas. ESI mass spectra
of the reaction solution saturated by (a) CO and (b) N2 in 48 hours. The decomposition process

has been quenched.

[Au2;SR1g]™ + [AUSR;]” — [AU,;SR7]” + RS™
[AuzSRy7]™ + [AUSR;]™ — [Au3SRy7]° + 2RS™
[Aup3SR7]° + [AUSR,]™ — [Aup,SRg]% + RS-
[AU24SR1g]° + [AUSR;]™ — [AupsSRg]? + RS™

Supplementary Figure 29. Recombination process mediated by isoelectric addition
reactions. Only possible reaction routes were shown. The detailed reactions routes need to be
confirmed by further experimental efforts and DFT calculations, which are beyond the scope

of this work.
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Supplementary Figure 30. MS/MS spectra of [AuisSRu4]’. (a) MS/MS spectra of
[AuisSR14]° at different fragmentation energy. (b) Analysis of the corresponding species in
MS/MS spectra. The shape change of isotopic patterns is due to the ion filtering in the MS/MS
process, while keeping the overall position accurate. Note that the 2" generation
fragmentations and small fragments (e.g., [AusSR4]") also present in MS/MS spectra and they

are not analyzed in detail here.
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Supplementary Figure 31. MS/MS spectra of [Au20SRi6]’. (a) MS/MS spectra of
[Au20SR6]° at different fragmentation energy. (b) Analysis of the corresponding species in
MS/MS spectra. The shape change of isotopic patterns is due to the ion filtering in the MS/MS
process, while keeping the overall position accurate. Note that the 2" generation
fragmentations and small fragments (e.g., [AusSR4]") also present in MS/MS spectra and they

are not analyzed in detail here.
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Supplementary Figure 32. MS/MS spectra of [Au22SRis]’. (a) MS/MS spectra of

[Au22SRs]? at different fragmentation energy. (b) Analysis of the corresponding species in

MS/MS spectra. The shape change of isotopic patterns is due to the ion filtering in the MS/MS

process, while keeping the overall position accurate. Note that the 2" generation

fragmentations and small fragments (e.g., [AusSR4]") also present in MS/MS spectra and they

are not analyzed in detail here.
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Supplementary Figure 33. MS/MS spectra of [Au2sSRp]’. (a) MS/MS spectra of

[Au23SRi9]° at different fragmentation energy. (b) Analysis of the corresponding species in

MS/MS spectra. The shape change of isotopic patterns is due to the ion filtering in the MS/MS

process, while keeping the overall position accurate. Note that the 2" generation

fragmentations and small fragments (e.g., [AusSR4]") also present in MS/MS spectra and they

are not analyzed in detail here.
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Supplementary Figure 34. MS/MS spectra of [Au24SR20]°. (a) MS/MS spectra of

[Au24SR20]° at different fragmentation energy. (b) Analysis of the corresponding species in
MS/MS spectra. The shape change of isotopic patterns is due to the ion filtering in the MS/MS
process, while keeping the overall position accurate. Note that the 2" generation
fragmentations and small fragments (e.g., [AusSR4]") also present in MS/MS spectra and they

are not analyzed in detail here.

Oxidative etching of [Au,5SR;,]°
[AussSRg]° + 2RS: + RS™ — [Au,,SR,0]° + [AUSR,]™
[AussSRg]° + 2RS- + 2RS™ — [AU,3SR4g]° + 2[AuSR,]”

Formation of long-chain complexes
[Au;gSR4]° + 2RS- + 3RS~ — [Au,5SR43]° + 3[AUuSR,]~

[AU;sSR5]° + 2RS: + 5RS™ — [AUuSRo]° + 5[AUSR,]"

Supplementary Figure 35. Oxidative etching reactions in Stage 1. Reactions responsible

for oxidative etching of [Au2sSR19]° and formation of long-chain complexes were proposed.
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Supplementary Table 1. Intermediate species (N* > 0) identified in the growth process of

[AuzsSRig]” using CO as reducing reagent.’

[Aui1SRo]°
[AU158R13]0

[AuisSRi2]™
[Au1sSR14]°

[Au1oSR3]°
[Au20SR14]°
[Au20SR1s]”
[Au21SR1s]°
[Au2:SR16]™
[Au22SR16]°
[Au22SR17]”
[Au23SR17]°

[AuzsSRus]”
[AuzsSRus]

[Au29SR20]

Supplementary Table 2. Intermediate species (N* > 0) identified in the growth process of

[Au2sSRis]” using NaBHj as reducing reagent.!”

[AuisSRi3]°

[AuieSRi3]™

[Au17SR14]”

[AuisSRi4]°

[Au20SR14]°

[AU21S R15]0
[Au2:SR16]™
[Au2sS R17]O

[Au24SR1g]°

[AuzsSRue]”

[AuzsSRis]

[Au29SR20]”
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Supplementary Table 3. Species identified in the etching process (N* > 0) of AuzsSRis NCs

and their presence/absence in the growth process of AuzsSRig NCs by using CO or NaBH4 as

reducing agent.”

Species

Stage [

[AU25SR13]_/0

[AU24SR1g]°

[AU23SR17]0

[Au22SR17]™

[Au2:SR16]™

[Auz0SR1s]”

[AuisSR4]°

[AuisSRi3]°

Stage 11

[AuzsSR1]°

[Au24SR20]°

[Au23SR1]°

[Auz2SR1g]°

[Au20SR16]°

[Au1sSR14]°

“ Presence: yellow; absence: blank.

Etching

Growth/CO | Growth/NaBH4
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